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Abstract—With the growth of the number of vehicles and
car accidents, driving safety is becoming increasingly important.
There is a compelling need for an effective, low-cost driving
fatigue detection system. In this paper, we propose an RFID based
system, termed NodTrack, to detect the nodding movements
of drivers, which is a key indicator of fatigue and one of the
most dangerous motions during drowsy driving. The NodTrack
system utilizes the phase difference between two RFID tags
mounted on the back of a hat worn by the driver, to extract
nodding features. We propose an effective technique to mitigate
the cumulative error caused by frequency hopping in most FCC-
compliant RFID systems, as well as a long short-term memory
(LSTM) autoencoder model to learn the nodding features from
calibrated data. The highly accurate detection performance of
the proposed system is validated by our experimental study.

I. INTRODUCTION

Driving fatigue is now considered as a primary cause of

traffic accidents. It is reported by the National Highway Traffic

Safety Administration (NHTSA) that, over 72,000 reported

crashes involved drowsy driving from 2009 to 2013, and

16.5% of fatal crashes are caused by driving fatigue [1].

People’s lives are at high risk in such accidents caused by

drowsy driving. According to the NHTSA report, 795 lives

have been lost due to drowsy driving in 2017 [2]. The number

can be greatly reduced if an effective driving fatigue alarm

system is available. However, most drowsy driving events are

hard to detect with the existing technologies in commodity

vesicles. Thus, there is a compelling demand for an effective

driving fatigue detection system, which can accurately detect

driving fatigue and alarm drivers to avoid accidents.

Driving fatigue detection is a popular topic in the research

community for quite some time, and different types of signals

have been utilized to address this issue, such as electroen-

cephalogram (EEG), video, WiFi, and ultra sound. EEG signal

can achieve high fatigue detection accuracy [3], but the driver

is required to wear multiple special devices, which is not

suitable for long time driving. In contrast, computer vision

based techniques only need to collect eyelid movements using

a camera [4]. Although the required hardware, i.e., a camera,

is cheaper than that in EEG based techniques, the system per-

formance is heavily affected when the driver wears sunglasses

and may require sufficient lighting in the car. Several device-

free approaches have also been proposed. For example, WiFi

signals can be used to detect driving fatigue by extracting

driver’s movements and breathing rate from channel state

information (CSI) [5]. However, the WiFi signal is sensitive

to the interference from surroundings, such as the movements

of passengers and objects outside the vehicle. Features of

drowsy driving can be detected by acoustic-based technique

as well [6], but mitigating the influence of interference from

passengers is still a big challenge.

RFID sensing has drawn increasing attention recently, which

has been used for drone navigation [7], [8], gesture recogni-

tion [9], [10], breathing monitoring [11], [12], temperature

sensing [13], and localization [14]. Since RFID is a near-

field communication technique, interference from passengers

or surroundings of the vehicle can hardly affect the sensing

performance. Furthermore, the cost of the system is lower than

other existing approaches. Therefore, RFID is highly suited

for driving fatigue detection within the in-car environment.

However, there are still many challenges to make RFID based

driving fatigue detection work, such as the discontinuity in

collected channel state data caused by frequency hopping, and

effective feature extraction for driving fatigue detection.

In this paper, we propose an RFID based driving fatigue

detection system, termed NodTrack, to fully exploit RFID

based sensing and advanced machine learning for highly

accurate drowsy detection. First, we introduce the model for

the collected phase in a commercial RFID system and the

effect of cumulative error on sampled phase data, which is

caused by the frequency hopping offset in FCC-compliant

RFID systems. Then, we present the design of the proposed

NodTack system, elaborating on its key components such as

data sensing, movement feature extraction, offline training,

and online drowsy detection. Specifically, to effectively extract

the nodding features from collected data, we calculate the

phase difference between two tags attached to a hat worn by

the driver with a specific tag deployment. To minimize the

influence of cumulative error on feature extraction, we filter

and differentiate the calibrated phase difference before using it

to train the machine learning model. Our analysis also clearly

explains why such a filtering and differentiation operation

works well. Since the normal driving data is hard to obtain

and label, an unsupervised LSTM autoencoder is leveraged for

offline training and online driving fatigue detection. Finally,

nodding is detected by measuring the Mean Absolute Error

(MAE) between the input data and the output data recon-

structed by the well-trained LSTM autoencoder model.

