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ABSTRACT

A comprehensive method is provided for smoothing noisy, irregularly sampled data with non-Gaussian
noise using smoothing splines. We demonstrate how the spline order and tension parameter can be chosen a
priori from physical reasoning. We also show how to allow for non-Gaussian noise and outliers that are typical
in global positioning system (GPS) signals. We demonstrate the effectiveness of our methods on GPS tra-
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jectory data obtained from oceanographic floating instruments known as drifters.

1. Introduction

In 2011 an array of floating ocean surface buoys
(drifters) were deployed in the Sargasso Sea to assess the
lateral diffusivity of oceanic processes (Shcherbina et al.
2015). Each drifter was equipped with a global posi-
tioning system (GPS) receiver recording locations every
30min. Addressing the primary goal of understanding
the processes controlling lateral diffusivity requires
significant processing of the drifter positions, including
removing mean flow, accounting for the large-scale
strain field, and analyzing the residual spectra for hints
of a dynamical process. However, it quickly became
clear that the GPS position data, which can have accu-
racies as low as a few meters (Wide Area Augmentation
System T and E Team 2016), were contaminated by
outliers with position jumps of hundreds of meters or
more. Prior to analysis, the position data require remov-
ing outliers as well as interpolating gaps to keep the po-
sition data synchronized in time across the drifter array.

The basic problem is ubiquitous: observations from
GPS receivers return observed positions x; at times ¢;
that differ from the true positions x,.(Z;) by some noise
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& = X; — Xyue(t;) with variance 0. The goal of smoothing
is to find the true position x.¢(#;) that is not contami-
nated by the noise, whereas the goal of interpolating is to
find the true position x,.(f) between observation times.
The approach taken here is to use smoothing splines.
This approach is relatively broad (Handcock et al. 1994;
Nychka 2000), and is related to the methods in Yaremchuk
and Coelho (2015) and Elipot et al. (2016) for smoothing
drifter trajectories, as discussed later.

Our model for the “true” path x(¢) is specified using
interpolating B-splines X*(¢) such that

x(1) = ; EX1 (), 1)

where K is the order (degree S = K — 1) of the spline.
For N observations we construct N B-splines such that
x(t;) = x; for appropriately chosen coefficients ¢&;. To
smooth the data, we choose new coefficients & that
minimize the penalty function

o=y 2[" x(tf)r ol (‘jﬁ‘) a @

i=1 o N f
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for some tension parameter A7 = 0. If Ay = 0then ¢ =0
and ¢; = &; because x(t;) = x;, but if Ay — o then this
forces x(¢) to a Tth-order polynomial (e.g., when T = 2,
the model is forced to be a straight line because it has no
second derivative). The resulting path x(¢) is known as a
smoothing spline and was first introduced in modern
form by Reinsch (1967), but according to De Boor
(1978) the idea dates back to Whittaker (1923). Once S
and T are chosen, the smoothing spline has one free
parameter (A7) and its optimal value can be found by
minimizing the expected mean-square error when the
true value of o is known (Craven and Wahba 1978).

Three issues must be addressed before smoothing
splines are applied to GPS data:

1) how to choose S and 7—and how these choices affect
the recovered power spectrum,

2) how to modify the spline fit to accommodate the non-
Gaussian errors of GPS receivers, and

3) how to identify and remove outliers.

To address these issues but also to serve as a practical
guide to other practitioners, we review B-splines in
section 2 and introduce the canonical interpolating
spline as the underlying model for path x(¢) in (1). We
demonstrate the effect that choosing S has on the
high-frequency slope of the power spectrum of the
interpolated fit.

Section 3 takes a broad look at smoothing splines and
the assumptions they make on the underlying process.
Many of the ideas presented in this section are known to
the statistics community, so here we present these ideas
from a more physical perspective. We show that the pen-
alty function in (2) can be formulated as a maximum-
likelihood problem and that applying tension is equivalent
to assuming a Gaussian distribution on the tensioned de-
rivative of the underlying process.

Section 4 uses ensembles from synthetic data that
mimic the oceanographic data to test a number of choices
that must be made. We establish that setting 7 = S'is a
reasonable choice. We show how the tension parameter
can be chosen a priori (without optimization of the mean-
square error) when the effective sample size (which we
define later) can be estimated from the data. This esti-
mate for effective sample size can be used to reduce the
coefficients & in the spline fit without increasing mean-
square error.

The second half of the paper addresses issues specific
to GPS position errors. In section 5 we discuss the as-
sumptions of stationarity and isotropy required for
bivariate smoothing splines. In section 6 we show that
GPS errors are not Gaussian distributed but rather are
t distributed, and we show how to modify our method
for a ¢ distribution. Section 7 addresses how to modify
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our method to make smoothing splines robust to out-
liers. We compare with alternative methods and con-
clude in sections 8 and 9, respectively.

A major outcome of this work is the implementation
of MATLAB classes for generating B-splines, interpo-
lating splines, smoothing splines, and a class specific to
smoothing GPS data (https://github.com/JeffreyEarly/
GLNumericalModelingKit). These classes are highlighted
throughout in relevant sections.

2. Interpolating spline

Assume that we are given N observations of a particle
position (¢, x;) with no errors. The simplest form of in-
terpolation is a nearest-neighbor method that assigns
the position of the particle to the nearest observations in
time. The resulting interpolated function x(z) is a poly-
nomial of order K = 1 (piecewise constant), shown in the
top row of Fig. 1. The next level of sophistication is to
assume a constant velocity between any two observa-
tions and to use that to interpolate positions between
observations, as shown in the second row of Fig. 1. This
means we now have a piecewise constant function dx/dt
that represents the velocity of the particle, shown in the
second row, second column, of Fig. 1. This is a polyno-
mial function of order K = 2.

It is less obvious how to proceed to a polynomial of
order K = 3. With N data points we can construct a
piecewise constant acceleration (the second derivative)
using the N — 2 independent accelerations computed
from finite differencing, but where to place knot points
that define the boundaries of the regions and how to
maintain continuity is less clear. The approach taken
here is to use B-splines.

a. B-Splines

A B-spline (or basis spline) of order K (degree S =
K — 1) is a piecewise polynomial that maintains nonzero
continuity across S knot points. The knot points are
a nondecreasing collection of points in time denoted
by 7;. The basic theory is well documented in De Boor
(1978), but here we present a reduced version tailored to
our needs.

