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Abstract—In this paper, we propose a real-time, non-
destructive, and low-cost wheat mildew detection system using
commodity WiFi devices, which is a new application of the
Internet of Things (IoT) to agriculture applications. We first
introduce wheat mildew and validate the feasibility of wheat
mildew detection using WiFi Channel State Information (CSI)
amplitude data. We then present the MiFi system design, in-
cluding CSI sensing, preprocessing, radial basis function (RBF)
neural network based detection modeling, and mildew detection.
Our experimental results validate the effectiveness of the pro-
posed MiFi system. The average detection accuracy of the MiFi
system is over 90% under both line-of-sight (LOS) and non-line-
of-sign (NLOS) scenarios.

Index Terms—Channel State Information (CSI); Commodity
WiFi; Wheat Mildew Detection; Radial Basis Function (RBF);
Machine Learning.

I. INTRODUCTION

With the rapid development of the world’s population and
the improvement of people’s quality of life, the requirements
for the quality and quantity of food (e.g., grain/wheat) are be-
coming more and more strict, and the demands are increasing
rapidly every year [1]. The annual harvest of world food has
exceeded 2 billion tons [2]. However, wheat mildew causes
great loss of wheat processing quality and nutritional quality,
and leads to even fungal contamination [3]. Due to the lack of
professional knowledge and the high cost of testing equipment,
many farmers and distributors cannot test the status of grain
on a timely basis, and they can only judge whether the grain
has mildew through experience. Rapid detection of mildew in
grain can help farmers, distributors, and retailers to achieve
more efficient and safer food storage, and thus to reduce food
waste and cost.

It is a great challenge to detect mildew in grain quickly
and at a low-cost. At present, detection of grain mildew
mainly depends on manual detection. In fact, the degree of
grain mildew is judged based on visual inspection and the
olfactory experience of the inspector. The manual approach is
time-consuming, error-prone, and not much helpful to quickly
detect grain mildew. On the other hand, sensors or expensive
instruments are also used for wheat mildew detection, such as
electronic nose sensors [4] and near infrared spectroscopy [5].
However, the high cost of the required equipment prohibits
their wide adoption.

WiFi has been a major wireless technology to provide com-
munication service for mobile and wireless devices. The WiFi
physical layer (PHY) incorporates Orthogonal Frequency-
Division Multiplexing (OFDM) to address wireless propaga-
tion impairments such as frequency selective fading. For some
commercial WiFi network interface cards (NIC), open-source
device drivers are available to allow extraction of channel
state information (CSI) of the OFDM PHY. For example, the
Atheros 9kth NIC [6] can provide 56 subcarriers over a 20
MHz band for each received packet. Compared with received
signal strength (RSS), CSI represents fine-grained channel
information, which captures the wireless channel features that
the packet experienced during propagation, such as the mul-
tipath effect, attenuation, and signal distortion. CSI amplitude
and calibrated phase information are relatively stable over
time, and have thus been employed for different wireless
sensing purposes [7], such as vital sign monitoring [8], and
indoor fingerprinting [9].

Motivated with the existing WiFi CSI-based sensing tech-
niques, we propose WiFi CSI based wheat mildew detection,
aiming to provide a low-cost, contact-free, and long-term
mildew monitoring system. Wheat mildew involves a range of
physiological changes of external and internal wheat status.
When a WiFi signal passes through the wheat, changes in
the mildew status of the wheat will cause significant and
measurable variations of the WiFi signal, as recorded in
the CSI values. In this paper, we experimentally verify the
feasibility of wheat mildew detection using fine-grained CSI
amplitude information, where CSI values are collected to
detect three states of mildew, i.e., normal, initial stage of
mildew, and complete mildew. We find that the CSI amplitude
changes slightly when the wheat changes from the normal state
to the early stage of mildew. However, the CSI amplitude data
will be quite different when the wheat is completely mildewed.