The main contributions of this paper are summarized below.

• To the best of our knowledge, this is the first work

to employ commercial RFID tags for driving fatigue

detection for in-car environments.

• We propose a specific tag deployment and signal pro-

cessing algorithms to effectively distinguish the nodding

features from other types of head movements. We also
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propose a new method to estimate the phase difference

between two tags in real-time RFID sensing systems.

• We analyze the influence of the cumulative error caused

by the frequency hopping offset in FCC-compliant UHF

RFID systems, and propose a method to effectively

mitigate the impact of the cumulative error with a filtering

and differentiating operation.

• Driving fatigue is detected with an unsupervised model,

which does not require labeled training data that are hard

and costly to obtain.

• The NodTrack system is implemented with commercial

RFID tags and a reader, and evaluated by experiments,

where its high detection accuracy is validated.

In the reminder of this paper, the preliminaries are in-

troduced in Section II. We present details of the NodTrack

system design in Section III and evaluate its performance in

Section IV. Section V summaries this paper.

II. PRELIMINARIES

A. Measured Phase at an RFID reader

To distinguish different head movements, we need to detect

and analyze the variation of distance between the reader and

the target tags attached to the driver’s hat. Such changes can be

represented by the phase values collected by the RFID reader.

According to the low level reader protocol, the reader can

provide low level data, such as radio frequency (RF) phase,

Received Signal Strength Indicator (RSSI), and Doppler Shift,

for received tag responses [15]. The received phase value can

be written as [12]

ϕ = mod (2π(2L)/λ+ ϕR + ϕT + ϕtag, 2π) , (1)

where L is the distance between the reader and the target tag, λ
is the wavelength of the signal, ϕR and ϕT represent the phase

offsets caused by the receiver and transmitter, respectively, and

ϕtag is the phase shift caused by the refection circuit of the

target tag. Since λ, ϕR, ϕT , and ϕtag are constant when the

the reader operates at a given frequency, the change in the

tag-to-reader distance L can be estimated by the change in

the collected phase value ϕ.

B. Frequency Hopping Offset and Cumulative Error

However, according to FCC regulations, Ultra High Fre-

quency (UHF) RFID readers should adopt frequency hopping

to benefit from the maximum reader transmitted power al-

lowances, over 50 different channels from 902 MHz to 928

MHz during tag scanning. Since the values of λ, ϕR, ϕT , and

ϕtag in (1) vary with different frequencies, the measured phase

is severely affected by both the tag-to-reader distance and the

current occupied channel.

Define the measured phase for channel k as:

ϕ(fk, L) = mod (4πLfk/c+ ϕk, 2π) , (2)

where c is the speed of light, fk is carrier frequency of channel

k, and ϕk represents initial phase offset on channel k due to

ϕR, ϕT , and ϕtag .

Fig. 1 shows the raw phase data collected by the reader.

It can be seen that the frequency hopping offset causes

considerable discontinuity in the measured phase data, and

the variation of L is hard to observe from the raw phase data.

To address this issue, some solutions have been proposed in

recently works. For example, the Tagyro system requires a

calibration process of 10 seconds to estimate the initial phase

offset for each channel, and then subtract it from the measured

phase data [16]. This method is not suitable for RFID systems

in a driving environment, because the movements of drivers

and passengers during the calibration process could affect the

accuracy. In our recent work Autotag [12], we propose a real-

time method to mitigate the frequency hopping effect [12].

Rather than estimating the initial phases on all channels, the

Autotag system focuses on removing the phase offset between

two adjacent channels. Accordingly, the phase data measured

from the current channel is transformed to that on the previous

channel, thus making FCC-compliant RFID systems suitable

for realtime sensing applications.

The method in [12] can mitigate most of the frequency

hopping offset. However, there is still some residual error

remains, which will cumulate to become larger and larger

as the reader hops among more and more channels. For

respiration rate monitoring considered in [12], such cumulated

error can be effectively removed with a detrending process.

