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Abstract

Several ways have been proposed in the literature to define a coherence measure based on Tsallis

relative entropy. One of them is defined as a distance between a state and a set of incoherent

states with Tsallis relative entropy taken as a distance measure. Unfortunately, this measure

does not satisfy the required strong monotonicity, but a modification of this coherence has been

proposed that does. We introduce three new Tsallis coherence measures coming from a more general

definition that also satisfy the strong monotonicity, and compare all five definitions between each

other. Using three coherence measures that we discuss, one can also define a discord. Two of

these have been used in the literature, and another one is new. We also discuss two correlation

measures based on Tsallis relative entropy. We provide explicit expressions for all three discord

and two correlation measure on pure states. Lastly, we provide tight upper and lower bounds on

two discord and correlations measures on any quantum state, with the condition for equality.

1 Introduction

Coherence is the fundamental property of quantum systems, that is used in thermodynamics [1, 5,

12], transport theory [18, 24], and quantum optics [7, 19], among few applications. Recently, the

problems involving coherence included quantification of coherence [2, 14, 16, 17, 20, 25], distribution

[15], entanglement [4, 21], operational resource theory [3, 4, 6, 23], correlations [9, 13, 22], with only a

few references mentioned in each. See [26] for a more detailed review.

Here we focus on the problem of quantification of coherence. A number of ways has been proposed

as a coherence measure, but only a few satisfy all necessary criteria [2, 26, 27]. A “good” measure of

coherence should satisfy a list of intuitive criteria, which include a strong monotonicity property - a

monotonicity under selective incoherent CPTP maps. Measures that satisfy the strong monotonicty that

have been introduced up to date, are based on l1, relative entropy, Tsallis entropy, and real symmetric

concave functions on a probability simplex. Tsallis coherence measure can be defined several ways. Here
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we discuss five different ways to define a Tsallis coherence measure, two of them have been used in the

literature before [17, 26], and we also consider three particular cases of a more broad definition [27].

The first coherence measure CI
q discussed here, was defined in [17]. The measure is defined as a convex

roof, and the explicit expression for it was also given, see (2.1) for details. Authors showed that the

measure satisfies several properties expected for a coherence measure, but not the strong monotonicity

under incoherent selective measurements.

To rectify the situation, a new coherence measure, CII
q was defined in [26], see (2.2). This measure

does satisfy the strong monotonicity under incoherent selective measurements along with all previous

ones. Now, one can argue for two sides here. On one hand, CI
q has a good intuition behind it, as it is

defined as the distance between a given state and the set of incoherence states, with the relative Tsallis

entropy as a a distance measure. The new measure is a more artificial looking one, constructed for a

specific purpose of satisfying the list of given properties. On the other hand, CII
q is easy to compute,

and it does satisfies the list of properties a good coherence measure should.

A class of coherence measures was defined in [27] based on real symmetric concave functions on a

probability simplex. For any such function one can explicitly define a coherence measure on pure states,

and as a convex roof for mixed states. We use CI
q and CII

q to define coherence on pure states, and use

the convex roof construction to define two coherence measures on mixed states. Moreover, we define

another coherence measure based on a familiar concave function.

Section 3 is used to compare all five measures between each other.

One can define a discord in different ways. Here we consider three definitions of the discord based on

the first three coherence measures. This is not a complete list of possible definitions, see, for example,

[10] for another definition.

In [11], the measure of quantum correlations Qq was defined as a minimum Tsallis relative entropy

over a set of classical-quantum states, a bigger set than a set of classically-correlated states. The authors

also defined a new correlation measure based on the second definition of the coherence measure. The

correlation measure in [11] is non-greater then discord, and we show that they coincide on pure states.

We present a tight lower bound for two discord and correlation measures, and show when it is

saturated. The upper bound for the coherence measure Qq was derived in [17], which is the upper

bound for the discord as well. Here we show that the upper bound is tight for the discord as well, and

present a tight lower bound for the second discord and correlation measures. In summary, we present

three results:

• comparison between five coherence measures, Theorems 3.1, 3.2, 3.3;

• explicit expression for three discord and two correlation measures on pure states, Theorem 4.1;

• a tight lower bound on two discord and correlation measures, Theorem 5.1;

• a tight upper bound on two discord and correlation measures, Theorem 5.2.
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2 Preliminaries

2.1 Coherence

Let H be a d-dimensional Hilbert space. Let us fix a basis {|j〉}dj=1 of vectors in H.

