arXiv:1912.05426v1 [quant-ph] 11 Dec 2019

Quantum coherence, discord and correlation measures based on
Tsallis relative entropy

Anna Vershynina

Department of Mathematics, Philip Guthrie Hoffman Hall, University of Houston, 8551 Cullen Blvd.,
Houston, TX 77204-3008, USA

December 12, 2019

Abstract

Several ways have been proposed in the literature to define a coherence measure based on Tsallis
relative entropy. One of them is defined as a distance between a state and a set of incoherent
states with Tsallis relative entropy taken as a distance measure. Unfortunately, this measure
does not satisfy the required strong monotonicity, but a modification of this coherence has been
proposed that does. We introduce three new Tsallis coherence measures coming from a more general
definition that also satisfy the strong monotonicity, and compare all five definitions between each
other. Using three coherence measures that we discuss, one can also define a discord. Two of
these have been used in the literature, and another one is new. We also discuss two correlation
measures based on Tsallis relative entropy. We provide explicit expressions for all three discord
and two correlation measure on pure states. Lastly, we provide tight upper and lower bounds on
two discord and correlations measures on any quantum state, with the condition for equality.

1 Introduction

Coherence is the fundamental property of quantum systems, that is used in thermodynamics [1, 5,
12], transport theory [18, 24], and quantum optics [7, 19], among few applications. Recently, the
problems involving coherence included quantification of coherence [2, 14, 16, 17, 20, 25], distribution
[15], entanglement [4, 21], operational resource theory [3, 4, 6, 23], correlations [9, 13, 22], with only a
few references mentioned in each. See [26] for a more detailed review.

Here we focus on the problem of quantification of coherence. A number of ways has been proposed
as a coherence measure, but only a few satisfy all necessary criteria [2, 26, 27]. A “good” measure of
coherence should satisfy a list of intuitive criteria, which include a strong monotonicity property - a
monotonicity under selective incoherent CPTP maps. Measures that satisfy the strong monotonicty that
have been introduced up to date, are based on [, relative entropy, Tsallis entropy, and real symmetric
concave functions on a probability simplex. Tsallis coherence measure can be defined several ways. Here



we discuss five different ways to define a Tsallis coherence measure, two of them have been used in the
literature before [17, 26], and we also consider three particular cases of a more broad definition [27].

The first coherence measure C;} discussed here, was defined in [17]. The measure is defined as a convex
roof, and the explicit expression for it was also given, see (2.1) for details. Authors showed that the
measure satisfies several properties expected for a coherence measure, but not the strong monotonicity
under incoherent selective measurements.

To rectify the situation, a new coherence measure, C;" was defined in [26], see (2.2). This measure
does satisfy the strong monotonicity under incoherent selective measurements along with all previous
ones. Now, one can argue for two sides here. On one hand, Cé has a good intuition behind it, as it is
defined as the distance between a given state and the set of incoherence states, with the relative Tsallis
entropy as a a distance measure. The new measure is a more artificial looking one, constructed for a
specific purpose of satisfying the list of given properties. On the other hand, Cél is easy to compute,
and it does satisfies the list of properties a good coherence measure should.

A class of coherence measures was defined in [27] based on real symmetric concave functions on a
probability simplex. For any such function one can explicitly define a coherence measure on pure states,
and as a convex roof for mixed states. We use Cé and Cél to define coherence on pure states, and use
the convex roof construction to define two coherence measures on mixed states. Moreover, we define
another coherence measure based on a familiar concave function.

Section 3 is used to compare all five measures between each other.

One can define a discord in different ways. Here we consider three definitions of the discord based on
the first three coherence measures. This is not a complete list of possible definitions, see, for example,
[10] for another definition.

In [11], the measure of quantum correlations Q, was defined as a minimum Tsallis relative entropy
over a set of classical-quantum states, a bigger set than a set of classically-correlated states. The authors
also defined a new correlation measure based on the second definition of the coherence measure. The
correlation measure in [11] is non-greater then discord, and we show that they coincide on pure states.