In particular, we design the MiFi system, a device-free
wheat Mildew detection system using WiFi CSI amplitude
information. The MiFi system includes a sensing module, a
preprocessing module, a detection modeling module, and a
mildew detection module. The sensing module is to collect
CSI amplitude data. The preprocessing module includes a
Hampel identifier, environmental noise removal, subcarrier
selection, and normalization. Specifically, we first apply a
Hampel identifier to eliminate outliers from the collected

978-1-7281-0962-6/19/$31.00 ©2019 IEEE



original CSI amplitude data. Then, a Butterworth filter is used
to eliminate the ambient noise. The subcarrier that is most
sensitive to CSI amplitude is selected using a mean absolute
deviation method, and the corresponding CSI amplitude data is
then normalized. In the detection modeling module, a Radial
Basis Function (RBF) neural network is employed to detect
wheat mildew based on calibrated CSI amplitude data, where
K-means clustering is used to choose the parameters in the
RBF neural network. Finally, in the detection module, we
determine the wheat mildew state using a classification matrix
through a combination of linear (i.e., the output layer) and
non-linear (i.e., the Gaussian kernel) RBF neural networks.

The main contributions of this paper are summarized below.
• We verify the feasibility of using WiFi CSI amplitude

information for wheat mildew detection. To the best of
our knowledge, this is the first work that uses WiFi based
RF sensing for wheat mildew detection.

• We design the MiFi system, which includes (i) a sensing
module to collect CSI data; (ii) a preprocessing module
to calibrate CSI amplitude data; (iii) a detection model-
ing module with a novel RBF based machine learning
method; and (iv) a mildew detection module.

• We prototype the MiFi system with two commodity WiFi
devices. The experimental results show that the proposed
MiFi system can achieve an accuracy of over 90% on
wheat mildew detection under both line-of-sight (LOS)
and non-line-of-sign (NLOS) scenarios.

The remainder of this paper is organized as follows. The
preliminaries and a feasibility study are presented in Section II.
We introduce the MiFi system design in Section III and
evaluate its performance in Section IV. Section V concludes
this paper.

II. PRELIMINARIES AND FEASIBILITY STUDY

A. Wheat Mildew

Wheat mildew can lead to pollution of stored grain, loss
of nutrients, and food-borne diseases in humans. The main
causes of wheat mildew include microbial and environmental
factors. Mildew is usually caused by the microbes in wheat
granules during harvesting and by the granary microorganisms
during storage [10]. On the other hand, wheat mildew is also
affected by granary type, temperature, humidity, and other
environmental factors [11]. In the early stage of wheat mildew,
if timely measures are taken, the wheat will still be of use
value. When the wheat has been completely mildewed, it will
lose the use value and should be destroyed as soon as possible
to avoid causing human diseases. A real-time, non-destructive,
and low-cost wheat mildew detection system can be highly
useful to ensure high safety of wheat storage.

The MiFi system design utilizes WiFi signals to monitor the
mildew status of stored wheat with commodity WiFi devices.
By analyzing the received WiFi signals after passing through
stored wheat, e.g., with respect to CSI such as shadowing
fading, reflection, and small-scale fading, the change of wheat
mildew status can be detected. To quantify the effect, we

propose to use the concept of dielectric constant to indicate
the change of wheat mildew states. The complex relative
permittivity ε∗ of a material in the frequency domain can be
described as follows [12]

ε∗ = ε′ − jε′′, (1)

where the real part ε′ is the dielectric constant, representing the
ability of the material to store energy in the frequency domain
of the electric field, and the imaginary part ε′′ is a dielectric
loss factor, which usually indicates the ability of a material to
consume electrical energy, thus affecting the attenuation and
absorption of WiFi signals.

