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Abstract—In this work we introduce the concept of blue
noise sampling, traditionally used in imaging applications, for
bandlimited signals on graphs. We show how the spectral and
vertex domain characterization of these patterns is connected
with results about the quality of the sampling sets already existing
in the literature. We provide numerical evidence that shows that
these patterns are also competitive with respect to the state of
the art sampling techniques in terms of the reconstruction error.

I. INTRODUCTION

The interest on data processing grows every year, requiring
new insights about how to handle large datasets defined on
nonlinear and/or irregular structures. Emerging fields such as
geometric deep learning and graph signal processing put in
a central scenario the analysis of signals on manifolds and
graphs, and efforts are made to generalize tools that are key
in traditional signal processing to these new areas [1] [2].

Following this trend we introduce blue noise sampling on
graphs, showing how part of the benefits that are obtained
from blue noise in traditional halftoning [3] and imaging
are also attainable for signals on graphs. These blue noise
sampling patterns are characterized by a low frequency energy
on the spectral domain and a homogeneous distribution of
the sampling nodes that are located as far as possible from
each other. The connection between blue noise and sampling
sets on graphs is established, rooted and inspired by the
work of Pesenson on manifolds [4], [5] and graphs [6]–
[8]. Additionally, simulations are performed in order to test
blue noise sampling sets against the state of the art sampling
techniques.

This paper is organized as follows. In Section II notation
and preliminaries about sampling on graphs will be discussed,
whereas in Section III the concept of blue noise sampling
on graphs will be discussed. In Section IV an algorithm for
the generation of blue noise on graphs is presented. Section
V provides numerical simulations where blue noise is tested
against the state of the art techniques and finally in Section
VI conclusions are provided.

II. SAMPLING THEORY ON GRAPHS

When functions (signals) are considered on Euclidean do-
mains the question of whether a sampling pattern provides
uniqueness for the representation of the function has been
answered fairly well [1], but this question remained partially
open on more general spaces like manifolds until the work pre-
sented in [4], [5], where it was stated how the characteristics

of the sampling pattern on the manifold determined the error
in the reconstruction, when the function was represented as a
linear combination of eigenfunctions of the Laplace-Beltrami
operator [4], [9]. In particular it was established that when
open balls of the same radius are centered around the sampling
points, the minimum radius should be selected such that they
form a cover of the manifold, and this radius is directly
related to the quality of the reconstruction of the function from
those sampling points. In the halftoning community, these
kind of patterns are called blue noise type because of their
characteristics on the Fourier domain, where the energy is
concentrated around high frequencies [3], [10].

In a variety of applications graphs are used as discrete
representations of manifolds when concrete calculations are
required [2], and therefore an extension of the results obtained
in [4], [5] was desirable. Pesenson established analogs of those
results in [6]–[8] introducing new concepts and parameters
that provide a measure of the quality of a sampling set of
nodes, indicating weather the values of a bandlimited signal
on those nodes provide a unique representation of the whole
signal itself. In the sections below a connection between those
quantities and blue noise sampling patterns is established.

A. Background and notation

Let G = (V, E) be a weighted graph with vertex set V , and
edges set, E . W is the adjacency matrix, with W(u, v) being
the weight connecting the nodes u and v. D is the diagonal
matrix with entries given by D(u, u) =

∑
v 6=u W(v, u). The

Laplacian matrix is defined as L = D−W, and its eigenvalues
are given by 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µN , N = |V| [1]. The path
between two nodes v1 and vn is represented by the sequence
of nodes (v1, v2, . . . , vn−1, vn), with W(vi, vi+1) 6= 0 for
1 ≤ i ≤ n− 1; and its length is given by

|(v1, v2, . . . , vn−1, vn)| =
n−1∑
i=1

W(vi, vi+1). (1)

The path between the nodes u and v with the shortest length
is denoted by γu,v . In what follows we will refer to |γu,v| as
the geodesic distance between the nodes u and v. The matrix
of geodesic distances between nodes is denoted by Γ, where
Γ(u, v) = |γu,v|.

A signal, x, on the graph is then defined as the map x :
V −→ R represented by the vector x ∈ RN where x(v) is the
value of the signal on v ∈ V .



