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ABSTRACT

A comprehensive method is provided for smoothing noisy, irregularly sampled data with non-Gaussian

noise using smoothing splines. We demonstrate how the spline order and tension parameter can be chosen a

priori from physical reasoning.We also show how to allow for non-Gaussian noise and outliers that are typical

in global positioning system (GPS) signals. We demonstrate the effectiveness of our methods on GPS tra-

jectory data obtained from oceanographic floating instruments known as drifters.

1. Introduction

In 2011 an array of floating ocean surface buoys

(drifters) were deployed in the Sargasso Sea to assess the

lateral diffusivity of oceanic processes (Shcherbina et al.

2015). Each drifter was equipped with a global posi-

tioning system (GPS) receiver recording locations every

30min. Addressing the primary goal of understanding

the processes controlling lateral diffusivity requires

significant processing of the drifter positions, including

removing mean flow, accounting for the large-scale

strain field, and analyzing the residual spectra for hints

of a dynamical process. However, it quickly became

clear that the GPS position data, which can have accu-

racies as low as a few meters (Wide Area Augmentation

System T and E Team 2016), were contaminated by

outliers with position jumps of hundreds of meters or

more. Prior to analysis, the position data require remov-

ing outliers as well as interpolating gaps to keep the po-

sition data synchronized in time across the drifter array.

The basic problem is ubiquitous: observations from

GPS receivers return observed positions xi at times ti
that differ from the true positions xtrue(ti) by some noise

«i[ xi2 xtrue(ti) with variance s
2. The goal of smoothing

is to find the true position xtrue(ti) that is not contami-

nated by the noise, whereas the goal of interpolating is to

find the true position xtrue(t) between observation times.

The approach taken here is to use smoothing splines.

This approach is relatively broad (Handcock et al. 1994;

Nychka 2000), and is related to themethods inYaremchuk

and Coelho (2015) and Elipot et al. (2016) for smoothing

drifter trajectories, as discussed later.

Our model for the ‘‘true’’ path x(t) is specified using

interpolating B-splines XK(t) such that

x(t)5�
N

i51

j
i
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i (t) , (1)

where K is the order (degree S 5 K 2 1) of the spline.

For N observations we construct N B-splines such that

x(ti) 5 xi for appropriately chosen coefficients ji. To

smooth the data, we choose new coefficients ji that

minimize the penalty function
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for some tension parameter lT$ 0. If lT 5 0 then f5 0

and ji 5 ji because x(ti) 5 xi, but if lT / ‘ then this

forces x(t) to a Tth-order polynomial (e.g., when T 5 2,

the model is forced to be a straight line because it has no

second derivative). The resulting path x(t) is known as a

smoothing spline and was first introduced in modern

form by Reinsch (1967), but according to De Boor

(1978) the idea dates back to Whittaker (1923). Once S

and T are chosen, the smoothing spline has one free

parameter (lT) and its optimal value can be found by

minimizing the expected mean-square error when the

true value of s is known (Craven and Wahba 1978).

Three issues must be addressed before smoothing

splines are applied to GPS data:

1) how to choose S andT—and how these choices affect

the recovered power spectrum,

2) how tomodify the spline fit to accommodate the non-

Gaussian errors of GPS receivers, and

3) how to identify and remove outliers.

To address these issues but also to serve as a practical

guide to other practitioners, we review B-splines in

section 2 and introduce the canonical interpolating

spline as the underlying model for path x(t) in (1). We

demonstrate the effect that choosing S has on the

high-frequency slope of the power spectrum of the

interpolated fit.

Section 3 takes a broad look at smoothing splines and

the assumptions they make on the underlying process.

Many of the ideas presented in this section are known to

the statistics community, so here we present these ideas

from a more physical perspective. We show that the pen-

alty function in (2) can be formulated as a maximum-

likelihood problem and that applying tension is equivalent

to assuming a Gaussian distribution on the tensioned de-

rivative of the underlying process.

Section 4 uses ensembles from synthetic data that

mimic the oceanographic data to test a number of choices

that must be made. We establish that setting T 5 S is a

reasonable choice. We show how the tension parameter

can be chosen a priori (without optimization of themean-

square error) when the effective sample size (which we

define later) can be estimated from the data. This esti-

mate for effective sample size can be used to reduce the

coefficients ji in the spline fit without increasing mean-

square error.

The second half of the paper addresses issues specific

to GPS position errors. In section 5 we discuss the as-

sumptions of stationarity and isotropy required for

bivariate smoothing splines. In section 6 we show that

GPS errors are not Gaussian distributed but rather are

t distributed, and we show how to modify our method

for a t distribution. Section 7 addresses how to modify

our method to make smoothing splines robust to out-

liers. We compare with alternative methods and con-

clude in sections 8 and 9, respectively.

A major outcome of this work is the implementation

of MATLAB classes for generating B-splines, interpo-

lating splines, smoothing splines, and a class specific to

smoothing GPS data (https://github.com/JeffreyEarly/

GLNumericalModelingKit). These classes are highlighted

throughout in relevant sections.

2. Interpolating spline

Assume that we are givenN observations of a particle

position (ti, xi) with no errors. The simplest form of in-

terpolation is a nearest-neighbor method that assigns

the position of the particle to the nearest observations in

time. The resulting interpolated function x(t) is a poly-

nomial of orderK5 1 (piecewise constant), shown in the

top row of Fig. 1. The next level of sophistication is to

assume a constant velocity between any two observa-

tions and to use that to interpolate positions between

observations, as shown in the second row of Fig. 1. This

means we now have a piecewise constant function dx/dt

that represents the velocity of the particle, shown in the

second row, second column, of Fig. 1. This is a polyno-

mial function of order K 5 2.

It is less obvious how to proceed to a polynomial of

order K 5 3. With N data points we can construct a

piecewise constant acceleration (the second derivative)

using the N 2 2 independent accelerations computed

from finite differencing, but where to place knot points

that define the boundaries of the regions and how to

maintain continuity is less clear. The approach taken

here is to use B-splines.

a. B-Splines

A B-spline (or basis spline) of order K (degree S 5

K2 1) is a piecewise polynomial that maintains nonzero

continuity across S knot points. The knot points are

a nondecreasing collection of points in time denoted

by ti. The basic theory is well documented in De Boor

(1978), but here we present a reduced version tailored to

our needs.

The mth B-spline of order K 5 1 is defined as

X1
m(t)[

�

1 if t
m
# t, t

m11

0 otherwise
. (3)

This is the rectangle function as shown in the first row,

first column, of Fig. 2. Given P knot points we can

construct P 2 1 B-splines of order K 5 1, although if a

knot point is repeated it results in a spline that is zero

everywhere. To represent an interpolating function x(t)
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for the N observations of a particle position (ti, xi) we

define N 1 1 knot points as

t
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t
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m.N

. (4)

This creates N independent basis functions that provide

support for the region t1# t# tN (provided that the last

spline is defined to include the last knot point). The in-

terpolating function x(t) is defined as x(t)[X1
m(t)j

m, where

the coefficients jm are found by solving X1
m(t

i)jm 5 xi.

The result of this process is shown in Fig. 1 for seven ir-

regularly spaced data points.