However, for driving fatigue detection considered in this paper,

the information of head movements is also embedded in the

low frequency components, which will be lost if the detrending

process is applied. In Fig. 2, we plot the phase data collected

from the tag attached on a still object and calibrated using the

technique in [12]. It can be seen that although the object is not

moving, the calibrated phase still keeps on changing. This is

because the residual error in estimating the initial phase offset

for each channel happens every 0.2s (when the reader hops

to a new channel), and the error starts to accumulate over

time. Since head movements will introduce a similar effect

on calibrated phase, extracting movement features from the

calibrated phase signal becomes a big challenge.

III. THE NODTRACK SYSTEM DESIGN

A. System Overview

We term our proposed system NodTrack, whose architecture

is shown in Fig. 4. The system is composed of four main

modules, including data sensing, movement feature extraction,

offline training, and online drowsy detection. First, the RFID

reader is used to collect low level data from two tags attached

to the driver’s hat in the data sensing module. Next, the

features of head movement will be extracted from the collected

data in the feature extraction module, which includes phase

difference estimation, channel hopping offset mitigation, low-

pass filtering, and derivative calculation. Then we train the

LSTM variational autoencoder model using calibrated data.

Finally, online nodding detection is executed with the well-

trained model, by calculating the divergence between the input

signal and the reconstructed signal. The details of the proposed

system will be discussed in the remainder of this section.

B. Nodding Features Extraction

In many machine learning based systems, offline training

requires a large amount of featured data. However, it’s a big
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Fig. 1. Raw phase data collected by the RFID
reader.
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Fig. 2. An example of cumulative error in
calibrated signal.
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Fig. 3. Two tags horizontally attached to the back
of head (e.g., on a hat).

challenge to learn the features of normal driving based on

head movement, because drivers may randomly rotate their

head to left or right to check side-view mirrors or traffic

in different lanes, which makes the head movement during

normal driving unpredictable. In contrast, nodding is a typical

symptom of driving fatigue, which can be labeled simply from

collected data. Therefore, we extract the features of nodding

from collected data for training our model. There are still some

challenges remaining. First, drivers may change their posture

or move their head forward or backward during driving, which

makes the head movement to include both 3-D rotations and

position shifts. It is difficult to separate the head shifting signal

from the collected signal, because phase value is affected by

both types of movements. Second, the nodding features are

hard to distinguish from head rotation. This is because both

movements can be considered as a round-trip rotation of the

head, which makes the corresponding phase variations very

similar. Finally, as discussed in Section II, the cumulative error

caused by the channel hopping offset is still a big problem.

In the following subsections, we address all these challenges

and show how to effectively extract the nodding features.

1) Phase Difference Calculation: To mitigate the influence

of driver’s body movement on collected data, we calculate the

phase difference between two tags and use it in NodTrack.

Since the driver is buckled up, the body movement is usually

constrained, and thus typical head movements consist of shift-

ing, rotation, and nodding. Although a head shift affects the

phase value of each tag, the influence on the phase difference

between the two tags could be negligible [17]. This is because

the head shift generates the same alteration of tag-to-reader
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Fig. 4. Architecture of the proposed NodTrack system.

distance for both tags, resulting in the same phase shift and a

negligible phase difference. In contrast, both nodding and head

rotation could cause different alterations in the tag-to-reader

distances of the tags, resulting in a large phase difference.

Thus, phase difference is more suited for extracting nodding

features than phase values collected from a single tag.

Unfortunately, following the RFID anti-collision protocol,

only one RFID tag can send its EPC to the reader in every time

slot, which means the phase values are sampled sequentially.

Therefore, we cannot obtain the phase values from both tags

at the same time to calculate the phase difference. To address

this issue, we propose a new method to estimate the phase

difference on each individual channel. First, we collect the

phase values sampled on the same channel from the two tags,

denoted by sets Ptag1 and Ptag2, respectively, together with

time stamps. Second, for each phase sample in Ptag1, we

search for the Tag 2 phase sample that has the nearest time

stamp. Finally, a new phase sample sequence P̂tag2 will be

selected from Ptag2, and phase difference will be calculated

between the corresponding samples in P̂tag2 and Ptag1.