The mth B-spline of order K = 1 is defined as

1 if 7 =t<r7
m m

+1. 3
0 otherwise 3)

xy0={
This is the rectangle function as shown in the first row,
first column, of Fig. 2. Given P knot points we can
construct P — 1 B-splines of order K = 1, although if a
knot point is repeated it results in a spline that is zero
everywhere. To represent an interpolating function x(¢)
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FIG. 1. An example of interpolating between seven data points using a spline function of order K. The data points are shown as circles,
and the interpolated function is shown as solid black lines. We show four different orders of interpolation K = 1, ..., 4 (rows) and their
nonzero derivatives (columns). The thin vertical gray lines are the knot points.

for the N observations of a particle position (f;, x;) we
define N + 1 knot points as

t m=1
—t
Tp= 0, +2 2’"*1 1<m=N. “4)
Iy m>N

This creates N independent basis functions that provide
support for the region t; = t = t (provided that the last
spline is defined to include the last knot point). The in-
terpolating function x(¢) is defined as x(r) = X, (¢)&", where
the coefficients ¢” are found by solving X! (#)&" = x.
The result of this process is shown in Fig. 1 for seven ir-
regularly spaced data points.

All higher-order (K > 1) B-splines are defined by
recursion,

t

-t t -1
X () + X (0).
tm+K—1 o tm tm+K - tm+1

®)

This creates splines that span across one additional knot
point at each order and maintain continuity across one
more derivative. Examples are shown in Fig. 2.

Any knot points that are repeated 7 times result in a
total of T — 1 splines of order 1 that are everywhere
zero. This has the effect of introducing discontinuities
in the derivatives for higher-order splines. For our pur-
poses, we use this feature to prevent higher-order splines

X50=

from crossing boundaries. For K = 2 order splines we
use N + 2 knot points at locations

£ m=2
T =1 bu 2<m=N. (6)
Iy m>N

This creates a knot point at every observation point
but repeats the first and last knot point. This has the
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FIG. 2. The B-splines and derivatives (columns) for orders K =
1,...,4 (rows).
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effect of terminating the first and last spline at the
boundary and creating N second-order B splines,
X2(t). The interpolating function x(¢) is defined as
x(t)= X2 (1)¢", where the coefficients & are found
by solving X2 (#)&" = x'. The second row of Fig. 1 shows
an example.

This process can be continued to higher-order B-splines.
For splines that are of even order, we create N + K knot
points with

4 m=K
K— —
Tm v = tm*K/Z K<m=N ’ (7)
ty m>N

and, for splines that are odd order, we create N + K knot
points with

£ m=K
K—odd t 1K+l I K+l
—odd 2 2
Tm - K+1 + 2 2 K<m§N
o 2
t m>N

®)

The knot points are chosen to create N splines for the N
data points such that the interpolated function x(¢)
crosses all N observations (#;, x;). The path x(r) is the
canonical interpolating spline of order K. Examples are
shown in Fig. 1.

The knot placements in (7) and (8) are equivalent to the
not-a-knot boundary conditions described in De Boor (1978)
and used in the cubic spline implementation in MATLAB.
In the usual formulation of the not-a-knot boundary condi-
tion, the knot positions do not change as a function of spline
order, and therefore additional constraints must be added at
each order—especially the requirement that the highest
derivative maintain continuity near the boundaries. In the
formulation here, these constraints are implicit in (7) and (8).

b. Numerical implementation

The root class in our suite of MATLAB classes is the
BSpline class, which evaluates a complete B-spline basis
set given a set of knot points. This class was used to
generate Fig. 2.

The interpolating spline used to generate Fig. 1 is im-
plemented in the InterpolatingSpline class—a subclass of
BSpline. This class generates interpolating splines of ar-
bitrary order given a set of data points (#;, x;), thus gen-
eralizing the cubic spline command built in to MATLAB.

c. Synthetic data

Throughout this paper we generate synthetic data for
both the signal and the noise. The velocity of the signal is
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generated from a bivariate Gaussian process known as
the Matérn (Lilly et al. 2017). The spectrum of the
Matérn is given by

2
S(w) = A )

(@2 AR

where w is the frequency, A sets the amplitude, p > 1
sets the high-frequency slope, and A sets the fre-
quency below which the signal looks increasingly
white. This spectrum has finite amplitude at low fre-
quencies and power-law falloff at high frequencies,
two physically realistic properties observed in ocean
surface drifters (Sykulski et al. 2016). Trajectories
from this velocity spectrum will be generated using
the ‘““maternoise’ function available in jLab (Lilly
2019). In our experiments, the parameter A is chosen
such that the square root of velocity variance in each
direction is t;ms = 0.20ms ™! and the damping scale is
A~1 =30min. Values of p are varied with p = 2, 3, and
4 so that the high-frequency spectrum is proportional
to w 2, w °, and o *. Velocities are sampled every
minute and are integrated to get positions. Figure 3
shows an example velocity spectrum of the signal
with p = 2.

The position data are contaminated with (white)
Gaussian noise with ¢ = 10m, a value chosen to re-
semble GPS errors. For all experiments we use a range
of strides, that is, subsampled versions of the underlying
process as input into the spline fits. A stride of 100 in-
dicates that the signal is subsampled to 1 in every 100
data points. This lets us evaluate the quality of fit against
different strides. In analyzing the quality of fits, we use
velocities when computing the power spectrum, but re-
port mean-square errors from positions.

d. Spline degree S

We first examine a synthetic signal uncontaminated by
noise, to examine the role of the spline degree S on the
interpolated fit. As noted in Craven and Wahba (1978),
the degree of the spline sets its roughness. In terms of the
power spectrum, this corresponds to the high-frequency
slope as can be seen in Fig. 3, which shows fits with § =
1,...,4. Setting S = 1 produces a high-frequency falloff
in the spline fit of w 2. Although this appears to be a
desirable feature when fitting to a process with true
slope w2, the mean-square error is consistently higher
(as indicated in the legend of Fig. 3).

The bottom panel of Fig. 3 shows the coherence be-
tween the spline fit and the true signal. A coherence of
1 indicates that the signals are perfectly matched at a
given frequency, while a coherence of 0 indicates that
the signals are unrelated. There is no discernible difference
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FIG. 3. (top) The velocity spectrum of a synthetic Lagrangian velocity generated from the
Matérn (black). The blue, red, and orange lines show the spectrum of the interpolating spline
fit to the data with a stride of 100 for § = 1, ..., 4, respectively. (bottom) The coherence
between the smoothed velocities and the true velocity. The dashed vertical line denotes the
Nyquist frequency of the strided data.
in coherence between spline fits with S =1, ...,4. The

coherence quickly drops to near zero at the same
frequency in all three cases. The implication here is
that the spline fits are essentially producing noise at
frequencies above the loss of coherence. This is why the
spline fits with shallower slopes (with more variance at
high, incoherent frequencies) produce a larger overall
mean-square error than those with steeper slopes (with
less variance at high, incoherent frequencies). The
conclusion here is that smoother is better: it is better
to use an unnecessarily high-order spline to avoid
adding extra noise at high frequencies.

3. Smoothing spline

A typical starting point for maximum likelihood is to
establish the probability distribution function (PDF) of
the errors, &; = x; — Xyye(t;)- The canonical example in
one dimension (e.g., Press et al. 1992) is to assume errors
are independently drawn from a Gaussian with the fol-
lowing probability distribution

1¢&?
x| 5,2
_ g

glo ) =—— 2, 10
o) = (10)

where o, is the standard deviation. This assumption
alone places no assumptions on the signal, only on the
structure of the noise.