All higher-order (K . 1) B-splines are defined by

recursion,

XK
m(t)[

t2 t
m

t
m1K21

2 t
m

XK21
m (t)1

t
m1K

2 t

t
m1K

2 t
m11

XK21
m11(t) .

(5)

This creates splines that span across one additional knot

point at each order and maintain continuity across one

more derivative. Examples are shown in Fig. 2.

Any knot points that are repeated T times result in a

total of T 2 1 splines of order 1 that are everywhere

zero. This has the effect of introducing discontinuities

in the derivatives for higher-order splines. For our pur-

poses, we use this feature to prevent higher-order splines

from crossing boundaries. For K 5 2 order splines we

use N 1 2 knot points at locations

t
m
5

8

<

:

t
1

m# 2

t
m21

2,m#N

t
N

m.N

. (6)

This creates a knot point at every observation point

but repeats the first and last knot point. This has the

FIG. 1. An example of interpolating between seven data points using a spline function of orderK. The data points are shown as circles,

and the interpolated function is shown as solid black lines. We show four different orders of interpolation K 5 1, . . . , 4 (rows) and their

nonzero derivatives (columns). The thin vertical gray lines are the knot points.

FIG. 2. The B-splines and derivatives (columns) for orders K 5

1, . . . , 4 (rows).
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effect of terminating the first and last spline at the

boundary and creating N second-order B splines,

X2
m(t). The interpolating function x(t) is defined as

x(t)[X2
m(t)j

m, where the coefficients jm are found

by solvingX2
m(t

i)jm 5 xi. The second row of Fig. 1 shows

an example.

This process can be continued to higher-order B-splines.

For splines that are of even order, we create N 1 K knot

points with

tK2even
m 5

8

<

:

t
1

m#K

t
m2K/2

K,m#N

t
N

m.N

, (7)

and, for splines that are odd order, we createN1K knot

points with

tK2odd
m 5
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The knot points are chosen to createN splines for theN

data points such that the interpolated function x(t)

crosses all N observations (ti, xi). The path x(t) is the

canonical interpolating spline of order K. Examples are

shown in Fig. 1.

The knot placements in (7) and (8) are equivalent to the

not-a-knot boundary conditions described inDeBoor (1978)

and used in the cubic spline implementation in MATLAB.

In the usual formulation of the not-a-knot boundary condi-

tion, the knot positions do not change as a function of spline

order, and therefore additional constraints must be added at

each order—especially the requirement that the highest

derivative maintain continuity near the boundaries. In the

formulation here, these constraints are implicit in (7) and (8).

b. Numerical implementation

The root class in our suite of MATLAB classes is the

BSpline class, which evaluates a complete B-spline basis

set given a set of knot points. This class was used to

generate Fig. 2.

The interpolating spline used to generate Fig. 1 is im-

plemented in the InterpolatingSpline class—a subclass of

BSpline. This class generates interpolating splines of ar-

bitrary order given a set of data points (ti, xi), thus gen-

eralizing the cubic spline command built in toMATLAB.

c. Synthetic data

Throughout this paper we generate synthetic data for

both the signal and the noise. The velocity of the signal is

generated from a bivariate Gaussian process known as

the Matérn (Lilly et al. 2017). The spectrum of the

Matérn is given by

S(v)5
A2

(v2 1 l2)p/2
, (9)

where v is the frequency, A sets the amplitude, p . 1

sets the high-frequency slope, and l sets the fre-

quency below which the signal looks increasingly

white. This spectrum has finite amplitude at low fre-

quencies and power-law falloff at high frequencies,

two physically realistic properties observed in ocean

surface drifters (Sykulski et al. 2016). Trajectories

from this velocity spectrum will be generated using

the ‘‘maternoise’’ function available in jLab (Lilly

2019). In our experiments, the parameter A is chosen

such that the square root of velocity variance in each

direction is urms 5 0.20m s21 and the damping scale is

l21
5 30min. Values of p are varied with p5 2, 3, and

4 so that the high-frequency spectrum is proportional

to v22, v23, and v24. Velocities are sampled every

minute and are integrated to get positions. Figure 3

shows an example velocity spectrum of the signal

with p 5 2.

The position data are contaminated with (white)

Gaussian noise with s 5 10m, a value chosen to re-

semble GPS errors. For all experiments we use a range

of strides, that is, subsampled versions of the underlying

process as input into the spline fits. A stride of 100 in-

dicates that the signal is subsampled to 1 in every 100

data points. This lets us evaluate the quality of fit against

different strides. In analyzing the quality of fits, we use

velocities when computing the power spectrum, but re-

port mean-square errors from positions.

d. Spline degree S

We first examine a synthetic signal uncontaminated by

noise, to examine the role of the spline degree S on the

interpolated fit. As noted in Craven and Wahba (1978),

the degree of the spline sets its roughness. In terms of the

power spectrum, this corresponds to the high-frequency

slope as can be seen in Fig. 3, which shows fits with S 5

1, . . . , 4. Setting S5 1 produces a high-frequency falloff

in the spline fit of v22. Although this appears to be a

desirable feature when fitting to a process with true

slope v22, the mean-square error is consistently higher

(as indicated in the legend of Fig. 3).

The bottom panel of Fig. 3 shows the coherence be-

tween the spline fit and the true signal. A coherence of

1 indicates that the signals are perfectly matched at a

given frequency, while a coherence of 0 indicates that

the signals are unrelated. There is no discernible difference
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in coherence between spline fits with S5 1, . . . , 4. The

coherence quickly drops to near zero at the same

frequency in all three cases. The implication here is

that the spline fits are essentially producing noise at

frequencies above the loss of coherence. This is why the

spline fits with shallower slopes (with more variance at

high, incoherent frequencies) produce a larger overall

mean-square error than those with steeper slopes (with

less variance at high, incoherent frequencies). The

conclusion here is that smoother is better: it is better

to use an unnecessarily high-order spline to avoid

adding extra noise at high frequencies.

3. Smoothing spline

A typical starting point for maximum likelihood is to

establish the probability distribution function (PDF) of

the errors, «i [ xi 2 xtrue(ti). The canonical example in

one dimension (e.g., Press et al. 1992) is to assume errors

are independently drawn from a Gaussian with the fol-

lowing probability distribution

p
g
(«js

g
)5

exp 2
1

2

«2

s2
g

 !

s
g
(2p)1/2

, (10)

where sg is the standard deviation. This assumption

alone places no assumptions on the signal, only on the

structure of the noise.

The probability of the observed data given model

x(t) is

P5
1

s
ffiffiffiffiffiffi

2p
p P

N

i51

exp

�

2
1

2

�

x
i
2 x(t

i
)

s

�2�

, (11)

where we have taken s5sg. Maximizing the probability

function in (11) is the same as minimizing its argu-

ment—this is the logarithmic likelihood (up to a con-

stant), called the penalty function

f5
1

N
�
N

i51

�

x
i
2 x(t

i
)

s

�2

. (12)

Stated in this way this is the same as asking for the ‘‘least

squares’’ fit of the errors.

a. Smoothing-spline penalty function

The model used here is the canonical interpolating

spline of orderK described in section 2. We have chosen

our knot points such that the model intersects the obser-

vations and this certainly maximizes (11) [and minimizes

(12)] because all the errors are zero, but the resulting

FIG. 3. (top) The velocity spectrum of a synthetic Lagrangian velocity generated from the

Matérn (black). The blue, red, and orange lines show the spectrum of the interpolating spline

fit to the data with a stride of 100 for S 5 1, . . . , 4, respectively. (bottom) The coherence

between the smoothed velocities and the true velocity. The dashed vertical line denotes the

Nyquist frequency of the strided data.
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distribution of errors (a delta function at zero) does not

resemble the assumed Gaussian distribution. Thus, ad-

ditional constraints are required if the assumed error

distribution is to be recovered.

