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Blue-Noise Sampling on Graphs

Alejandro Parada-Mayorga

Abstract—In the area of graph signal processing, a graph is a set
of nodes arbitrarily connected by weighted links; a graph signal is
a set of scalar values associated with each node; and sampling is
the problem of selecting an optimal subset of nodes from which a
graph zignal can be reconstructed. This paper proposes the use of
spatial dithering on the vertex domain of the graph, as a way to
conveniently find staristically good sampling sets. This is done es-
tablishing that there is a family of good sampling sets characterized
on the vertex domain by a maximization of the distance berween
sampling nodes; in the Fourier domain, these are characterized by
spectrums that are dominated by high frequencies referved to as
blue-noise. The theoretical connection between blue-noise sampling
on graphs and previous results in graph signal processing is also
established, explaining the advantages of the proposed approach.
Restricting our analysis to undirected and connected graphs, nn-
merical tests are performed in order to compare the effectiveness
of blue-noise sampling against other approaches.

Index Terms—Blue-noise sampling, graph signal processing,
signal processing on graphs, sampling sefs.

I. INTRODUCTION

NTERESTING phenomena in namre can often be captured
by graphs since objects and data are invariably inter-related
in some sense. Social [1]. financial [2]. ecological networks,
and the human brain [3] are a few examples of such networks.
Data in these networks reside on irregular or otherwise un-
ordered structures [4). New data science tools are thus emerging
to process signals on graph structhures where concepts of alge-
braic and speciral graph theory are being merged with methods
used in computational harmonic analysis [5]-[7]. A common
problem in these networks is to determine which nodes play
the most important role, assiuming there 1s a quantity of interest
defined on the network.
Graph signal sampling thus becomes essential. Naturally, the
mathematics of sampling theory and spectral graph theory have
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been combined leading to generalized Nyquist sampling princi-
ples for praphs [3]. [8]-12]. In general, these methods are based
on the underlying graph spectral decompositions [12]-[15].

This work explores a somewhat radical departure from prior
work, inspired by sampling patterns in traditional dithering and
halftoning Specifically, we intend to design graph signal sam-
pling techniques that promote the maximization of the distance
between sampling nodes on the vertex domain that are typically
characterized by a low frequency energy. Sampling patterns with
these characteristics are referred to in the spatial dithering liter-
ature as blue-noise [16], [17].

In this paper, the connection between the properties of blue-
noise sampling patterns and the results related with sampling
sets in graphs is established, showing that blue-noise like sam-
pling patterns in graphs are connected with good sampling sets
in terms of preserving the uniqueness of the representation of the
sampled signal in a noise-free scenario. Additionally, it is shown
how the inter-distance between the sampling nodes affects the
redness in a given sampling pattern. We provide a measure of
the bandwidth of the signals that can be uniquely represented
from the vertex-domain characteristics of blue-noise sampling
patterns. A numerical algorithm is proposed in order to com-
pute these blue-noise patterns based on their vertex-domain dis-
tribution. In particular, trying to exploit the distribution of the
sampling points on the nodes of the graph, a void and cluster al-
gorithm on graphs is developed [18], allowing the generation of
patterns that lead to reconstruction errors of bandlimited signals,
similar to the ones obtained in the state-of-the-art literamre.

This work is organized as follows: in Section IT, notation and
basic concepts about signal processing on graphs are stated pre-
senting also a description of previous approaches about sam-
pling on graphs, In Section T blue-noise sampling on graphs
is discussed. In Section IV an algorithm for the generation of
blue-noise patterns is discussed, whereas in Section V a set of
numerical tests show the performance of the proposed algorithm
against other techniques. Finally, in Section VT a set of conclu-
sions is presented.

IT. PRELIMINARIES

Sandryhaila [19] proposed a theoretical framework for the
analysis and processing of signals on graphs based on the proper-
ties of the adjacency matrix. This approach is rooted in aleebraic
signal processing, whereas authors like Fubr and Pesenson [8],
[9]. [20]. Puy [21] and Shuman [5]. [6]. [22] based their analysis
of signals on graphs, relying on the properties of the Laplacian
mairiv. In both approaches the Fourier transform of the signals
on the graph is definedin terms of a spectral decomposition of the
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adjacency maitrix and the Laplacian matrix respectively, nsing
the set of eigenvectors as the Fourier basis for the representation
of the signals.

The first approach offers a direct connection with the shifi
operator nsed in traditfional sipnal processing, while the second
resembles the main ideas of Fourier analysis in linear spaces in
which the eigenfunctions of the Laplacian operator are used as
the basis representation of the signal. The two approaches use
a unitary operator. and problems like sampling and filtering can
be successfully considered in both scenarios. In this work, the
combinatorial Laplacian matrix is used as the building block, and
the graphs considered are undirected, weighted. connected and
simple. Consequently, part of the developments proposed rely
on the theoretical results obtained by Furh and Pesenson [B]. [9].
[20] in harmonic analysis on graphs.

A Graph Signal Sampling

Let = (V(&), E(GZ)) be an undirected, weighted. con-
nected, simple graph with a set of nodes, V(). and a set of
edges. E((7). W is the adjacency matrix (symmetric), with
Wiu,v) = 0the weight connecting the nodes w and v and u ~ »
indicates that W {u, v} = (. The degree matrix. I, is a diagonal
matrix whose entries are given according to:

D{u,u) = Z Wu,v).

veViG)

(1)

For any graph G, its volume is defined as vol () = }°, v ()
D, ), and the volume of a subset 5 < V(&) is defined
as vol(S) =5 . D{u,u). On the graph G. the combinato-
rial Laplacian operator is defined as the positive semi-definite
operator:

L=D-W, (2)

whose eigenvalues are organized as 0 < pg < pp < -+ < .
N = V()] [23]. A real signal. @, on the graph is then defined
as the mapping & : V(&) — R represented by the vector & €
R where (v is the value of the signal associated tow € V().
The support of @ is represented as supp(x ). and the restriction
of . to any subset 5 C V(7). is represented as =( 5). It is worth
noticing that:

(La)v)= > (z(v) - (u)) W(w,u).

weV (&)

(3)

If the spectral decomposition of the operator L is represented
as L = UAUT, then the Graph Fourier Transform (GFT) of
the signal, & on G, is given by & = Ul There is a direct
analogy between the concept of frequency in traditional Fourier
Analysis and the behavior of the Graph Fourier Transform as
is stated in [5]. Considenng this analogy, the bandwidth of a
signal @ can be defined using the nonzero components of &
It is said that & has bandwidth w» € R, on the spectral axes if
& ¢ PW_(G) = span{ Uy : p; < w}, where PW, () is the
Paley-Wiener space of bandwidth w [8] and U} indicates the
first k column vectors in U In some cases the bandwidth is also
represented with the largest integer £ such that pyp < w.
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Given a notion of bandwidth, one invariably questions the
notion of sampling rate and whether the number of samples or
nodes of a graph can be reduced without loss of mformation
to the signal. We, therefore. define sampling of a signal = on
the graph &, by choosing the components of @ on a subset of
nodes. 5 = {s1,...,5m} C V(G). The sampled signal is given
by &(5) = M where M is a binary matrix whose entries are
given by M = [d,,,..., 4, |7 and &, is the N—dimensional
KEronecker column vector centered at v. Given x(5). it is pos-
sible to obtain a reconstucted version of @ i different ways
depending on whether the bandwidth of the signal is known. We
assume that the bandwidth is known and that the reconstruction
is given by:

Tree = argmin [Mz — x(8)|3 = U (MU,)" 2(S) (4)
zespan(Ug)
where (MU} ) is the Moore-Penrose pseudo-inverse of MU,
[24]. [25]. Alternatively, in [26] it is shown that a consistent
reconstriction of the signal can be obtained from its samples
using inferpolarion spiines.