The probability of the observed data given model
x(?) is

e SC e T

where we have taken o = 0,. Maximizing the probability
function in (11) is the same as minimizing its argu-
ment—this is the logarithmic likelihood (up to a con-
stant), called the penalty function

p=13 Ix_—x(’)r

(12)
i=1 o

Stated in this way this is the same as asking for the “least

squares’’ fit of the errors.

a. Smoothing-spline penalty function

The model used here is the canonical interpolating
spline of order K described in section 2. We have chosen
our knot points such that the model intersects the obser-
vations and this certainly maximizes (11) [and minimizes
(12)] because all the errors are zero, but the resulting
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distribution of errors (a delta function at zero) does not
resemble the assumed Gaussian distribution. Thus, ad-
ditional constraints are required if the assumed error
distribution is to be recovered.

The smoothing spline augments the penalty function
of (12) by adding a global constraint on the 7th deriv-
ative of the resulting function as in (2). If Az — 0 then
this reduces to the least squares fit in (12), but if Az —
then this forces the model to a Tth-order polynomial.

To interpret the first term of (2), consider a motionless
particle at true position x,. Using the N relevant obser-
vations x;, the sample mean X = (1/N)Y x; estimates the
particle’s position xy. The unbiased sample variance es-
timates the variance o of the noise, and is given by
62 = (1/N —1)Y(x; — X)*, the expected value of which
is (6%) =[1 — (1/N)]o>.

Now consider the opposite extreme in which the
particle is moving so fast (or the observations are so
sparse) that each observation is independent of its
neighbors. In this case, each observation must be con-
sidered separately, so the sample mean at time ¢#;is X; = x;
(i.e., we are summing over the single relevant observa-
tion). In this scenario we cannot produce a sample var-
iance, because there is only a single relevant observation
at time #;.

In practice, the number of relevant observations
is anywhere between 1 and N. Here we use the term
effective sample size, denoted by n.g, to describe the
typical number of observations being used to estimate
either the particle’s position or the variance of the
noise at any given time. In this context, the first term of
(2) is proportional to an ensemble of multiple estimates
of the sample variance

N
6’ = 12 [x, — x(¢)], (13)
Ni=1 i i
which is expected to scale as
- 1
(@) = 1-— |0, (14)
Mt

where 1<nlif =N is our definition of the effective
sample size of the sample variance. Revisiting the
limiting cases, as njyf — N the sample variance matches
the true variance; as nlf — 1, the sample variance
vanishes.

There is a simple physical interpretation for the sec-
ond term in (2). Consider the case 7 = 1 so that the
smoothing spline is a constraint on velocity. When av-
eraged over the integration time, the integral produces
the root-mean-square velocity u,,s such that the sec-

2 (1) §
ond term scales as u;, .. In general, where xi, ) is the
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root-mean-square of the 7Tth derivative, this means Ay

scales like
1 1
e >W

The interpretation of the smoothing spline is that the
two terms are balanced by a relative weighting of the
sample variance of the noise and mean-square of the 7th
derivative of the physical process. As discussed in
section 4, both x{7) and n' can be estimated a priori
such that a good initial estimate for A can be made.

(15)

b. Smoothing-spline maximum likelihood

The penalty function in (2) can be restated in terms of
maximum likelihood under some conditions (see chap-
ter 3.8 in Green and Silverman 1993). Assume that in
addition to knowing the distribution of errors as in (11),
we know how the velocity of the underlying physical
process is distributed. For example, in geophysical tur-
bulence the velocity probability distribution function is
like a Laplace distribution (Bracco et al. 2000). To re-
cover the smoothing spline, we consider the case where
the velocity PDF is Gaussian. Stated as maximum like-
lihood, this means at any given instant (and not just the
times of observation) we expect the model velocity to be
Gaussian. We discretize the problem by sampling the ve-
locity Q times t, = t; + gAt,, where At, = (ty — t,)/(Q — 1)
andg =0, ..., Q — 1. The maximum likelihood is thus
stated as

P15 )

2
(T)
v X (tq)

0
VY
< [T expd —2 . 16)
4=1 X2 2| KD

which is the joint probability of the error distribution
from (11) and the velocity distribution of the underlying
physical process. We include parameter y to set the
relative weighting between the two distributions, al-
though it could be absorbed into the definition of x(7).
Writing (16) as a penalty function (after converting the
product of exponentials into exponentials of sums),
we have

2
2
1 N - t. x(T) t
_logP:_z w +ZZ ’Eq) +C, (17)
2i:1 o 2‘1:1 xgmz

where C is a constant. Setting y = N/Q and renormal-
izing the penalty function by 2/N (which has no effect on
the location of its minimum), (17) can be written as
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&, (1) 2 1 & X(T)(tq)
2 s e g R
Apart from the discretization of the integral, (18) is the
same as the penalty function in (2).

There is an important special case when tension is
applied at the same order as the spline, 7 = S. In this
case the spline is piecewise constant for x'”) with exactly
N — T'unique values. The parameter y = N/(N — T) ~ 1
and (16) can be simplified. This case is appealing be-
cause only the N — T unique values of the derivative x(
that can be computed from N data points are being used
for tension, which is not the case when 7 < S.

This maximum-likelihood perspective shows that
adding tension to the penalty function is equivalent to
assuming a higher-order derivative in the model (e.g.,
velocity if 7= 1) is Gaussian. This is therefore making
an assumption about the underlying physical process of
the model. This is in contrast to the first term, which is
entirely a statement about measurement noise.

Writing the smoothing spline as a maximum-likelihood
condition (16), suggests that if the underlying physical
process has a nonzero mean value in tension, the fit will
not behave as expected. However, smoothing splines can
be easily modified to accommodate a mean value in
tension, as shown in appendix A.

¢. Optimal parameter estimation

For a given choice of T'and A 7, the minimum solution to
(2) can be found analytically [see Teanby (2007) and our
appendix A]. Once the solution is found the smoothing
matrix S, is defined as the matrix that takes observations
x and maps them to their smooth values, ¥ = S, x.

The free parameter A7 is a relative weighting between
the two terms in (2). Choosing its optimal value can be
done by minimizing the expected mean-square error
(Craven and Wahba 1978),

1 , 207 )
MSEA) = NH(SA = Dx||” + WTTSA -0, 19)
where || ||? is the Euclidean norm, Tr indicates the trace,
and | is the identity matrix.