The smoothing spline augments the penalty function

of (12) by adding a global constraint on the Tth deriv-

ative of the resulting function as in (2). If lT / 0 then

this reduces to the least squares fit in (12), but if lT / ‘

then this forces the model to a Tth-order polynomial.

To interpret the first term of (2), consider amotionless

particle at true position x0. Using the N relevant obser-

vations xi, the sample mean x5 (1/N)�xi estimates the

particle’s position x0. The unbiased sample variance es-

timates the variance s2 of the noise, and is given by

ŝ2
5 (1/N2 1)�(xi 2 x)2, the expected value of which

is hŝ2i5 [12 (1/N)]s2.

Now consider the opposite extreme in which the

particle is moving so fast (or the observations are so

sparse) that each observation is independent of its

neighbors. In this case, each observation must be con-

sidered separately, so the samplemean at time ti is xi 5 xi
(i.e., we are summing over the single relevant observa-

tion). In this scenario we cannot produce a sample var-

iance, because there is only a single relevant observation

at time ti.

In practice, the number of relevant observations

is anywhere between 1 and N. Here we use the term

effective sample size, denoted by neff, to describe the

typical number of observations being used to estimate

either the particle’s position or the variance of the

noise at any given time. In this context, the first term of

(2) is proportional to an ensemble of multiple estimates

of the sample variance

ŝ2
[

1

N
�
N

i51

[x
i
2 x(t

i
)]2 , (13)

which is expected to scale as

hŝ2i5
 

12
1

nvar
eff

!

s2 , (14)

where 1,nvar
eff #N is our definition of the effective

sample size of the sample variance. Revisiting the

limiting cases, as nvar
eff /N the sample variance matches

the true variance; as nvar
eff / 1, the sample variance

vanishes.

There is a simple physical interpretation for the sec-

ond term in (2). Consider the case T 5 1 so that the

smoothing spline is a constraint on velocity. When av-

eraged over the integration time, the integral produces

the root-mean-square velocity urms such that the sec-

ond term scales as u2
rms. In general, where x(T)rms is the

root-mean-square of the Tth derivative, this means lT
scales like

l
T
5

 

12
1

nvar
eff

!

1

x
(T)
rms

h i2
. (15)

The interpretation of the smoothing spline is that the

two terms are balanced by a relative weighting of the

sample variance of the noise andmean-square of theTth

derivative of the physical process. As discussed in

section 4, both x(T)rms and nvar
eff can be estimated a priori

such that a good initial estimate for lT can be made.

b. Smoothing-spline maximum likelihood

The penalty function in (2) can be restated in terms of

maximum likelihood under some conditions (see chap-

ter 3.8 in Green and Silverman 1993). Assume that in

addition to knowing the distribution of errors as in (11),

we know how the velocity of the underlying physical

process is distributed. For example, in geophysical tur-

bulence the velocity probability distribution function is

like a Laplace distribution (Bracco et al. 2000). To re-

cover the smoothing spline, we consider the case where

the velocity PDF is Gaussian. Stated as maximum like-

lihood, this means at any given instant (and not just the

times of observation) we expect the model velocity to be

Gaussian. We discretize the problem by sampling the ve-

locityQ times tq5 t11 qDtq, whereDtq5 (tN2 t1)/(Q2 1)

and q 5 0, . . . , Q 2 1. The maximum likelihood is thus

stated as

P5P
N

i51

1

s
ffiffiffiffiffiffi

2p
p exp

�

2
1

2

�

x
i
2 x(t

i
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s
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q51

ffiffiffi

g
p

x
(T)
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ffiffiffiffiffiffi

2p
p exp

8

<

:

2
g

2

2

4

x(T)(t
q
)

x
(T)
rms

3

5

29

=

;

, (16)

which is the joint probability of the error distribution

from (11) and the velocity distribution of the underlying

physical process. We include parameter g to set the

relative weighting between the two distributions, al-

though it could be absorbed into the definition of x(T)rms.

Writing (16) as a penalty function (after converting the

product of exponentials into exponentials of sums),

we have

2logP5
1

2
�
N

i51

�

x
i
2 x(t

i
)

s

�2

1
g

2
�
Q

q51

2

4

x(T)(t
q
)

x
(T)
rms

3

5

2

1C , (17)

where C is a constant. Setting g 5 N/Q and renormal-

izing the penalty function by 2/N (which has no effect on

the location of its minimum), (17) can be written as
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q51

2
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x(T)(t
q
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x
(T)
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3
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2

Dt
q
. (18)

Apart from the discretization of the integral, (18) is the

same as the penalty function in (2).

There is an important special case when tension is

applied at the same order as the spline, T 5 S. In this

case the spline is piecewise constant for x(T) with exactly

N2 T unique values. The parameter g5N/(N2 T)’ 1

and (16) can be simplified. This case is appealing be-

cause only theN2 T unique values of the derivative x(T)

that can be computed fromN data points are being used

for tension, which is not the case when T , S.

This maximum-likelihood perspective shows that

adding tension to the penalty function is equivalent to

assuming a higher-order derivative in the model (e.g.,

velocity if T 5 1) is Gaussian. This is therefore making

an assumption about the underlying physical process of

the model. This is in contrast to the first term, which is

entirely a statement about measurement noise.

Writing the smoothing spline as a maximum-likelihood

condition (16), suggests that if the underlying physical

process has a nonzero mean value in tension, the fit will

not behave as expected. However, smoothing splines can

be easily modified to accommodate a mean value in

tension, as shown in appendix A.

c. Optimal parameter estimation

For a given choice ofT and lT, theminimum solution to

(2) can be found analytically [see Teanby (2007) and our

appendix A]. Once the solution is found the smoothing

matrix Sl is defined as the matrix that takes observations

x and maps them to their smooth values, x̂5Slx.

The free parameter lT is a relative weighting between

the two terms in (2). Choosing its optimal value can be

done by minimizing the expected mean-square error

(Craven and Wahba 1978),

MSE(l)5
1

N
k(S

l
2 I)xk2 1 2s2

N
TrS

l
2s2 , (19)

where jj jj2 is the Euclidean norm, Tr indicates the trace,

and I is the identity matrix.

A significant amount of the literature on smoothing

splines is devoted to minimizing the mean-square error

when the variance s2 is not known. Craven and Wahba

(1978) and Wahba (1978) use cross validation to esti-

mate s and minimize mean-square error. Recent work

comparing different estimators shows no single tech-

nique to be optimal (Lee 2003). For our application,

however, the errors in GPS data can be relatively easily

established, as shown in section 6.