We present a tight lower bound for two discord and correlation measures, and show when it is
saturated. The upper bound for the coherence measure Q, was derived in [17], which is the upper
bound for the discord as well. Here we show that the upper bound is tight for the discord as well, and
present a tight lower bound for the second discord and correlation measures. In summary, we present
three results:

e comparison between five coherence measures, Theorems 3.1, 3.2, 3.3;
e explicit expression for three discord and two correlation measures on pure states, Theorem 4.1;
e a tight lower bound on two discord and correlation measures, Theorem 5.1;

e a tight upper bound on two discord and correlation measures, Theorem 5.2.



2 Preliminaries

2.1 Coherence

Let H be a d-dimensional Hilbert space. Let us fix a basis {|7)}9_, of vectors in H.

2.1 Definition. A state 9 is called incoherent if it can be represented as follows
6= &) (I -
J
In the case of multipartite system, let the corresponding Hilbert spaces be denoted as {Hj}Y.

Suppose each Hilbert space is of dimension dj, and has a fixed basis {|j) ;-li 1

2.2 Definition. A state 6 on H = @), Hy, is called incoherent if it can be represented as follows
0=2_01i) Gl .
J

where § = (j1,...,Jn) with jy = 1,...,dy is a vector of indices, and |j) = Q). |jr) = [j1) ® -+ @ |jn) -

2.3 Notation. Denote the set of incoherent states for a fized basis {|i)}; as

I={p=> pli) (I}
J
Denote the set of separable states as

S ={pap = Zpi,jaf ® O']-B | for any states o;,0;} .
ij

Denote the set of classically correlated states as

CC = {pap =Y _piylis) (ij| = me |0) Gila @ 15) Gilp | for any bases {[i) 1}, {17) 5} } -

2%
A CPTP quantum channel is categorized into the following two classes.

2.4 Definition. A CPTP map ® with the following Kraus operators
@(p) = ZKnpK: )

is called the non-selective incoherent CPTP (ICPTP) when the Kraus operators satisfy
K, ZK, C Z, for alln ,

besides the regular completeness relation ) K'IK, = 1.



2.5 Definition. A CPTP map ® with the following Kraus operators
B(p) = 3 Kok

is called the selective ICPTP when the Kraus operators satisfy
K, IK CZ, for alln ,

besides the regqular completeness relation Y K}K, = 1. Additionally, we record the outcomes of each

measurement KoK
Pn = L, pn =Tr K, pK;, .
Pn

Any reasonable measure of coherence C(p) should satisfy the following conditions
e (C1)C(p) =0 if and only if p € Z;
e (C2) Monotonicity under non-selective ICPTP maps (monotonicity)
Clp) = C(®(p)) ;
e (C3) Monotonicity under selective ICPTP maps (strong monotonicity)

C(p) =D paClpa)

where p,, and p,, are the outcomes and post-measurement states defined above;

e (C4) Convexity,

> pClpn) > C (me) :

for any sets of states {p,} and any probability distribution {p,}.

These properties are parallel with the entanglement measure theory, where the average entanglement
is not increased under the local operations and classical communication (LOCC). Notice that coherence
measures that satisfy conditions (C3) and (C4) also satisfies condition (C2).

Any distance measure D between two quantum states, can induce a potential candidate for coherence.
The distance-based coherence measure is defined as follows [2].

2.6 Definition.
Cp(p) :=min D(p,9) ,

i.s. the minimal distance between the state p and the set of incoherent states T measured by the distance
D.

e (C1) is satisfied whenever D(p,d) = 0 iff p = 6.
e (C2) is satisfied whenever D is contracting under CPTP maps, i.e. D(p,0) > D(®(p), P(0)).

e (C4) is satisfied whenever D is jointly convex.