The problem of optimally sampling a signal on a graph can
now be summarized as choosing & such that we maximize
the available bandwidth of x(5). To this end. Pesenson de-
fines[&], [#] a A-removable set for A = 0 as the subset of nodes,
& c V(). for which:

Izl < (/A Lalls ¥ e La(S), (5)

where La(5) is the set of all signals. @, with support in 5
V(@) (ie. elements of x not included in S are equal to zero)
and finite f3 norm. The largest value of A for which eqn. (5)
holds is denoted by A . Notice that for any subset of nodes there
exists a A-removable set with larger or smaller Ag. Therefore,
A5 ultimately determines how much importance a given set has
in the sampling process of a signal with a specific bandwidth.
The relationship between properties of removable sets and the
sampling problem was established by Pesenson in the following
theorem:

Theorem [ (Theovemn 5.1 in [8]): If for aset § C V(7). its
complement 5° = V(G)\ 5 is a Ag-—removable set, then all
signals in PW,,(() are completely determined by its values in
S, whenever 0 < w < Age.

In [20], another result related with sampling sets is established
using a constant that can be calculated directly with the weights,
W, of the graph. 5, stated in the following theorem:

Theorem 2 ({20]): Every § C V() is a uniqueness set for
all functions in PW,,(G) with any w < K 5. where

(6)

Ks= vié!}f urs (1)

and wg(v) =3}, W(s,v).

Theorems 1 and 2 play a central role in the description of
properties for different classes of sampling sets as it is possible to
consider that a good sampling set, 5. promotes the maximization
of constants, Ag- and K s In particular. it will be shown in
the following sections that blue-noise sampling patterns indeed
promote high values of these constants.

Recently Pesenson [27] introduced results that characterize
the representation of a band limited signal in terms of induced
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subgraphs obtained from partitions of V(&) that cover V(7).
This statement can be summarized in the following theorem.
Theorem 3 (5.1,6.1,6.2 [27]); Let (7 be a connected finite or
infinite and countable graph. Suppose that 7 = {V7({1;) };:'{Pl 15
a disjoint cover of V() by connected and finite subgraphs £2;.
Let Ly, be the Laplace operator of the induced graph (2; whose
firstnonzero eigenvalue is p1, ;. If Ap = inf; juq ; = Oand Ap =
ey with o > 0. then every signal 2 € PW,, (&) is uniquely
determined by the values "¢ powhere£; = x;/+/|V(82;)| with
x;(V(£24)) =1 and x,(V'(§2;)°) = 0. Additionally, = can be
reconsiructed from this set of values in a stable way.

It 1s important to remark the meaning and implications of
Theorem 3. This result shows that V' ((7) can be divided into
disjoint subsets that cover V(7). and a given band limited signal
can be reconstructed from the average values of the signal in
those regions. Additionally, the constant Ap associated to the
partition provides a measure of the quality of the reconstruction
obtained from the regions on V(&) defined by P. It is also
worthy to point out that the size of the elements in the partition
has anatural limit as Ly,  is expected to have at least one nonzero
eigenvalue. which would not be the case when £2; consist of one
single vertex. This result will allow us to establish a connection
between the spectral and vertex domaimn behavior of sampling
patterns in some classes of graphs. Additionally, we will show
that from a blue-noise sampling pattern s, it is possible to build
a partition that can be used to estimate the bandwidth of signals
that are uniquely represented by their samples on the sampling
nodes indicated by =.

B. Oprimal Graph Sampling

The problem of finding the best 5 is a combinatorial problem
of calculating Ag- for all sampling sets and choosing the set
with the largest value of A 5., a prohibitively expensive process
for large graphs. Allowing for some short cuts, a simple, greedy
procedure for finding a good sampling set starts with an empty
set of nodes and iteratively adds one node at a time, taking the
best available node at each iteration according the value of a cost
function. Several anthors have formmlated the problem of sam-
pling and reconstruction in the presence of measurement noise,
and in these works objective functions have been proposed that
minimize the reconstruction error in terms of the worst case [14],
where 5 = ﬂ.rgmax|3|=ma'|2. the mean case [24], where
59 — arg maxigi—m E::‘i']"m‘kj a; 2, and the maximum vol-
ume case [25]. where §77 — arg max g,_,, ;’:’:{m'k} a2 and
oy represents the ith singular value of the matrix MU}, con-
sisting of the first k& eigemvectors of W or L respectively,
sampled on the rows indicated by 5. In [28] the optimal
sampling set is obtained considering the same cost function for
the mean case, but using the singular values of AU diag(5),
where diag(5) is the diagonal matrix whose entries are given by
diag(5);; =1&ic 5.

In order to reduce computational complexity, Anis er al. [24]
defines graph spectral proxies of order g as estimates of
the cutoff frequency of a given signal which can be unsed
to define cutoff frequency estimates for a subset of nodes 5

according to:

0,(8) = ”L”’"“):, @)

A= ME“E%J( ol

with L? being the gth power of L [13], [24]. Anis ef al. fiurther

shows that, for any g £ M and 5, it is possible to have perfect

reconstruction when w < £1,(5). The value of (,(5) can be

calculated as £2,(5) = (my :q]ﬁ .where ey  denotes the smallest

eigenvalue of the reduced matrix Lg’i_ 5o The optimal sampling

set can then be represented as the solution of the problem:
Sgpt = arg max {2,(.5),

| 8=

(8}

which is still combinatorial: however, Anis ef al. proposes a
heuristic mule to solve eqn. (8) using the first eigenvector of
Lg, -~ Basically. a node is added to the sampling set according
to the index of the component with maximmum absolute value
for the first eigenvector of LY, ... The quality of the sampling
set is also related to the value of g, which should be selected as
large as possible at the expense of a higher computational cost,
In [29]. some performance theoretical bounds for these greedy
sampling techniques are derived.

In some scenarios for sampling signals on graphs a spectral
decomposition of the operators is not available, and therefore,
there is a strong need for vertex domain sampling schemes that
attempt to build good sampling patterns based entirely on the
local graph structure around a node. In particular, for those cases
where the graphs are too large for calenlating the eigenvalues
and eigenvectors of the GFT, several authors have looked at
the problem of sampling nsing subsets of nodes that may not be
optimal but are still very good at preserving band-limited signals.
In the case of Puy er al [21], the authors perform a random
selection of nodes with a recovery algorithm that involves a
probability distribution on a diagonal matrix, P, in addition to
the sampling matrix operator W, The reconstmeted signal o,
can then be calculated as:

Tree = arg min (||P VM2 — 2(S))||: + 'rz"g[L}z) :
(©)
where x({.5) = Mz is the sampled version of the signal @, v
is a regularization parameter selected empirically and g{-) is a
polynomial function selected also empirically.

Puy er al. [21] further show that an optimal P can be deter-
mined by the use of the local graph coherence, vy, on the nodes
of the graph. The value of 14 (i) at the node i can be calculated as
V(i) = ||Ukd;||2. where d; is the Kronecker vector centered at
node i, and it provides a measure about how important 1s the node
i for the sampling of a signal with bandwidth k. Tf w4 (1) is equal
to 1 for a particular node ¢, then there exisis k-bandlimited graph
signals whose energy is solely concentrated in this ¢th node. If
veli) is equal to 0, then no k-bandlimited graph signal has any
energy in this ith node. Therefore, node i can be deleted with no
Tepercussions.

Because the calculation of v (7) requires the knowledge of
the spectral decomposition, Puy ef af. propose an approximate
estimation of 1 (i) that can be obtained without the caleula-
tion of any spectral decomposition. which allows the solution of

Authonzed boensed use imited to: UNIVERSITY OF KENTUCKY . Downloaded on Apnl 01,20020 at 00:37-20 UTC from IEEE Xplore. Restnclions apply.