2.1 Definition. A state δ is called incoherent if it can be represented as follows

δ =
∑

j

δj |j〉 〈j| .

In the case of multipartite system, let the corresponding Hilbert spaces be denoted as {Hk}N1 .
Suppose each Hilbert space is of dimension dk and has a fixed basis {|j〉}dkj=1.

2.2 Definition. A state δ on H =
⊗

k Hk is called incoherent if it can be represented as follows

δ =
∑

j

δj |j〉 〈j| ,

where j = (j1, . . . , jN) with jk = 1, . . . , dk is a vector of indices, and |j〉 =⊗k |jk〉 = |j1〉 ⊗ · · · ⊗ |jN 〉 .

2.3 Notation. Denote the set of incoherent states for a fixed basis {|i〉}i as

I = {ρ =
∑

j

pj |j〉 〈j|} .

Denote the set of separable states as

S = {ρAB =
∑

ij

pi,jσ
A
i ⊗ σB

j | for any states σi, σj} .

Denote the set of classically correlated states as

CC = {ρAB =
∑

i,j

pi,j |ij〉 〈ij| =
∑

i,j

pi,j |i〉 〈i|A ⊗ |j〉 〈j|B | for any bases {|i〉A}, {|j〉B}} .

A CPTP quantum channel is categorized into the following two classes.

2.4 Definition. A CPTP map Φ with the following Kraus operators

Φ(ρ) =
∑

n

KnρK
∗
n ,

is called the non-selective incoherent CPTP (ICPTP) when the Kraus operators satisfy

KnIK∗
n ⊂ I, for all n ,

besides the regular completeness relation
∑

nK
∗
nKn = 1l.
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2.5 Definition. A CPTP map Φ with the following Kraus operators

Φ(ρ) =
∑

n

KnρK
∗
n ,

is called the selective ICPTP when the Kraus operators satisfy

KnIK∗
n ⊂ I, for all n ,

besides the regular completeness relation
∑

nK
∗
nKn = 1l. Additionally, we record the outcomes of each

measurement

ρn =
KnρK

∗
n

pn
, pn = TrKnρK

∗
n .

Any reasonable measure of coherence C(ρ) should satisfy the following conditions

• (C1) C(ρ) = 0 if and only if ρ ∈ I;

• (C2) Monotonicity under non-selective ICPTP maps (monotonicity)

C(ρ) ≥ C(Φ(ρ)) ;

• (C3) Monotonicity under selective ICPTP maps (strong monotonicity)

C(ρ) ≥
∑

n

pnC(ρn) ,

where pn and ρn are the outcomes and post-measurement states defined above;

• (C4) Convexity,
∑

n

pnC(ρn) ≥ C
(
∑

n

pnρn

)
,

for any sets of states {ρn} and any probability distribution {pn}.

These properties are parallel with the entanglement measure theory, where the average entanglement

is not increased under the local operations and classical communication (LOCC). Notice that coherence

measures that satisfy conditions (C3) and (C4) also satisfies condition (C2).

Any distance measureD between two quantum states, can induce a potential candidate for coherence.

The distance-based coherence measure is defined as follows [2].

2.6 Definition.

CD(ρ) := min
δ∈I

D(ρ, δ) ,

i.s. the minimal distance between the state ρ and the set of incoherent states I measured by the distance

D.

• (C1) is satisfied whenever D(ρ, δ) = 0 iff ρ = δ.

• (C2) is satisfied whenever D is contracting under CPTP maps, i.e. D(ρ, σ) ≥ D(Φ(ρ),Φ(σ)).

• (C4) is satisfied whenever D is jointly convex.
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2.2 Tsallis entropy and relative entropies

2.7 Definition. For 0 < q 6= 1, the Tsallis entropy is defined as

Sq(ρ) =
1

q − 1
(1− Trρq) .

In the limit q → 1, the Tsallis entropy becomes von Neumann entropy

lim
q→1

Sq(ρ) = S(ρ) := −Tr(ρ log ρ) .

2.8 Definition. For 0 < q 6= 1, the Tsallis relative entropy is defined as

Dq(ρ‖σ) =
1

q − 1
(Tr(ρqσ1−q)− 1) .

The Tsallis relative entropy satisfies the following properties:

• The Tsallis relative entropy is zero if and only if ρ = σ.

