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Mehmet A. Balkan, Nathan U. Stewart, Emily S. Kauffman, Emily R. Wolfe, and Daniel J. Ballhorn', Portland
State University, 1719 SW 10th Avenue, Portland, Oregon 97201

Genotypic Diversity and Host-Specificity of Frankia Bacteria
Associated with Sympatric Populations of Alnus rubra and Alnus
rhombifolia in Oregon

Abstract

Biological nitrogen fixation is one of the most critical processes contributing to ecosystem productivity and stability on a
global scale. In temperate climates of the northern hemisphere, plant-root associated bacteria of the genus Frankia are the
major nitrogen fixers in forest environments. Trees belonging to the genus Alnus are the most widespread hosts of Frankia
in the Pacific Northwest, and a myriad of biotic and abiotic factors can influence the robustness of this symbiosis. Host
identity and bacterial strain are important features that can impact Alnus-Frankia association, but little is known about
the interplay of intrageneric hosts that co-occur in natural settings. In this study we investigated the genetic diversity and
host specificity of Frankia bacteria associated with sympatrically occurring populations of Alnus rubra (red alder) and
Alnus rhombifolia (white alder) in Oregon. Based on sequence analysis of the nifH gene recovered from root nodules we
found low overall bacterial diversity. One dominant Frankia genotype was associated with both host species, indicating
a lack of strong host specificity in this system. Our results suggest that certain intrageneric plant hosts with overlapping
distributions show cross-compatibility with symbiotic actinorhizal bacteria, and that low strain diversity of these bacteria
can persist across mixed host populations.

Keywords: plant-microbe interactions, genotype, nitrogen-fixation, red alder, white alder.
Introduction but can also lower soil pH (Lawrence 1958),
significantly increase soil organic matter (Tarrant
and Miller 1963, Franklin et al. 1968, Bormann
and DeBell 1981, Binkley et al. 1982, Binkley
1983), and improve the retention of important
anions such as PO, 3~ and SO, * (Johnson et al.
1986). Furthermore, the soil enhancing capacity of
Frankia-associated Alnus species can also benefit
neighboring trees of economic importance such as
Pseudotsuga menziesii (Mirb.) Franco (Douglas-
fir) (Miller and Murray 1978) and Pinus species
(Dai et al. 2004), with which they are sometimes

Nitrogen-fixing bacteria associated with plant
roots are one of the primary sources of biologi-
cal nitrogen inputs in terrestrial ecosystems. In
temperate climates, bacteria of the genus Frankia
are the major group that forms such symbioses
with 24 actinorhizal angiosperm genera worldwide
(Schwintzer and Tjepkema 1990, Benson and Sil-
vester 1993). Members of the genus A/nus (alders)
are the only known trees that form associations
with Frankia bacteria, and Alnus rubra Bong.
(red alder) is one of the most common tree species

in the northwest (Franklin and Dyrness 1973).
Accordingly, 4. rubra represents a critical host
for actinorhizal bacteria in the Pacific Northwest
owing to its widespread distribution and relatively
long lifespan compared to non-tree actinorhizal
hosts in this region. Alders are pioneer tree species
that can not only enhance soil nitrogen content,
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interplanted for this purpose.

The performance of the actinorhizal symbiosis
can vary significantly depending on host plant-
bacterial genotype combinations (Wheeler et al.
1986, Weber et al. 1987). While a number of differ-
ent factors can influence the genotypic diversity of
Frankia including edaphic (Sheppard et al. 1989,
Crannell et al. 1994, Nickel et al. 1999) and bio-
geographic (Khan et al. 2007, Pdlme et al. 2014)
factors, the effect of host identity is of particular
interest and has been widely studied (van Dijk et

© 2019 by the Northwest Scientific Association. All rights reserved.

Downloaded From: https://bioone.org/journals/Northwest-Science on 29 Jan 2020
Terms of Use: https://bioone.org/terms-of-use Access provided by Portland State University