The spectral decomposition of L is indicated as L =
UΛUT, where U is the matrix of eigenvectors. The Graph
Fourier Transform of the signal, x, is given by x̂ = UTx and
x = Ux̂. We say that the signal x has bandwidth ω on the
spectral axes, if x(k) = 0 for all µk > ω, on the discrete axes
the bandwidth is given by k. The set of signals of bandwidth
ω is represented as PWω(G) = span{Uk : µk ≤ ω} which is
the so called Paley-Wiener space of bandwidth ω [7], where
Uk represents the first k column vectors of U. The sampled
version of the signal x on S ⊂ V is given by xS = Mx
where M = [δs1 , . . . , δsm ]T, si ∈ S ∀ i = 1, . . . ,m and δv
is the Kronecker column vector centered at v ∈ V . If x is
bandlimited, it can be reconstructed from xS as:

xrec = argmin
z∈span(Uk)

‖Mz − xS‖22 = Uk (MUk)
†
xS (2)

where (MUk)
† is the pseudo-inverse of MUk [11]. When

the reconstruction of the signal is performed, the desired
sampling set should be the one that minimizes the error in
(2). In what follows, we will refer to the ratio between the
number of sampling nodes and the total number of nodes
as the density d = m/N of the sampling. A theoretical
characterization of the sampling sets was proposed in [7],
[8] using the concept of removable sets. In particular, a Λ-
removable set for Λ > 0 is the subset, S ⊂ V , for which:
‖x‖2 ≤ (1/Λ)‖Lx‖2 ∀ x ∈ L2(S), where L2(S) is the set
of all functions on V , with support in S ⊂ V and finite `p
norm. The best value of the constant, calculated as infΛ(1/Λ),
is denoted by ΛS . Considering this concept Pesenson states
conditions under which the sampling set for a bandlimited
signal determines in a unique way the signal in V , using the
following theorem:

Theorem 1 (Theorem 5.1 in [7])
If for a set U ⊂ V , its compliment Uc = V \ U
is a ΛUc−removable set, then all signals in PWω(G)
are completely determined by its values in U , whenever
0 < ω < ΛUc .

Theorem 1 provide a way to measure the quality of any
sampling set. It can be said that the best sampling sets are the
ones that lead to the maximum values of ΛSc . In the following
sections a result stated in [12] will be presented, in which it
is indicated how blue noise sampling patterns indeed promote
large values of ΛSc .

B. Previous sampling approaches

There are very well known methods that build the sampling
set with greedy algorithms that depend on spectral decom-
positions of the operators involved. In particular, Chen [13]
proposes to find the optimal sampling set, as Sopt =
arg max|S|=m σ

2
1 , on the other hand in [14] the optimal set

is obtained as Sopt = arg max|S|=m
∑k
i=1 σ

−2
i and in [11]

Sopt = arg max|S|=m
∏k
i=1 σ

2
i ; with σi being ith singular

value of MUk. In [14] graph spectral proxies of order q,
Ωq(S) = (σ1,q)

1
2q , are introduced to reduce the computational

cost for the calculation of the optimal sampling set, where σ1,q

is the smallest eigenvalue of (LT
Sc,Sc)

qLqSc,Sc , with Lq being
the qth power of L and LSc,Sc the matrix obtained removing
the rows and columns of L indexed by S . It is shown in [14]
that for any q and any S ⊂ V , zero error reconstruction is
achieved when ω < Ωq(S). The optimal sampling set is then
given by

Sopt = arg max
|S|=m

Ωq(S). (3)

In order to solve (3) a heuristic rule is proposed based on a
spectral decomposition, adding one node at a time. A node
is added to the sampling set following the index location of
the component with the highest absolute value for the first
eigenvector of LqSc,Sc with S being the previous sampling
set. The quality of the sampling set increases as the value of
q is increased, but large values of q lead to a higher com-
putational cost. In some cases eigenvalue decompositions are
not available, and therefore techniques like the ones presented
above are not applicable. Puy [15] proposes an approach in
which the nodes are selected according to a random matrix P
that is designed jointly with M and the reconstruction of the
sampled signal is obtained from

xrec = arg min
z∈RN

(∥∥∥P−1/2(Mz − xS)
∥∥∥2

2
+ τzᵀg(L)z

)
,

(4)
where τ ∈ R+ and g is a single variable polynomial. Both, τ
and g, are selected empirically. The selection of the entries of
P requires the spectral decomposition of L, however Puy [15]
proposes an eigen decomposition free calculation of P that
leads to an approximate solution of (4), and it is proven that
MP−1/2 satisfies the restricted isometry property for a num-
ber of samples in the order of O(k log k). In [11] Tremblay
uses determinantal point processes (DPP) for the estimation
of P in Puy’s approach including the cases where eigen
decompositions are not available. In [16] and [17] similar
vertex-domain sampling methods are proposed relying on the
properties of the so called localization operator introduced
in [18]. In those approaches the sampling set is built using
a greedy algorithm that evaluates a cost function that can
be calculated using Chebyshev polynomial approximations,
avoiding the use of any spectral decomposition. The cost func-
tion is designed to avoid overlapping between the localization
operators centered at the sampling nodes. These approaches
have some similarities with the approach we propose in
this paper, however the generation of the patterns and the
theoretical insights about their nature differ substantially. In
particular we show, how blue noise sampling patterns are
characterized by a low redness which is something desirable
in order to increase

In [19] the sampling of signals on graphs is considered in
those scenarios in which the information from one single node
is available for different orders of the shifting operator.