The mean-square error in (19) is a combination of the

sample variance and the variance of the mean. As al-

ready discussed in the context of the penalty function

f in section 3a, the first term in (19) is an ensemble

of sample variances, and therefore, by combining (13),

(14), and (19) we obtain

 

12
1

nvar
eff

!

s2
5

1

N
k(I2S

l
)xk2 . (20)

The second term in (19) is proportional to 2 times the

squared standard error, that is, the variance of the sample

mean. As discussed in Teanby (2007), the quantitySlS is

the covariance matrix with the squared standard error

along the diagonal and thus the mean-square standard

error is given by (1/N)Tr(SlS). The variance of the

samplemean is known to scale inversely with the number

of samples being used to estimate the mean. We use this

to define the effective sample size of the variance of the

mean, nSE
eff with

s2

nSE
eff

5
1

N
Tr(S

l
S) . (21)

Taking the measures of effective sample size as func-

tions of l, the mean-square error can be expressed by

combining (19)–(21):

MSE(l)5 2
s2

nSE
eff

2
s2

nvar
eff

. (22)

If one assumes nvar
eff 5 nSE

eff , then the expected mean-

square error from (19) is equal to s2/neff. Although not

shown here, in an empirical analysis we find that nvar
eff and

nSE
eff are approximately equal, although nvar

eff becomes

highly variable when nSE
eff approaches 1. These measures

of effective sample size can be used to estimate the value

of lT necessary for optimal tension without minimizing

the expected mean-square error.

The definition of effective sample size used here is

related to, but not the same as, the notion of degrees of

freedom used in Cantoni and Hastie (2002) and refer-

ences therein.

4. Spline order, tension order, and the spectrum

With amodel path [(1)], a penalty function [(2)], and a

minimization condition [(19)], we have all of the primary

pieces to create a smoothing-spline interpolant to the

data. However, a number of choices still must be made.

In this section we use synthetically generated data to

represent our physical process, and contaminate the

process with Gaussian noise as described in section 2c.
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We test our ability to recover the signal and examine the

effects of changing the spline and tension order on the

mean-square error and the resulting spectrum.

The results of this section are empirical, and we ac-

knowledge upfront that any conclusions reached may

depend on our particular choice of physical model

generating the signal. Nevertheless, our expectation is

that the conclusions are ‘‘O(1)’’ correct and are appli-

cable, at least, to our GPS-tracked drifter dataset.

a. Tension degree T

Given a smoothing spline of degree S, the tension in

the penalty function (2) can be applied at any degree

T # S. We use the synthetic data for the three different

slopes to empirically establish the relationship between

the tension degree T and the spline degree S.

For S5 1, . . . , 5 and all T# S we minimize the mean-

square error against the true values. The minimization is

performed for 200 ensembles of noise and signal with

three slopes (v22, v23, and v24) and five different

strides. For a given slope, stride, and realization of noise,

we identify the minimum mean-square error across S

and T and compare all values of S and T as a percentage

increase relative to that minimum. After aggregating

across slopes, strides, and ensembles, the 68% confi-

dence range is shown in Table 1. The table shows that

setting T 5 S is not always optimal but it is never sig-

nificantly worse than the optimal choice. Thus for the

remainder of the paper we set T 5 S.

b. Loss of coherence

The loss of coherence defines the time scale below

which the smoothing spline is not providing useful in-

formation. A reasonable hypothesis is that this scale is

related to the effective sample size, neff because this

indicates how many points are being used to estimate

the true value. Therefore, the loss of coherence occurs at

the effective Nyquist, which we define as

f effs [
1

2n
eff
Dt

. (23)

In practice, we use nSE
eff because it is less variable than n

var
eff

for values near 1 and is the more direct measure of how

many points are being used to estimate the model path.

Figure 4 shows the power spectrum and coherence of

optimal tension fits for three different strides of the data.

In each case (23) indicates the approximate value where

the coherence drops below 0.5.

c. Reduced spline coefficients

One practical consideration when working with

large datasets is the computational cost of creating the

spline fit, which is limited by the rate of solving for the

spline coefficients. It is beneficial to reduce knot

points (and therefore total splines) where possible. A

reasonable strategy is that when the effective sample

size is large, as measured by (21), we avoid placing a

knot point at every data point—essentially ‘‘skipping’’

data points.

To test this idea, we find the optimal fit over a range of

different strides (which varies the effective sample size)

and increase the number of skipped knot points until the

mean-square error starts to rise.We find that we can skip

max[1, floor(2neff/3)] knot points without sacrificing

precision. The column labeled ‘‘optimal mse’’ in Table 2

indicates the optimal fit in which one knot point is cre-

ated for every observation point, whereas the reduced

degrees of freedom (‘‘reduced dof’’) column indicates a

fit in which the number of knot points is reduced. In

some cases the optimal mean-square error improves

with fewer knot points. This means that, when handling

large datasets, we can reduce the number of splines

being used if the effective sample size is large, and we

can ‘‘chunk’’ the data (split them into multiple inde-

pendent pieces) when the effective sample size is small.

d. Interpolation condition

To estimate lT from (15), we estimate the mean-

square value of a derivative of the process, x(T)rms (see

appendix C) and the effective sample size, neff.We argue

that effective sample size should vary based on the rel-

ative size of the measurement errors to the speed of

motion. For example, if the position errors are only 1m,

but a particle typically travels 10m between measure-

ments, then it is hardly justifiable to increase the tension

so that the smoothing spline misses the observation

TABLE 1. The 68th-percentile range of increase in mean-square error from the optimal fit.

T

1 2 3 4 5

1 33.8%–80.3%

2 14.0%–75.1% 0.8%–12.1%

S 3 17.1%–77.5% 1.0%–13.1% 0.0%–4.5%

4 22.8%–81.9% 1.0%–14.5% 0.0%–4.6% 0.0%–6.3%

5 27.6%–91.4% 0.8%–15.4% 0.0%–4.6% 0.0%–6.1% 0.0%–12.8%
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points by 1m. There is not enough statistical evidence to

suggest that the particle did not go right through the

observation point. On the other hand, if the position

errors are 1m, but the particle typically travels 10 cm

between measurements, nearby measurements provide

more information about the particle’s true position

during that time, so our estimate of the particle’s true

position is closer to a mean of the nearby observations.

This idea can be made more rigorous by stating that a

change in position, Dx, is statistically significant if it

exceeds the position errors s by some factor. Assuming

the physical process has a characteristic velocity scale,

urms, we use this concept to define G as

G[
s

u
rms

Dt
, (24)

where Dt is the typical time between observations. This

argument suggests that effective sample size should be

proportional to G; that is,

nG

eff 5max(1, C � Gm), (25)

where C and m are unknown constants, and we prevent

the effective sample size fromdropping below 1. Intuitively

this means as long as the particle does not move too far

between observations, nearby observations help to es-

timate the true position of the particle.

To test the relationship between G and effective

sample size, we compute the optimal smoothing spline

for a range of values of G (created by subsampling the

signal) for three different spectral slopes (v22, v23,

and v24). The value nSE
eff is computed from the optimal

solution for 50 ensembles and shown in Fig. 5. The

fits are remarkably good, but depend on the slope.

Processes with shallower slopes (rougher trajectories)

yield a smaller effective sample size for a given value

of G.