2.2 Tsallis entropy and relative entropies

2.7 Definition. For 0 < g # 1, the Tsallis entropy is defined as

Su(p) = (1= Tup")

In the limit ¢ — 1, the Tsallis entropy becomes von Neumann entropy

lim S,(p) = S(p) == —Tr(plogp) .

q—1

2.8 Definition. For 0 < g # 1, the Tsallis relative entropy is defined as
1 _
Dy(pllo) = qj(Tf(anl -1
The Tsallis relative entropy satisfies the following properties:

e The Tsallis relative entropy is zero if and only if p = 0.

e For g € (0,2],in [8, 17], it was shown that the Tsallis relative entropy is monotone:
Dy(®(p)[|®(0)) < Dy(pllo)

e For g € (0,2] in [8, 17|, it was shown that the Tsallis relative entropy is jointly convex:

(anl)nn anan> < an pn |‘7n

e For Kraus operators K, in [17], it was shown that the Tsallis relative entropy satisfies

ZD n,OKTHK UKT Zp - “Dy(pnllon)
where p, = Tr(K,pK}), ¢, = Tr(K,0K}), and p, = pinKnpKJL, op = qinKnaKJL.

2.3 Tsallis Coherence

For a fixed basis {|j)};, the Tsallis coherence measure can be defined numerous ways. Here we present
five different ways to define a Tsallis coherence measure. In this section we assume that 0 < ¢ # 1.
The first way to define a coherence, is according to [17].

2.9 Definition. For a state p, define
1 q
I _ . _ _ g 1a\1/q
C,(p) = min Dy (p||9) —1_q{1 (E, (' 17) ) } : (2.1)

Here T is the set of incoherent states in a given basis {|j)};.



The state that reaches the minimum is

Sy = S Ul ) 1) ]

J

where N = 3, (j| p7]j)"/.
This coherence measure satisfies (C1), (C2), and (C4), but not (C3). To remedy this situation, in
[26] authors defined a new coherence measure based on Tsallis entropy as following

2.10 Definition. For a state p, define
1 . .
Cyl(p) = T—¢ {1 - Z (Jl |J>1/q} : (2.2)
J

This coherence measure satisfies all properties (C1)-(C4), but it lacks the beauty of the distance
based measure. Straightforward observations lead to the relation

clip) <C(p) (23

In [27], authors defined a coherence measure for any real symmetric concave function on a probability
simplex. Such coherence satisfies (C2)-(C4) properties. And for all choices below, (C1) also holds.

Since the function f(p) = 1%[1{2 ;Pj — 1} is real symmetric and concave on a probability simplex
(here p = (p1,...,pa) is a probability vector), we can define a coherence measure as follows.

2.11 Definition. For a pure state |¢), define

Cy" (W) = ﬁ {Z [l = 1} .

And for the mized state p, define
C,"(p) = min {Z MCI (W) | o= Aaltbn) w} :

q
Since the function f(p) = 1T1q {1 — <Z] p;/q) } is real symmetric and concave for 0 < ¢ # 1 and a

probability vector p = (p;), we may define a coherence measure as follows.

2.12 Definition. For any state p, define

C(fv(P) = min {ancé(%) | p= Z)‘n |%n) <¢n|} )

where CL(1) is defined by (2.1).

Since the function f(p) = 1%q{l -2 p}/ 71 is real symmetric and concave on a probability simplex
(here p = (p1,...,pa) is a probability vector), we can define another coherence measure as follows.



2.13 Definition. For any state p, define

C;/(p) = min {Z )‘ncfln(@bn) | p= Z An |¢n> <wn|} )

where C[ (1) is defined by (2.2).
Clearly, from (2.3),

2.4 Discord measure
The discord measure based on Tsallis relative entropy is defined as following.

2.14 Definition. For 0 < q # 1, and any state p, define
D, (p) = min D,(p]5) . (2.4)
Here CC denotes the set of classically-correlated states
CC = {pan =Y pi; i) (ij] = D pijli) (ila ®15) (il : for any bases {|i) 1}, {14} s}} -
ij 2
Note that we might have written

where the minimum is taken over all bases {|i) ,} and {|j)z}. Even though we will talk about other
discord measure, we will not be using notation DJ(p) for simplicity.