In [13], Nelson et al. validate that difference in the water
content of grains causes changes in the dielectric constant
and the loss factor, which can be used as an indicator for
detection of moisture content in grains. In fact, the dielectric
constant can be indirectly used to determine whether the
grain is mildewed by the water content. However, it requires
an expensive, specialized instrument to detect the dielectric
constant [12], which hampers the wide deployment of this
technique in agriculture applications. In this paper, we propose
to use off-the-shelf WiFi devices to detect wheat mildew by
collecting and analyzing WiFi CSI values. Specifically, as
WiFi signal passes through wheat, the electric field strength
will change with the distance to the wheat surface. This effect
can be captured by the attenuation factor α of the dielectric
properties of grain, which is given by [12]:

α =
2π

λ0

√√√√√ε′

2

√
1 +

(
ε′′

ε′

)2

− 1

, (2)

where λ0 is the wavelength of the wireless signal.
The change of wheat status from normal, to initial stage

of mildew, and to complete mildew, will lead to increase of
wheat temperature, moisture, and humidity of the external
environment. These will in turn affect the dielectric constant
ε′ and dielectric loss factor ε′′. Following (2), the attenuation
factor α will also change (as a function of ε′ and ε′′), which
can influence the energy of the electric field. In fact, we find
the energy of the electric field will be greatly affected by wheat
mildew, compared to that of normal wheat.

To quantify such energy change, we can detect the mildew
status of wheat by analyzing the WiFi CSI amplitude infor-
mation. With this approach, there is no need for expensive
equipment to measure the dielectric constant, except for low-
cost WiFi devices, for effective wheat mildew detection.

B. Channel State Information

Using some commodity NIC with open-source device
drivers, CSI samples can be collected from Ns subcarriers,
while each sample including the amplitude and phase of the
subcarrier. The collected raw data includes the number of
transmitting antennas Ntx, the number of receiving antennas
Nrx, the packet transmission frequency f , and CSI data H.



0 500 1000 1500 2000 2500 3000
Packet index

50

100

150

200

250

300
C

S
I A

m
pl

itu
de

(d
B

)
Normal Wheat

Complete Mildew

Initial Stage of Mildew

Fig. 1. CSI raw amplitude values collected from the same wheat pile going
through the three states of mildew.

CSI data H is an Ntx ×Nrx ×Ns tensor, given by

H = (Hijk)Ntx×Nrx×Ns
. (3)

In MiFi, 56 subcarriers are collected for the 20 MHz WiFi
channel using an Atheros AR5BHB NIC. The kth subcarrier
in H for a given transmitting and receiving antenna pair can
be characterized as

Hk = |Hk| · exp{j∠Hk}, (4)

where |Hk| is the amplitude and ∠Hk is the phase.

C. Feasibility Study

This work is different from our previous work on WiFi
based wheat moisture detection [14], [15], because wheat
mildew will not only change the moisture, but also the temper-
ature and air humidity of the entire wheat environment, which
in turn influences the electric field. In our experiments, we find
that wheat mildew affects the propagation of WiFi signals. To
experimentally verify the feasibility of wheat mildew detection
using fine-grained CSI data, we collect CSI amplitude data for
the same pile of wheat (and the same locations for the wheat
pile and WiFi devices) that develops mildew through the three
states. Fig. 1 presents the collected CSI data from the three
states, including normal, initial stage of mildew, and complete
mildew. It can be seen that the CSI amplitude only changes
slightly when the wheat state changes from normal to an early
stage of mildew. However, the CSI amplitude data is obviously
different when the wheat is completely mildewed. Thus, we
conclude that CSI amplitude data can be utilized for wheat
mildew detection.

III. THE MIFI SYSTEM DESIGN

This section presents the MiFi system design. The system
architecture, as shown in Fig. 2, includes four modules: (i)
sensing, (ii) preprocessing, (iii) detection modeling, and (iv)
mildew detection. First, in the CSI data sensing stage, we
extract CSI amplitude data of the WiFi channel using an
Atheros AR5BHB NIC. For data preprocessing, we develop
a Hampel identifier to eliminate outliers, a Butterworth filter

Fig. 2. The system architecture of MiFi.

to remove environment noise, a subcarrier selection procedure,
and a normalization procedure. The third module is the CSI-
RBF detection model. We divide the collected data into
training data and testing data to establish and test the trained
model. Finally, we obtain detection result of wheat mildew
based on the CSI-RBF detection model.