al. 1988, Rouvier et al. 1996, Navarro et al. 1999,
Vanden Heuvel et al. 2004, Huguet et al. 2004,
Lipus and Kennedy 2011, Pdlme et al. 2014). Four
major host infection groups have been identified
for Frankia based on their ability to form nodules
within actinorhizal plant families (Baker 1987),
though it has since become clear that strains do
not always remain within the boundaries of this
host-specific classification (Torrey 1990). Much
of the work examining Frankia host specificity in
Alnus has focused on strain compatibility across
allopatric populations of different (Anderson et
al. 2009, Lipus and Kennedy 2011, Pdlme et al.
2014) or the same (Welsh et al. 2009) host species.
Few studies have investigated genotypic diversity
and host specificity of the bacterial symbiont in
sympatric populations of different Alnus species
(Anderson et al. 2009, Pokharel et al. 2011), beck-
oning the questions of how proximity, shared soil
environment, and exposure to the same Frankia
strain pool act to influence host colonization and
specificity. Pokharel et al. (2011) conducted a
comprehensive assessment of Frankia associated
with 12 Alnus taxa—most of which do not typi-
cally co-occur in their natural habitats—growing
sympatrically in an arboretum setting. Using
Rep-PCR (repetitive element polymerase chain
reaction) fingerprinting, Pokharel and colleagues
(2011) generated genetic strain profiles for nodules
collected from multiple individuals of each taxon.
Strikingly, only three distinct strain groupings were
observed, with Frankia associated with nine of the
Alnus taxa comprising a single strain (I), associ-
ates of two other taxa comprising a second strain
(IT), and a single taxon associate comprising the
third group (III), suggesting low genetic diversity
and high intrageneric host cross-compatibility. In
contrast, Anderson et al. (2009) observed a total
ofnine unique RFLP (restriction fragment length
polymorphism) profiles generated from Frankia
nodules from A. viridis and A. tenuifolia popula-
tions growing sympatrically in interior Alaska,
three of which occurred on both hosts and three
of each of the remaining six profiles occurring
on either host. Interestingly, the most abundant
genotypes in each of three sites were consistently
those that were unique to each host suggesting a
greater degree of host specificity for those profiles.

Given such mixed results, the paucity of more
accurate and replicable molecular approaches
(e.g., sequence-based genotyping), and the under-
representation of some Alnus species in previous
studies, there is a need to further investigate the
diversity and host specificity of actinobacteria
among sympatrically distributed populations of
alders in natural settings. Of the four A/nus species
that are native to the Pacific Northwest (includ-
ing northern California), red alder (Alnus rubra)
and white alder (Alnus rhombifolia Nutt.) are the
most common (Little 1976) and have overlap in
their distribution. Here we assessed the genetic
diversity and host specificity of Frankia bacteria
associated with the roots of sympatric populations
of A. rubra and A. rhombifolia in western Oregon.

Methods
Study Area

Nodule-bearing roots were collected from both
red and white alder from a site in Sherwood,
western Oregon (Heaton Creek, Figure 1). Alder
species were identified considering a set of traits
including variation in leaf shape, flowers, and
extent and speed of oxidation processes resulting
in red coloration of scratched inner tree bark. Red
alder periderm (in line with its common name)
shows a faster and much more intense coloration
in response to physical damage compared to
white alder. In total, 28 white alder and 30 red
alder samples were collected, with each sample
originating from a different tree. Trees had di-
ameters at breast height between 10 and 25 cm.
Both species of trees showed similar variation in
diameter (red alder: 16.4 + 4.0, white alder: 15.9
+ 4.7 [mean = SD]). Nodule bearing roots were
collected from the upper soil level (15 cm) at a
radius of 50 cm around each tree. Nodules were
only collected from larger roots (> 1 cm in diam-
eter) easily trackable to the specific sample tree
or from finer roots that were clearly attached to
these larger roots. After collection, the roots with
nodules were stored in sealed zip lock bags and
transported to the lab in a cooler (4 °C). Nodules
were processed within 48 hours.
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Figure 1. Map of collection site in western Oregon displaying locations of
individual Alnus rubra and A. rhombifolia trees. Alnus rubra trees are
labelled with star icons, 4. rhombifolia trees with circles. Information
on the associated Frankia genotype recovered from root nodules is
provided for each tree. Icons without corresponding labels indicate
trees from which nifH sequences were not obtained.

Surface Sterilization

Roots and attached nodules were washed with
deionized water to remove soil and organic mat-
ter. Nodules were then removed from roots with
a sterile scalpel and placed into individual 14 mL
sterile scintillation vials. Each vial was then filled
with 10 mL of 10% bleach (0.6% hypochlorite)
solution and agitated in an orbital shaker at room
temperature (21 °C) for 2 minutes at 140 rpm.
After agitation, the bleach solution was decanted
from each vial and the bleach washing process was
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repeated once more. After the second
bleach wash, the washing process was
repeated three more times with deion-
ized water instead of bleach. After
surface sterilization, a single nodule
lobe of each sample was removed with
a sterile scalpel. All single lobes were
then transferred to 1.5 mL microcen-
trifuge tubes for DNA extraction using
a sterile toothpick.