Using the interpolation condition G to estimate ef-

fective sample size, we set nG

eff 5 14G0:71, the empirically

determined best fit for slope v23. For all spline fits

we use

linitial
T 5

 

12
1

nG

eff

!

1

x
(T)
rms

h i2
(26)

as an initial estimate for the optimal smoothing param-

eter, where x(T)rms in (26) and urms in (24) are estimated

using the method described in appendix C. The scaling

law for nG

eff can be estimated analytically. Let position

observations be given by xi, where

FIG. 4. (top) The uncontaminated velocity spectrumof the signal (black) and velocity spectrum

of the noise (red). The observed signal is the sum of the two. The blue, red, and orange lines show

the spectrumof the smoothing spline that is best fit to the observationswith all, 1/10th, and 1/100th

of the data, respectively. (bottom) The coherence between the smoothed signals and the true

signal. The vertical dashed lines show the effective Nyquist computed using (23).
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x
i
5 u

rms
iDt1 «

i
with «

i
5N (0,s). (27)

If the effective sample size is hni, then the particle

changes position by hniurmsDt between samples.Applying

the two-sample z test, two positions will be considered

different for z . zmin, where

z5
hniu

rms
Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

hni1
s2

hni

s 0 hni5
 

zs
ffiffiffi

2
p

u
rms

Dt

!2/3

. (28)

The power law in (28) is close to the empirically derived

power laws shown in Fig. 5. This suggests that the co-

efficient C in (25) can be related to z, a measure of

statistical significance.

e. Optimal fits

Table 2 summarizes the key results of this section by

applying a smoothing spline (S 5 3) to 200 ensembles

with three different slopes (v22, v23, and v24) and five

different strides. When the algorithm uses true values,

uncontaminated by noise, we consider the process to be

‘‘unblinded,’’ in contrast to ‘‘blind’’ methods, in which

the algorithm only uses noisy data. The second and third

columns show the effective sample size and average

mean-square error when the smoothing spline is applied

using the true values (i.e., unblinded) to minimize the

mean-square error—this is the lower bound. The fourth

column shows average increase in mean-square error

when reducing the number of spline coefficients as

documented in section 4c. There is almost no change in

mean-square error, and therefore, all subsequentmethods

(whether blind or unblind) use this technique. The fifth

column uses (26) from section 4d to provide a (blind)

initial guess of the tension parameter. The results are

mixed—a typical increase in mean-square error is

30%–50% when the effective sample size is large. While

this seems large, this is a small fraction of the total noise

variance; for example, an optimal mean-square error of

6m2 increases to 8m2 when the total variance is 100m2.

Nearly optimal fits can be found using (19), as shown in

the last column of the table.

f. Numerical implementation

The numerical implementation of the methods in

this section are available in the SmoothingSpline class,

which subclasses BSpline. This class is initialized with

three required parameters: a set of data points (ti, xi) and

an error distribution.

5. Bivariate smoothing splines and stationarity

Up to this point we have considered univariate data,

(ti, xi), but GPS position data are fundamentally bivar-

iate. The term ‘‘bivariate’’ in the context of splines is

often used to denote splines defined on two independent

variables—however, in this context we define bivariate

to mean two dependent variables (e.g., x and y) and one

independent variable (e.g., t).

The trivial approach to working with bivariate data is

to treat each direction independently—that is, minimize

lx
T and l

y
T independent of each other. However, the

underlying physical process is often isotropic. In the

context of the maximum-likelihood formulation of

smoothing splines in (18), this means we expect x(T)rms

(the rms value of the tensioned variable) to be the same

in all directions (invariant under rotation). This how-

ever does notmean that lx should necessarily equal ly.

To be explicit, if

FIG. 5. Effective sample size from the standard error vs G.

TABLE 2. Mean-square error (mse) and effective sample size for a

range of strides and smoothing-spline methods.

Stride neff

Optimal

mse

Reduced

dof

Blind

initial

Expected

mse

v22

1 8.6 11.5m2 0.1% 56.4% 7.4%

2 4.9 20.4m2 0.0% 36.3% 2.8%

4 2.9 34.2m2 0.1% 20.0% 1.7%

8 1.7 55.9m2 0.0% 5.6% 1.0%

16 1.2 81.8m2 0.0% 3.6% 0.5%

v23

1 12.5 7.64m2
20.1% 38.6% 6.4%

2 7.1 13.4m2
20.1% 20.4% 3.5%

4 4.1 23.5m2
20.0% 9.8% 2.2%

8 2.3 41.8m2 0.0% 1.7% 1.2%

16 1.4 67.9m2 0.0% 9.6% 0.6%

v24

1 15.6 5.69m2
20.1% 33.8% 7.9%

2 9.0 10.5m2
20.1% 18.6% 5.1%

4 5.0 18.6m2
20.0% 8.6% 2.4%

8 2.8 33.2m2 0.0% 3.2% 1.5%

16 1.6 57.6m2 0.0% 15.4% 0.8%
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lx
T 5

 

12
1

nx
eff

!

1

x
(T)
rms

h i2
, l

y
T 5

 

12
1

n
y
eff

!

1

y
(T)
rms

h i2
,

(29)

then, even if x(T)rms 5 y(T)rms , the effective sample sizes nx
eff and

n
y
eff maydiffer if there is anymeanvelocity because, as shown

in section 4d, effective sample size depends on velocity.

Therefore, to assume isotropy in lT and use a bi-

variate smoothing spline, the mean velocity from the

underlying process must be removed. What qualifies

as mean and fluctuation rarely has a clear answer,

but a reasonable option is letting a polynomial of degree

T 1 1 define the mean. This has the added benefit of

removing a constant nonzero tension value, which as

shown in section 3b, changes the problem formulation.

It is stationarity, not isotropy, that requires removing

the mean velocity. The effective sample size is shown to

be dependent on rms velocity, so if velocity varies in

time, then the optimal effective sample size varies as

well. This means not only do smoothing splines require

stationarity in the tensioned variable x(T) as shown in

section 3b, but they also require stationarity in the velocity

x(1) to be effective. This last requirement can be solved by

either removing the mean (as suggested here), or seg-

menting observations into locally stationary chunks.

a. Assessing errors

Removing themean or some other low-passed version

of the data means the total smoothing matrix is a com-

bination of the low-passed and high-passed smoothing

matrices. Once this matrix is computed, it can be used to

compute the standard errors.

We first create a low pass filter to capture the mean

component of the flow using a simple polynomial fit

x5Sx and then define the residual as our stationary

part, x0 [ x2 x. We now compute the smoothing spline

as usual on the residual, x0l 5Slx
0. So the total, smoothed

path is

x̂5 x1 x0l 5Sx1S
l
(x2Sx)5 (S1S

l
2S

l
S)x[S

T
x .

(30)

From this we can compute the covariancematrix and the

standard error.

b. Numerical implementation

The BivariateSmoothingSpline class is initialized with

data (ti, xi, yi) and a distribution. For a spline of degree

S 5 T, a spline of degree S 1 1 is used to remove the

mean in each direction. With a Gaussian distribu-

tion this is simply a least squares polynomial fit. By as-

sumption, the residual data are stationary and isotropic,

so the tension parameter lT is applied equally in each

direction. Minimization is performed on the sum of the

expected mean-square errors in each direction.