PARADA-MAYORGA of al: BLUE-NOISE SAMPLING 0N GRAPHS

eqn. (9). When the optimal P is used, Puy ef al. show that the
matrix MP /2 satisfies a restricted isometry property when the
mumber of samples is on the order of O(k log &), which provides
a strong gnarantee for the exact recovery of the signal. This rep-
resents an elegant result but with the drawback that Ok log k)
is substantially higher than &. which is the optimal number of
samples required to reconstruct a signal of bandwidth &,

Recently, Tremblay er al. [25] proposed the use of determi-
nantal point processes (DPP) in order to obtain the matrix P
used in [21]. Tt is shown in [25] that an optimal P can be ob-
tained using DPP when U is known. Additionally, when the
spectral decomposition is not accessible, it is shown how a vari-
ant of the Wilson's Algorithm mtroduced in [30] can be used
in order to obtain a sampling set that can be shown is related
with a DPP that leads to an approximate version of the optimal
P. The reconstruction of the signal is obtained by as solution
of eqn. (9); however, these results do not represent an improve-
ment with respect to Anis ef al. [24] or Chen ef al. [14] and may
lead to larger reconsttuction errors when the graph considered
does not have a strong commumnity graph structure [25]. Wang
ef al. [31] consider the sampling and reconstruction of signals
adapting concepts and ideas from frame theory, developing an
iterative approach based on the concept of local sets.

Marques ef al. [32]. proposed a different approach with re-
spect to previous works, considering the sampling and recon-
struction of the signal using its samples on a single node. The
central idea is based on the information provided by the se-
quential application of the shift operator. The technique itself
represents a novel alternative with potential applications in ne-
work analysis and its computational cost may be a drawback
when large size graphs are considered.

MI. BLUE-MNOISE SAMPLING ON GRAPHS

This work proposes a different approach to graph signal sam-
pling: the application of spatial dithering to the graph vertex
domain where the spectral properties of well formed sampling
patterns will equally benefit the graph vertex domam as they
do the spatial. This approach is motivated by the well estab-
lished research in digital halftoning, which is the process of
converting a continuous tone image or photograph into a pat-
tern of printed and not-printed dots for reproduction by inkjet
or laser printers [16]. [17]. [33]. Halftoning algorithms based on
error-diffusion are of particular importance because they pro-
duce random patterns of homogeneously distributed dots where
minority pixels (black dots in highlights or white dots in shad-
ows) are spaced as far apart as possible. These patterns have
power spectra dominated by high frequency energy, eaming the
name, “blue-noise " since blue is the high frequency component
of white light. Low frequency energy or red-noise contributes
to halftone patterns looking fuzzy or noisy to the human visual
system and are, therefore. to be avoided [16]. [33].

In order to establish a blue-noise model for sampling signals
on a graph, we first propose the idea of a binary dither pattern
on a graph. G = (V(G), E((7)). as the binary graph signal, s €
{0, 1} We refer to the fraction of samples that we intend to
preserve as the density d = m /N, where ||8]|g = m. In the case
of a white-noise dither pattern as illustrated in Fig. 1 (top) on
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Fig 1. Tustration of the spatial and spectral properhies of (top) a white-noise
dither pattern on a Sensor Network graph with density, o = 0.1, with {center)
a flat pair comrelation approoamately equal to 1.0 for all internode distances, g,
and (bottom) an approximately fat power spectra for all frequencies, .

a Sensor Network graph for d = 0.1, = is selected uniformly at
random from the space of binary signals for which ||a||g = dN':
therefore each component of s can be modeled as a Bemoulli
random variable with expected value E{s({)} = d.

A, Fertex-Domain Characteristics

We define blue-noise sampling on graphs in terms of its de-
sired vertex domain characteristics which resemble the spartial
characteristics of blue-noise sampling in traditional halftoning.
As such, we need to define a measure of spacing between neigh-
boring nodes on a graph by defining a path berween the nodes
v, and vy by the sequence (vg, uy, us, . .., un, vs) Where each
node in the sequence indicates the nodes visited when going
from v, to vy, visiting between nodes with edge weights that are
different from zero. Having a sequence of nodes defining a path,
we define the length of this path according to:

||:1-rﬂru1~u21 vy Upy Ub}l
= w'(ﬂu, ) + “FII'HI, o)+ + ‘“,r{”m th),

where the shortest path between two nodes, v, and wy, 1s the
path with minimum length and is represented by -, ,, . For
any v £ V((), the open ball of radius p and centered in v
is defined as Blv, p) = {u € V(@) : |ywu| < p}. The symbol

(10)
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Fig 2. Tlhstration of Sg(, o) m a graph. Laft- representation of Hg (v, o)
for small values of p and &. Right: Hlustration of By (v, o) for large values of p
and &, The nodes m blue color are located m the ammules of raduss o and width
! centeraed at the node v mdicated 1o red color.

I' € RV*N represents the matrix of geodesic distances in the
graph, where T'(u, v} = |4y o |. We will refer to a collection of
subsets of V() as a cover if the union of such subsets is equal
to V(). and the cover will be called disjoint if the subsets are
pairwise disjoint.

Having defined the notion of distance on the vertex domain
of the graph. we can introduce blue-noise sampling taking into
account its characteristics in traditional halftoning. Blue-noise
halftoning is characterized on the spatial domain by a distribu-
tion of binary pixels where the minority pixels are spread as
homogeneously as possible. Distributing pixels in this manner
creates a pattern that is aperiodic, isotropic (radially symmetric),
and does not contain any low-frequency spectral components.
Halftoning a continuons-tone, discrete-space, monochrome im-
age with blue-noise produces a pattern that. as Ulichney [16]
describes, 1s visually “pleasant” and “does not clash with the
struciure of an image by adding one of its own, or degrade it
by being too ‘noisy’ or uncorrelated.™ Similarly on a graph,
the minority nodes composing the binary signal are expected to
be equally spaced apart when measuring distance as the sum
of the weights forming the shortest path. With these ideas, we
formally introduce blue-noise in the following definition.

Definition 1 (Blue-Noise on Graphs): Let § < V(@) be a
subset of nodes in the graph G with § = {5y, s0,.. . s }. Then,
it is said that 5 represents an ideal blue-noise sampling pattern,
if the following conditions are satisfied:

* There is a collection of open balls B{s; i) that forms a

cover of V().
* The value of A is the mininmm possible for all the subsets
of nodes of size m.
Definition 1 implies that ideal blue-noise sampling patterns have
their sampling nodes located as far as possible from each other,
or in other words, there is a typical vertex domain spreading of
the sampling nodes. Fig. 5 (top) illustrates a typical blue-noise
pattern on a sensor network. We nse this attribute as the defining
characteristic of a blue-noise sampling pattern; however, we will
show in later sections that, in some classes of graphs this vertex
domain spreading implies or is correlated with a high frequency
behavior on the spectral domain.

1) Vertex-Domain Metrics: For any v € V(G), the annulus
of radins p. width @, and center v is defined as Ba(v,p) =
e V(G):p—0 < |1ul| < p+0}. Fig. 2 illustrates an
example of Ba(w,p). With a notion of concentric rings in

By(v, p), we can now define the pair correlation on a graph.
Specifically. let S = supp(8) = {51,52,....5m} be the sup-
port of the sampling pattern s and let ||s(Bg(s:, p))||o be the
number of 1 s of & on By(s;, p). then the sample pair correlation
function. R ;(p). associated to 2 1s defined by

% E?;t ”’Q{Bﬁ'{s‘i: P””u
¥ Lvevic) 18(Be(v, p))llo

Motice that the numerator in (11) indicates the average number
of 1 sin & on a ring of width @ that is centered on a 1 of s,
while the denominator indicates the average number of 1 5 on
the ring of the same width when it is centered at any arbitrary
node. Now, the pair correlation for g realizations &4, ..., 84 of
a random sampling pattern is defined as

Ralp) = (11)

1 T
Rip) = E—;ZR,,{M. (12)
=1

as the influence of a sampling point at node » on all other nodes
in the geodesic annular region Hy(v, p). Notice that for the com-
putation of eqn. {11) several values of # can be considered, in
this work the value of @ is the average of nonzero edge weights.