A. CSI Amplitude Data Extraction

In the CSI data sensing stage, we use the Atheros AR5BHB
NIC to collect CSI data from 56 subcarriers. For the normal
wheat condition, we collect CSI data directly by WiFi packet
transmissions through the wheat pile. For the initial stage
of mildew and complete mildew conditions, we need to first
culture mildew in the wheat examples. To accelerate the wheat
mildew development, we use a chamber with temperature and
humidity control capability: the temperature is maintained at
30◦C and the air humidity is kept at 90%. After 2-3 days,
the wheat begins to develop mildew and samples of the initial
stage of mildew are collected. Complete mildew samples were
obtained on the 8th day, and the CSI data is collected with
the mildewed wheat. This way, we collect three types of CSI
amplitude data, one for each mildew state, for our study of
detecting different wheat mildew stages.

B. Hampel Identifier

In the data sensing module, some CSI data outliers will also
be collected. For example, see Fig. 3 for the CSI amplitude
data collected from the 20th subcarrier, where many high
peaks and low valleys can be seen. These peaks are the outliers
to be removed. In MiFi, we use a Hampel filter to detect and
remove values that are significantly different from that in the
normal CSI amplitude sequence.

Specifically, we apply a Hampel filter with a sliding win-
dow on each subcarrier to eliminate outliers. An N -sample
CSI amplitude sequence from a subcarrier is denoted by
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Fig. 3. Illustration of calibrating the CSI data
collected from the 20th subcarrier.

Fig. 4. Spectrum of the CSI data from 20th
subcarrier for the three mildew states.
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Fig. 5. CSI amplitude for each subcarrier after
calibration, to select the most sensitive subcarrier.

(X1, X2, ..., XN ), where Xi is the ith sample of CSI am-
plitude from the subcarrier. Let X ′ be the median value in
the CSI amplitude sequence. The Hampel identifier classifies
a data point Xi as an abnormal value, if it deviates from the
median absolute difference (MAD) by a predefined threshold:{

|Xi −X ′| > l ·R, outlier
|Xi −X ′| ≤ l ·R, normal, i = 1, 2, ..., N, (5)

where l is the predefined threshold and R is the MAD, defined
as follows:

R = 1.4286 ·median {|Xi −X ′| , i = 1, 2, ..., N} . (6)

The constant 1.4286 ensures that the expected value of R
is equal to the standard deviation of the normally distributed
data [16]. In Fig. 3, we also plot the calibrated CSI amplitude
data from the 20th subcarrier after Hampel filtering. It can be
seen that the outliers are effectively removed.

C. Environmental Noise Removal

The calibrated CSI data still contains environment noise.
After removing the outliers, we still need to reduce the
environmental noise, to achieve a high detection accuracy.
Fig. 4 shows the spectrum of the CSI data from the 20th
subcarrier for the three mildew states. We observe that the
frequency variation caused by mildew wheat over a period of
time ranges from 0 Hz to 30 Hz. We thus apply a Butterworth
filter to suppress the noises in other frequencies, including the
environmental noise. The Butterworth filter utilizes a Butter-
worth function to approximate the system function of the filter,
which is defined by the amplitude-frequency characteristics in
the pass-band. The low-pass mode squared function of the
Butterworth filter is given by

|L(f)|2 =
(
1 + (f/fc)

2m
)−1

, (7)

wherem is the order of the filter and fc is the cutoff frequency.
In MiFi, the m value is 4 and the cutoff frequency is 30 Hz.