2) Tag Deployment and Data Collection: After the in-

fluence from head shift is successfully mitigated, we next

distinguish nodding from head rotation. Fig. 5 shows the

calibrated phase data from a single tag after frequency hopping

offset mitigation. The data is sampled when the driver nods

and looks around (i.e., head rotation) repeatedly, as marked in

the figure. However, it is hard to differentiate nodding from

head rotation based on the calibrated phase data, because

both movements generate sharp peaks in phase values. For

the purpose of extracting unique nodding features, we adopt

a simple solution with a specific tag deployment. As shown

in Fig. 3, the tags are attached to the back side of the head

horizontally (i.e., on a hat). When the driver looks around

to check traffic, the head movement can be approximately

considered as a horizontal rotation. Such a head rotation causes

the same change in the tag-to-reader distance for both tags, so

that the change in phase difference is negligible. In contrast,

during nodding, one tag moves closer to the reader while

the other tag moves away from the reader. Hence the phase

difference between the tags will increase immediately.

Fig. 6 shows the calibrated phase difference between two

tags horizontally placed on the back side of the head. The

data is sampled when the driver is nodding and rotating the

head repeatedly, as marked in the figure. We find that the
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Fig. 5. Measured phase data from a single RFID
tag.
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Fig. 6. Calibrated phase difference between two
horizontally attached tags.
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Fig. 7. Derivative of raw phase difference.

data sampled during nodding is sufficiently different from

that sampled in the rotation period; head rotation does not

generate sharp peaks on calibrated phase difference. Thus

nodding features can be effectively extracted from the phase

difference between the two tags deployed as shown in Fig. 3.

3) Mitigating the Cumulative Error: To further improve the

feature extraction performance, the cumulative error due to

frequency hopping should be addressed, because the calibrated

phase difference may be significantly distorted after a long

period of driving. To address this issue, we first provide an

analysis of the cumulative error. According to (1), the raw

collected phase difference can be simply expressed as:

∆ϕ(La, Lb) = mod (4π(La − Lb)fk/c+∆ϕk, 2π) , (3)

where La and Lb are the tag-to-reader distance from Tag 1 and

Tag 2, respectively, ∆ϕk is the initial phase offset difference

between the two tags. Note that our analysis is mainly focused

on the influence of the initial phase offset. So we neglect the

multipath effect and mutual coupling between the two tags,

and assume the phase difference is only affected by the tag-

to-reader distances and frequency hopping.

Since we calibrate the data by mapping all phase difference

data on the current channel to the previous channel [12], all

the calibrated data can be considered as sampled on the first

channel. However, the estimation error of the initial phase

offset accumulates each time we convert data from a new

channel to the previous channel. Thus the calibrated phase

difference can be written as:

∆ϕ(La, Lb) (4)

= mod (4π(La − Lb)f1/c+∆ϕ1 +
∑

iδi, 2π) ,

where f1 and ∆ϕ1 are the frequency and initial phase offset

difference on the first channel, respectively, δi represents the

estimation error generated for the ith frequency hopping.

In (4),
∑

i δi is hard to be eliminated from the collected data,

because we do not know the accurate values of La, Lb, and

∆ϕ1. However, if we differentiate both sides of (4), we can

stop the error accumulation over time. Suppose channel hop-

ping starts from channel 1. When the system hops to channel

k, it collects nk samples (i.e., calibrated phase difference data)

on the channel. The derivative of the channel k samples at time

n, n ∈ {1, 3, ..., nk}, can be derived as:

∆ϕ′
n(La, Lb) (5)

=

{

4πf1
c

(L′
a − L′

b) + δ′k−1
, n = 1

4πf1
c

(L′
a − L′

b), n = 2, 3, ..., nk,

where L′
a and L′

b are the differences of tag-to-reader distances

of Tag 1 and Tag 2, respectively, and δ′k is the derivative of

δk with δ′
0
= 0. We can see from (5) that although estimation

error still remains in the derivative of the first sample when

the system hops to a new channel, it has been removed from

the derivatives of the remaining samples on the channel.