The Tsallis discord satisfies the properties below, which follow from the definition of the discord and
the properties of Tsallis relative entropy

1. D,(p) > 0, with the equality if and only if p € CC;
2. Dy(pan) = Dy(Ua @ UppUl @ U}).

Since
Dy(p) = minCl(p)
and from Definition 2.1 of C/(p), we have

1 — Ni(p)

= (2.5)

Dy(p) = min

where
Np(p) == > (il p*lif)""" (2.6)
j
and the minimum is taken over all bases {|ij) 45}4;-
Similar to the coherence measure Cél , one may define a new discord as follows



2.15 Definition. With the above notations,

— a§1-a)\1/q —
Dn(p):min1 (Ax(p?0 7)) :mini[)(p):min ! {1—Z<ij|0q|ij>l/q} -

a secc 1—gq 1—q 1—g¢q

ij

Clearly,
Dy(p) < DI (p)

Using coherence Cél I we may define a new discord measure.
2.16 Definition. Define
17 o AIIT
D, (p) = min C, (n) (2.7)

where the minimum is taken over all bases {|i) ,} and {|7) 5}

In Theorem 4.1 we present explicit expressions on all these discord measures on pure states. From
Theorem 3.1, we obtain
Dy(p) < DM (p) -

2.5 Correlation measure

2.17 Definition. The quantum correlation measure based on Tsallis relative entropy is defined as

Q,(p) = min Dy(pl9) (2.8)

Here CQ denotes the set of classical-quantum states

CO = {pap = Zpi i) (i| ® o; | for some basis {|i)} and some states o;} .

Since CC C CQ, we have
Q,(p) < Dy(p) -

The correlation measure satisfies the following properties, [11]

1. Q,(p) > 0, with the equality if and only if p € CQ;

2. Qu(pan) = Qu(Ua ® UppUl ® UL);

3. Qu(pan) > Qu(Pp(par)), where ®p is a local CPTP map on system B.

From [11], for any state pap and ¢ € (0,1) U (1, 2],

Q,(p) = min {1 - (Z (s (Lo 1) u>3> } ,




where minimum is taken over all bases {|i) ,}; on system A. Denote

No(p) =D Gl (ila " iy 4" 15) 5 - (2.9)
ij
Therefore,
1 — NY?
Qq(p) = min TQq(p) : (2.10)

2.18 Lemma. Let |¢y) be the diagonal basis for p, i.e. let
p=> Neltbi) (Wil
%

where A\, > 0, and Y, A\ = 1. Also, let |E) 4 and |Exy) 5 be the Hilbert-Schmidt basis for the state |1y),
i.e.

Here ay,, > 0 and for every k, and ., af, = 1. Then

1/q
=3 N (Z ain|<z'|am>|2) . 2.12)

Proof. By definition (2.9), we have

1/q
No(p) = (il <ZV il 4 [Vk) (il [9) 4 ) e

]

Denote
(Wir) g o= (il 4 [¥%) Zakn (1l€kn) [Ern) 5 =2 V/Mik | D)
where
mig = Zain|<i|€kn>|2, and  (di|dw) =1 .
Then
1/q
Ml (z A 6 @k\) SR TUITREES S
ik

By definition of m;;, we obtain the statement of the lemma. O

2.19 Definition. In [11], authors defined a new correlations measure,
. 1= Ng(p) . 1 0 \1/q | -
Q3 (p) = min === = min g 01 =3 (i1, Gl 104" s -
ij
2.20 Lemma. For any state p,
Q;' () <D (p) -

Proof. Since ¢ is monotone, the minimum for both 9, and Qél is achieved on the same basis. Similarly,
from the expression (2.5) and Definition 2.15, the minimum for both D, and D}’ is achieved on the
same basis. Since Q,(p) < D,(p), the Lemma follows. O
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3 Relations between coherence measures

Here we compare all five coherence measure with each other.

3.1 Theorem. For q € (0,1),
Ca(w) <G () .
And clearly, therefore, CIV (p) < CI'(p).

Proof. The difference is

@<w>—cq<w>:1—iq{2\<j|w> e+ <Z\<j||w> Wq) —2} .