A significant amount of the literature on smoothing
splines is devoted to minimizing the mean-square error
when the variance o” is not known. Craven and Wahba
(1978) and Wahba (1978) use cross validation to esti-
mate o and minimize mean-square error. Recent work
comparing different estimators shows no single tech-
nique to be optimal (Lee 2003). For our application,
however, the errors in GPS data can be relatively easily
established, as shown in section 6.
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The mean-square error in (19) is a combination of the
sample variance and the variance of the mean. As al-
ready discussed in the context of the penalty function
¢ in section 3a, the first term in (19) is an ensemble
of sample variances, and therefore, by combining (13),
(14), and (19) we obtain

_ 1 21 _ 2
(1 ngfr>a =),

The second term in (19) is proportional to 2 times the
squared standard error, that is, the variance of the sample
mean. As discussed in Teanby (2007), the quantity S, is
the covariance matrix with the squared standard error
along the diagonal and thus the mean-square standard
error is given by (1/N)Tr(S,%). The variance of the
sample mean is known to scale inversely with the number
of samples being used to estimate the mean. We use this
to define the effective sample size of the variance of the
mean, nSE with

(20)

o 1
——=—TI1(S,%).
WE-N 1(S,%)

1)

Taking the measures of effective sample size as func-
tions of A, the mean-square error can be expressed by
combining (19)—(21):

0.2

0.2
MSE()\) = 2@ ~ vart
eff eff

(22)

If one assumes nY¥ =ndE, then the expected mean-

square error from (19) is equal to o”/ne. Although not
shown here, in an empirical analysis we find that n} and
nSE are approximately equal, although n'¥ becomes
highly variable when Sk approaches 1. These measures
of effective sample size can be used to estimate the value
of A7 necessary for optimal tension without minimizing
the expected mean-square error.

The definition of effective sample size used here is
related to, but not the same as, the notion of degrees of
freedom used in Cantoni and Hastie (2002) and refer-
ences therein.

4. Spline order, tension order, and the spectrum

With a model path [(1)], a penalty function [(2)], and a
minimization condition [(19)], we have all of the primary
pieces to create a smoothing-spline interpolant to the
data. However, a number of choices still must be made.
In this section we use synthetically generated data to
represent our physical process, and contaminate the
process with Gaussian noise as described in section 2c.
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TABLE 1. The 68th-percentile range of increase in mean-square error from the optimal fit.
T
1 2 3 4 5

1 33.8%-80.3%

2 14.0%-75.1% 0.8%-12.1%
S 3 17.1%-77.5% 1.0%-13.1% 0.0%—-4.5%

4 22.8%-81.9% 1.0%-14.5% 0.0%-4.6% 0.0%-6.3%

5 27.6%-91.4% 0.8%-15.4% 0.0%—-4.6% 0.0%-6.1% 0.0%-12.8%

We test our ability to recover the signal and examine the
effects of changing the spline and tension order on the
mean-square error and the resulting spectrum.

The results of this section are empirical, and we ac-
knowledge upfront that any conclusions reached may
depend on our particular choice of physical model
generating the signal. Nevertheless, our expectation is
that the conclusions are “O(1)” correct and are appli-
cable, at least, to our GPS-tracked drifter dataset.

a. Tension degree T

Given a smoothing spline of degree S, the tension in
the penalty function (2) can be applied at any degree
T = S. We use the synthetic data for the three different
slopes to empirically establish the relationship between
the tension degree T and the spline degree S.

ForS§=1,...,5and all T = S we minimize the mean-
square error against the true values. The minimization is
performed for 200 ensembles of noise and signal with
three slopes (o 2, o °, and o *) and five different
strides. For a given slope, stride, and realization of noise,
we identify the minimum mean-square error across S
and 7T and compare all values of S and 7 as a percentage
increase relative to that minimum. After aggregating
across slopes, strides, and ensembles, the 68% confi-
dence range is shown in Table 1. The table shows that
setting 7' = S is not always optimal but it is never sig-
nificantly worse than the optimal choice. Thus for the
remainder of the paper we set 7 = S.

b. Loss of coherence

The loss of coherence defines the time scale below
which the smoothing spline is not providing useful in-
formation. A reasonable hypothesis is that this scale is
related to the effective sample size, n.s because this
indicates how many points are being used to estimate
the true value. Therefore, the loss of coherence occurs at
the effective Nyquist, which we define as

1
f;eff = .
2n . At

(23)

In practice, we use nS§ because it is less variable than n)3
for values near 1 and is the more direct measure of how

many points are being used to estimate the model path.
Figure 4 shows the power spectrum and coherence of
optimal tension fits for three different strides of the data.
In each case (23) indicates the approximate value where
the coherence drops below 0.5.

¢. Reduced spline coefficients

One practical consideration when working with
large datasets is the computational cost of creating the
spline fit, which is limited by the rate of solving for the
spline coefficients. It is beneficial to reduce knot
points (and therefore total splines) where possible. A
reasonable strategy is that when the effective sample
size is large, as measured by (21), we avoid placing a
knot point at every data point—essentially “‘skipping”’
data points.

To test this idea, we find the optimal fit over a range of
different strides (which varies the effective sample size)
and increase the number of skipped knot points until the
mean-square error starts to rise. We find that we can skip
max[1, floor(2n.y/3)] knot points without sacrificing
precision. The column labeled “optimal mse’” in Table 2
indicates the optimal fit in which one knot point is cre-
ated for every observation point, whereas the reduced
degrees of freedom (“‘reduced dof”’) column indicates a
fit in which the number of knot points is reduced. In
some cases the optimal mean-square error improves
with fewer knot points. This means that, when handling
large datasets, we can reduce the number of splines
being used if the effective sample size is large, and we
can ‘“‘chunk” the data (split them into multiple inde-
pendent pieces) when the effective sample size is small.

d. Interpolation condition

To estimate Ay from (15), we estimate the mean-
square value of a derivative of the process, x{1) (see
appendix C) and the effective sample size, n.¢. We argue
that effective sample size should vary based on the rel-
ative size of the measurement errors to the speed of
motion. For example, if the position errors are only 1 m,
but a particle typically travels 10 m between measure-
ments, then it is hardly justifiable to increase the tension

so that the smoothing spline misses the observation
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FIG. 4. (top) The uncontaminated velocity spectrum of the signal (black) and velocity spectrum
of the noise (red). The observed signal is the sum of the two. The blue, red, and orange lines show
the spectrum of the smoothing spline that is best fit to the observations with all, 1/10th, and 1/100th
of the data, respectively. (bottom) The coherence between the smoothed signals and the true
signal. The vertical dashed lines show the effective Nyquist computed using (23).

points by 1 m. There is not enough statistical evidence to
suggest that the particle did not go right through the
observation point. On the other hand, if the position
errors are 1 m, but the particle typically travels 10 cm
between measurements, nearby measurements provide
more information about the particle’s true position
during that time, so our estimate of the particle’s true
position is closer to a mean of the nearby observations.

This idea can be made more rigorous by stating that a
change in position, Ax, is statistically significant if it
exceeds the position errors o by some factor. Assuming
the physical process has a characteristic velocity scale,
Urms, We use this concept to define I' as

= (24)

u_ At’
ms

where At is the typical time between observations. This
argument suggests that effective sample size should be
proportional to I'; that is,

nte =max(1, C-T™), (25)
where C and m are unknown constants, and we prevent
the effective sample size from dropping below 1. Intuitively
this means as long as the particle does not move too far

between observations, nearby observations help to es-
timate the true position of the particle.