III. BLUE NOISE SAMPLING ON GRAPHS

Blue noise sampling has been extensively used in appli-
cations related to the representation and printing of images,
where a gray scale picture has to be represented with a binary
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Fig. 1. Different sampling patterns on a graph displaying the nodes distribution in the three dimensional space for a density sampling of d = 0.01 and
d = 0.1 and their power spectrums. (a)-(b): Blue noise sampling patterns. (c)-(d): Random sampling patterns

pattern that should be able to preserve the properties of the
original image that are most important to the human eye. More
specifically this representation is desired to be free of artifacts
and it should be representative of the gray scale tones of the
original image [3]. The spatial characteristics of these blue
noise sampling patterns and its typical Fourier spectrum allows
their generation. Following these same principles we describe
the expected characteristics of blue noise on graphs.

A. Fourier Statistics

The Fourier spectrum of averaged blue noise sampling
patterns is characterized for a low energy content in the
low frequencies [3]. With the purpose of quantifying the
power spectrum of a family of sampling patterns on a graph
we propose to average the spectrum of several realizations
of these patterns. Then, if q is the number of realizations,
x1,x2, . . . ,xq , of a stochastic signal, its power spectrum
can be defined as p(`) = N

q

∑q
i=1

x̂i(`)
2

‖x̂i‖22
` = 2, . . . , N ;

where the `th component of p is associated to the `th Fourier
coefficient. If the families of patterns are completely random,
the shape of p(`) is expected to be flat. Fig. 1 illustrates the
power spectrum of random and blue noise sampling patterns
depicting also a realization of the vertex-domain characteristics
of the patterns being used. Then, approximate versions of blue
noise sampling patterns can be defined as the minimizers of
Rs, as

Rs =
1

m

N∑
`=2

ŝ(`)2

µ`
, (5)

where s ∈ {0, 1}N is the characteristic function of the
sampling set. Notice that in Rs the low frequency content
is penalized.

B. Spatial characteristics of Blue-Noise

Fig. 1 shows the vertex distribution of the sampling nodes,
expected from a blue noise sampling pattern. As can be
appreciated there is a spread uniformity between sampling
nodes, in the sense that they are located as far as possible from
each other. This property is going to be used in the following

section for the systematic generation of blue noise sampling
patterns.

C. Blue-noise Sampling Sets

In Theorem 1, it was stated that the sampling sets, S , should
lead to the largest possible values of ΛSc for high quality
reconstructions. The following theorem, presented in [12] es-
tablishes the relationship between the blue noise cost function
Rs and ΛSc .

Theorem 2 (Theorem 8, [12])
Let s : V −→ {0, 1} be a sampling pattern with s|S = 1,
s|Sc = 0 for S ⊂ V and |S| = ‖s‖0 = m, then the
ΛSc−constant of the set Sc satisfies

ΛSc > Cδ

(
Rs

vol(G)Rs −m
(
1− m

N

)2
) 2
δ

(6)

where vol(G) =
∑N
v=1 D(v, v); δ is the isoperimetric dimen-

sion of G [6]; and Cδ a constant that depends only on δ.

from this theorem, we can appreciate that blue noise sam-
pling on graphs promotes large values of ΛSc . In the following
sections we present an algorithm for the generation of these
patterns.