• For q ∈ (0, 2], in [8, 17], it was shown that the Tsallis relative entropy is monotone:

Dq(Φ(ρ)‖Φ(σ)) ≤ Dq(ρ‖σ) ,

• For q ∈ (0, 2] in [8, 17], it was shown that the Tsallis relative entropy is jointly convex:

Dq

(
∑

n

pnρn‖
∑

n

pnσn

)
≤
∑

n

pnDq(ρn‖σn) .

• For Kraus operators Kn, in [17], it was shown that the Tsallis relative entropy satisfies

∑

n

Dq

(
KnρK

†
n‖KnσK

†
n

)
≥
∑

n

pqnq
1−q
n Dq(ρn‖σn) ,

where pn = Tr(KnρK
†
n), qn = Tr(KnσK

†
n), and ρn = 1

pn
KnρK

†
n, σn = 1

qn
KnσK

†
n.

2.3 Tsallis Coherence

For a fixed basis {|j〉}j, the Tsallis coherence measure can be defined numerous ways. Here we present

five different ways to define a Tsallis coherence measure. In this section we assume that 0 < q 6= 1.

The first way to define a coherence, is according to [17].

2.9 Definition. For a state ρ, define

CI
q (ρ) = min

δ∈I
Dq(ρ‖δ) =

1

1− q

{
1−

(
∑

j

〈j| ρq |j〉1/q
)q}

. (2.1)

Here I is the set of incoherent states in a given basis {|j〉}j.
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The state that reaches the minimum is

δρ =
1

N

∑

j

〈j| ρq |j〉1/q |j〉 〈j| ,

where N =
∑

j 〈j| ρq |j〉
1/q.

This coherence measure satisfies (C1), (C2), and (C4), but not (C3). To remedy this situation, in

[26] authors defined a new coherence measure based on Tsallis entropy as following

2.10 Definition. For a state ρ, define

CII
q (ρ) =

1

1− q

{
1−

∑

j

〈j| ρq |j〉1/q
}

. (2.2)

This coherence measure satisfies all properties (C1)-(C4), but it lacks the beauty of the distance

based measure. Straightforward observations lead to the relation

CI
q (ρ) ≤ CII(ρ) . (2.3)

In [27], authors defined a coherence measure for any real symmetric concave function on a probability

simplex. Such coherence satisfies (C2)-(C4) properties. And for all choices below, (C1) also holds.

Since the function f(p) = 1
1−q

{
∑

j p
q
j − 1} is real symmetric and concave on a probability simplex

(here p = (p1, . . . , pd) is a probability vector), we can define a coherence measure as follows.

2.11 Definition. For a pure state |ψ〉, define

CIII
q (ψ) =

1

1− q

{
∑

j

|〈j|ψ〉|2q − 1

}
.

And for the mixed state ρ, define

CIII
q (ρ) = min

{
∑

n

λnCIII
q (ψn) | ρ =

∑

n

λn |ψn〉 〈ψn|
}

.

Since the function f(p) = 1
1−q

{
1−

(∑
j p

1/q
j

)q}
is real symmetric and concave for 0 < q 6= 1 and a

probability vector p = (pj), we may define a coherence measure as follows.

2.12 Definition. For any state ρ, define

CIV
q (ρ) = min

{
∑

n

λnCI
q (ψn) | ρ =

∑

n

λn |ψn〉 〈ψn|
}

,

where CI
q (ψ) is defined by (2.1).

Since the function f(p) = 1
1−q

{1−
∑

j p
1/q
j } is real symmetric and concave on a probability simplex

(here p = (p1, . . . , pd) is a probability vector), we can define another coherence measure as follows.
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2.13 Definition. For any state ρ, define

CV
q (ρ) = min

{
∑

n

λnCII
q (ψn) | ρ =

∑

j

λn |ψn〉 〈ψn|
}

,

where CII
q (ψ) is defined by (2.2).

Clearly, from (2.3),

CIV
q (ρ) ≤ CV

q (ρ) .

2.4 Discord measure

The discord measure based on Tsallis relative entropy is defined as following.

2.14 Definition. For 0 < q 6= 1, and any state ρ, define

Dq(ρ) = min
δ∈CC

Dq(ρ‖δ) . (2.4)

Here CC denotes the set of classically-correlated states

CC = {ρAB =
∑

i,j

pi,j |ij〉 〈ij| =
∑

i,j

pi,j |i〉 〈i|A ⊗ |j〉 〈j|B : for any bases {|i〉A}, {|j〉B}} .