However, the derivative of phase difference cannot be di-

rectly used to extract nodding features because of the large

noise. In Fig. 7, we plot the derivative of the signal plotted

in Fig. 6. We find that the nodding features, which are quite

obvious in Fig. 6, however, are completely overwhelmed by

the white noise. This is because the differentiation opera-

tion can be considered as a high pass filter applied to the

original signal. For convenience, we first assume that all

phase differences are sampled at the same sample rate of

55Hz (as tested in our experiments). Then the differentiation

operation can be transformed into a convolution between the

input signal and a vector [F,−F ], where F is the sampling

frequency. If we apply DFT on [F,−F ], we can obtain the

frequency response as shown in Fig. 8. The figure shows

that differentiation leads to extremely large gains at high

frequencies, while significantly suppressing the signal at low

frequencies. The frequency domain response of calibrated

phase difference signal is plotted in Fig. 9, which clearly shows

that the head movement features mainly exist from 0Hz to

5Hz. The Fig. 7 results are actually caused by the greatly

amplified high frequency noise and greatly suppressed low

frequency nodding features. To mitigate such negative impact,

we apply a low pass filter with a 5Hz cutoff frequency to the

calibrated phase difference before the differentiation operation.

The final results after filtering and differentiation are plotted in

Fig. 10. There is no cumulative error remaining in the signal

anymore, and the nodding features can be clearly distinguished

from other types of head movements.

C. Driving Fatigue Detection

To learn the nodding features from sampled data during

driving, we leverage an unsupervised LSTM variational au-

toencoder. After the model is well trained, the input signal
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Fig. 9. Phase difference in the frequency domain.
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Fig. 11. The recurrent variational autoencoder for driving fatigue detection.

can be well reconstructed by the autoencoder if the signal is

sampled during nodding. Otherwise, the reconstructed signal

will contain high distortion. Thus, we can detect nodding by

calculating the divergence between the input signal and the

reconstructed signal. The details of the training model and

divergence calculation are introduced in the following.
1) The Learning Model and Training: The learning model

adopted for offline training is composed of an LSTM network

and an autoencoder [12], which is an unsupervised learning

model as shown in Fig. 11.
Consider that all the data are sampled as a time sequence,

and nodding causes an obvious change of calibrated phase

difference, as shown in Fig. 10. LSTM is an effective tool for

capturing the nodding features, because LSTM can better learn

the long-range dependency in data than traditional recurrent

neural networks. The mean vector and the variance vector are

estimated by two liner modules from the output of LSTM,

which are employed to calculate the latent vector z in the

autoencoder, as z = µφ(x) + σφ(x) ⊙ ǫ, where µφ(x) is

the mean vector, σ2

φ(x) is the variance vector, ǫ represents

a Gaussian noise, and ⊙ represents the element-wise product

operation. Based on the latent vector, the variance vector σ2

φ(z)

and mean vector µφ(z) for the reconstructed signal can be

decoded from the LSTM network. Eventually, the input signal

can be reconstructed as the output of the decoder.
2) Online Drowsy Detection: After offline training, the

newly collected signal in realtime can be reconstructed by

the network. Since our LSTM-autoencoder model has been

trained by nodding features, the new signals sampled during

nodding can be better reconstructed than the signals sampled

during other types of head movements (and when there are no

head movements). Thus, we can detect if the driver is nodding

or not, by calculating the divergence between the input signal

and the reconstructed signal.

In the NodTrack system, we adopt a sliding window with 2s

size to extract the input signal from calibrated phase difference

to guarantee that all nodding movement can be captured in

the window. The divergence is calculated in the form of

Mean Absolute Error (MAE), which can be expressed as:

MAE = 1

n

∑n

i=1
|yi − yri |, where n is the total number of

samples in the sliding window, yi is the ith sample of the input

signal, and yri is the ith sample of the reconstructed signal.