6. GPS dataset

The primary dataset considered here is nine sur-

face drifters deployed in the Sargasso Sea in the

summer of 2011 (Shcherbina et al. 2015). In the past,

such drifters used the Argos positioning system, which

has significantly poorer temporal coverage and posi-

tion accuracy (Elipot et al. 2016), but recently most

surface drifters have employed GPS receivers and

transmitted their data back through Argos or Iridium

satellites.

The GPS receiver sits on the surface drifter and col-

lects position data, but because of atmospheric condi-

tions or ocean waves, the receivers are sometimes

unable to obtain a position, or when they do, it is highly

inaccurate. Despite nominal accuracies of a few meters,

it is often the case that some positions are off by more

than 1000m, as can be seen in Fig. 8. Applying a

smoothing-spline fit using the method in section 3 pro-

duces an extremely poor fit, with clear overshoots to bad

data points.

GPS error distribution

We characterize the GPS errors by considering data

from a motionless GPS receiver allowed to run for 12 h.

The GPS receiver used in this test is not the same as the

one used for the drifters (because it was no longer

available) but should produce errors similar enough for

this analysis.

The position recorded by the motionless GPS are as-

sumed to have isotropic errors with mean zero, which

means the positions themselves are the errors. The PDF

of the combined x and y position errors are shown

in Fig. 6.

The error distribution is first fit to a zero-mean

Gaussian PDF (10). The maximum-likelihood fit is

found by computing the standard deviation of the sam-

ple, which is found to be s’ 10m and shown as the gray

line in Fig. 6. However, it is clear the error distribution

shows much longer tails than the Gaussian PDF.

The Student’s t distribution is a generalization of the

Gaussian that produces longer tails and is defined as

p
s
(«jn,s2

s )5

G
n1 1

2

� �

s
s

ffiffiffiffiffiffi

np
p

G
n

2

	 


�

11
«2

s2
sn

�2(n11)/2

, (31)

where the ss parameter scales the distribution width and

the n parameter sets the number of degrees of freedom
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[as n / ‘, (31) becomes a Gaussian]. The variance is

s2
5s2

s [n/(n2 2)] and only exists for n . 2. Minimizing

the Anderson–Darling test to find the best-fit t distri-

bution to the data, we find parameters ss ’ 8.5m and

n ’ 4.5 shown as the black line in Fig. 6. Different

choices in GPS receivers and using the Kolmogorov–

Smirnoff test results in very similar parameters; that is,

ss ’ 8–10m and n ’ 4–6.

The position error distributions imply a combined

distance error distribution by computing «d 5 («2x 1 «2y)
1/2

and is shown in the lower panel of Fig. 6. With Gaussian

noise this results in a Rayleigh distribution,

p
r
(«

d
js

g
)5

«
d

s2
g

exp

 

2
1

2

«2d
s2
g

!

, (32)

as shown by the gray line. The distance error distribution

from t-distributed noise is computed numerically and is

shown by the black line. Around 95% of distance errors

are within 30m.

Figure 7 shows the autocorrelation function of the

GPS position errors and the 99% confidence intervals.

We find a rough empirical fit to be r(t)5 exp[max(2t/t0,

2t/t1 2 1.35)], where t0 5 100 s and t1 5 760 s, which

reflects an initially rapid falloff in correlation, followed

by a slower decline. The smallest sampling interval of

theGPS drifters in question is 30min and the correlation

indistinguishable from zero according to Fig. 7. It is

therefore safe to assume the errors are uncorrelated

for our real-data example. Although the drifter sam-

pling rate allows us to avoid further discussion of the

autocorrelation function of GPS errors, accounting for

autocorrelation is a relatively easy extension (and is

implemented in the code).

The smoothing-spline algorithms described in section 3

are modified to use the t distribution as described

in appendix B. Table 3 shows that the conclusions

reached for Gaussian data in section 3 still apply with

t-distributed data.

7. Minimization with outliers

The goal here is to find a smooth solution in the

presence of outliers—points that do not appear to be of

the known error distribution for theGPS receiver shown

in section 6. These points are obviously problematic as

can be seen in Fig. 8, where individual data points jump

hundreds of meters and even several kilometers away

from its neighbors. Errors of this size are inconsistent

with the noise analysis of the preceding section, so the

goal here is to find a model path x(t) robust to this un-

characterized noise. What makes outliers ‘‘obvious’’ to

the eye is they appear as unexpectedly large motions,

inconsistent with the other motion for that path. The

smoothing-spline formulation is therefore useful, as it

assumes the motion at some order (e.g., acceleration) is

Gaussian, as shown in section 3b. In the nine drifters we

FIG. 7. The autocorrelation function of the GPS positioning er-

ror, with 99% confidence intervals shown in gray. The correlation

at a drifter sampling period of 30 min is indistinguishable

from zero.

FIG. 6. (top) The position error distribution of the motionless

GPS. The gray or black curves are the best-fit Gaussian or t dis-

tribution, respectively. (bottom) The distance error distribution

with the corresponding expected distributions from the Gaussian

and t distributions. The vertical line in the bottom panel shows the

95% error of the t distribution.
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are analyzing here, one drifter shows no obvious out-

liers, suggesting the issue may be related to how the

antennas are configured. This particular drifter serves

as a useful point of comparison.

Minimizing with the expected mean-square error (19)

produces a fit so poor it is not worth showing. Because

outliers add enormous amounts of variance, the ex-

pected mean-square error vastly underestimates the

spline tension—essentially chasing every outlier shown

in Fig. 8. Because some of the noise is uncharacterized,

this suggests using a method such as cross validation

might be effective. The orange line in Fig. 8 uses a

smoothing-spline fit, assuming Student’s t distributed

errors, but minimized with cross validation. This fit

performs relatively well, but, when compared with the

drifter 7, it is clear it still chases some outliers. The goal

in this section is to develop amethod robust to outliers in

cases where we know something about the noise.

The basic problem formulation is as follows: we

define a new ‘‘robust distribution,’’ probust, that includes

the known noise distribution, pnoise, plus an unknown (or

assumed) form of an outlier distribution, poutlier,

p
robust

(«)5 (12a)p
noise

(«)1ap
outlier

(«) . (33)

We consider a t distribution for pnoise with parameters

found from the GPS errors in section 6. The distribution

of poutlier is also set to be a t distribution, but with n 5 3

and s 5 50sgps, which roughly matches the total vari-

ance of the observed outliers. In our tests we varied

a from 0 up to 0.25, approximately the range of observed

outliers from the drifter datasets.

Throughout our attempts to smooth the noisy GPS

data we tried many different approaches to modifying

smoothing splines for robustness to outliers, but ultimately

found enormous gains are made by simply discarding

outliers while minimizing the expected mean-square error

(19). The results of this approach are shown in section 7a,

and we document our method to reliably estimate the

outlier distribution in section 7b.

a. Robust minimization

The challenge with outliers is we do not know their

distribution, so minimizing the expected mean-square

TABLE 3. As in Table 2, but with noise following a t distribution.