Mote that a maxima of 2 p) can be considered as an indication
of the frequent occurrence of the inter-node distance. p. between
nodes set to 1 whereas minima indicate a reduced occumence,
Since for random patterns the expected number of 1 s in any
annular ring is proportional to the number of nodes within the
ring. we expect a pair correlation equal to 1 for all p > 0 as
illustrated i Fig. 1 (center).

Blue-noize, when applied to an image of constant gray-level
g. spreads the minority pixels of the resulting binary image as
homogeneously as possible such that the pixels are separated by
an average distance, Ay, referred to as the principal wavelength
of blue-noise. These minority pixels are the pixels that are used
to represent the properties of a region on a grayscale image, for
instance in a dark region the minority pixels are labeled with 1
while in white regions the minority pixels are labeled with 0.
Then. the value of Ay is defined as the radivs of a round disc.
sumroumding a minority pixel, such that the ratio of the swrface
area of a minority pixel to the surface area of the disc is equal
to the density of minority pixels. d =g for 0 < g < 1/2 and
d=1—gforl/2 < g < 1. which we can write as:

_ D.D,

d Tﬁ

(13)

where D, and D, are the sampling periods (distance be-
tween samples) of the digital image in the x and y directions,
respectively,

In orderto extend the notion of principal wavelength to graphs,
we need a notion of surface area as the expected number of graph
nodes, E{N (1) }. within a distance or path length, 2, of a given
minority node. We expect the ratio of our single. minority node
to all nodes within a path length. A;. to equal the density level
according to:

1

d= ———

oo e
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Being that E{A (&)} is graph dependent, the graph blue-noise
wavelength_ ;. is likewise graph dependent and its characteri-
zation is sfill an open area of research [34]-[36]. In general. one
can derive Ay versus d experimentally as we have in Fig. 3 where
we show the principal wavelength versus the density sampling o
for some commonly used graphs. We note that in the case of the
sensor graph, A varies smoothly with d = 1/E{A (i)} while.
in the case of the community graph. it varies with a piecewise
constant behavier with respect to d,

In light of the nature of graph blue-noise to isolate minority
nodes, we can begin to characterize blue-noise graph signals
in terms of the pair comrelation, (), by noting that: (a) few
or no neighboring minority nodes lie within a path length of
g << ks (b) for p > Ap. the expected number of minority nodes
per unit arsa tends to stabilize around a constant value: and
{c) the average number of minority nodes within the path length,
p. increases sharply nearly iy The resulting pair correlation for
blue-noise is. therefore, of the form in Fig. 4 (top). where K(p)
shows; (a) a strong inhibition of minority nodes near p = 0, (b)
a decreasing correlation of minority nodes with inereasing p
(limpyee Rip) = 1), and (c) a frequent occurrence of the inter-
node distance Ay, the principal wavelength, indicated by a series
of peaks at integer multiples of ;. The principal wavelength is
indicated in Fig. 4 (top) by a diamond located along the horizon-
tal axis. Returning to the sample blue-noise signal of Fig. 5 (top).
the resulting pair comrelation of Fig. 5 (center) has a principal
wavelength of A, = 0.56 with a clearly visible peak of 1.53
meaning that nodes equal to 1 are 55% more likely to occur at
a distance of p = 0.56 from an existing 1 than for the uncon-
strained probability of a node being equal to 1.

B. Speciral Characreristics

Blue noise sampling patterns are characterized in traditional
halfroning for a high frequency behavior [17]. In this section
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Fig 4 The ideal {top) parr corelation and (bottom) power spectra for
blue-noise samphing pattems.

we state a connection between the speciral characteristics of a
sampling patiern and its vertex domain characteristics, using the
local properties of partitions of V() that are measured by the
isoperimetric constants of local induced subgraphs. In order to
characterize the frequency content of a sampling pattern. a cost
function is proposed. In particular, we propose a scalar measure
of low-frequency energy. K. in the signal s, as the weighted
sum of all Fourier coefficients’ energies:

o 1 - (e
LS R

—a M
where & is the graph Fourier transform of 2. 1, is coined as the
redness of & as it measures low frequency spectral content.

In order to establish a connection between R, and the vertex
domain characteristics of a sampling pattern, it is important to
consider the following theorems.

Theorem 4. For the graph 7 = (V(G), E{G)), let P =
V), Vi), ..., V(Qp )} be a partition of V(). where
;13 the induced sub graph givenby V' (£2; ). Let 4, be the isoperi-
metric dimension of £2;. Then if

6y =by =

H'Z

(15)

S — (16)

it follows that

ﬁp}m{cﬁ T (mf}

(a7
where O is a constant that depends on 4.

Proof- See Appendix A.

Theorem 4 indicates that when the graph has a local invariant
isoperimetric dimension, the quality of a partition 7 for the rep-
resentation of bandlimited signals, measured by Ap, is defined
by the set in 7 with the largest volume. The concept of isoperi-
metric dimension, originally defined on manifolds, provides a
measure of how similar is the global behavior of a manifold
with respect to a Euclidean space [37]. Similarly, in the case
of graphs. the isoperimeiric dimension indicates how close the
behavior of a graph is with respect to regular grid-like graphs.
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Fig 5. Tustration of the spatial and spectral properties of (top) a blue-nomse
dither pattern on a Sensor Network graph with density, d = 0.1, with {center) a
panr correlation peak at the prncipal wavelenpth, A, and (botom) an appros-
mately high frequency only power spectrum for frequencies, .

For instance, the isoperimetric dimension of the n—dimensional
regular gridis n [37]. In the following theorem, we indicate when
the right-hand side of eqn. (17) is maximized.

Theorem 5: Under the conditions stated in Theorem 4 and
for a fixed value of |P|, the partition that maximizes the right
hand side of eqn. (17) satisfies that

vol(f2) = vol(§2;) Wi, 4. (18)

Proaf: See Appendix B.

Under the conditions stated in Theorem 4, Theorem 3 pro-
vides the characteristics of the partition that will maximize the
bandwidth of signals that can be represented in a unique way
via their average values on the elements of the partition.

Now, it is important to notice that for any partition P =
V{8, V(Qa).....Viflp )], it is possible to build a sam-
pling pattern, locating one sampling node per partition element
isee Fig. 6). In the following theorem. we show that the spectral
characteristics of such sampling patterns, measured by . are
bounded by the local characteristics of the elements in P,

Theorem 6: Let P = {V (), V({22), ..., V(Qp|)} a par-
tition of V' (G) and let & € {0,1}" a sampling pattern chosen

S:e
n.ﬂ-r'g']ﬂ"h':a‘ & _‘,‘,-?E"'- ~
. ey ; + .. -f :
TR, F -'*»s
] 'x
-h' 'ﬁ\ “ ; '{.F' . I
'.
A ;.\:-’t:.-' ik ‘ar %“i
Fig 6. Partrtion of V() for a graph (5. Each color indicates the suberaph §2;

induced by 17 (£}, ). Mustration shows how a sampling pattern can be bualt from
the partition selecting the sampling nodes on the set 5, whose nodes are indicated
m black color. Motice that the samphng pattern indicated satisfies eqn. (1%) and
eqn. (20)

according to
le(V(E)llo=1 ¥ (19)
If s(v) =1, then s(u) =0 Yurvwv (20)
then
. 201 N2
R, < (p2 + pn)*(1 = |P|/N) 1 @1

; Cs
Ajiopty min {u—‘m}

ol (52}

If in addition, § = &; =--- = dp; and wvol(() = vel(f);) =

- = vol({)p)). then

(2 + pw )?(1 — [PI/N) val Q)%
ACspapy :

R, < (22}

Proof- See Appendix C.

