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Abstract—With the growth of the number of vehicles and
car accidents, driving safety is becoming increasingly important.
There is a compelling need for an effective, low-cost driving
fatigue detection system. In this paper, we propose an RFID based
system, termed NodTrack, to detect the nodding movements
of drivers, which is a key indicator of fatigue and one of the
most dangerous motions during drowsy driving. The NodTrack
system utilizes the phase difference between two RFID tags
mounted on the back of a hat worn by the driver, to extract
nodding features. We propose an effective technique to mitigate
the cumulative error caused by frequency hopping in most FCC-
compliant RFID systems, as well as a long short-term memory
(LSTM) autoencoder model to learn the nodding features from
calibrated data. The highly accurate detection performance of
the proposed system is validated by our experimental study.

I. INTRODUCTION

Driving fatigue is now considered as a primary cause of
traffic accidents. It is reported by the National Highway Traffic
Safety Administration (NHTSA) that, over 72,000 reported
crashes involved drowsy driving from 2009 to 2013, and
16.5% of fatal crashes are caused by driving fatigue [1].
People’s lives are at high risk in such accidents caused by
drowsy driving. According to the NHTSA report, 795 lives
have been lost due to drowsy driving in 2017 [2]. The number
can be greatly reduced if an effective driving fatigue alarm
system is available. However, most drowsy driving events are
hard to detect with the existing technologies in commodity
vesicles. Thus, there is a compelling demand for an effective
driving fatigue detection system, which can accurately detect
driving fatigue and alarm drivers to avoid accidents.

Driving fatigue detection is a popular topic in the research
community for quite some time, and different types of signals
have been utilized to address this issue, such as electroen-
cephalogram (EEG), video, WiFi, and ultra sound. EEG signal
can achieve high fatigue detection accuracy [3], but the driver
is required to wear multiple special devices, which is not
suitable for long time driving. In contrast, computer vision
based techniques only need to collect eyelid movements using
a camera [4]. Although the required hardware, i.e., a camera,
is cheaper than that in EEG based techniques, the system per-
formance is heavily affected when the driver wears sunglasses
and may require sufficient lighting in the car. Several device-
free approaches have also been proposed. For example, WiFi
signals can be used to detect driving fatigue by extracting
driver’s movements and breathing rate from channel state
information (CSI) [5]. However, the WiFi signal is sensitive
to the interference from surroundings, such as the movements
of passengers and objects outside the vehicle. Features of

drowsy driving can be detected by acoustic-based technique
as well [6], but mitigating the influence of interference from
passengers is still a big challenge.

RFID sensing has drawn increasing attention recently, which
has been used for drone navigation [7], [8], gesture recogni-
tion [9], [10], breathing monitoring [11], [12], temperature
sensing [13], and localization [14]. Since RFID is a near-
field communication technique, interference from passengers
or surroundings of the vehicle can hardly affect the sensing
performance. Furthermore, the cost of the system is lower than
other existing approaches. Therefore, RFID is highly suited
for driving fatigue detection within the in-car environment.
However, there are still many challenges to make RFID based
driving fatigue detection work, such as the discontinuity in
collected channel state data caused by frequency hopping, and
effective feature extraction for driving fatigue detection.

In this paper, we propose an RFID based driving fatigue
detection system, termed NodTrack, to fully exploit RFID
based sensing and advanced machine learning for highly
accurate drowsy detection. First, we introduce the model for
the collected phase in a commercial RFID system and the
effect of cumulative error on sampled phase data, which is
caused by the frequency hopping offset in FCC-compliant
RFID systems. Then, we present the design of the proposed
NodTack system, elaborating on its key components such as
data sensing, movement feature extraction, offline training,
and online drowsy detection. Specifically, to effectively extract
the nodding features from collected data, we calculate the
phase difference between two tags attached to a hat worn by
the driver with a specific tag deployment. To minimize the
influence of cumulative error on feature extraction, we filter
and differentiate the calibrated phase difference before using it
to train the machine learning model. Our analysis also clearly
explains why such a filtering and differentiation operation
works well. Since the normal driving data is hard to obtain
and label, an unsupervised LSTM autoencoder is leveraged for
offline training and online driving fatigue detection. Finally,
nodding is detected by measuring the Mean Absolute Error
(MAE) between the input data and the output data recon-
structed by the well-trained LSTM autoencoder model.