Stride neff

Optimal

mse

Reduced

dof

Blind

initial

Expected

mse

v22

1 8.2 11.8m2 0.3% 66.7% 7.7%

2 4.7 20.9m2 0.3% 47.3% 6.6%

4 2.8 38.0m2 0.1% 24.2% 4.4%

8 1.6 66.3m2 0.0% 8.2% 9.3%

16 1.2 101. m2 0.0% 8.1% 3.7%

v23

1 12.1 7.51m2
20.1% 36.2% 8.8%

2 6.8 13.4m2
20.1% 22.8% 7.0%

4 3.9 26.0m2
20.0% 11.5% 3.8%

8 2.2 47.5m2 0.0% 2.2% 3.2%

16 1.3 82.5m2 0.0% 12.6% 8.5%

v24

1 14.9 6.01m2
20.2% 35.3% 9.0%

2 8.6 10.5m2
20.2% 24.8% 7.0%

4 4.8 19.1m2
20.1% 7.8% 4.6%

8 2.7 36.4m2 0.0% 3.2% 2.7%

16 1.6 69.1m2 0.0% 18.9% 11.5%

FIG. 8. GPS position data for a 40-h window from drifter 6. The points are the recorded positions, and the black line is the optimal fit

using the ranged expected mean-square error. Data points with less than 0.01% chance of occurring are highlighted and are deemed

outliers. The light gray line is the optimal smoothing-spline fit for drifter 7, which has no apparent outliers and was released a few hundred

meters from drifter 6. The orange line is the smoothing-spline fit assuming t-distributed errors but using cross validation to minimize lT.

MARCH 2020 EARLY AND SYKUL SK I 461



error using (19) with the expected variance from the

robust distribution defined in (33) does not work.

Outliers add extra variance and therefore cause the

spline to be undertensioned (lT too small). Our method

excludes the outliers from the calculation of (19), where

outliers are defined as points unlikely to arise with the

known noise distribution. The ranged expected mean-

square error replaces s2 with

s2
b 5

ðcdf21[12(b/2)]

cdf21(b/2)

z2p
noise

(z) dz (34)

and discards all rows (and columns) of Sl where

(Sl 2 I)x , cdf21(b/2) or (Sl 2 I)x . cdf21[1 2 (b/2)].

To test this approach we generated data as before but

allowed a certain percentage of outliers a to be gener-

ated with an outlier distribution following (33). We

considered five values of b (1/50, 1/100, 1/200, 1/400, and

1/800) as well as b5 0, which is just (19). Testing across a

number of ensembles with outlier ratios a 5 0.0, 0.05,

0.10, and 0.25 we found that b 5 1/100 is overall the

best choice.

b. Full-tension solution and outlier distribution

The full-tension solution is defined as the maximum

allowable value of l given the known noise distribution.

That is, the spline fit is pulled away from the observa-

tions so that the distribution of observed errors xi2 x(ti)

matches the expected distribution pnoise(«). In cases

where the effective sample size neff is large, the full-

tension solution approximately matches the optimal

(minimal mean-square error) solution. In cases in which

the effective sample size is small, the full-tension solu-

tion is more akin to a low-pass solution [as increasing l is

equivalent to decreasing x(T)rms].

In the simplest case where there are no outliers, the full-

tension solution can be found by requiring the sample

variancematch the variance of pnoise(«).When outliers are

present, a more robust method of estimation is required.

After some experimentation, we found the most reliable

method of achieving full tension is to minimize the

Anderson–Darling test of pnoise(«) on the interquartile

range of observed errors. This method can be used to

estimate the outlier distribution and further refine both

the full-tension solution and the range over which the

expected mean-square error is computed.

The outlier distribution is estimated as follows. We

first assume the outlier distribution follows a t distribu-

tion with n5 3 and a, 0.5. If the spline is in full tension,

then the observed total variance can be used to find so

for the outlier distribution. From (33),

var
total

5 (12a) var
noise

1a3s2
o , (35)

which, given some a, can be solved for so. Our method

uses 100 values of a logarithmically spaced from 0.01 to

0.5 and chooses the value that minimizes the Anderson–

Darling test.With an estimate forprobust(«), the full-tension

solution can be refined by minimizing the Anderson–

Darling test of probust(«) on the interquartile range of

observed errors. This iterative process converges very

quickly to a good estimate for the outlier distribution

and the full-tension solution.

c. Extension to bivariate data

The strategies in this section are relatively easily ex-

tended to bivariate data. All error distributions are as-

sumed isotropic, and the outlier distribution can be

estimated by including the errors from both indepen-

dent directions. The ranged expectedmean-square error

calculation defined in section 7a uses the distance of the

error for its cutoff to remain invariant under rotation.

Application of this method to one of the GPS drifters

(drifter 6) is shown in Fig. 8. Although it is impossible to

know exactly how well the spline fit performed, com-

parison with drifter 7 (with no apparent outliers) sug-

gests our method successfully avoids chasing outliers.

d. Numerical implementation

The GPSSmoothingSpline inherits from the

BivariateSmoothingSpline class and assumes errors

follow a t distribution found in section 6. The class

projects latitude and longitude using a transverse

Mercator projection with the central meridian set to

the center of the dataset.

8. Discussion

The methods discussed in this paper are related to

other methods used to smooth and interpolate drifter

trajectories.

Yaremchuk and Coelho (2015) formulate a cost

function, their (9), based on PDFs of the drifter accel-

erations and the GPS errors. Setting their m 5 1 (they

choose m 5 0.9) this is equivalent to the special case of

(18) when S5 T5 2, where they have implicitly chosen

lT by assuming an infinite effective sample size, neff.

Their method for isolating outliers is nearly equivalent

to the iteratively reweighted least squares method de-

tailed in appendix B using a weight function similar to

Tukey’s biweight, (B6).

Elipot et al. (2016) apply their method to the Argos-

tracked surface drifters, which are significantly noisier

positions thanGPS errors but also follow a t distribution.

They assume a linear model for positions, equivalent to

assuming S 5 T 5 2 with lT / ‘. In the numeri-

cal implementation of this paper, this special case is
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implemented in the ConstrainedSpline class. The time-

dependent weight function used in Elipot et al. (2016)

requires manually specifying a weight for each point

used, and this method is therefore somewhat different

than the approach taken here.

Another technique used for smoothing and interpo-

lating drifter positions is kriging (Hansen and Poulain

1996); however, its relationship to smoothing splines is

less clear. In response to a study empirically comparing

kriging with smoothing splines (Laslett 1994), Handcock

et al. (1994) point out that kriging and smoothing splines

are just two specific parameter choices of a more general

class of splines defined by their covariance functions. In

the context of the maximum-likelihood equation for

smoothing splines [(18)], this generalization could be

modeled by including a covariance structure on the

physical process.

Overall, the method of this paper (in a loose sense)

generalizes a number of existing approaches for inter-

polation, especially in terms of flexibly allowing differ-

ent levels of smoothness and tension, and in terms of

application to non-Gaussian noise structures.

9. Conclusions

The method in this paper solves our problem of find-

ing smoothed, interpolated positions from a noisy GPS

drifter dataset with outliers. In more general terms, for

signals with second-order structure similar to a Matérn

process we found that

1) the spline degree S should be set to a value higher

than the high-frequency spectral slope of the process

(section 2) and

2) the optimal tension parameter can be estimated a

priori (section 4).