DNA Extraction

DNA was extracted from individual
nodule lobes using the Sigma Tissue
Extract-N-Amp Kit (Sigma-Aldrich,
St. Louis, MO). Forty pL of extrac-
tion buffer were added into each 1.5
mL microcentrifuge tube contain-
ing an individual nodule lobe, which
was then homogenized using a sterile
micropestle. Lobe homogenates were
centrifuged for 1 minute at 15,000 rpm
(21,130 x g), and 20 puL of supernatant
from each tube transferred into an
individual 0.2 mL PCR strip-tube.
Strip-tubes containing extractions
were placed in a thermal cycler and
incubated at 65 °C for 10 minutes,
followed by 95 °C for 10 minutes.
Following incubation, 25 pL of neu-
tralization buffer were pipetted into
each sample which were then briefly
vortexed and stored at 4 °C until use.

PCR and Sequencing

A 606 bp (base pair) portion of the nifH gene was
amplified by PCR using Frankia-specific primers
nifHf1 (5'-GGC AAG TCCACCACC CAGC-3")
and nifHr (5'-CTC GAT GAC CGT CAT CCG GC-
3"). PCR reactions were set up in 24 pL volumes
containing 8.45 pL. PCR water, 12.5 pL. GoTaq
Master Mix, 1.25 uLL BSA (1 mg/1 mL), 0.4 pL
of each primer (10 uM), and 1 pL of 1:10 diluted
template. Reaction mixtures were then subjected
to the following thermal cycling conditions: 96 °C
for 5 minutes, 35 cycles at 95 °C for 30 seconds,
60 °C for 30 seconds, 72 °C for 45 seconds, and



a final extension at 72 °C for 7 minutes. Follow-
ing PCR, all reaction products were visualized
by gel electrophoresis. Successful PCR reactions
were cleaned up using ExoSAP IT (USB Corp.,
Cleveland, OH) according to the manufacturer’s
instructions. Sanger Sequencing was performed
in both directions using the same primers used
in PCR on an ABI 3730x1 (Applied Biosystems,
Foster City, CA) at Functional Biosystems, Inc.
(Madison, WI).

Sequence Processing

Sequence data were visually inspected for quality,
trimmed to 615 bp, and contigs generated from
forward and reverse reads for each sample in
Geneious version 10.2.3 (Kearse et al. 2012). Op-
erational taxonomic units (OTUs) were generated
by clustering contigs with 97% sequence similarity.
This similarity cutoff was chosen because previ-
ous work has shown that Frankia genotypes are
accurately placed in appropriate genomic groups
at this threshold (Welsh et al. 2009, Mirza et al.
2009, Lipus and Kennedy 2011, Higgins and Ken-
nedy 2012, Rodriguez et al. 2016). Representative
sequences for each OTU group (i.e., genotype)
were submitted to Genbank under the accession
numbers MK105601-MK105605. The OTUs
were then aligned using MAFFT version 7.309
(Katoh and Standley 2013). The nifH sequence
of Frankia causuarinae strain Ccl3 (Normand
et al. 2007) was downloaded from GenBank and
included in the alignment as an outgroup. The
ends of the alignments were trimmed to ensure
each sequence was of the same length.

Phylogenetic Analysis and Statistics

To determine the optimal nucleotide substitution
model for use in phylogenetic analysis, the align-
ment of OTUs created from both A/nus spp. at
the 97% similarity threshold was analyzed using
PartitionFinder version 2.1.1 (Lanfear et al. 2016).
The entire alignment was treated as a single data
block, “models” and “schemes” were set to all,
and model selection was done based on the cor-
rected Akaike Information Criterion. This analysis
indicated that a general time reversible model
with an estimation of invariant sites (GTR+I)

was the best fit, and this model was used in both
maximum likelihood and Bayesian tree building.

Maximum likelihood trees were built in Ge-
neious using RAXML version 8.2.11 (Stamatakis
2014) with the “GTR CAT I’ model setting and the
Rapid Bootstrapping algorithm; 10,000 bootstrap
replicates were performed, and the consensus trees
were built with a 25% bootstrap support minimum.
Bayesian trees were built using BEAST version
1.8.4 (Drummond et al. 2012) with the GTR+I
nucleotide model. A strict clock model was used,
along with a coalescent constant-population tree
prior. The program was run with chain lengths
of 10,000,000 states, with sampling every 1,000
states. Maximum clade credibility trees were
generated in Tree Annotator with a 10% burn-in.