Note that we might have written

Dq(ρ) = min CI
q (ρ) ,

where the minimum is taken over all bases {|i〉A} and {|j〉B}. Even though we will talk about other

discord measure, we will not be using notation DI
q(ρ) for simplicity.

The Tsallis discord satisfies the properties below, which follow from the definition of the discord and

the properties of Tsallis relative entropy

1. Dq(ρ) ≥ 0, with the equality if and only if ρ ∈ CC;

2. Dq(ρAB) = Dq(UA ⊗ UBρU
†
A ⊗ U †

B).

Since

Dq(ρ) = min CI
q (ρ) ,

and from Definition 2.1 of CI
q (ρ), we have

Dq(ρ) = min
1−N q

D(ρ)

1− q
, (2.5)

where

ND(ρ) :=
∑

ij

〈ij| ρq |ij〉1/q , (2.6)

and the minimum is taken over all bases {|ij〉AB}ij .
Similar to the coherence measure CII

q , one may define a new discord as follows



8

2.15 Definition. With the above notations,

DII
q (ρ) = min

δ∈CC

1− (Tr(ρqδ1−q))1/q

1− q
= min

1−ND(ρ)

1− q
= min

1

1− q

{
1−

∑

ij

〈ij| ρq |ij〉1/q
}

.

Clearly,

Dq(ρ) ≤ DII
q (ρ) .

Using coherence CIII
q , we may define a new discord measure.

2.16 Definition. Define

DIII
q (ρ) = min

|ij〉
CIII
q (ρ) , (2.7)

where the minimum is taken over all bases {|i〉A} and {|j〉B}.

In Theorem 4.1 we present explicit expressions on all these discord measures on pure states. From

Theorem 3.1, we obtain

Dq(ρ) ≤ DIII
q (ρ) .

2.5 Correlation measure

2.17 Definition. The quantum correlation measure based on Tsallis relative entropy is defined as

Qq(ρ) = min
δ∈CQ

Dq(ρ‖δ) . (2.8)

Here CQ denotes the set of classical-quantum states

CQ = {ρAB =
∑

i

pi |i〉 〈i| ⊗ σi | for some basis {|i〉} and some states σi} .

Since CC ⊂ CQ, we have

Qq(ρ) ≤ Dq(ρ) .

The correlation measure satisfies the following properties, [11]

1. Qq(ρ) ≥ 0, with the equality if and only if ρ ∈ CQ;

2. Qq(ρAB) = Qq(UA ⊗ UBρU
†
A ⊗ U †

B);

3. Qq(ρAB) ≥ Qq(ΦB(ρAB)), where ΦB is a local CPTP map on system B.

From [11], for any state ρAB and q ∈ (0, 1) ∪ (1, 2],

Qq(ρ) = min
1

1− q

{
1−

(
∑

ij

〈j|B 〈i|A ρq |i〉
1/q
A |j〉B

)q}
,
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where minimum is taken over all bases {|i〉A}i on system A. Denote

NQ(ρ) =
∑

ij

〈j|B 〈i|A ρq |i〉
1/q
A |j〉B . (2.9)

Therefore,

Qq(ρ) = min
1−N q

Q(ρ)

1− q
. (2.10)

2.18 Lemma. Let |ψk〉 be the diagonal basis for ρ, i.e. let

ρ =
∑

k

λk |ψk〉 〈ψk| ,

where λk ≥ 0, and
∑

k λk = 1. Also, let |ξkn〉A and |ξkn〉B be the Hilbert-Schmidt basis for the state |ψk〉,
i.e.

|ψk〉 =
∑

n

αkn |ξknξkn〉AB . (2.11)

Here αkn ≥ 0 and for every k, and
∑

n α
2
kn = 1. Then

NQ(ρ) =
∑

ik

λk

(
∑

n

α2
kn|〈i|ξkn〉|2

)1/q

. (2.12)

Proof. By definition (2.9), we have

NQ(ρ) =
∑

ij

〈j|B

(
∑

k

λqk 〈i|A |ψk〉 〈ψk| |i〉A

)1/q

|j〉B .

Denote

|Ψik〉B := 〈i|A |ψk〉AB =
∑

n

αkn〈i|ξkn〉 |ξkn〉B =:
√
mik |φik〉 ,

where

mik =
∑

n

α2
kn|〈i|ξkn〉|2, and 〈φik|φik〉 = 1 .