Then we group the MAEs from nodding and normal driving

respectively, and plot all the errors in the form of cumulative

distribution function in Fig. 12. The figure shows that 91.26%
MAEs of the nodding signal is lower than the minimum error

of the reconstructed normal driving signal, which is 0.21.

Thus, we conclude that nodding movement can be effectively

distinguished by MAE from other head movements. Finally

we set the threshold of MAE as 0.23 for the proposed drowsy

detection system.

IV. EXPERIMENTAL STUDY

A. Test Configuration

To evaluate the proposed drowsy detection system, we

attach 2 passive RFID tags ALE-9470 on the back side of

a hat worn by the driver. The tags are scanned by an off-

the-shelf RFID reader Impinj R420, which is equipped with

a polarized antenna S9028PCR. Low level data, such as

RFphase, RSSI, and timestamps are provided by the RFID

reader using the Low Level Reader Protocol (LLRP). The

reader hops among 50 channels from 902MHz to 928MHz

following FCC regulations. All sampled data will be processed

in an MSI laptop computer with a Navidia GTX 1080 GPU

and Intel Core i7-6820HK CPU.

The experiments are conducted in a 8.8m × 4.5m laboratory,

and three volunteers are involved in the experiments. The

volunteers are required to wear a hat with two RFID tags

attached, and emulate driving actions on a chair. During

driving emulation, the volunteers can nod, rotate their head,

and move their body naturally, while the reader continuously

interrogates the tags on the hat. Then, all collected data are

transmitted to the laptop for calibration and nodding detection.

B. Results and Discussions

The experimental results of our drowsy detection system

are presented in Fig. 13. The figure shows the True Positive

(TP) and True Negative (TR) rates in two different scenarios,

where TP rate means the accuracy of nodding detection, and

TN rate is the accuracy of normal driving recognition. For the



0.1 0.15 0.2 0.25 0.3 0.35 0.4
Mean Absolute Error (rad)

0

0.2

0.4

0.6

0.8

1
C

D
F

Normal Driving

Nodding

Threshold=0.23

Fig. 12. CDFs of the mean absolute errors for
normal driving and nodding.

TP Rate TN Rate
80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Driving with head rotation

Driving without head rotation

Fig. 13. Detection accuracy in two scenarios: TP
rates and TN rates.

0.5 1 1.5 2 2.5 3 3.5 4 5

Window Size (s)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

TP Rate

TN Rate

Fig. 14. Impact of the window size used for
training.

first scenario, the volunteers are asked to never rotate their

head but only nod during the test. For the other scenario, the

volunteers can move their head and body casually. The results

show that our system can achieve a 97.23% TP rate and a

96.72% TN rate when no other head movements are present.

The achieved TP rate and TN rate are 91.48% and 95.38%,

respectively, even though the drivers rotate or shift their heads

during the experiment. The high detection accuracy in different

scenarios proves that our system can effectively mitigate the

influence of head rotation and shifting during driving.
Fig. 14 shows the impact of the sliding window size used

in offline training. The figure presents the TP rate and TN

rate when the training dataset has different sliding window

size from 0.5s to 5s. When the window size is smaller than

1.5s, the TP rate is lower than 79.67% and the TN rate is

lower than 83.51%. In addition, when the window size is larger

than 3.5s the TP rate and TN rate are lower than 74.64% and

85.24%, respectively. The observation shows that the highest

detection accuracy requires a suitably set sliding window size

for training. Thus, based on the result shown in the figure, we

set the sliding window size of our training dataset to 2s for

best accuracy.

V. CONCLUSIONS

In this paper, we proposed a driving fatigue detection

system using the received phase values in RFID tag responses.

We designed the proposed NodTrack system, including data

sensing, movement feature extraction, offline training, and

online drowsy detection modules. Features were extracted by

filtering and differentiating the phase difference between two

tags, which were attached to the back side of a hat worn

by the driver. We employed an LSTM autoencoder model to

learn the nodding features. Nodding motion was detected by

the divergence between the input signal and the reconstructed

signal of the learning model. The high detection accuracy

of the prosed system was demonstrated by experiments with

commercial tags and readers.
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