For GPS data, there appear to be three key steps for

using smoothing splines:

1) using a t distribution for the noise (section 6),

2) removing the mean velocity to make the bivariate

data stationary (section 5), and

3) using the ranged expected mean-square error for

robustness to outliers (section 7).
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APPENDIX A

Numerical Implementation

The B-splines are generated using the algorithm de-

scribed in De Boor (1978) with knot points determined

by (7) and (8). The matrix X with components X i
m de-

notes the mth B-spline at time ti. The column vector jm

represents the coefficients of the splines such that posi-

tions at time ti are given by x̂i, where x̂i 5X i
mj

m.

The smoothing spline condition in (16) can be aug-

mented to include a nonzero mean tension mu,

f5
1

N
�
N

i51

�

x
i
2 x(t

i
)

s
i

�2

1
1

Q
�
Q

q51

2

4

u(t
q
)2m

u

s
u

3

5

2

, (A1)

where we have taken T 5 1 for this calculation. The

discretized penalty function is

f5 (x2Xj)TS
21
(x2Xj)1 l

1
(Vj2m)T(Vj2m) ,

(A2)

where S denotes the covariance matrix describing the

measurement errors and we absorbed several constants

into l1. The matrix V
q
m is the spline velocity matrix such

that yq 5V
q
mj

m is the model velocity at time tq. To find

the coefficients that minimize this function, we take the

derivative with respect to j, set it to zero, and solve for j,

j5 (XT
S

21
X1l

1
V
T
V)21(XT

S
21
x1ml

1
V

T
i) , (A3)

where i is a vector of 1s. The operation V
Ti essentially

integrates the m splines and results in a column vector

with the integrated values.

We define the smoothing matrix as the linear operator

that takes observations x to their smoothed values x̂,

x̂5Slx. From this definition and (A3),

S
l
[X(XT

S
21
X1 l

1
V
T
V)21

X
T
S

21
(A4)

when m 5 0.

APPENDIX B

Iteratively Reweighted Least Squares

Using the t distribution is challenging because it does

not result in a linear solution for the coefficients as in

(A3). One solution is to use a search algorithm to di-

rectly look for maximum values. Alternatively, one can

use iteratively reweighted least squares (IRLS).

The idea with IRLS is to reweight the coefficients of

theGaussian, sg in (10), so that the resulting distribution
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looks like the desired distribution, for example, (31).

With the recollection that «i [ xi 2 x(ti, j), the mini-

mization condition dpg/dj 5 0 implies that

«
i

s2
g

›x(t
i
, x)

›j
5 0, (B1)

for the Gaussian distribution, whereas for the t distri-

bution this implies

«
i

s2
s

n1 1

n

�

11
«2i
ns2

s

�21
›x(t

i
, x)

›j
5 0: (B2)

This means that one can set

s2
g 5s2

s

n

n1 1

�

11
«2i
ns2

s

�

(B3)

to get amatching distribution. Of course, this is only true

if «i is already known, which initially it is not. So the

method becomes iterative—one starts with «i deter-

mined from the Gaussian fit and then determines a new

«i after reweighting sg. This method iterates until sg

stops changing. We can rewrite (B3) as a function of «i,

w
s
(«

i
)5s2

s

n1 («2i /s
2
s )

n1 1
. (B4)

From(B4) it is clear that if«i,ss then it is reweighted to a

smaller value, making the observation point more strongly

weighted. On the other hand, if «i . ss, then its relative

weighting decreases, and it is treated more as an outlier.

In more general terms, the weight function w(z)

for a PDF p(z) is found by setting 2›z logp(z) equal

to2›z logpg(z) of a Gaussian PDF, where w(z) replaces

s2
g, and then solving for w(z). The result is

z

w(z)
52

›
z
p

p
0w(z)52z

p

›
z
p
. (B5)

The same strategy could be used to reshape the PDF

of a Gaussian to match the desired distribution, but

here we simply match the minimization conditions of

the PDFs.

As a point of reference, Tukey’s biweight is given by

c(z)5

8

>

<

>

:

z

s2
tb

�

12
z2

c2s2
tb

�2

jzj, cs
tb

0 otherwise

, (B6)

which as a weight function is

w
tb
(«

i
)5

z

c(z)
. (B7)

In a practical sense, S21 in (A4) is replaced with

the diagonal matrix W [ diag[1/w(«i)] populated

with the reweighted values for each observation

such that

S
l
[X(XT

WX1 l
1
V
T
V)21

X
T
W . (B8)

This operator is used to compute the standard error

from the variances, SlS, where the variance is assumed

to be s2
sn/(n2 2) for each observation when using a

t distribution.

The smoothing-spline solution does depend on the

initial value ofw(«i) used in the IRLSmethod.However,

we find that for uniform initial weightings (e.g., all

values start with the square root of the variance), the

differences are not statistically significant from other

initial values.

APPENDIX C

Estimating the Variance of the Signal

Our method requires good estimates of the root-

mean-square velocity urms of the signal, to determine

the effective sample size and variance of the tensioned

derivative. Our approach is to compute the power

spectrum of the signal at the derivative of interest, and

sum the variance that is statistically significantly greater

than the expected variance of the noise.

Given a process observed with values xn at times

tn 5 nD where n 5 1, . . . , N, we estimate the mean of

its mth derivative by performing a least squares fit to

the polynomial xn [ pmt
m
n 1 pm21t

m21
n 1 . . . 1 p0. The

detrended time series is defined as ~xn [ xn 2 xn. The

power spectrum of this time series is

S
signal

( f
k
)5

D

N

�

�

�

�

�

�
N21

n50

x
n
exp(22pif

k
t
n
)

�

�

�

�

�

2

, (C1)

where the frequencies fk are given by fk 5 k/(ND). By

Plancherel’s theorem,

�
N21

k50

S( f
k
)
1

ND
5

1

ND
�
N21

i50

x2iD . (C2)

The power spectrum of themth derivative of the process

is computed as

S
(m)
signal( fk)5 (2pf

k
)2mS( f

k
) . (C3)

It is important to detrend the signal prior to computing

the derivative because, by assumption, the signal is pe-

riodic and has no secular trend.
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The noise, «i, has total variance s2 5 (1/N)�
N

i51«
2
i .

Because the noise is assumed to be uncorrelated, the

variance distributes evenly across all frequencies. The

spectrum of the noise is therefore

S
noise

( f
k
)5s2

D , (C4)

which immediately satisfies Plancherel’s theorem (C2).

The mth derivative of the noise has power spectrum

S
(m)
noise( fk)5s2

D(2pf
k
)2m . (C5)

The technique used here sums the variance of the

signal for a given frequency if it exceeds the expected

variance of the noise at the frequency by some thresh-

old. The estimate of power at each frequency follows a

x2 distribution with 2 degrees of freedom, so we choose

the threshold based on the 95th percentile of the ex-

pected distribution. And thus,

x
(m)
std 5 �

N21

k50

S
(m)
signal( fk)[S

(m)
signal( fk).qS

(m)
noise( fk)]

1

ND
, (C6)

where q ’ 20 for the 95th-percentile confidence.
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