Then

NQ(ρ) =
∑

ij

〈j|
(
∑

k

λqkmik |φik〉 〈φik|
)1/q

|j〉 =
∑

ijk

λkm
1/q
ik |〈j|φik〉|2 =

∑

ik

λkm
1/q
ik .

By definition of mik, we obtain the statement of the lemma.

2.19 Definition. In [11], authors defined a new correlations measure,

QII
q (ρ) = min

1−NQ(ρ)

1− q
= min

1

1− q

{
1−

∑

ij

〈j|B 〈i|A ρq |i〉
1/q
A |j〉B

}
.

2.20 Lemma. For any state ρ,

QII
q (ρ) ≤ DII

q (ρ) .

Proof. Since xq is monotone, the minimum for both Qq and QII
q is achieved on the same basis. Similarly,

from the expression (2.5) and Definition 2.15, the minimum for both Dq and DII
q is achieved on the

same basis. Since Qq(ρ) ≤ Dq(ρ), the Lemma follows.
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3 Relations between coherence measures

Here we compare all five coherence measure with each other.

3.1 Theorem. For q ∈ (0, 1),

CI
q (ψ) ≤ CIII

q (ψ) .

And clearly, therefore, CIV
q (ρ) ≤ CIII

q (ρ).

Proof. The difference is

Ĉq(ψ)− Cq(ψ) =
1

1− q

{
∑

j

| 〈j| |ψ〉 |2q +
(
∑

j

| 〈j| |ψ〉 |2/q
)q

− 2

}
.

The expression in the parenthesis is monotone decreasing in q ∈ (0, 1), which can easily be seen by

taking the derivate with respect to q. Therefore, the minimal value of the expression in the parenthesis

occurs at q = 1, which is exactly 0.

3.2 Theorem. For 0 < q 6= 1,

CI
q (ρ) ≤ CIV

q (ρ) .

Proof. Let ρ =
∑

n λn |ψn〉 〈ψn| be the optimal decomposition for CIV
q (ρ). Then

CIV
q (ρ) =

1

1− q

{
1−

∑

k

λk

(
∑

j

| 〈j| |ψk〉 |2/q
)q}

,

and

CI
q (ρ) =

1

1− q



1−


∑

j

(
∑

k

λqk| 〈j| |ψk〉 |2
)1/q




q
 .

For q < 1, (
∑

k

λqk| 〈j| |ψk〉 |2
)1/q

≥
∑

k

λk| 〈j| |ψk〉 |2/q .

For q > 1, the inequality is reversed. Therefore,

CI
q (ρ) =

1

1− q

{
1−

(
∑

jk

λk| 〈j| |ψk〉 |2/q
)q}

.

The statement follows from convexity of the function 1
1−q

{1− xq}.

3.3 Theorem. For 0 < q 6= 1,

CII
q (ρ) ≤ CV

q (ρ) .
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Proof. Let ρ =
∑

n λn |ψn〉 〈ψn| be the optimal decomposition for CV
q (ρ). Then

CV
q (ρ) =

1

1− q

{
1−

∑

k

λk
∑

j

| 〈j| |ψk〉 |2/q
}

.

Also,

CII
q (ρ) =

1

1− q



1−

∑

j

(
∑

k

λqk| 〈j| |ψk〉 |2
)1/q



 .

For q < 1, (
∑

k

λqk| 〈j| |ψk〉 |2
)1/q

≥
∑

k

λk| 〈j| |ψk〉 |2/q .

For q > 1, the inequality is reversed.

3.4 Remark. Note that there is no straight forward comparison between CII(ψ) and CIII(ψ), as one is

not majorized by the other for all cases. For example, in d = 2, let us denote x := | 〈1| |ψ〉 |2. Then

if x = 1/2, q = 1/2, then CII
1/2(ψ) ≥ CIII

1/2 (ψ) ,

but

if x = 0.1, q = 1/2, then CII
1/2(ψ) ≤ CIII

1/2 (ψ) .

In conclusion, here are the inequalities that we have proved:

CI
q (ρ) ≤ CIV

q (ρ) ≤ CIII
q (ρ) ,

CIV
q (ρ) ≤ CV

q (ρ) ,

CI
q (ρ) ≤ CII

q (ρ) ≤ CV
q (ρ) .

4 Discord and correlation measure on pure states

For pure states, we can explicitly calculate the minimum in both expressions for correlation and discord

measures. This was proved for the correlation measure Qq in [11].