To test the relationship between I' and effective
sample size, we compute the optimal smoothing spline
for a range of values of I' (created by subsampling the
signal) for three different spectral slopes (0 2, o >,
and @~ *). The value nSE is computed from the optimal
solution for 50 ensembles and shown in Fig. 5. The
fits are remarkably good, but depend on the slope.
Processes with shallower slopes (rougher trajectories)
yield a smaller effective sample size for a given value
of I'.

Using the interpolation condition I' to estimate ef-
fective sample size, we set nl;; = 14", the empirically
determined best fit for slope w °. For all spline fits

WE use
initial _ 1 1
Alnit 1 _ (1—;) [ (T)}

(26)

ms

as an initial estimate for the optimal smoothing param-
eter, where x(D) in (26) and 1, in (24) are estimated
using the method described in appendix C. The scaling
law for nl; can be estimated analytically. Let position

observations be given by x;, where
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TABLE 2. Mean-square error (mse) and effective sample size for a
range of strides and smoothing-spline methods.

Optimal Reduced Blind Expected

Stride R mse dof initial mse
02

1 8.6 11.5m? 0.1% 56.4% 7.4%

2 49 20.4m? 0.0% 36.3% 2.8%

4 2.9 34.2m? 0.1% 20.0% 1.7%

8 1.7 55.9m? 0.0% 5.6% 1.0%

16 1.2 81.8m? 0.0% 3.6% 0.5%
-3

w

1 125 7.64 m> -0.1% 38.6% 6.4%

2 7.1 13.4m? -0.1% 20.4% 3.5%

4 4.1 23.5m? -0.0% 9.8% 22%

8 2.3 41.8m? 0.0% 1.7% 1.2%

16 14 679m’ 0.0% 9.6% 0.6%
P

1 156 5.69 m? -0.1% 33.8% 7.9%

2 9.0 10.5 m? —0.1% 18.6% 51%

4 5.0 18.6m? -0.0% 8.6% 2.4%

8 2.8 332m? 0.0% 32% 1.5%

16 1.6 57.6m> 0.0% 15.4% 0.8%

x,=u_ iAt+e, with & =./7(0,0). 27)

If the effective sample size is (n), then the particle
changes position by (n)u, At between samples. Applying
the two-sample z test, two positions will be considered
different for z > z,;,, Wwhere

23
(mu_ At ) = (zo'\/i) ‘ (28)

72 2 urmSAt
—+
n

7=

S

Ny
—~

n

Ny

The power law in (28) is close to the empirically derived
power laws shown in Fig. 5. This suggests that the co-
efficient C in (25) can be related to z, a measure of
statistical significance.

e. Optimal fits

Table 2 summarizes the key results of this section by
applying a smoothing spline (§ = 3) to 200 ensembles
with three different slopes (0 % w °, and »~*) and five
different strides. When the algorithm uses true values,
uncontaminated by noise, we consider the process to be
“unblinded,” in contrast to ‘“blind” methods, in which
the algorithm only uses noisy data. The second and third
columns show the effective sample size and average
mean-square error when the smoothing spline is applied
using the true values (i.e., unblinded) to minimize the
mean-square error—this is the lower bound. The fourth
column shows average increase in mean-square error
when reducing the number of spline coefficients as
documented in section 4c. There is almost no change in
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FIG. 5. Effective sample size from the standard error vs I'.

mean-square error, and therefore, all subsequent methods
(whether blind or unblind) use this technique. The fifth
column uses (26) from section 4d to provide a (blind)
initial guess of the tension parameter. The results are
mixed—a typical increase in mean-square error is
30%-50% when the effective sample size is large. While
this seems large, this is a small fraction of the total noise
variance; for example, an optimal mean-square error of
6m? increases to 8 m* when the total variance is 100 m*.
Nearly optimal fits can be found using (19), as shown in
the last column of the table.

f- Numerical implementation

The numerical implementation of the methods in
this section are available in the SmoothingSpline class,
which subclasses BSpline. This class is initialized with
three required parameters: a set of data points (#;, x;) and
an error distribution.

5. Bivariate smoothing splines and stationarity

Up to this point we have considered univariate data,
(t;, x;), but GPS position data are fundamentally bivar-
iate. The term ‘“‘bivariate” in the context of splines is
often used to denote splines defined on two independent
variables—however, in this context we define bivariate
to mean two dependent variables (e.g., x and y) and one
independent variable (e.g., ?).

The trivial approach to working with bivariate data is
to treat each direction independently—that is, minimize
A% and A independent of each other. However, the
underlying physical process is often isotropic. In the
context of the maximum-likelihood formulation of
smoothing splines in (18), this means we expect x{T)
(the rms value of the tensioned variable) to be the same
in all directions (invariant under rotation). This how-
ever does not mean that A, should necessarily equal A,
To be explicit, if
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(29)

then, even if x{7) = y{7)_ the effective sample sizes n%; and
n may differ if there is any mean velocity because, as shown
in section 4d, effective sample size depends on velocity.
Therefore, to assume isotropy in A7 and use a bi-
variate smoothing spline, the mean velocity from the
underlying process must be removed. What qualifies
as mean and fluctuation rarely has a clear answer,
but a reasonable option is letting a polynomial of degree
T + 1 define the mean. This has the added benefit of
removing a constant nonzero tension value, which as
shown in section 3b, changes the problem formulation.
It is stationarity, not isotropy, that requires removing
the mean velocity. The effective sample size is shown to
be dependent on rms velocity, so if velocity varies in
time, then the optimal effective sample size varies as
well. This means not only do smoothing splines require
stationarity in the tensioned variable x'” as shown in
section 3b, but they also require stationarity in the velocity
x to be effective. This last requirement can be solved by
either removing the mean (as suggested here), or seg-
menting observations into locally stationary chunks.

a. Assessing errors

Removing the mean or some other low-passed version
of the data means the total smoothing matrix is a com-
bination of the low-passed and high-passed smoothing
matrices. Once this matrix is computed, it can be used to
compute the standard errors.

We first create a low pass filter to capture the mean
component of the flow using a simple polynomial fit
X =Sx and then define the residual as our stationary
part, X' =x — X. We now compute the smoothing spline
as usual on the residual, x;, = §,x'. So the total, smoothed
path is

f(=i+x;\=§x+S)\(x—§x)=(§+S)\—SA§)XESTX.
(30)

From this we can compute the covariance matrix and the
standard error.

b. Numerical implementation

The BivariateSmoothingSpline class is initialized with
data (¢;, x;, y;) and a distribution. For a spline of degree
S = T, a spline of degree S + 1 is used to remove the
mean in each direction. With a Gaussian distribu-
tion this is simply a least squares polynomial fit. By as-
sumption, the residual data are stationary and isotropic,
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so the tension parameter Ay is applied equally in each
direction. Minimization is performed on the sum of the
expected mean-square errors in each direction.