The expression in the parenthesis is monotone decreasing in ¢ € (0,1), which can easily be seen by
taking the derivate with respect to q. Therefore, the minimal value of the expression in the parenthesis
occurs at ¢ = 1, which is exactly 0. O

3.2 Theorem. For (0 < q# 1,
I v
Calp) <C7 (p) -

Proof. Let p =3 Ay [thn) (1bn| be the optimal decomposition for C;" (p). Then

G p) = 1_q{1—ZAk (D () Wq) }

1/q
(Z 2| (5] [abe) |2>
k

/q
>3 el G ) [P
k

and
q

i = 11— |3
For ¢ < 1,
<Z NI G i) | )

For ¢ > 1, the inequality is reversed. Therefore,

Cy(p) = 1i {1— (Z)\k\ (1 ¥e) |2/q> } :

The statement follows from convexity of the function 1%q{l — 9}, O

3.3 Theorem. For(0 < q#1,
I 1%
Cy (p) =Cq (p) -
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Proof. Let p =3, An |[¥n) (¢n] be the optimal decomposition for C} (p). Then

et - (- S s}

Also,
1 1/q
Gl =1 {12 (ZA |Gl 1) | )
j k
For g < 1,
1/q
(Z Al () |2> > Al Gl lw) [P/
k k
For ¢ > 1, the inequality is reversed. O

3.4 Remark. Note that there is no straight forward comparison between C (1)) and C'*(v)), as one is
not majorized by the other for all cases. For example, in d = 2, let us denote z := | (1]]¢) |2. Then

if v =1/2,q=1/2, then Cl/2<7vb> > C{/I2I<¢) )

but
if 2 =0.1,q=1/2, then C{7,(¢)) < C{jJ () .

In conclusion, here are the inequalities that we have proved:
I A% 1
Cylp) <Ci7 (p) <C7 (p)

ClV(p)<CY(p),
Ci(p) <CJ1(p) <C)(p) -

4 Discord and correlation measure on pure states

For pure states, we can explicitly calculate the minimum in both expressions for correlation and discord
measures. This was proved for the correlation measure Q, in [11].

4.1 Theorem. Let p = 1)) (| be a pure state. Let {a,} be the Hilbert-Schmidt coefficients of |) 45 =
Yon 0 l&n) 4 l€n) g - Forq e (0,1)U(1, 2], the discord and correlation measure can be explicitly calculated

Dy([v) (1) = Qq (1) (¥) = {1—<Za ) } (4.1)
Dy (1¥) (¥l) = Q4" (Iv) (W) = {1—Za2/q}_ . (4.2)

Dy (J0) (W) = {Zazq ~ 1} >0 . (4.3)
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Proof. Since the expression (4.1) was proved for the correlation measure in [11], and

Qq(p) < Dy(p) (4.4)

we need to show that for some particular basis, the discord has the same expression. By definition of

Np (2.6),
2/q

=D Il 7=
ij ij
Choose the orthonormal basis |i) , := [&) 4 on system A and |j) := |{;) 5 on system B. Then, we have

p() = arl". (4.5)

By (2.5), this leads to the first statement of the Theorem.
For the next two expressions, we recall the proof of (4.4) for pure states, and modify it later as

> an (il1€) (il 16a)

necessary for other discord and correlation measures. From (2.6) for a pure state
Np () = D (il 1) Gl i) =2 Gl R: i)'
ij ij

where
Ri= (i) ) @ () 1) .

Clearly, R; is a projector in system B. Denote

—_

= Yool ille) P and 1o)== —= (i@ T} .

Note that (¢;||¢;) = 1 for every i. Then

= m; |¢;) (D] -

Therefore,

v) =2 m Y Gl P

For ¢ € (0,1), for every j, | (j| |#:) [¥9 < | (j||¢:)|?>. Therefore from Lemma 2.18 we obtain the last
equality

1/q
)< Zm”‘]Z\ Glloa =3 m =37 (Z o] Gl €n) |2) = No(¥) .
For ¢ € (0,1), the function /7 is convex. Therefore,

Np(1h) < No( <Zza2/q| il 1€,) Zoﬂ/q. (4.6)
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For ¢ > 1, the above inequality is reversed. Since x? is monotone increasing for all ¢, and together with
the pre-factor of =, we obtain (4.4).
For the second 1nequahty recall that

. 1—Np(p)
1T D
D, (p):mlan,
and LN
Qél(p):min B Q(p>.
1—g¢

so the proof just carries as is from (4.5) and (4.6).
For the third inequality, recall that

DI () = min €M (¢) = min .

o q
lig)

iq{Z\ww%—l} .