In order to discuss the meaning and immplications of Theo-
rem 6, it 15 important to mention that eqn. (19) and eqn. (20} im-
ply that there is one sampling node per element of the partition
with ||s||g = |P|, and that there is a minimum interdistance be-
tween the sampling nodes in 2 (see Fig 6). In particular, eqn. (20)
assures that the sampling points in & are far from the boundaries
of the elements of the partition,

Motice that eqn. (21) presents a general upper bound for the
redness of an arbitrary sampling pattern subject to eqn. (19) and
eqn. (20). Meanwhile, eqn. (22) provides a tighter bound that is
connected with blue-noise sampling patterns as a consequence
of having the elements in the partition with the same volume and
the same isoperimetric dimension. In this second case, we see
that as the size of the partition, P, increases {and therefore the
number of sampling nodes in &) vol( (1) decreases and so it is the
value ;. making clear the connection between a uniform vertex
spreading of the sampling nodes in s and a low redness. As a
consequence, a behavior like the one depicted in Fig. 5 (bottom)
1s expected. It is important to emphasize that this statement is
connected to Theorems 4 and 5. where the characteristics of
good partitions for the representation of bandlimited signals is
stated. In the case of the traditional halfioning scenario where
the problem is modeled on a 2-dimensional grid, the conditions
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of Theorems 6, 5 and 4 hold and a typical response hke the one
shown in Fig. 4 (bottomy} is obtained.

Theorem 6 also implies that there is an upper limit about the
mumnber of elements in the partition P that can be considered. and
with that. it comes a limitation in the number of sampling nodes
for which these inequalities hold. In particular, for very large
values of |P|, eqn. (19) and eqn, (20) cannot be satisfied. We
point out that this does not diminish the quality of the sampling
patterns. but instead points out that the relationship between the
spectral domain and the vertex domain is not guaranteed to be
soverned by eqn. (21).

1) Spectral Meirics: It 1s also possible to characterize the
spectral properties of binary dither pattems on a graph where we
extend the idea of periodograms to graphs such that the GFTs

of g realizations of ®_1.e. &y, ®a, . . ., &y, are averaged together
to form the power spectrum:
N 3, #,(6)2
plf)=—>% —= £=2,...,N. (23)
9 = Iz

Maotice that the £th component of p is associated with the fth
eigenvalue py. Like its binary halfione coumterpart, the GFT of
a white-noise sampling pattern is expected to be flat for all uy
5. and to visualize this power spectra, Fig. 1 (bottom) shows an
estimate of the power spectra for 100 unique white-noise dither
patterns generated on the 2000-node Sensor Network graph with
pattern density d = 0.1.

" Blue-Noise Sampling Sers

Tn the following corollary we state how from a blue-noise
sampling pattern a good partition in the sense of Theorem 3 can
be obtained.

Coroffary 7: Tet # be a blue-noise sampling pattern ob-
tained according to Definition 1. with ||8||o = m and supp(s) =
{s1,52,...,5m}. Let B(s;,A) be as specified in Defini-
tion 1. Then, there exists a partition T = {V (), V(£2), ...,
Viflp)} of V(G) such that

we V() @ ue Blsj,r,ug Bla;, M) Vi#7 (24

and the elements in the intersection between the sets B s;, A) are
distributed on the V'(€2; ) such that the quantity . i |wal(§2;) —
vol({1;}] is minimized. Additionally if Ap > (1 + 1/0)w. o >
ODany x € PW, (G) can be uniquely determined from its values
at {s1,53,..., 5, } always that 2(s;) = 27(&; 0 &;) V5.

Progf: See Appendix E.

This corollary indicates that given a sampling pattern whose
sampling points are located as far as possible from each other.
it is possible to build a partition from which a unique represen-
tation of a set of bandlimited signals is possible. Additonally.
if the conditions of Theorem 4 are satisfied. then the partitions
obtained are the ones that maximize the value of Ap.

Theorem 1 tells us that when a fixed value of the bandwidth w
is considered and a signal has to be sampled taking rm samples, it
1s necessary to look for the set of nodes, 5, such that S°isa Ag--
removable set withw < A ge. Finding the subset of m nodes with
the maximum A g- would, therefore, give the besr sampling sei.
On the other hand, if a signal has to be sampled taking a number
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of m samples. choosing a set of nodes S with the maximum
value of Ag- will extend the class of signals, PW,,(G), that can
be sampled and represented in a unique way with m samples.

MNow if one can show that minimizing the redness in a sam-
pling signal promotes high values of Ag-. one could argue
blue-noise was a desirable attribute for efficient sampling. The
following theorem establishes this relationship:

Theorem &8: Let & : V(G) — {0,1} be a sampling pattern
with 8(5) = 1. 8(5%) = 0for 5 C V() and |5| = ||8]lo = m.
then the A s-— constant of the set 5 satisfies

R, e
vol(G)Rs —m (1 — 32 ’*) @)

where R, is the redness in s from eqn. (15); § is the isoperimetric
dimension of & [20]. [38]: and O a constant that depends only
on 4.

Proof- See Appendix F.

To summarize, Theorem 8 tells us that the best sampling set,
5., 15 the one for which the value of Age 15 a maximum; there-
fore while blue-noise sampling patterns (which minimize ;)
are not necessarily the best sampling sets, they are good sam-
pling sets. Notice that eqn. (25) is well defined as vol (&) H,y —
m(l — %]3 = 0, which is tight when 5° U b5° = V(&) where
b5* is the boundary of §°, This criteria can be satisfied making
the nodes in S as spread apart as possible in the graph, which is
reasonable as a sampling set where all the nodes are too concen-
trated n one area could lead to poor reconstructions of signals
that exhibit fast changes in the sparsely sampled areas left else-
where.

As an approach to reinforce the benefits of blue-noise sam-
pling sets. we can use the quantities introduced in Theorem 2 to
show how blue-noise promotes those sampling sets that maxi-
mize the bandwidih of the signals that can be represented in a
unique way on a given sampling set as indicated in the following
theorem:

Age = Cjs (

Theorem 9: Let 8:V(G) — {0,1} with &(5)=1.
881 =0,5 CV(G)L.IfKg > 0, then
: 1/2
1- %)
Kg> (u — ..r.) (26)
R

where v = maxg (3 pe go ws(v)?), and R, is, again, the
redness in 8 from eqn. (15).

Proof- See Appendix G.

Theorem 9 indicates that lowering the redness of the sampling
pattern raises the minimum possible value of K 5 and. therefore,
extends the set of signals, PW,,((3), that can be represented in a
unigque way on a given sampling set. Therefore, again the blue-
noise sampling patterns that are characterized by small values
of R, represent a better option than arbitrary random sampling,
which leads to large values of I,

It is important to point out that, under the conditions stated
in Theorem 4. Theorems 8 and @ show that the reduction of the
redness is a desirable attribute for any sampling pattern, which
is something that can be considered with other sampling ap-
proaches. Additionally. the tightness of the inequalities depends
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on the graph structire which makes these results stronger in
some families of graphs.

D. Stability and Blue-Noise Sampling Sets

The selection of a sampling set, 5. is not only associated
to a possible unique representation of a signal but also to the
stability of its reconstruction when the samples are cormpted by
noise, or when the signal considered is not exactly bandlimited.
This stability can be measured considering the condition of the
mairix (5, ). which is the matrix obtained by sampling 17,
on the rows indicated by S [24]. Several cost functions can be
formmlated in terms of the condition of Ug( S, :). such that their
minimmum or maxnmum values are given by the sampling set that
provides the best condition [24].

