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Abstract. We construct infinitely many compact, smooth 4-manifolds which are homotopy equiv-
alent to S2 but do not admit a spine, i.e., a piecewise-linear embedding of S2 which realizes the
homotopy equivalence. This is the remaining case in the existence problem for codimension-2 spines
in simply-connected manifolds. The obstruction comes from the Heegaard Floer d invariants.

1. Introduction

Given an m-dimensional, piecewise-linear, compact manifold M which is homotopy equivalent to
some closed manifold N of dimension n < m, a spine of M is a piecewise-linear embedding N → M
which is a homotopy equivalence. Such an embedding is not required to be locally flat. We call M
spineless if it does not admit a spine.

In this paper, we prove:

Theorem 1.1. There exist infinitely many smooth, compact, spineless 4-manifolds which are ho-
motopy equivalent to S2.

By way of background, Browder [Bro68], Casson, Haefliger [Hae68], Sullivan, and Wall [Wal70]
showed that when m − n > 2, any homotopy equivalence from N to M can be perturbed into
a spine. When m − n = 2, Cappell and Shaneson [CS76] showed that the same is true for any
odd m ≥ 5, and for any even m ≥ 6 provided that M and N are simply-connected; they also
produced examples of non-simply-connected, spineless manifolds for any even m ≥ 6 [CS77]. (See
[Sha75] for a summary of their results.) In dimension 4, Matsumoto [Mat75] produced an example
of a compact spineless 4-manifold homotopy equivalent to the torus; the proof relies on higher-
dimensional surgery theory. However, the question of finding spineless, compact, simply-connected
4-manifolds has remained open until now; it appears in Kirby’s problem list [Kir97, Problem 4.25].
(Removing the compactness hypothesis, Matsumoto and Venema [MV79] used Casson handles to
construct a simply-connected, spineless 4-manifold. By removing the boundary from the examples
in Theorem 1.1, we recover such manifolds as well.)

Remark 1.2. Any compact, smooth, simply-connected 4-manifold X admitting a handlebody de-
composition with no 1-handles admits a basis for H2 represented by PL spheres. Consequently, the
4-manifolds from Theorem 1.1 cannot be constructed without 1-handles.

The proof of the theorem proceeds in two parts. The first is to give an obstruction to a spine in
a compact PL 4-manifold homotopy equivalent to S2 coming from Heegaard Floer homology. This
obstruction only depends on the boundary of the 4-manifold and the sign of the intersection form.
The second step is to construct the manifolds homotopy equivalent to S2 that fail the obstruction.
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2. Obstruction

In order to prove Theorem 1.1, we use an obstruction coming from Heegaard Floer homology.
Recall that for any rational homology sphere Y and any spinc structure s on Y , Ozsváth and Szabó
[OS03] define the correction term d(Y, s) ∈ Q, which is invariant under spinc rational homology
cobordism. To state our obstruction, we first establish the following notational convention.

Convention 2.1. Suppose X is a smooth, compact, oriented 4-manifold with H∗(X) ∼= H∗(S
2),

and let n denote the self-intersection number of a generator of H2(X). Let Y = ∂X, which has
H1(Y ) ∼= H2(Y ) ∼= Z/n. Fix a generator α ∈ H2(X). For i ∈ Z, let ti denote the unique spinc

structure on X with

⟨c1(ti), α⟩+ n = 2i.

Let si = ti|Y ; this depends only on the class of i mod n. We will often treat the subscript of si as
an element of Z/n.

Conjugation of spinc structures swaps ti with tn−i and si with sn−i = s−i. In particular, s0 is
self-conjugate, as is sn/2 if n is even. Choosing the opposite generator for H2(X) likewise replaces
each ti or si with its conjugate. Because of the conjugation symmetry of Heegaard Floer homology,
all statements below are insensitive to this choice.

Finally, when n ̸= 0, we have

(2.1) d(Y, si) ≡
(2i− n)2 − |n|

4n
(mod 2Z)

by [OS03, Theorem 1.2].

Our obstruction to the existence of a spine comes from the following theorem:

Theorem 2.2. Let X be any smooth, compact, oriented 4-manifold with H∗(X) ∼= H∗(S
2), with a

generator of H2(X) having self-intersection n > 1, and let Y = ∂X. If a generator of H2(X) can
be represented by a piecewise-linear embedded 2-sphere (e.g., if X admits an S2 spine), then for
each i ∈ {0, . . . , n− 1},

(2.2) d(Y, si)− d(Y, si+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n− 2i− 1

n
or

−n− 2i− 1

n
if 0 ≤ i ≤ n− 2

2

0 if n is odd and i =
n− 1

2
n− 2i− 1

n
or

3n− 2i− 1

n
if

n

2
≤ i ≤ n− 1.