IV. GENERATING BLUE-NOISE SAMPLING SETS

Exploiting the vertex-domain characteristics of blue noise
sampling patterns, we propose an algorithm inspired in the
so called void and cluster algorithm [20] used in digital
halftoning for the generation of blue noise sampling patterns.
The proposed algorithm works relocating a set of initial
sampling nodes, determining regions where there is low and
high density of sampling nodes, respectively. Then, some of
the nodes in those high density regions are relocated in the
low density ones. The details of the proposed scheme can
be appreciated in Algorithm 1, where the geodesic distances
between sampling nodes are maximized, filling void-like re-
gions and reducing clustered-like regions in the vertex domain
of the graph. The location of the sampling nodes is achieved
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Fig. 2. The averaged mean squared error of the reconstructed signals from a sampled representation: (a) The graph G1 and the signal model SM1. (b) The
graph G2 and the signal model SM1. (c) The graph G1 and the signal model SM2. (d) The graph G2 and the signal model SM2.

using the geodesic distances on the graph, Γ, mapped on a
gaussian kernel K(i, j) = e−

Γ(i,j)2

σ , where σ is related with
the average distance between sampling points. The distances
between sampling points are computed iteratively in c, and
the support of the sampling pattern is used to update the
components of c. The use of K promotes emphasis on the local
information surrounding a sampling node. Algorithm 1 can be
synthesized in two big steps. In the first step, we calculate
the distances between sampling nodes via K and we storage
those values as c(supp(s)) =

∑
K(supp(s), supp(s)), then

if s(v) = 1 the value of c(v) is the sum of the distance
between v and all the other sampling nodes. The component
of c with the maximum value corresponds to the sampling
node that is closest to the other sampling nodes and will be
typically located at the center of a cluster. In the second step of
the algorithm we calculate the distances between the sampling
nodes and all the nodes u where s(u) = 0, and those values are
kept as c(supp(s)c) =

∑
K(supp(s), supp(s)c)−τ where τ

is selected to guarantee that c(supp(s)c) is always negative.
Several values of τ can be selected, in this work we chose
τ ≥ N . The component associated to the minimum value of
c is associated to the largest void on V (G).

Algorithm 1 Void and cluster algorithm for graphs
Input: m: number of samples, σ.
Output: s: sampling pattern

Initialisation : s = 0, IndA=-1, IndB=-1.

Calculate K(i, j) = e−
Γ(i,j)2

σ for all 1 ≤ i, j ≤ N .
2: c = K1N×1.

Get M as m random nodes on V .
4: s(M) = 1.

for r = 1 : 1 : N do
6: c(supp(s)) =

∑
K(supp(s), supp(s)).

c(supp(s)c) =
∑

K(supp(s), supp(s)c)− τ .
8: s (argmaxi{c(i)}) = 0.

s (argmini{c(i)}) = 1.
10: if IndA=argmaxi{c(i)} and IndB=argmini{c(i)} then

break
12: else

IndA=argmini{c(i)}.
14: IndB=argmaxi{c(i)}.

end if
16: end for

return s

Then, repeating these two steps iteratively a blue noise sam-
pling pattern is obtained. The vertex-domain characteristics of
a blue noise sampling pattern can be appreciated in Fig. 1
where several sampling densities are considered. The vertex

domain spreading and the uniformity of the generated blue
noise patterns are evident in contrast with randomly generated
patterns.

V. EXPERIMENTS

In order to test blue noise sampling patterns against other
state of the art techniques, we performed a numerical exper-
iment in which two graph models are considered. For each
graph, 100 signals are generated, sampled and then recon-
structed for different sampling rates, where the reconstruction
is performed by means of eqn. (2). The mean squared error
(MSE) is calculated for each reconstructed signal and then
averaged by 100.

The sampling schemes are: random sampling, blue noise by
void and cluster, Chen’s scheme [13] and Anis’s approach [14].
We consider two signal models: SM1, in which a random
signal of bandwidth k = 50 is generated choosing the Fourier
coefficients from the Gaussian distribution N (0, 0.52) and the
samples captured are contaminated with Gaussian additive
noise keeping the signal to noise ratio as SNR = 20dB, and
signal model SM2 where a random signal is generated with
the Gaussian distribution N (0, 0.52) and its coefficients are
modulated by the function h(µ)

h(µ) =

{
1 If µ ≤ µ50

e−4(µ−µ50) If µ > µ50
(7)

For the experiment a Swiss roll graph G1 with N = 1000
nodes and a sensor network graph G2 with N = 600 nodes
are considered.

Fig. 2 illustrates the reconstruction error of different signals
from a set of samples considering several sampling rates. The
results show consistently that blue noise sampling leads to
comparable results with respect to the state of the art methods.

VI. CONCLUSION

In this paper blue noise sampling was introduced for the
sampling of signals on graphs. The results obtained in terms
of the reconstruction error are competitive against the state of
the art techniques. The generation of these patterns follows
the intuitive principle of spreading the sampling nodes as far
as possible from each other, which is a reasonable consid-
eration in most cases because if the sampling nodes are too
close to each other the whole signal would not be properly
characterized or uniquely determined by its samples.
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