D. Subcarrier Selection

After the denoising procedure, the CSI amplitude has a
variety of low frequency components, and exhibits different
levels of sensitivity to mildew states of wheat. We use the
mean absolute deviation of CSI amplitude data from every

subcarrier to measure the sensitivity of the subcarrier [8].
Generally, the larger the mean absolute deviation, the higher
the sensitivity. It can be seen in Fig. 5 that the subcarriers
with an index below 35 (among 56 subcarriers) are more
sensitive (i.e., the red area in Fig. 5) and are more affected by
wheat mildew. We thus choose CSI data from a more sensitive
subcarrier with an index below 35 in MiFi.

E. Normalization

To speed up the computation of the model and improve the
detection accuracy, we choose the zero-mean normalization
method (i.e., Z-score normalization) to normalize the CSI
amplitude data. The normalized data Vi is calculated by

Vi =
1

σ
· (Xi − X̄), (8)

where X̄ and σ are the mean and standard deviation of the
subcarrier’s CSI amplitude data, respectively.

F. CSI-RBF

After normalizing the CSI amplitude data, we apply the
CSI-RBF neural network model to accurately recognize the
different states of wheat mildew. In this section, we use the
K-means algorithm to determine the hidden neuron parameters
of the RBF kernel function.

1) K-means Clustering: K-means clustering is widely
used in data clustering in many fields. It can be applied as
an unsupervised learning to identify the parameter of a basis
function and to determine the number of hidden neurons,
which equals to the number of clusters. In our CSI-RBF model,
we cluster CSI amplitude sequences based on a similarity
score, which is calculated by the Euclidean distance between
the amplitude data and the cluster mean. The Euclidean
distance between two CSI amplitude sequences (in the form
of two time series, each with size N ) is given by

D(V1,V2) =
√
(V 1

1 − V 2
1 )

2 + · · ·+ (V 1
N − V 2

N )2, (9)

where V1 and V2 represent two CSI data streams.



2) CSI-RBF: RBF neural networks can overcome the short-
comings of slow convergence and local minima, which has
global approximation capabilities [17]. It can achieve a good
performance in modeling nonlinear relationship with fast con-
vergence characteristics. Motivated by the above advantages,
we propose to employ RBF neural networks for rapid detection
of wheat mildew.

Specifically, the MiFi system uses the RBF neural network
as a classification algorithm. The basic structure of RBF
consists of input neurons, hidden neurons, and output neurons.
In MiFi, the input layer is clustered and the CSI amplitude
matrix V = (V1, V2, ..., VN ) is passed to F hidden neurons.
The hidden layer can map network inputs in a non-linear
manner, with each hidden neuron connected to each cluster
center and width. Multiple activation functions can be applied
to the hidden layer to maximize the accuracy of the output.
We use the Gaussian function as follows:

θ(v) = exp

{
−
(
v − γ

β

)2
}
, (10)

where v, γ, and β are the predetermined input vectors,
cluster center vectors, and hidden neuron widths by using
K-means [17], respectively. Note that the number of hidden
neurons is equal to the number of clusters.

The output layer uses a linear weighted sum function as
output of the hidden layer. The m = 3 wheat status categories
can be recognized, and the linear function for the output layer
is defined by:

Zm = ym (w, v) =
F∑

j=1

wjm · θj (v) + b, (11)

where Zm is the mth output neuron, wjm is the weight from
the jth hidden neuron to the mth output neuron, θj(·) is the
Gaussian function in the hidden neuron, and b is the deviation.
The CSI amplitude data collected from different mildew states
is classified intom categories. The weights between the hidden
layer and the output layer can be easily calculated with linear
regression using the ordinary least squares (OLS) method.

G. Mildew Detection

Finally, we compute the wheat mildew detection classifica-
tion matrix through the combination of linear and non-linear
RBF neural network models, as follows.