In particular, for any i, we have

(2.3) |d(Y, si)− d(Y, si+1)| ≤
2n− 1

n
.

It is easy to verify that (2.3) follows as an easy consequence of (2.2).
For any knot K ⊂ S3, let Xn(K) denote the trace of n-surgery on S3, i.e., the manifold obtained

by attaching an n-framed 2-handle to the 4-ball along a knotK ⊂ S3. Note thatXn(K) is homotopy
equivalent to S2 and has a spine obtained as the union of the cone over K in B4 with the core of
the 2-handle.
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Lemma 2.3. For any knot K ⊂ S3 and any n > 0, the manifold Y = S3
n(K) satisfies the conclu-

sions of Theorem 2.2.

Proof. Associated to any knot K ⊂ S3, Ni and Wu [NW15, Section 2.2] defined a sequence of
nonnegative integers Vi(K), which are derived from the knot Floer complex ofK. (See also [Ras03].)
By [HW16, Equation 2.3], these numbers have the property that

(2.4) Vi(K)− 1 ≤ Vi+1(K) ≤ Vi(K);

that is, the sequence (Vi(K)) is non-increasing and only decreases in increments of 1. Ni and Wu
proved that for each i = 0, . . . , n− 1, we have

(2.5) d(S3
n(K), si) =

(2i− n)2 − n

4n
− 2max{Vi(K), Vn−i(K)}.

(The first term in (2.5) is the d invariant of the lens space L(n, 1) in a particular spinc structure;
see [OS03, Proposition 4.8].)

For 0 ≤ i ≤ n−2
2 , we then compute:

d(S3
n(K), si)− d(S3

n(K), si+1) =
(2i− n)2 − (2i+ 2− n)2

4n
− 2(Vi(K)− Vi+1(K))

=
n− 2i− 1

n
− 2(Vi(K)− Vi+1(K))

=
n− 2i− 1

n
or

−n− 2i− 1

n
.

(The last line follows from the fact that Vi(K)− Vi+1(K) equals either 0 or 1.)
If n

2 ≤ i ≤ n− 1, then

d(S3
n(K), si)− d(S3

n(K), si+1) = d(S3
n(K), sn−i)− d(S3

n(K), sn−i−1),

and we may apply the previous case using n− i− 1 in place of i.
In the special case where n is odd and i = n−1

2 , the difference d(S3
n(K), si)− d(S3

n(K), si+1) is 0
since the two spinc structures are conjugate. □

Proof of Theorem 2.2. Suppose S is a PL embedded sphere representing a generator of H2(X). We
may assume that S has a single singularity modeled on the cone of a knot K ⊂ S3 and is otherwise
smooth. Therefore, S has a tubular neighborhood diffeomorphic to Xn(K). To see this, observe
that a neighborhood of the cone point is a copy of B4 and the rest of the neighborhood then makes
up a 2-handle attached along K. That the framing is n follows from the fact that the intersection
form of X is (n). The complement of the interior of this neighborhood is a homology cobordism
between S3

n(K) and Y ; moreover, for each i ∈ Z/n, the spinc structures labeled si on S3
n(K) and Y

as in Convention 2.1 are identified through this cobordism. In particular, d(Y, si) = d(S3
n(K), si).

By Lemma 2.3, we deduce that the conclusions of the theorem hold for Y . □

Remark 2.4. For surgery on a knot K in an arbitrary homology sphere Y , the analogue of the
Ni–Wu formula (2.5) need not hold. Instead, just as in our paper with Hom [HLL18, Lemma 2.2],
one can prove an inequality

(2.6) − 2NY ≤ d(Yn(K), si)− d(Y )− (2i− n)2 − n

4n
+ 2max{Vi(K), Vn−i(K)} ≤ 0

where
NY = min{k ≥ 0 | Uk ·HFred(Y ) = 0}.

It is precisely the failure of (2.5) to hold in general that makes it possible to obstruct the existence
of PL disks and spheres.
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0 m+ 2
(a)

0 m− 2
(b)

−2 −1 m

−2
(c)

Figure 1. Three surgery descriptions of Qm.

Remark 2.5. There is also an obstruction to the existence of a PL sphere in the case where n = 0,
although we do not know of any actual example where it is effective. If Y is any 3-manifold with
vanishing triple cup product on H1(Y ), and s is any torsion spinc structure on Y , then there are
two relevant invariants to consider: the untwisted “bottom” d invariant db(Y, s) defined by Ozsváth
and Szabó [OS03] (see also [LRS15]), and the totally twisted d invariant d(Y, s) defined by Behrens
and Golla [BG18]. These invariants are both preserved under spinc homology cobordism, and they
satisfy d(Y, s) ≤ db(Y, s) [BG18, Proposition 3.8]. We do not know of any 3-manifold for which this
inequality is strict.