Since for all ¢ € (0,1) we have Np(¢) = Y7, [{(igly)[1 < 3, ar/® and for ¢ > 1, Np(¢) > 3 a2/,
we obtain for ¢ € (0,1) U (1, 2]

{Zl (i) 2 - } > Lq{;agq_l} |

For all the cases, the inequality is reached when the basis is taken to be the Hilbert-Schmidt basis
of state [1).
O

5 Bounds on quantum discord and correlation measure

Here we present the tight lower and upper bounds for a quantum discord for mixed states.

5.1 Theorem. For a mized state p and q € (0,1)U(1, 2], the discord and correlation measure are tightly

<>>Qq<>_1_q{1—<zxkak>}, (5.1)

DH( ) > QII( ) > 1_q{1—2)\kak } . (5.2)

Both inequalities are saturated on any pure state, where we recover the equality (4.1).

lower bounded by

Proof. From Lemma 2.18,

1/q
% (Z o) il o) |2> = 3" ANo(wa)



14

By (4.6) for ¢ € (0, 1), we have
No(p) < Z DR
kn

From (2.10) and Definition 2.19,

. 1=N4(p)
Qq(p) = mmli_q )
and
1 - Nolp)

Q,(p) = min ——

we obtain the statement of the Theorem for both correlation measures. Similarly, the inequality holds
for ¢ € (1,2]. From Lemma 2.20 and (4.4), the inequalities for discord hold.
]

The following upper bound was derived in [17] for the coherence measure Q,, which gives the upper
bound for the discord D, automatically. Here we provide the full proof of that part for completeness,
and show that the upper bound is tight for the discord and correlation measures.

5.2 Theorem. For a mized state p, and q € (0,1) U (1,2], the discord and correlation measure are
tightly upper bounded by

QmﬂspmﬂsTi—ﬂ—fW”ﬂw}sfi—ﬁ—dm*@, (5.3)
—q —q

1 1
QéI(P) < DéI(P) < q {1 - dz(q_l)/q(Tqu)l/q} < 1——q {1 - d2(q_1)/q} : (5.4)

Here dg = dg = d. All inequalities are saturated for a pure state p = |¢) (| with Hilbert-Schmidt
coefficients of 1/d, i.e. there is a basis {|&&;) 45} such that

1
) =25 l6%)

Proof. Let 6 = d—12[ be a completely mixed state. Then
1
Dy(plld) = 7— {1 = "I Tip"} > Dy(p) -
—q

From Lemma 4.1, the inequality is achieved for the pure state p = |¢) (0|, with Hilbert-Schmidt
coefficients of 1/d, i.e. there is a basis {|£¢;) 45} such that

1
) => 7 16&) -
j
The second inequality holds since Trp? > Trp = 1 for g € (0, 1), and Trp? < Trp =1 for ¢ > 1, with
equality on any pure state.
Since the minimum for both D, and Dél is achieved on the same basis, the inequality for Dél follows.
From Lemma 2.20 and (4.4), the inequalities for correlation measures hold. O



15

5.8 Remark. Consider a pure state p = [¢) (1| with [¢) =3, L1ijy, where {|ij) 4p}i; being any basis
in systems A and B. For this state the equality (4.1), the lower (5.1) and the upper (5.3) bounds become
the same and equal to

1

Q¥ (W) =Dyl (W]) = 7— {1-aV} .

Moreover, for the fixed bases {|i) ,}; and {|j)z}; on systems A and B, used in the coherence, from (2.1),
the maximally mixed state 1)) =", ’ é lij), has equal coherence, discord, and correlation measure

1

Chll) (W) = 7=

{1 - a2V} =Dy () (]) = Qu([v) (W) .

Similar expressions hold for Cél , Dél and Qél .
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