The measures of stability provided in [24] can be equiva-
lently obtained from a formal general defimtion of stability for
sampling sets in arbitrary spaces [39]. In particular, recalling
the definition of stability presented in [39] for general sampling
schemes, we can say that PW,(G) posses a stable sampling
expansion or reconstruction on & < V() if there exists €' > 1
such that ||2(5%)|2 < (€ — 1)||=(5)|3 Yz € PW,(G). The
value of C provides a measure of stability associated to 5; the
larger the value of € the less stability we have, In the following
theorem we provide an estimate of C' — 1 in terms of Ag-.

Theorem 10: Let © € PW,(G). Then, if Ag- >, it
follows that

]

a2
g )

——lle(S)E reR. @7
- (&)
where w is the bandwidth of @, x(5%) = =(5%)
and x;(5) = 0.

Progf: See Appendix H.

From this theorem, it 15 important to point out that finding the
sampling set S for which Az is maximum not only provides a
unique representation of a bandlimited signal, but also provides
the sampling set in which the highest stability is achieved. This
result is consistent with the findings in [24].

As it was stated in Theorem 8, patterns with a low redness
promote large values of A ge, therefore blue-noise sampling pat-
terns not only promote uniqueness of the representation but also
stability in the reconstmiction.

E. Connection With Other Works

The implications and properties of spreading the sampling
points as far as possible from each other on non Euclidean do-
mains were formally established by Pesenson in [40] consider-
ing functions on compact Riemmanian manifolds. In [41]-{43]
the concept of blue-noise was used for the sampling of surfaces
embeded in B? for applications in computer graphics. This last
result can be considered an application of the results in [40]
for two-dimensional manifolds embedded in B*. It is impor-
tant to point out that the results in [41]-{43] rely on the map-
ping that can be established berween the surface and a subset of
the 2-dimensional Euclidean domain, but they do not offer any

insight of how to deal with the problem in higher dimensions.
In [44] a method 15 proposed for the optimal location of sensors
in Euclidean spaces. Exploiting the concepts of entropy, mutual
information and Ganssian processes (GPs), the problem of se-
lecting a subset of sensors among a predefined set of discrete po-
sitions. defined on a grid of an n—dimensional Euclidean space.
is addressed. To deal with a large number of possible sensor
locations some relaxations based on Jazy evaluations and local
structure of (GPs) are used.

In a different context, and before the emergence of graph sig-
nal processing, functions defined on the vertices of a graph have
been considered under the concept of firmess landscapes [23],
[45], which were introduced as a tool for the study of molecular
evolution. In this context, the fengrh of the autocorrelation fime-
tion has been useful for the analysis of a landscape. In particular,
the correlation length of a landscape, @, on a K -regular graph
is given by [45]

(28)

The values of eqn. (28) provide an indication about how corre-
lated are a given set of samples of the landscape obtained using
a random walk. As can be observed in eqn. (28) this is pro-
portional to the redness of @ In this context, it is possible to
conceive blue-noise sampling patterns on graphs as landscapes
with a low length correlation,

V. GENERATING BLUE-MNOISE SAMPLING SETS

Given that blue-noise graph signal sampling promotes the
finding of good sampling sets, it is nanwal to ask how such
sampling patterns can be generated. An algorithm that has been
particularly successfil i digital halftoning and that intuitively
translates to graphs is the Void-And-Cluster (VAC) algorithm,
introduced by Ulichney [18]. VAC allows for the construction of
artifact-free homogeneous dithering patterns by iteratively mea-
suring the concentration of minority pixels in a binary halftone
image, nsing a gaussian low-pass filter and swapping the mi-
nority pixels in the area of highest concentration with the non-
minority pixel in the area of lowest concentration. The adaptation
of this algorithm to sampling signals on graphs consists roughly
speaking of the sequential computation of distances between
sampling points in such a way that points with short geodesic
distances between them are relocated trving to put them far from
each other.

In order to exploit the above principle for the selection
of sampling nodes on a graph, a Gaussian kemel Kiu,v) =
exp(—T(u, v)? /o) is evaluated on the set of geodesic distances.
I'. This provides a new set of distances that can be tuned accord-
ing to the parameter, &, where a small value of T'{u, v) leads to
a value of K (u, v) that is close to unity while a large value of
I'{w, v) leads to a value of K (u, v) close to zero. As a measure
of how homogeneously distributed the sampling points are, the
sim of all distances from one node to the others via the kernel
K is calculated as ¢ = K1y 1. With this, an initial sampling
pattern is generated selecting the rn components of ¢ at random,
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Fig. 7.

Woid and closter blue-noise sampling patterns for different intensities d for a sensor network graph. First row: Localization on the graph of the nodes

selected m a blue-poise samphng pattern. Second row. The par comrelation function R({p) for the sampling patterns indicating with a diamond marker the value
of Ay Third row: Power spectral density for the different blue-noise sampling patterns.

where m = dN is the number of 1 's in the sampling pattern with
density d.

The components of ¢ whose index is given by the loca-
tion of the 15 in =, are then updated to be c{supp(z)) =
%" K{supp(s),supp(s)). where 3 K(A, B) is defined by

ZK{H,B] = Z K(a;,b;) a; € A,b; C B.

by

(29)

The remaining components of ¢ are updated according to
c(supp(s)®) = 3 K{supp(s), supp(s)®) — 7. where 7 is se-
lected as a large scalar value. With this update the distances
between sampling points in the pattern are represented as posi-
tive quantities without adding the distances to other nodes. The
distance between supp({s) and supp(s)® is then represented
with a negative value. Now the index of the component of ¢
with the highest value will indicate the sampling point that is
closest to the other sampling points, and then the value of s
at that index is forced to be 0 whereas in the index where ¢ is
muinimmm, & is forced to be 1. Notice that the role of T is to
make sure that always c(supp(s)®) < 0 and a variety of val-
ues for v would serve this purpose. Taking into account that
3 K(supp(s),supp(s)°) < N. it is possible to select T as any
value such that + > V.

Repeating the above process iteratively, it is possible to
achieve a sampling pattern with no clisters of 1 = that exhibits
a homogeneons distribution on V' (&), The details of the VAC
algorithm can be appreciated in Algerithm 1 with example
sampling patterns using VAC depicted in Fig. 7 for the Sensor
Network graph and in Fig. 8§ for a community graph. From
observation, one can see a clear distinction with respect to
random sampling when it comes to the nodes distribution of the
sampling set. The spatial and speciral blue-noise-like behavior
1s obtained as a byproduct of the algorithm.

Algorithm 1: Void and Cluster Algorithm for Graphs.

Input: m: number of samples, o. HumIter.
Output: 3: sampling pattern

Initiglisation : 8 =0,IndA = —1.IndBE = —1.
(4.9
Calculate B (1, j) = e 5 forall 1 i ja N
22c=Kly,.
Get M as m nodes selected at random.
4 8(M)=1.

forr=1:1:NumIter do

6: c(supp(s)) =3 K(supp(s),supp(s)).
cisupp(#)¢) = ¥ K{supp(s), supp(s)®) — r.

8:  slargmax{c(i)}) = 0.
s{arg mini{e(i]}) = 1.
if IndA = argmax;{c(i)} and IndB = arg min;
{e(z)}}
then

break
else

IndA— arg ming{c(i)}.