The main contributions of this paper are summarized below.

o To the best of our knowledge, this is the first work
to employ commercial RFID tags for driving fatigue
detection for in-car environments.

o We propose a specific tag deployment and signal pro-
cessing algorithms to effectively distinguish the nodding
features from other types of head movements. We also
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propose a new method to estimate the phase difference
between two tags in real-time RFID sensing systems.

o We analyze the influence of the cumulative error caused
by the frequency hopping offset in FCC-compliant UHF
RFID systems, and propose a method to effectively
mitigate the impact of the cumulative error with a filtering
and differentiating operation.

o Driving fatigue is detected with an unsupervised model,
which does not require labeled training data that are hard
and costly to obtain.

o The NodTrack system is implemented with commercial
RFID tags and a reader, and evaluated by experiments,
where its high detection accuracy is validated.

In the reminder of this paper, the preliminaries are in-
troduced in Section II. We present details of the NodTrack
system design in Section III and evaluate its performance in
Section IV. Section V summaries this paper.

II. PRELIMINARIES
A. Measured Phase at an RFID reader

To distinguish different head movements, we need to detect
and analyze the variation of distance between the reader and
the target tags attached to the driver’s hat. Such changes can be
represented by the phase values collected by the RFID reader.
According to the low level reader protocol, the reader can
provide low level data, such as radio frequency (RF) phase,
Received Signal Strength Indicator (RSSI), and Doppler Shift,
for received tag responses [15]. The received phase value can
be written as [12]

QD:mOd(27T(2L)/>\+QDR+SDT +90tag;27r); (1)

where L is the distance between the reader and the target tag, A
is the wavelength of the signal, i and @7 represent the phase
offsets caused by the receiver and transmitter, respectively, and
@tag 18 the phase shift caused by the refection circuit of the
target tag. Since A, ¢Rr, @7, and ¢.,4 are constant when the
the reader operates at a given frequency, the change in the
tag-to-reader distance L can be estimated by the change in
the collected phase value ¢.

B. Frequency Hopping Offset and Cumulative Error

However, according to FCC regulations, Ultra High Fre-
quency (UHF) RFID readers should adopt frequency hopping
to benefit from the maximum reader transmitted power al-
lowances, over 50 different channels from 902 MHz to 928
MHz during tag scanning. Since the values of A\, ¢r, ¢, and
©tag in (1) vary with different frequencies, the measured phase
is severely affected by both the tag-to-reader distance and the
current occupied channel.

Define the measured phase for channel k as:

¢(fr, L) = mod (4w L fy/c + ¢, 2m), 2

where c is the speed of light, f}, is carrier frequency of channel
k, and @y, represents initial phase offset on channel k£ due to
PR, @1, and Piqgq.

Fig. 1 shows the raw phase data collected by the reader.
It can be seen that the frequency hopping offset causes

considerable discontinuity in the measured phase data, and
the variation of L is hard to observe from the raw phase data.
To address this issue, some solutions have been proposed in
recently works. For example, the Tagyro system requires a
calibration process of 10 seconds to estimate the initial phase
offset for each channel, and then subtract it from the measured
phase data [16]. This method is not suitable for RFID systems
in a driving environment, because the movements of drivers
and passengers during the calibration process could affect the
accuracy. In our recent work Autotag [12], we propose a real-
time method to mitigate the frequency hopping effect [12].
Rather than estimating the initial phases on all channels, the
Autotag system focuses on removing the phase offset between
two adjacent channels. Accordingly, the phase data measured
from the current channel is transformed to that on the previous
channel, thus making FCC-compliant RFID systems suitable
for realtime sensing applications.

The method in [12] can mitigate most of the frequency
hopping offset. However, there is still some residual error
remains, which will cumulate to become larger and larger
as the reader hops among more and more channels. For
respiration rate monitoring considered in [12], such cumulated
error can be effectively removed with a detrending process.
However, for driving fatigue detection considered in this paper,
the information of head movements is also embedded in the
low frequency components, which will be lost if the detrending
process is applied. In Fig. 2, we plot the phase data collected
from the tag attached on a still object and calibrated using the
technique in [12]. It can be seen that although the object is not
moving, the calibrated phase still keeps on changing. This is
because the residual error in estimating the initial phase offset
for each channel happens every 0.2s (when the reader hops
to a new channel), and the error starts to accumulate over
time. Since head movements will introduce a similar effect
on calibrated phase, extracting movement features from the
calibrated phase signal becomes a big challenge.