The software EstimateS 9.1.0 (Colwell 2013)
was used to estimate the true richness of Frankia
genotypes associated with 4. rubra and 4. rhom-
bifolia. The Chao2 estimator was computed on
the basis of 500 randomizations of sample order
without replacement. To assess whether the host
identity significantly influenced the co-occurrence
of the two most frequently observed Frankia
genotypes, Fisher’s Exact Probability Test was
performed.

Results

nifH Sequence Analysis

We sequenced a portion of the nifH gene from
Frankia nodules associated with the roots of 28
Alnus rhombifolia and 30 Alnus rubra individu-
als in order to assess the genetic diversity and
level of host specificity of these actinobacteria
in sympatric populations of their hosts. Of the
58 nodules processed we successfully generated
nifH sequences for 47, which were comprised of
five OTUs (herein referred to as genotypes) at
97% sequence similarity across both tree species.
Sequences derived from both A. rubra and A. rhom-
bifolia associated nodules clustered into each of
five genotypes at varying proportions with A. rubra
derived sequences outnumbering A. rhombifolia
derived sequences in four out of the five genotype
groupings (Table 1). The calculated Chao2 richness
estimator was identical to the observed richness of
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TABLE 1. Abundance of Frankia genotypes associated with host A/nus species.

Discussion

Frankia Genotype

Host Species

The goal of the current study was

DJB-FI' DJB-F2 DJB-F3 DJB-F4 DJB-F5? A
s rubra 12 3 5 > to assess genetic diversity and
Alnus rhombifolia 13 6 | | host specificity of actinorhizal

! Identical to genotype KL2 (GenBank accession GU810474.1) described in Ken-

nedy et al. 2010.

2 Identical to genotype KL1.16 (GenBank accession GU810479.1) described in

Kennedy et al. 2010.

five Frankia genotypes shared by the two Alnus
populations, illustrating that sampling of nodules
was adequate to represent true genotypic richness.
More than 50% of sequences derived from both
Alnus host species clustered into one dominant
genotype (DJB-F1), which was associated with
trees that were heterogeneously distributed across
the site (Figure 1). Similarly, trees associated with
the other four genotypes (DJB-F2-DJB-F5) also
exhibited heterogeneous spatial distribution. Upon
comparing the A/nus-associated Frankia genotypes
in our study to those characterized in other studies
conducted in our region (Kennedy et al. 2010,
Lipus and Kennedy 2011), we discovered that
two of our genotypes (DJB-F1 and DJB-F5) were
identical to two described previously (KL2 and
KL1.6 respectively). The results of the Fisher’s
Exact Probability Test (P = 0.618) indicate that
no systematic association exists between A/nus
species and occurrence of Frankia genotype in
at this site.

Phylogenetic Analysis

Both maximum likelihood and Bayesian phylo-
genetic analyses of the five Frankia genotypes
recovered from A. rubra and A. rhombifolia
yielded trees with identical topologies (Figure
2). The genotypes are clustered into two major
clades, with one clade consisting of DJB-F3, and
the other consisting of two monophyletic sub-
clades containing two of each of the remaining
four genotypes (DJB-F1, DIB-F5; and DJB-F2,
DJB-F4, respectively). Relatively high bootstrap
support values and posterior probabilities support
the stability of these groupings.
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Frankia bacteria associated with
the roots of two co-occurring
Alnus taxa. Our findings suggest
that host identity is not a strong
driver of Frankia genotype abun-
dance associated with sympatric
populations of Alnus rubra and A. rhombifolia.
Whether or not these findings are applicable on
a larger scale remains elusive as we were limited
to a single location in western Oregon. Still, to
the best of our knowledge, this is the first study
comparing host-Frankia associations of these
species at a natural site.

Similar to other studies we found low overall
diversity of Frankia (Benson et al. 1996, Clawson
etal. 1997, Oakley et al. 2004, Vanden Heuvel et
al. 2004, Lipus and Kennedy 2011, Pokharel et al.
2011) with a single dominant genotype across the
sampling site. Interestingly, two of the genotypes
recovered in the current study were identical to two
described in previous studies (Table 1) that were
found at sites between 50 km and 115 km from
the current study site. Remarkably these match-
ing genotypes correspond to the most abundant
genotype in our study and the two most abundant
in those of Kennedy et al. (2010) and Lipus and
Kennedy (2011), further underscoring the regional
low diversity of Alnus-associated Frankia. There
were no genotypes that were unique to either host,
and no significant association between the abun-
dance of genotypes and host species was observed
indicating a lack of host specificity in this system.
A similar pattern was observed by Pokharel et
al. (2011) who found that Rep-PCR profiles (i.e.
genotypes) of Frankia associated with nine out of
12 Alnus taxa in a common garden setting were
identical. Likewise, Oakley et al. (2004) performed
a sequence-based analysis of Frankia associated
with several co-occurring Ceanothus species and
reported a high level of sequence homogeneity
across hosts despite not having clustered similar
sequences into OTUs, which would have likely
further reduced the observed diversity. Interest-