For any knot K ⊂ S3, Behrens and Golla showed that d(S3
0(K), s0) = db(S

3
0(K), s0), where s0

denotes the unique torsion spinc structure [BG18, Example 3.9]. Just as in the proof of Theorem
2.2, it follows that if X is a smooth 4-manifold with the homology of S2 and vanishing intersection
form, and the generator of H2(X) can be represented by a PL sphere, then d(∂X, s0) = db(∂X, s0).

3. Construction

We now describe a family of 4-manifolds homotopy equivalent to S2 which fail to satisfy the
conclusion of Theorem 2.2.

For any integer m, let Qm denote the total space of a circle bundle over RP2 with normal
Euler number m. For more detail on these manifolds, see for instance [LRS15]. This is a rational
homology sphere with

H1(Qm) ∼=

{︄
Z/2⊕ Z/2 m even

Z/4 m odd.

The manifold Qm can be described by any of the surgery diagrams in Figure 1.
For any m, Doig [Doi15, Section 3] proved that the d invariants of Qm in the four spinc structures

are

(3.1)

{︃
m+ 2

4
,
m− 2

4
, 0, 0

}︃
.

(See also the work of Ruberman, Strle, and the first author [LRS15, Theorem 5.1].)
For each integer p, let Yp be the 3-manifold given by the surgery diagram in Figure 2, which

naturally bounds a plumbed 4-manifold. It is easy to check that Yp is the Seifert fibered homology



SIMPLY-CONNECTED, SPINELESS 4-MANIFOLDS 5

p −2 −1 −4p− 3

−2

Kp

Figure 2. Surgery description of the Brieskorn sphere Yp. The knot Kp represents
a singular fiber in a Seifert fibration on Yp.

.

sphere

Yp ∼=

⎧⎪⎨⎪⎩
Σ(2,−(2p+ 1),−(4p+ 3)) p < −1

S3 p = −1, 0

−Σ(2, 2p+ 1, 4p+ 3) p > 0.

(Our convention is that for pairwise relatively prime integers a, b, c > 0, the Brieskorn sphere
Σ(a, b, c) is oriented as the boundary of a positive-definite plumbing. Note, however, that the
plumbing shown in Figure 2 is indefinite.)

Let Kp ⊂ Yp be the knot obtained as a meridian of the p-framed surgery curve, shown in
Figure 2. In the cases p = −1 or p = 0, where Yp ∼= S3, Kp is the unknot or the right-handed
trefoil, respectively; otherwise, Kp is the singular fiber of order 2p + 1. The 0-framing on this
curve (viewed as a knot in S3) corresponds to the +4 framing on Kp (as a knot in Yp). Performing
surgery using this framing produces Q−4p−3, since we can cancel the p-framed component with its
0-framed meridian to produce Figure 1(c) with m = −4p− 3.

We are now able to construct the spineless four-manifolds claimed in Theorem 1.1. Define the
four-manifold Wp obtained by taking (Yp−B3)×[0, 1], which has boundary Yp#−Yp, and attaching
a +4-framed 2-handle along the knot Kp ×{1}. The boundary of Wp is Q−4p−3 #−Yp; denote this
three-manifold by Mp.

Proposition 3.1. For each p, the manifold Wp is homotopy equivalent to S2.

Proof. First, notice that (Yp−B3)×[0, 1] is an integer homology ball, so after attaching the 2-handle,
Wp has the same homology as S2. To show that Wp is simply-connected (and hence homotopy
equivalent to S2), it is sufficient to show that the homotopy class of Kp normally generates π1(Yp).
This is obvious in the case that p = −1, 0 as Yp = S3. The following lemma proves this claim in
the remaining cases. □

Lemma 3.2. For any pairwise relatively prime integers p, q, r, the fundamental group of the
Brieskorn sphere Σ(p, q, r) is normally generated by any of the singular fibers.

Proof. Write Σ(p, q, r) = S2(e; (p, p′), (q, q′), (r, r′)), where gcd(p, p′) = gcd(q, q′) = gcd(r, r′) = 1.
Then,

(3.2) π1(Σ(p, q, r)) = ⟨x, y, z, h | h central, xphp
′
= yqhq

′
= zrhr

′
= xyzhe = 1⟩.

To see this presentation, we consider the standard surgery description for Σ(p, q, r) as in Figure 3.
The complement of the surgery link L has

π1(S
3 − L) = ⟨x, y, z, h | h central⟩.
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p

p′
q

q′

r

r′

e
x h y

z

Figure 3. Surgery description of Σ(p, q, r), along with generators for π1.