6. GPS dataset

The primary dataset considered here is nine sur-
face drifters deployed in the Sargasso Sea in the
summer of 2011 (Shcherbina et al. 2015). In the past,
such drifters used the Argos positioning system, which
has significantly poorer temporal coverage and posi-
tion accuracy (Elipot et al. 2016), but recently most
surface drifters have employed GPS receivers and
transmitted their data back through Argos or Iridium
satellites.

The GPS receiver sits on the surface drifter and col-
lects position data, but because of atmospheric condi-
tions or ocean waves, the receivers are sometimes
unable to obtain a position, or when they do, it is highly
inaccurate. Despite nominal accuracies of a few meters,
it is often the case that some positions are off by more
than 1000m, as can be seen in Fig. 8. Applying a
smoothing-spline fit using the method in section 3 pro-
duces an extremely poor fit, with clear overshoots to bad
data points.

GPS error distribution

We characterize the GPS errors by considering data
from a motionless GPS receiver allowed to run for 12 h.
The GPS receiver used in this test is not the same as the
one used for the drifters (because it was no longer
available) but should produce errors similar enough for
this analysis.

The position recorded by the motionless GPS are as-
sumed to have isotropic errors with mean zero, which
means the positions themselves are the errors. The PDF
of the combined x and y position errors are shown
in Fig. 6.

The error distribution is first fit to a zero-mean
Gaussian PDF (10). The maximum-likelihood fit is
found by computing the standard deviation of the sam-
ple, which is found to be o =~ 10 m and shown as the gray
line in Fig. 6. However, it is clear the error distribution
shows much longer tails than the Gaussian PDF.

The Student’s ¢ distribution is a generalization of the
Gaussian that produces longer tails and is defined as

()

82 —-(v+1)12
ps(s|v, 0'?) = = (l + —) , (31)
O'S\/V’ITF(%) oy

where the o parameter scales the distribution width and
the v parameter sets the number of degrees of freedom
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FIG. 6. (top) The position error distribution of the motionless
GPS. The gray or black curves are the best-fit Gaussian or ¢ dis-
tribution, respectively. (bottom) The distance error distribution
with the corresponding expected distributions from the Gaussian
and ¢ distributions. The vertical line in the bottom panel shows the
95% error of the ¢ distribution.

[as v — oo, (31) becomes a Gaussian]. The variance is
o = o?[v/(v — 2)] and only exists for » > 2. Minimizing
the Anderson-Darling test to find the best-fit ¢ distri-
bution to the data, we find parameters oy ~ 8.5m and
v ~ 4.5 shown as the black line in Fig. 6. Different
choices in GPS receivers and using the Kolmogorov—
Smirnoff test results in very similar parameters; that is,
oy~ 8-10m and v =~ 4-6.

The position error distributions imply a combined
distance error distribution by computing &, = (g2 + 85)1/2
and is shown in the lower panel of Fig. 6. With Gaussian
noise this results in a Rayleigh distribution,

_& lej
pr(sd|0'g) = U—é exp (202) ,

4

(32)

as shown by the gray line. The distance error distribution
from t-distributed noise is computed numerically and is
shown by the black line. Around 95% of distance errors
are within 30 m.

Figure 7 shows the autocorrelation function of the
GPS position errors and the 99% confidence intervals.
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FIG. 7. The autocorrelation function of the GPS positioning er-
ror, with 99% confidence intervals shown in gray. The correlation
at a drifter sampling period of 30min is indistinguishable
from zero.

We find a rough empirical fit to be p(7) = exp[max(—7/t,
—1/t; — 1.35)], where t, = 100s and t; = 760s, which
reflects an initially rapid falloff in correlation, followed
by a slower decline. The smallest sampling interval of
the GPS drifters in question is 30 min and the correlation
indistinguishable from zero according to Fig. 7. It is
therefore safe to assume the errors are uncorrelated
for our real-data example. Although the drifter sam-
pling rate allows us to avoid further discussion of the
autocorrelation function of GPS errors, accounting for
autocorrelation is a relatively easy extension (and is
implemented in the code).

The smoothing-spline algorithms described in section 3
are modified to use the ¢ distribution as described
in appendix B. Table 3 shows that the conclusions
reached for Gaussian data in section 3 still apply with
t-distributed data.

7. Minimization with outliers

The goal here is to find a smooth solution in the
presence of outliers—points that do not appear to be of
the known error distribution for the GPS receiver shown
in section 6. These points are obviously problematic as
can be seen in Fig. 8, where individual data points jump
hundreds of meters and even several kilometers away
from its neighbors. Errors of this size are inconsistent
with the noise analysis of the preceding section, so the
goal here is to find a model path x(¢) robust to this un-
characterized noise. What makes outliers “obvious” to
the eye is they appear as unexpectedly large motions,
inconsistent with the other motion for that path. The
smoothing-spline formulation is therefore useful, as it
assumes the motion at some order (e.g., acceleration) is
Gaussian, as shown in section 3b. In the nine drifters we
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TABLE 3. As in Table 2, but with noise following a ¢ distribution.

EARLY AND SYKULSKI

Optimal Reduced Blind Expected
Stride  Aegr mse dof initial mse
-2
w
1 8.2 11.8 m? 0.3% 66.7% 7.7%
2 4.7 20.9 m? 0.3% 47.3% 6.6%
4 2.8 38.0m? 0.1% 24.2% 4.4%
8 1.6 663m> 0.0% 8.2% 9.3%
16 1.2 101. m? 0.0% 8.1% 3.7%
w3
1 121 7.51 m? -0.1% 36.2% 8.8%
2 6.8 13.4m? -0.1% 22.8% 7.0%
4 3.9 26.0 m? -0.0% 11.5% 3.8%
8 22 47.5m? 0.0% 2.2% 32%
16 1.3 82.5m? 0.0% 12.6% 8.5%
—4
w
1 149 6.01 m? -0.2% 353% 9.0%
2 8.6 10.5m? -0.2% 24.8% 7.0%
4 4.8 19.1 m? -0.1% 7.8% 4.6%
8 2.7 36.4 m? 0.0% 3.2% 2.7%
16 1.6 69.1 m? 0.0% 18.9% 11.5%

are analyzing here, one drifter shows no obvious out-
liers, suggesting the issue may be related to how the
antennas are configured. This particular drifter serves
as a useful point of comparison.

Minimizing with the expected mean-square error (19)
produces a fit so poor it is not worth showing. Because
outliers add enormous amounts of variance, the ex-
pected mean-square error vastly underestimates the
spline tension—essentially chasing every outlier shown
in Fig. 8. Because some of the noise is uncharacterized,
this suggests using a method such as cross validation
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might be effective. The orange line in Fig. 8 uses a
smoothing-spline fit, assuming Student’s ¢ distributed
errors, but minimized with cross validation. This fit
performs relatively well, but, when compared with the
drifter 7, it is clear it still chases some outliers. The goal
in this section is to develop a method robust to outliers in
cases where we know something about the noise.