IndB= arg max;{c(i)}.
end if
16: end for

refurn s

14:

At this point, we note that the value of ¢ in the kemel
exp(—T(u,v)%/a) plays a critical role in VAC as it defines
which sampling nodes are close enough to another one in order
to produce a relocation of the 1°s in the sampling pattern.
Taking into account the defimition of A, presented in previ-
ous sections, it is possible to establish a namwral connection
between ¢ and Ay. In order to do so. we note that if the
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Voud and cluster blue-noise samphng patterns for different mitensities d for a community graph. First row: Localization on the graph of the nodes selected

in & hie-noise sampling pattern. Second row: The pair correlation funchion () for the sampling patterns indicating with a diamond marker the vaboe of 3. Third

row: Power spectral density for the different blue-noise sampling patterns
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cluster blue-noise sampling patterns on a sensor network with N = 2000 nodes,
considering different densities.

blue-noise sampling pattern is ideally distributed on the set of
nodes, V(7). then when u and v are sampling nodes it follows
that exp(—I(u,v)*/e) = 0 if ['(u,v) > Ay. This criteria is
considered to be satisfied when o = A2/In(10), 1e selecting
o in this way the exponential reaches a value of 0.1 when
I'{u, v) = Ap. The number of iterations NumIter is selected
as a multiple of N. In the mumerical experiments performed,
we have found that choosing HumTter = N is enough for the
algorithm to reach a stationary behavior.

As indicated in Fig. 9, there is a clear reduction of the redness
of the patterns as they get better distributed on the nodes of the
eraph. It is important to mention that the munber of iterations
required for the redness to drop to its mininnm value increases
as the value of d increases, This is related with the fact that, as d
15 reduced, there are more possibilities for the relocation of the
1"s in the sampling pattern.

V. EXPERDMENTS

In order to evaluate the benefits of blue-noise sampling, a set
of numerical experiments is performed comparing the obtained

resulis against state of the art techniques. The simulations are
performed considering different graphs and signal models. The
experiment is described by the following steps:

* For each graph model, a set of 100 signals is generated
according to the specific signal models selected.

* Each signal is sampled by means of different sampling
schemes.

* The signal reconstructed from the samples is compared
to the original one, and its mean squared emror (MSE) 1s
calculated.

* The values of the MSE are averaged over 100,

The schemes of sampling considered for the experiment are

the following:

* Blue noise sampling by void and cluster,

* Sampling scheme proposed by Chen ef al. [14].

* Sampling scheme proposed by Anis er al. [24].

* Sampling scheme proposed by Tsitsvero et al, [28].

The signal models are:

# Sigmal model 1 (SM1): A random signal of bandwidih & =
50, where the Fourier coefficients are generated from the
Gaussian distribution A(1,0.5%). The samples captured
are contamminated with additive Gaussian noise such that
the Signal to Noise Ratio is SN R = 20 dB.

* Signal model 2 (SM2): A random signal with Fourier
coefficients penerated from the Gaussian distribution
N'(1,0.5%). This signal is modulated on the spectral axes
by hi(p), where

If p< pso

I
] s 30
?-{H] {L Ap—psn) IF B> pso el

The graphs considered in the simulations are different from
each other in their nature and represent typical graphs that can be
found in different scenarios and applications. The graph models
used are:
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Fig. 10.  Averaged MSE using the reconstruction stated in (4) vs the sampling rate considening the reconstruction of 100 different signals from its samples using
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several graphs: (a) The praph G, and the signal model SM1. (b) The graph G5 and the signal model SM1. (c) The graph

several samphng schemes and ¢
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Fig 11.

Averaged MSE using the reconstruction method proposed in [26] vs the samplmg rate

the reconstruction of 100 different signals

from its

samples using saveral sampling schemes and consudenng several praphs: (a) The praph (71 and the sipnal model M1 (h) The graph (72 and the signal model
SMI._ () The graph (73 and the signal model SM1. (d) The graph 7 and the signal model SM2 (¢) The graph €5 and the signal model SM2. (f) The graph (3

and the sipnal model SM2

* Graph &y: A random sensor network with N = 1000
nodes, The weights in the graph are given by the Euclidean
distance between points. The maxinum munber of neigh-
bors for each node is 6.

* Graph G A community graph with N = 1000 nodes, 16
commumnities generated using the GSP toolbox [46].

* Graph +3: A Barabdsi-Albert random network [4] with
N = 1000 nodes.

The reconstructions are performed by means of eqn. (4) and
by the interpolation splines proposed in [26] and implemented
in [46]. In Figs. 10 and 11, the performance of different algo-
rithms can be appreciated including VAC sampling. Notice that
the decay rate of the error curves show consistently the bene-
fits of blue-noise sampling. The results obtained using VAC are
close to the ones obtained in [24]. Additonally, in Fig. 12, the
redness of the sampling patterns obtained by different techniques
are presented considering different graphs. It is possible to see

— —= L o =—
50 LiMy 150 200 iy L] 150 T
Smmple size Sample slze

Hinnd

Chen

Tasvesn

=Anis

Vol deacpdcbasd

(ECI]
Sample size

(d)

150

Fig 12. Mlustmtion of the redness B, = L3570 %ﬁ e s

plng patterns generated by different sampling approaches on different graphs.
(a) Swiss roll graph; (b) Sensor network praph; (c) Sphere graph; (d) Bunmy

graph
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how low redness is a characteristic attribute of good sampling
patterns.

V1. CoNncLusIOoN

Blue-noise sampling on graphs 1s defined based on the tra-
ditional blue-noise model associated with digital halfiones.
The properties and benefits of blue-noise sampling on graphs
are limked with theoretical results related to uniqueness sets
in sampling, showing why blue-noise patiemns promote good
sampling sets. We also extended void and cluster. a popular
halfroning scheme to generating blue-noise sampling sets on
graphs. Numerical tests on different graphs corroborate the good
qualities of sampling with blue-noise. We specified conditions
under which the traditional relationship between vertex-domain
spreading and frequency behavior is preserved. We further note
that the results obtained in this work can be extended for spe-
cific families of graphs. The delimitation of the properties for
the graphs under consideration could lead to sharper bounds and
could allow the definition of other quantities extensively used in
halfroning, like the principal frequency.

An overlooked benefit to blue-noise sampling is the wealth of
computationally efficient algorithms used in digital halftones
that can be extended to graph sampling without spectral es-
timation, namely error-diffusion where the produced halftone
patterns conform to the local spectral content of the image to
optimally preserve salient features like edges, gradients. flood
fills, etc. Also, a very valuable attribute of error-diffusion that
15 not widely recognized outside the halfroning comnmmity is
that error-diffusion can be trained to produce arbitrary spec-
tral profiles (blue-noise. green-noise, ete.) and even designed to
maich the dither patterns produced by other means, including
ones with high computational complexity [17]. [47]. For graph
signal sampling, this opens up the possibility of error-diffusion
algorithms trained to mimic sampling algorithms based on spec-
tral estimation and vertex-domain characteristics. We consider
that an interesting topic for future research would be the analysis
and implications of blue-noise sampling on graphs for signals
that are bandlimited but not necessarily low pass [48], [49]. This
could provide a generalization of the results that were stated in
this work.

It is important to point out that blue-noise sampling promotes
large values of A g-, but there is not a guarantee about reaching
the maximum value of Age. For this reason the stability is af-
fected when the value of A g- is not large enough. which also hap-
pens when 1 is not large enough. This aspect is something that
can be improved in future works adding additional constraints
to the method used to generate blue-noise sampling patierns.

APPENDTX A
ProoF OF THEOREM 4

Proaf: As stated in [38] (page 168), by means of Sobolev
inequalities, it 15 possible to state that
1

p1g = Gy, z
vol(£2;)%

(31)

where d; is the isoperimetric dimension of (25 and Cj, is a con-
stant that depends only on &;. Taking into account the definition
of Ap in Theorem 3 we do have that

C,
Ap > min Cs, L h'lrz-
T"‘ﬂ“:ﬁl} A Uﬂe{ﬂlpj 1
ifd =82 =--- = dip) = 4. then eqn. (17) is obtained. &
APPENDIX B

ProoF OF THEOREM 3

Prooft In order to simplify notation lets represent z; =

vol(€2,)%/% /C; and lets consider the optimization problem
maximize min{l/zy,1/zs,..., 1/}
{z1,22..... 20}
P
subject to Zz, =g, T3 >0Wi (2)
i=1
where ¢ is a constant. Now, taking into account that
Ll
min{l/x,1/5g,...,1/xp }Z o < z r, = = |P|

min{l/zy,1/2a,. ..., 1{zm} < |P|/e1.