70/1
1 88/0.93

70/0.83

outcomes in respect to
symbiont affinity. The
Alnus species in our
study are more closely
related compared to
other similar studies
(Chen and Li 2004) in

DJB-F3 (MK105603)

DJB-F4 (MK105604)

DJB-F2 (MK105602)

71/0.70

0.4

which a high degree of
host preference (Lipus
and Kennedy 2011) or
host specificity (Ander-
son et al. 2009) were
found, supporting the
idea that host phylogeny

DJB-F5 (MK105605)

DIB-F1 (MK105601)

Frankia causuarinae CC13
(EU862918)

Figure 2. Maximum likelihood tree based on nifH gene sequences generated from Frankia nod-
ules associated with Alnus rubra and A. rhombifolia. Branch labels reflect bootstrap
support values for ML (maximum likelihood), followed by posterior probabilities
for Bayesian analyses. A sequence for Frankia causuarianae Ccl3 was used as an

outgroup.

ingly, allopatric populations have also exhibited
intrageneric host cross-compatibility with sym-
bionts in A/nus (Welsh et al. 2009, Lipus and
Kennedy 2011, Polme et al. 2014). In contrast,
the findings of Anderson et al. (2009) revealed
that the most abundant Frankia strains (based
on RFLP profiles) recovered from overlapping
A. viridis and A. tenuifolia were unique to each
host, in that case indicating a high degree of host
specificity in their study site.

Whereas strict host specificity appears to be
more the exception than the rule within intrage-
neric hosts (especially those that are sympatrically
distributed), variation in this phenomenon is likely
to be influenced by host phylogeny and not sim-
ply taxonomic identity. This was more recently
highlighted in a large-scale global assessment
of Frankia associated with 22 Alnus species on
four continents by Pdlme et al. (2014). From their
investigation, Pdlme and associates discovered that
host phylogeny was the primary driver of Frankia
assemblages worldwide and that the majority of
recovered genotypes were generalists, with a few
that were strongly host specific. This may explain
the mixed results obtained across other studies
comparing the Frankia assemblages of co-occur-
ring hosts of the same genus, whereby different
host species combinations may produce different

may reflect the degree of
homogeneity in Frankia
populations associated
with co-occuring host
species. It is also note-
worthy that Pdlme et
al. (2014) found that Frankia phylogeny did not
significantly influence the identity of associated
hosts, reinforcing the idea that the Alnus host is
selecting the symbiont and not vice versa. This
may also explain the oddity of the dominant
genotype in our study being most closely related
to the rarest in our study (Figure 2). In other words
as suggested above, perhaps selective initiation
of the actinorhizal mutualism depends on factors
not bound to symbiont phylogeny, or at least not
to the degree that is revealed by variation in the
nifH gene.

While certain key features such as low overall
diversity with few dominant genotypes appear to
be consistent across studies, the reason for this
phenomenon is still elusive. One possible expla-
nation for the low diversity of host-associated
Frankia are potential limitations in resolution
of using single standard marker genes like nifH.
However, the nifH gene currently represents by far
the most utilized marker for studying genotypic
variation in nitrogen-fixing bacteria—including
Frankia—and many key studies on Frankia
diversity available today have used this marker
(Welsh et al. 2009, Mirza et al. 2009, Kennedy et
al. 2010, Pdlme et al. 2014, Rodriguez et al. 2016).
Other new markers (or combinations thereof)
such as the pgk region for example (Pozzi et al.
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2018) are promising to provide greater analytical
depth but are little tested so far or in the case of
multiple markers often yield conflicting results.
While nifH has limitations it still is useful to
provide data with the particlar advantage of being
easily comparable to existing studies databases
and allowing the specific targeting of Frankia
bacteria in environmental samples. Ultimately,
full genomic comparisons will eventually yield
the best metric for deriving genotypic grouping
of Frankia strains.

Another potential explanantion for the relatively
low diversity of host-associated Frankia is that
only few Frankia genotypes provide significant
adaptive advantages to host plants in nature. At
this point, the question why and under which
conditions host associations with few dominant
Frankia genotypes—as opposed to diverse con-
sortia—provide an adaptive advantage to host
fitness remains unsanswered. Bioassays with
specific host-Frankia associations under controlled
conditions would provide useful tools to study
host-Frankia specificity (Lipus and Kennedy
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