The basic problem formulation is as follows: we
define a new “‘robust distribution,” popust, that includes
the known noise distribution, p,,4ise, plus an unknown (or
assumed) form of an outlier distribution, pougicr,

probust(e) = (1 - a)pnoise(s) + apoutlier(s)' (33)
We consider a ¢ distribution for p,eise With parameters
found from the GPS errors in section 6. The distribution
of poutiier 1S also set to be a ¢ distribution, but with v = 3
and o = 500, which roughly matches the total vari-
ance of the observed outliers. In our tests we varied
a from 0 up to 0.25, approximately the range of observed
outliers from the drifter datasets.

Throughout our attempts to smooth the noisy GPS
data we tried many different approaches to modifying
smoothing splines for robustness to outliers, but ultimately
found enormous gains are made by simply discarding
outliers while minimizing the expected mean-square error
(19). The results of this approach are shown in section 7a,
and we document our method to reliably estimate the
outlier distribution in section 7b.

a. Robust minimization

The challenge with outliers is we do not know their
distribution, so minimizing the expected mean-square

4.5
4 L
3.5
3 L
25
£ >
>
15¢
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drifter 7 fit £
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drifter 6 ranged fit | | 4
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FIG. 8. GPS position data for a 40-h window from drifter 6. The points are the recorded positions, and the black line is the optimal fit
using the ranged expected mean-square error. Data points with less than 0.01% chance of occurring are highlighted and are deemed
outliers. The light gray line is the optimal smoothing-spline fit for drifter 7, which has no apparent outliers and was released a few hundred
meters from drifter 6. The orange line is the smoothing-spline fit assuming ¢-distributed errors but using cross validation to minimize A 7.
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error using (19) with the expected variance from the
robust distribution defined in (33) does not work.
Outliers add extra variance and therefore cause the
spline to be undertensioned (A 7 too small). Our method
excludes the outliers from the calculation of (19), where
outliers are defined as points unlikely to arise with the
known noise distribution. The ranged expected mean-
square error replaces o with

cdf ! [1-(8/2)]
o= [ (34)

Z2pnoise (Z) dZ
cdf~1(B/2)

and discards all rows (and columns) of S, where
(Sy — Dx < cdf " (B/2) or (S, — Dx > cdf '[1 — (B/2)].

To test this approach we generated data as before but
allowed a certain percentage of outliers a to be gener-
ated with an outlier distribution following (33). We
considered five values of 8 (1/50, 1/100, 1/200, 1/400, and
1/800) as well as B = 0, which is just (19). Testing across a
number of ensembles with outlier ratios « = 0.0, 0.05,
0.10, and 0.25 we found that 8 = 1/100 is overall the
best choice.

b. Full-tension solution and outlier distribution

The full-tension solution is defined as the maximum
allowable value of A given the known noise distribution.
That is, the spline fit is pulled away from the observa-
tions so that the distribution of observed errors x; — x(t;)
matches the expected distribution ppese(e). In cases
where the effective sample size n.g is large, the full-
tension solution approximately matches the optimal
(minimal mean-square error) solution. In cases in which
the effective sample size is small, the full-tension solu-
tion is more akin to a low-pass solution [as increasing A is
equivalent to decreasing x{1)].

In the simplest case where there are no outliers, the full-
tension solution can be found by requiring the sample
variance match the variance of ppise(¢). When outliers are
present, a more robust method of estimation is required.
After some experimentation, we found the most reliable
method of achieving full tension is to minimize the
Anderson-Darling test of p,is(€) on the interquartile
range of observed errors. This method can be used to
estimate the outlier distribution and further refine both
the full-tension solution and the range over which the
expected mean-square error is computed.

The outlier distribution is estimated as follows. We
first assume the outlier distribution follows a ¢ distribu-
tion with v = 3 and « < 0.5. If the spline is in full tension,
then the observed total variance can be used to find o,
for the outlier distribution. From (33),

var 1—a)var_. +a3c2,
noise o

(35)

total = (
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which, given some «, can be solved for o,. Our method
uses 100 values of « logarithmically spaced from 0.01 to
0.5 and chooses the value that minimizes the Anderson—
Darling test. With an estimate for p,ypus(€), the full-tension
solution can be refined by minimizing the Anderson—
Darling test of popust(€) On the interquartile range of
observed errors. This iterative process converges very
quickly to a good estimate for the outlier distribution
and the full-tension solution.

c. Extension to bivariate data

The strategies in this section are relatively easily ex-
tended to bivariate data. All error distributions are as-
sumed isotropic, and the outlier distribution can be
estimated by including the errors from both indepen-
dent directions. The ranged expected mean-square error
calculation defined in section 7a uses the distance of the
error for its cutoff to remain invariant under rotation.

Application of this method to one of the GPS drifters
(drifter 6) is shown in Fig. 8. Although it is impossible to
know exactly how well the spline fit performed, com-
parison with drifter 7 (with no apparent outliers) sug-
gests our method successfully avoids chasing outliers.

d. Numerical implementation

The GPSSmoothingSpline inherits from the
BivariateSmoothingSpline class and assumes errors
follow a ¢ distribution found in section 6. The class
projects latitude and longitude using a transverse
Mercator projection with the central meridian set to
the center of the dataset.

8. Discussion

The methods discussed in this paper are related to
other methods used to smooth and interpolate drifter
trajectories.

Yaremchuk and Coelho (2015) formulate a cost
function, their (9), based on PDFs of the drifter accel-
erations and the GPS errors. Setting their u = 1 (they
choose u = 0.9) this is equivalent to the special case of
(18) when § = T = 2, where they have implicitly chosen
A7 by assuming an infinite effective sample size, n°™.
Their method for isolating outliers is nearly equivalent
to the iteratively reweighted least squares method de-
tailed in appendix B using a weight function similar to
Tukey’s biweight, (B6).

Elipot et al. (2016) apply their method to the Argos-
tracked surface drifters, which are significantly noisier
positions than GPS errors but also follow a ¢ distribution.
They assume a linear model for positions, equivalent to
assuming § = T = 2 with Ay — oo. In the numeri-
cal implementation of this paper, this special case is
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implemented in the ConstrainedSpline class. The time-
dependent weight function used in Elipot et al. (2016)
requires manually specifying a weight for each point
used, and this method is therefore somewhat different
than the approach taken here.

Another technique used for smoothing and interpo-
lating drifter positions is kriging (Hansen and Poulain
1996); however, its relationship to smoothing splines is
less clear. In response to a study empirically comparing
kriging with smoothing splines (Laslett 1994), Handcock
et al. (1994) point out that kriging and smoothing splines
are just two specific parameter choices of a more general
class of splines defined by their covariance functions. In
the context of the maximume-likelihood equation for
smoothing splines [(18)], this generalization could be
modeled by including a covariance structure on the
physical process.