III. THE NODTRACK SYSTEM DESIGN
A. System Overview

We term our proposed system NodTrack, whose architecture
is shown in Fig. 4. The system is composed of four main
modules, including data sensing, movement feature extraction,
offline training, and online drowsy detection. First, the RFID
reader is used to collect low level data from two tags attached
to the driver’s hat in the data sensing module. Next, the
features of head movement will be extracted from the collected
data in the feature extraction module, which includes phase
difference estimation, channel hopping offset mitigation, low-
pass filtering, and derivative calculation. Then we train the
LSTM variational autoencoder model using calibrated data.
Finally, online nodding detection is executed with the well-
trained model, by calculating the divergence between the input
signal and the reconstructed signal. The details of the proposed
system will be discussed in the remainder of this section.

B. Nodding Features Extraction

In many machine learning based systems, offline training
requires a large amount of featured data. However, it’s a big
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Raw phase data collected by the RFID Fig. 2.
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challenge to learn the features of normal driving based on
head movement, because drivers may randomly rotate their
head to left or right to check side-view mirrors or traffic
in different lanes, which makes the head movement during
normal driving unpredictable. In contrast, nodding is a typical
symptom of driving fatigue, which can be labeled simply from
collected data. Therefore, we extract the features of nodding
from collected data for training our model. There are still some
challenges remaining. First, drivers may change their posture
or move their head forward or backward during driving, which
makes the head movement to include both 3-D rotations and
position shifts. It is difficult to separate the head shifting signal
from the collected signal, because phase value is affected by
both types of movements. Second, the nodding features are
hard to distinguish from head rotation. This is because both
movements can be considered as a round-trip rotation of the
head, which makes the corresponding phase variations very
similar. Finally, as discussed in Section II, the cumulative error
caused by the channel hopping offset is still a big problem.
In the following subsections, we address all these challenges
and show how to effectively extract the nodding features.

1) Phase Difference Calculation: To mitigate the influence
of driver’s body movement on collected data, we calculate the
phase difference between two tags and use it in NodTrack.
Since the driver is buckled up, the body movement is usually
constrained, and thus typical head movements consist of shift-
ing, rotation, and nodding. Although a head shift affects the
phase value of each tag, the influence on the phase difference
between the two tags could be negligible [17]. This is because
the head shift generates the same alteration of tag-to-reader
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Fig. 4. Architecture of the proposed NodTrack system.
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distance for both tags, resulting in the same phase shift and a
negligible phase difference. In contrast, both nodding and head
rotation could cause different alterations in the tag-to-reader
distances of the tags, resulting in a large phase difference.
Thus, phase difference is more suited for extracting nodding
features than phase values collected from a single tag.

Unfortunately, following the RFID anti-collision protocol,
only one RFID tag can send its EPC to the reader in every time
slot, which means the phase values are sampled sequentially.
Therefore, we cannot obtain the phase values from both tags
at the same time to calculate the phase difference. To address
this issue, we propose a new method to estimate the phase
difference on each individual channel. First, we collect the
phase values sampled on the same channel from the two tags,
denoted by sets Piqq1 and Piqg2, respectively, together with
time stamps. Second, for each phase sample in P41, we
search for the Tag 2 phase sample that has the nearest time
stamp. Finally, a new phase sample sequence Ptagg will be
selected from Pi,42, and phase difference will be calculated

between the corresponding samples in pmgg and Pigq1.

2) Tag Deployment and Data Collection: After the in-
fluence from head shift is successfully mitigated, we next
distinguish nodding from head rotation. Fig. 5 shows the
calibrated phase data from a single tag after frequency hopping
offset mitigation. The data is sampled when the driver nods
and looks around (i.e., head rotation) repeatedly, as marked in
the figure. However, it is hard to differentiate nodding from
head rotation based on the calibrated phase data, because
both movements generate sharp peaks in phase values. For
the purpose of extracting unique nodding features, we adopt
a simple solution with a specific tag deployment. As shown
in Fig. 3, the tags are attached to the back side of the head
horizontally (i.e., on a hat). When the driver looks around
to check traffic, the head movement can be approximately
considered as a horizontal rotation. Such a head rotation causes
the same change in the tag-to-reader distance for both tags, so
that the change in phase difference is negligible. In contrast,
during nodding, one tag moves closer to the reader while
the other tag moves away from the reader. Hence the phase
difference between the tags will increase immediately.

Fig. 6 shows the calibrated phase difference between two
tags horizontally placed on the back side of the head. The
data is sampled when the driver is nodding and rotating the
head repeatedly, as marked in the figure. We find that the
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data sampled during nodding is sufficiently different from
that sampled in the rotation period; head rotation does not
generate sharp peaks on calibrated phase difference. Thus
nodding features can be effectively extracted from the phase
difference between the two tags deployed as shown in Fig. 3.