4.1 Theorem. Let ρ = |ψ〉 〈ψ| be a pure state. Let {αn} be the Hilbert-Schmidt coefficients of |ψ〉AB =∑
n αn |ξn〉A |ξn〉B . For q ∈ (0, 1)∪(1, 2], the discord and correlation measure can be explicitly calculated

Dq(|ψ〉 〈ψ|) = Qq(|ψ〉 〈ψ|) =
1

1− q

{
1−

(
∑

n

α2/q
n

)q}
≥ 0 . (4.1)

DII
q (|ψ〉 〈ψ|) = QII

q (|ψ〉 〈ψ|) = 1

1− q

{
1−

∑

n

α2/q
n

}
≥ 0 . (4.2)

DIII
q (|ψ〉 〈ψ|) = 1

1− q

{
∑

n

α2q
n − 1

}
≥ 0 . (4.3)
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Proof. Since the expression (4.1) was proved for the correlation measure in [11], and

Qq(ρ) ≤ Dq(ρ) , (4.4)

we need to show that for some particular basis, the discord has the same expression. By definition of

ND (2.6),

ND(ψ) =
∑

ij

| 〈ij| |ψ〉 |2/q =
∑

ij

∣∣∣∣∣
∑

n

αn 〈i| |ξn〉 〈j| |ξn〉
∣∣∣∣∣

2/q

.

Choose the orthonormal basis |i〉A := |ξi〉A on system A and |j〉B := |ξj〉B on system B. Then, we have

ND(ψ) =
∑

n

α2/q
n . (4.5)

By (2.5), this leads to the first statement of the Theorem.

For the next two expressions, we recall the proof of (4.4) for pure states, and modify it later as

necessary for other discord and correlation measures. From (2.6) for a pure state

ND(ψ) =
∑

ij

(〈ij| |ψ〉 〈ψ| |ij〉)1/q =:
∑

ij

〈j|Ri |j〉1/q ,

where

Ri = (〈i| ⊗ I) |ψ〉 〈ψ| (|i〉 ⊗ I) .

Clearly, Ri is a projector in system B. Denote

mi :=
∑

n

α2
n| 〈i| |ξn〉 |2 , and |φi〉 :=

1√
mi

〈i| ⊗ I |ψ〉 .

Note that 〈φi| |φi〉 = 1 for every i. Then

Ri = mi |φi〉 〈φi| .

Therefore,

ND(ψ) =
∑

i

m
1/q
i

∑

j

| 〈j| |φi〉 |2/q .

For q ∈ (0, 1), for every j, | 〈j| |φi〉 |2/q ≤ | 〈j| |φi〉 |2. Therefore from Lemma 2.18 we obtain the last

equality

ND(ψ) ≤
∑

i

m
1/q
i

∑

j

| 〈j| |φi〉 |2 =
∑

i

m
1/q
i =

∑

i

(
∑

n

α2
n| 〈i| |ξn〉 |2

)1/q

= NQ(ψ) .

For q ∈ (0, 1), the function x1/q is convex. Therefore,

ND(ψ) ≤ NQ(ψ) ≤
∑

i

∑

n

α2/q
n | 〈i| |ξn〉 |2 =

∑

n

α2/q
n . (4.6)
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For q > 1, the above inequality is reversed. Since xq is monotone increasing for all q, and together with

the pre-factor of 1
1−q

, we obtain (4.4).

For the second inequality recall that

DII
q (ρ) = min

1−ND(ρ)

1− q
,

and

QII
q (ρ) = min

1−NQ(ρ)

1− q
.

so the proof just carries as is from (4.5) and (4.6).

For the third inequality, recall that

DIII
q (ψ) = min

|ij〉
CIII
q (ψ) = min

1

1− q

{
∑

ij

|〈ij|ψ〉|2q − 1

}
.

Since for all q ∈ (0, 1) we have ND(ψ) =
∑

ij |〈ij|ψ〉|2/q ≤
∑

n α
2/q
n , and for q > 1, ND(ψ) ≥

∑
n α

2/q
n ,

we obtain for q ∈ (0, 1) ∪ (1, 2]

1

1− q

{
∑

ij

|〈ij|ψ〉|2q − 1

}
≥ 1

1− q

{
∑

n

α2q
n − 1

}
.