Overall, the method of this paper (in a loose sense)
generalizes a number of existing approaches for inter-
polation, especially in terms of flexibly allowing differ-
ent levels of smoothness and tension, and in terms of
application to non-Gaussian noise structures.

9. Conclusions

The method in this paper solves our problem of find-
ing smoothed, interpolated positions from a noisy GPS
drifter dataset with outliers. In more general terms, for
signals with second-order structure similar to a Matérn
process we found that

1) the spline degree S should be set to a value higher
than the high-frequency spectral slope of the process
(section 2) and

2) the optimal tension parameter can be estimated a
priori (section 4).

For GPS data, there appear to be three key steps for
using smoothing splines:

1) using a ¢ distribution for the noise (section 6),

2) removing the mean velocity to make the bivariate
data stationary (section 5), and

3) using the ranged expected mean-square error for
robustness to outliers (section 7).
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APPENDIX A

Numerical Implementation

The B-splines are generated using the algorithm de-
scribed in De Boor (1978) with knot points determined
by (7) and (8). The matrix X with components X de-
notes the mth B-spline at time ;. The column vector &
represents the coefficients of the splines such that posi-
tions at time 7; are given by &', where ¥ = X! £".

The smoothing spline condition in (16) can be aug-
mented to include a nonzero mean tension g,

2

N x; — x(t,) g 1 & u(tq)—,uu
Z[—, ] +§q:1 [7% } . (AD

where we have taken T = 1 for this calculation. The
discretized penalty function is

d=(x—XE) 2 (x—XE) + A, (VE— ) (VE—p),
(A2)

where 3, denotes the covariance matrix describing the
measurement errors and we absorbed several constants
into A;. The matrix V is the spline velocity matrix such
that v? = V? £" is the model velocity at time #,. To find
the coefficients that minimize this function, we take the
derivative with respect to &, set it to zero, and solve for &,

E=X"TX+AVV) XS x+ mA VT, (A3)
where ¢ is a vector of 1s. The operation V't essentially
integrates the m splines and results in a column vector
with the integrated values.

We define the smoothing matrix as the linear operator
that takes observations x to their smoothed values X,
x = §,x. From this definition and (A3),

S, =XX"E 7' X+, V'V)'X's™ (A4)

when pu = 0.

APPENDIX B

Iteratively Reweighted Least Squares

Using the ¢ distribution is challenging because it does
not result in a linear solution for the coefficients as in
(A3). One solution is to use a search algorithm to di-
rectly look for maximum values. Alternatively, one can
use iteratively reweighted least squares (IRLS).

The idea with IRLS is to reweight the coefficients of
the Gaussian, oz in (10), so that the resulting distribution
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looks like the desired distribution, for example, (31).
With the recollection that g; = x; — x(t;, ), the mini-
mization condition dp,/dé = 0 implies that

& ax(t;,X) _
¢ %

(B1)

g

for the Gaussian distribution, whereas for the ¢ distri-
bution this implies

v+l e\ ox(t,x)
L 1+ L~ =0. B2
o2 v < Va'f,) 13 (B2)
This means that one can set
22 V(145 (B3)
Te =9 v+1 vo?

to get a matching distribution. Of course, this is only true
if g; is already known, which initially it is not. So the
method becomes iterative—one starts with g; deter-
mined from the Gaussian fit and then determines a new
g; after reweighting o,. This method iterates until o,
stops changing. We can rewrite (B3) as a function of ¢,

27 + (e?/0?)
w(e) = o2 LT, (B4)

From (B4) itis clear that if ¢; < o then it is reweighted to a
smaller value, making the observation point more strongly
weighted. On the other hand, if &; > o, then its relative
weighting decreases, and it is treated more as an outlier.

In more general terms, the weight function w(z)
for a PDF p(z) is found by setting —d,logp(z) equal
to —d,logp,.(z) of a Gaussian PDF, where w(z) replaces

o-f,, and then solving for w(z). The result is

z d
BT P Y

2) p a.p (B3)

The same strategy could be used to reshape the PDF
of a Gaussian to match the desired distribution, but
here we simply match the minimization conditions of
the PDFs.

As a point of reference, Tukey’s biweight is given by

z 2\
— (1 by ) |z] < coy

l//(Z) =< O tb , (B6)
0 otherwise
which as a weight function is
Wy (&) = (B7)

(Z)
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In a practical sense, 3! in (A4) is replaced with
the diagonal matrix W = diag[1/w(e;)] populated
with the reweighted values for each observation
such that

S, =X(X"WX +A,V'V)"'X"W. (BS)
This operator is used to compute the standard error
from the variances, S,3, where the variance is assumed
to be o?v/(v —2) for each observation when using a
t distribution.

The smoothing-spline solution does depend on the
initial value of w(e;) used in the IRLS method. However,
we find that for uniform initial weightings (e.g., all
values start with the square root of the variance), the
differences are not statistically significant from other
initial values.

APPENDIX C

Estimating the Variance of the Signal

Our method requires good estimates of the root-
mean-square velocity u.,s of the signal, to determine
the effective sample size and variance of the tensioned
derivative. Our approach is to compute the power
spectrum of the signal at the derivative of interest, and
sum the variance that is statistically significantly greater
than the expected variance of the noise.

Given a process observed with values x,, at times
t, = nAwheren =1,..., N, we estimate the mean of
its mth derivative by performing a least squares fit to

the polynomial X, =p,,t) +pm,1t,'f"1 + ... +po. The
detrended time series is defined as X, =x, —X,. The
power spectrum of this time series is
A N—-1 2
51gnal(fk z x CXp( Zﬂlfktn) (Cl)

where the frequencies f; are given by f;, = k/(NA). By
Plancherel’s theorem,

1N1

2A. 2

The power spectrum of the mth derivative of the process
is computed as

Seana(F) = @l )" S(£,). (C3)

It is important to detrend the signal prior to computing

the derivative because, by assumption, the signal is pe-
riodic and has no secular trend.
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The noise, ;, has total variance o? = (1/N)Zfi]si2.
Because the noise is assumed to be uncorrelated, the
variance distributes evenly across all frequencies. The
spectrum of the noise is therefore

Snoise (fk) = UZA ’ (C4)

which immediately satisfies Plancherel’s theorem (C2).
The mth derivative of the noise has power spectrum

S (f) = P AQaf, )" (C5)

The technique used here sums the variance of the
signal for a given frequency if it exceeds the expected
variance of the noise at the frequency by some thresh-
old. The estimate of power at each frequency follows a
X distribution with 2 degrees of freedom, so we choose
the threshold based on the 95th percentile of the ex-
pected distribution. And thus,

N-1
1
(m) _ (m) (m) (m)
Xetd = kgb Ssignal(fk)[ssignal(fk) > anoise(fk )]NA ’ (C6)
where g ~ 20 for the 95th-percentile confidence.
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