Here, x, y, z represent meridians of the three parallel curves while h represents the fiber direction.
The four additional relators in (3.2) represent the longitudes filled by the Dehn surgeries.

Without loss of generality, we consider the singular fiber of order p, which is the core of the
Dehn surgery on the leftmost component in Figure 3. This curve is represented in π1(Σ(p, q, r)) by
xahb, where a, b are any integers such that |bp− ap′| = 1. Thus, we must show that the quotient
G = π1(Σ(p, q, r))/⟨⟨xahb⟩⟩ is trivial. Because x and h commute and |bp− ap′| = 1, the subgroup

of G generated by x and h is the same as the subgroup generated by xahb and xphp
′
. Therefore,

x = h = 1 in G, so

G ∼= ⟨y, z | yq = zr = yz = 1⟩.

Since q and r are relatively prime, this implies that G is the trivial group. Consequently, the
singular fibers normally generate the fundamental group of Σ(p, q, r). □

The following proposition now establishes Theorem 1.1; specifically, it shows that the manifolds
Wp are spineless for p ̸∈ {−2,−1, 0}. (Both W−1 and W0 contain spines since they are obtained by
attaching a 2-handle to the 4-ball; we do not know whether W−2 has a spine.)

Proposition 3.3. If Mp bounds a compact, smooth, oriented 4-manifold X with H∗(X) ∼= H∗(S
2)

in which a generator of H2(X) can be represented by a PL 2-sphere, then p ∈ {−2,−1, 0}.

Proof. Suppose Mp bounds a compact, smooth, oriented 4-manifold X with H∗(X) ∼= H∗(S
2).

Observe that the four d invariants of Mp are equal to those of Q−4p−3 minus the even integer d(Yp).
To be precise, label the four spinc structures on Mp by s0, . . . , s3 according to Convention 2.1. By
(2.1), we deduce that the intersection form of X must be positive-definite, and

d(Mp, s0) ≡
3

4
, d(Mp, s1) = d(Mp, s3) ≡ 0, d(Mp, s2) ≡

7

4
(mod 2Z).

(If the intersection form were negative-definite, the d invariants of s0 and s2 would be congruent to
5
4 and 1

4 respectively, which would violate (3.1).) These congruences enable us to identify which of
the two self-conjugate spinc structures is s0 and which is s2. Specifically, when p is odd, we have

d(Mp, s0) = −d(Yp)−
4p+ 1

4
d(Mp, s1) = d(Mp, s3) = −d(Yp)

d(Mp, s2) = −d(Yp)−
4p+ 5

4
.
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By Theorem 2.2, if there is a PL sphere representing a generator of H2(X), then:

−4p+ 1

4
= d(Mp, s0)− d(Mp, s1) =

3

4
or −5

4
4p+ 5

4
= d(Mp, s1)− d(Mp, s2) =

1

4
or −7

4

These two equations imply that p = −1.
Similarly, when p is even, the roles of s0 and s2 are exchanged, and we deduce that p equals

either −2 or 0. □

Remark 3.4. In [Doi15], Doig computed the d invariants of Qm and used these to show that many
of the Qm cannot be obtained by surgery on a knot in S3. Our arguments further show that Qm

cannot be integrally homology cobordant to surgery on a knot. While Doig’s arguments use d
invariants, which are homology cobordism invariants, they also rely on the fact that the Qm are
L-spaces, which is not a property that is preserved under homology cobordism.

Remark 3.5. For any k > 1, one can modify the construction above to obtain spineless 4-manifolds
X with H1(∂X) ∼= Z/k2. Let Qk,m be the manifold obtained by (0,m + k) surgery on the (2, 2k)
torus link. (Using our previous notation, Qm = Q2,m, as seen in Figure 1(a).) Then

⃓⃓
H2(Qk,m)

⃓⃓
=

k2, and H2(Qk,m) is cyclic iff gcd(k,m) = 1. Since Qk,m bounds a rational homology ball, the d
invariants of k of the k2 spinc structures on Qk,m vanish. On the other hand, the exact triangle
relating the Heegaard Floer homologies of S1 × S2, Qk,m, and Qk,m+1 shows that the d invariants
of the remaining spinc structures vary roughly linearly in m. In particular, the differences between
d invariants of adjacent spinc structures can be arbitrarily large. Moreover, one can realize Qk,m

(for appropriate m) as surgery on a fiber in a Brieskorn sphere; the result then follows as above.
We do not know of any instances where Theorem 2.2 obstructs the existence of a PL sphere when

n is not a perfect square.
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