Then. the maximum value of the objective function in eqn. (32)
is |P|fc1. Let (27,3, ... ,Ir.pl} the optimal solution of (32),
then it follows that |P|/c; = 1/z}. Lets assume there exists
a subset of indexes {1, 72,....45} € {1,...,|P|} such that
|P|/er < 1/x)_ which implies 2} < e /|P|. Then it follows
that

[P

5 |:|P|—q:|ﬁ+zzj, <e
i=1 ir

which is a contradiction. Therefore ] = ¢;/|P| which implies
Ti=a5 =" =IZp ]

(33)

APPENDIX C
ProOF OF THEOREM 6
Proof* Let & € {0, 1}V selected according to (19) and (20).

then it follows that s"Ls = EPI1 s(V(Q;)) L, s H"{ﬂ;}j
Additionally, directly from the dfeﬁmtmn of 1y 1J and using the
Raleyigth coefficientwe have sy ; < s(V(€2;))" Lo 2(V(£25)).
Therefore

[P

Zm < Z s(V(22

MNow, taking info account equ. (31) we have

) L a(V(§;)) =a'La. (34

Tl - BRI E“U <a'Ls= Zpgs{f}‘ (35)

=1
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and using lemma 11. we obiain
(42 + pw)*(1 = [P|/N)?

o
dptapey ming { —51—1; }
vol(§2;)°7

Hs =

Now, when § = 8, = ... = djp. it follows that
Oy
El | < Z#u <aLs= Z pe&(€)? (36)
vaol [ﬂ]l e =
and from lemyma 11, it follows that
< (2 + i) (1 = [PI/NY wol(@)F
ACs5papN
|
AppENDIX D
REDNESS INEQUALITY

In this section an important and useful lemma used in several
proofs is stated.
Lemma 11 For any sampling pattern & : V(&) — {0, 1}, it
follows that
m(-%)" _ . _ miatu?(1-%)’
Yoo ied(£)2 = 70T Apapn 3 p_g ped(€)?

Proof* By Cauchy inequality we know that
2 i 1 :
9 LLL] " a
miil-—] = (£ aﬂt"})
( N ) (; VB

N N o4
< (Emﬁmﬂ) (Z —%{5}2) (38)
i—2 He

£=2

(37)

Now, as indicated in [30] when pep2(£) > 0 for all £ we have that

() (o)

=2
a4 NS N g
::(2 V,35) (E mamﬁnm)

- (22) e (-2

with 0 < o < py < 3. Then, with @ = o and &= py it

follows that
4;(2]&;\ Y 1
ae —&(e)
(2 +pn)? (ZM ) (gj o )

(39)

my 2
m (1- )
combining eqn. (38) and eqn. (39) we obtain

(w2 + )P (1- )’ m
Apaptn 3 2g—g phes(£)

m(1-§)" _ - a0*
s 7 D B
|
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AppEnDix E
ProoOF OF COROLLARY 7

Proof: The first part of the proof follows directly from the
Definition 1. Now, lets assume Ap > (1 + 1/a)w with o >
0, then according to Theorem 3 any signal @ € PW, [rG] is
uniquely determined by the values u:TEj =/ V(Ey)|l=' (& 0
£;). thereforeif x(s;) = 2T(¢ ; @ &;). o is uniquely determined
from ®(s;).

APPENDIX F
ProOF OF THEOREM 8

In order to prove Theorem &, some preliminary lemmas and
theorems are discussed.

Lemma 12: Forany subsetofnodes 5 © V(G and sampling
pattern 5 € {0, 1} with supp(s) = 5, it follows that

val(S) > =\ N 40

&2 o B
where m = ||s]jo = |5].

Progf: Lets consider the Laplacian matrix L. Multiplying
on the left by &7 and on the right hand side b{r = it follows
that 8"La = 3" Ds — a' W s, which leads to Ee o eB(0)? =
vol(S) — s"W s and therefore "), 1,5(€)* < vol(S). Now,
taking into account the Lemma 11 eqn. (40) is obtained. |

A Proaofof Theorem &

Progf: Fuhr and Pesenson [20] show that if a subset of nodes
& V() is removable with constant A g, it follows that Ag =
pp(5). where pp(S) is the Dirichlet eigenvalue of the induced
subgraph' of §. This inequality is tight always that §UbS =
V(). where bS is the vertex boundary of S

As stated in [20], pp(5) satisfy the following imequality

| 2/8
ppl(5) > C;s (m)

where 4 is the isoperimetric dimension of the graph. Cj is a
constant that depends only on 4 and vol(S) = 57 < D{v,v).

Mow, taking into account that vel ((7) = val(5) + vel{ 5°) for
any 5§ V(). and the lemma 12, we have that

(41)

vol () — vol(8) < vol(Z) —
and then

. (m)*

a2 T
::cﬁ( E&;—:’-ur il _ 2) . (43)
vol(G) Xy 882 —m2 (1-F)

! Definitions and mequalities about induced subgraphs can be found in [38].

Authonzed boensed use imited to: UNIVERSITY OF KENTUCKY . Downloaded on Apnl 01,20020 at 00:37-20 UTC from IEEE Xplore. Restnclions apply.



568 [EEE TRANSACTIONS ON SIGMAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 5, WO. 3, SEPFTEMBEER. 2019

Now, taking into account that Ag- = pp(S5©), it follows that

e Z4(E)? )*
B z_S{E}Z —m? {1 = %]2

val (G

&

APPENDIX G
ProoF oF THEOREM 9

In this section the proof of Theorem 9 is provided. Before this
proof is presented an important lemma is introduced,

Lemma 13: Let &:V(G) — {0,1}" a binary signal de-
fined on V(=) and let 8 = 1 — 5. then it follows that

N N
D_oneB(O)T =) ped(e)
=2 =2

Proaf: Lets consider the Laplacian matrix L and mul-

tiply on the left by &' and on the rght by s it

follows that
8'La=(1-3)"L(1-3)= (45)

Now. taking into account that &'Lax = Y, ped(£)2, it fol-
lows that

(44)

s'La.

N N
D_peR(E) = pek(f)”. (46)
=12 £=2
Motice that pe; = 0 and consequently the sum can be computed
for£ = 2. |
A. Proof af Theorem 2
Progf! Taking into account that
(Lz) ()= Y () —z@)Wlve) @D
usV (G}
and wg(v) =3, ¢ Wi, v). It is possible to infer that
wglw) if v 5°
(L&) (v) = . (48)
—wge(v) fve S

where 8 =1 — 8. Now, taking into account eqn. (48) and
Lermma 13 it follows that

3'La = ZMB{EF

Z '“"su,

£=2 vES®

N

S oped(€? =Ki+ Y ws(v)

= ve{s4y')
}
D om0 = Y ws(v)?
=2 vl 54’}

which leads to

N %
Ks> (Z ped(£)? — 'r)

£=2

where  is given by v = maxg, ;3,590 ws(v)? and
taking into account Lemyma 11, it follows that

2{1—’“]2 )%
K e Lol NI
5}(z¢r% &

AppENDIX H
ProorF oF THEOREM 10

FProof® Lets consider @ € PW,, (&) written as @ = @, +
xz with x;(S%) = ®(5°%), z,(5)=0, x(5) =x(5) an
x2(S%) = 0. From eqn. (5) we have that || |3 < 1,."!5.2.
|Lxq||?. Now. using Bemstein’s inequality [20], [51] we
get [[[[3 < (1/A%.)&? ||, ]|3. From this we have |y 3 <
(1/AZ)@™ (lla]l3 + llw2||3) leading to eqn. (27). u
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