Z = [Z1, Z2, ..., Zm], (12)

where m = 3. In (12), the Z1 vector is the output regarded as
normal wheat, the Z2 vector is the output regarded as early
stage of mildew, and the Z3 vector is the output regarded as
complete mildew.

IV. IMPLEMENTATION, EXPERIMENTS AND DISCUSSIONS

A. Wheat Preparation

Fig. 6(a) and Fig. 6(b) show the normal wheat and the
mildewed wheat, respectively. In Fig. 6(b), the wheat was
taken from the constant temperature and humidity chamber on

(a) Normal wheat (b) Mildewed wheat

Fig. 6. The wheat examples used in our experiments.

(a) The LOS scenario (b) The NLOS scenario

Fig. 7. Experimental configuration for MiFi.

TABLE I
EXPERIMENTAL WHEAT SAMPLE CONDITIONS

Normal Initial Stage of Complete
Mildew Mildew

Moisture 11.8% 12.9% 16.8%
Temperature 17◦C 20◦C 30◦C

Internal air humidity 32% 48% 77%

the eighth day. For both figures, we measure the temperature
and humidity inside the wheat samples. In addition, we use a
standard drying method to measure the moisture content.

During the experiment, we take three different types of
samples of wheat with the same weight to test their mildew
conditions, including the normal wheat, the wheat in the initial
stage of mildew, and the wheat with complete mildew. The
water content, temperature, and humidity of the three different
types of wheat samples are provided in Table I.

B. Mi-Fi Implementation

The experimental hardware consists of two Dell PP181
laptops equipped with the Atheros AR5BHB NIC: one with a
single antenna as transmitter and the other with three antennas
as receiver. Both laptops run the kernel 4.1.10+ 32-bit Ubuntu
Linux 14.04 operating system with 2 GB of RAM.

We conduct experiments in the Research Laboratory of
Henan University of Technology, Zhengzhou, China. To test
the effectiveness of our MiFi system, we considered both LOS
and NLOS scenarios as shown in Fig. 7(a) and Fig. 7(b),
respectively. For both experimental scenarios, we place the
transmitter and receiver on both ends and different wheat
samples in the middle for CSI data acquisition.
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C. Experimental Results and Discussions

Fig. 8 shows the accuracy of wheat mildew detection in LOS
and NLOS scenarios using CSI amplitude data. For the LOS
scenario, we find that the MiFi system can achieve an over
90% detection accuracy when wheat is normal and completely
mildewed. The detection accuracy of initial stage of mildew is
less than 90% but still reaches 87.5%. The average accuracy
under the LOS scene is 90.48%. For the NLOS scenario. the
average accuracy achieved is 90.2%. Therefore, the proposed
MiFi system can be sufficient for wheat mildew detection in
both LOS and NLOS scenarios, because the impact of wheat
mildew on WiFi signal propagation can be well captured by
CSI amplitude data.

We next examine the impact of MiFi system configurations
on detection accuracy. We focus on different antennas and
different distances in this experiment. Fig. 9 shows the average
detection accuracy using different antennas at the transmitter
in both LOS and NLOS scenarios. The results show that
the data of all the three antennas are effective. The average
detection accuracies for the two scenarios are both above 90%.
Fig. 10 shows the average detection accuracy for different
distances between the transmitter and receiver in both LOS and
NLOS scenarios. It can be seen that for different transmitter-
receiver distances ranging from 30 cm to 150 cm, the detection
accuracy of the MiFi system is always higher than 90%.

V. CONCLUSIONS

In this paper, we presented MiFi, a low-cost and non-
destructive wheat mildew detection system based on WiFi
signals. We demonstrated the feasibility of wheat mildew
detection using CSI amplitude data, and then presented the
MiFi system design, with CSI data acquisition, data prepro-
cessing, CSI-RBF detection modeling, and mildew detection.
Our experimental results demonstrated the effectiveness of
MiFi, which achieved an average accuracy over 90% under
both LOS and NLOS scenarios.
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