For all the cases, the inequality is reached when the basis is taken to be the Hilbert-Schmidt basis

of state |ψ〉.

5 Bounds on quantum discord and correlation measure

Here we present the tight lower and upper bounds for a quantum discord for mixed states.

5.1 Theorem. For a mixed state ρ and q ∈ (0, 1)∪(1, 2], the discord and correlation measure are tightly

lower bounded by

Dq(ρ) ≥ Qq(ρ) ≥
1

1− q

{
1−

(
∑

kn

λkα
2/q
kn

)q}
, (5.1)

DII
q (ρ) ≥ QII

q (ρ) ≥ 1

1− q

{
1−

∑

kn

λkα
2/q
kn

}
. (5.2)

Both inequalities are saturated on any pure state, where we recover the equality (4.1).

Proof. From Lemma 2.18,

NQ(ρ) =
∑

ik

λk

(
∑

n

α2
kn| 〈i| |ξkn〉 |2

)1/q

=
∑

k

λkNQ(ψk) .
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By (4.6) for q ∈ (0, 1), we have

NQ(ρ) ≤
∑

kn

λkα
2/q
kn .

From (2.10) and Definition 2.19,

Qq(ρ) = min
1−N q

Q(ρ)

1− q
,

and

QII
q (ρ) = min

1−NQ(ρ)

1− q
.

we obtain the statement of the Theorem for both correlation measures. Similarly, the inequality holds

for q ∈ (1, 2]. From Lemma 2.20 and (4.4), the inequalities for discord hold.

The following upper bound was derived in [17] for the coherence measure Qq, which gives the upper

bound for the discord Dq automatically. Here we provide the full proof of that part for completeness,

and show that the upper bound is tight for the discord and correlation measures.

5.2 Theorem. For a mixed state ρ, and q ∈ (0, 1) ∪ (1, 2], the discord and correlation measure are

tightly upper bounded by

Qq(ρ) ≤ Dq(ρ) ≤
1

1− q

{
1− d2(q−1)Trρq

}
≤ 1

1− q

{
1− d2(q−1)

}
, (5.3)

QII
q (ρ) ≤ DII

q (ρ) ≤ 1

1− q

{
1− d2(q−1)/q(Trρq)1/q

}
≤ 1

1− q

{
1− d2(q−1)/q

}
. (5.4)

Here dA = dB = d. All inequalities are saturated for a pure state ρ = |ψ〉 〈ψ| with Hilbert-Schmidt

coefficients of 1/d, i.e. there is a basis {|ξiξj〉AB} such that

|ψ〉 =
∑

ij

1

d
|ξiξj〉 .

Proof. Let δ = 1
d2
I be a completely mixed state. Then

Dq(ρ‖δ) =
1

1− q

{
1− d2(q−1)Trρq

}
≥ Dq(ρ) .

From Lemma 4.1, the inequality is achieved for the pure state ρ = |ψ〉 〈ψ|, with Hilbert-Schmidt

coefficients of 1/d, i.e. there is a basis {|ξiξj〉AB} such that

|ψ〉 =
∑

ij

1

d
|ξiξj〉 .

The second inequality holds since Trρq ≥ Trρ = 1 for q ∈ (0, 1), and Trρq ≤ Trρ = 1 for q > 1, with

equality on any pure state.

Since the minimum for both Dq and DII
q is achieved on the same basis, the inequality for DII

q follows.

From Lemma 2.20 and (4.4), the inequalities for correlation measures hold.



15

5.3 Remark. Consider a pure state ρ = |ψ〉 〈ψ| with |ψ〉 =
∑

ij
1
d
|ij〉 , where {|ij〉AB}ij being any basis

in systems A and B. For this state the equality (4.1), the lower (5.1) and the upper (5.3) bounds become

the same and equal to

Qq(|ψ〉 〈ψ|) = Dq(|ψ〉 〈ψ|) =
1

1− q

{
1− d2(q−1)

}
.

Moreover, for the fixed bases {|i〉A}i and {|j〉B}j on systems A and B, used in the coherence, from (2.1),

the maximally mixed state |ψ〉 =
∑

ij
1
d
|ij〉, has equal coherence, discord, and correlation measure

CI
q (|ψ〉 〈ψ|) =

1

1− q

{
1− d2(q−1)

}
= Dq(|ψ〉 〈ψ|) = Qq(|ψ〉 〈ψ|) .

Similar expressions hold for CII
q , DII

q and QII
q .
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