3) Mitigating the Cumulative Error: To further improve the
feature extraction performance, the cumulative error due to
frequency hopping should be addressed, because the calibrated
phase difference may be significantly distorted after a long
period of driving. To address this issue, we first provide an
analysis of the cumulative error. According to (1), the raw
collected phase difference can be simply expressed as:

A@(Lq, Ly) = mod (4m(Lq — Lp) fu/c + App, 2m),  (3)

where L, and L are the tag-to-reader distance from Tag 1 and
Tag 2, respectively, Ay, is the initial phase offset difference
between the two tags. Note that our analysis is mainly focused
on the influence of the initial phase offset. So we neglect the
multipath effect and mutual coupling between the two tags,
and assume the phase difference is only affected by the tag-
to-reader distances and frequency hopping.

Since we calibrate the data by mapping all phase difference
data on the current channel to the previous channel [12], all
the calibrated data can be considered as sampled on the first
channel. However, the estimation error of the initial phase
offset accumulates each time we convert data from a new
channel to the previous channel. Thus the calibrated phase
difference can be written as:

Ap(La, Lp)
=mod (47 (Lq — Lp) f1/c+ Ap1 + 3,04, 2m) ,

“)

where f; and A, are the frequency and initial phase offset
difference on the first channel, respectively, §; represents the
estimation error generated for the ith frequency hopping.
In (4), >, d; is hard to be eliminated from the collected data,
because we do not know the accurate values of L,, L, and
Aypi. However, if we differentiate both sides of (4), we can
stop the error accumulation over time. Suppose channel hop-
ping starts from channel 1. When the system hops to channel
k, it collects ng samples (i.e., calibrated phase difference data)
on the channel. The derivative of the channel k£ samples at time
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Fig. 7. Derivative of raw phase difference.

n, n € {1,3,...,nx}, can be derived as:
Ap(Las L)
_ { T(L, — L) 46y, =1

(L~ L),

where L/, and L; are the differences of tag-to-reader distances
of Tag 1 and Tag 2, respectively, and §), is the derivative of
1, with &) = 0. We can see from (5) that although estimation
error still remains in the derivative of the first sample when
the system hops to a new channel, it has been removed from
the derivatives of the remaining samples on the channel.

However, the derivative of phase difference cannot be di-
rectly used to extract nodding features because of the large
noise. In Fig. 7, we plot the derivative of the signal plotted
in Fig. 6. We find that the nodding features, which are quite
obvious in Fig. 6, however, are completely overwhelmed by
the white noise. This is because the differentiation opera-
tion can be considered as a high pass filter applied to the
original signal. For convenience, we first assume that all
phase differences are sampled at the same sample rate of
55Hz (as tested in our experiments). Then the differentiation
operation can be transformed into a convolution between the
input signal and a vector [F, —F], where F is the sampling
frequency. If we apply DFT on [F, —F], we can obtain the
frequency response as shown in Fig. 8. The figure shows
that differentiation leads to extremely large gains at high
frequencies, while significantly suppressing the signal at low
frequencies. The frequency domain response of calibrated
phase difference signal is plotted in Fig. 9, which clearly shows
that the head movement features mainly exist from OHz to
5Hz. The Fig. 7 results are actually caused by the greatly
amplified high frequency noise and greatly suppressed low
frequency nodding features. To mitigate such negative impact,
we apply a low pass filter with a SHz cutoff frequency to the
calibrated phase difference before the differentiation operation.
The final results after filtering and differentiation are plotted in
Fig. 10. There is no cumulative error remaining in the signal
anymore, and the nodding features can be clearly distinguished
from other types of head movements.

5)

n = 2,3, ceey Ny

C. Driving Fatigue Detection
To learn the nodding features from sampled data during

driving, we leverage an unsupervised LSTM variational au-
toencoder. After the model is well trained, the input signal
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can be well reconstructed by the autoencoder if the signal is
sampled during nodding. Otherwise, the reconstructed signal
will contain high distortion. Thus, we can detect nodding by
calculating the divergence between the input signal and the
reconstructed signal. The details of the training model and
divergence calculation are introduced in the following.

1) The Learning Model and Training: The learning model
adopted for offline training is composed of an LSTM network
and an autoencoder [12], which is an unsupervised learning
model as shown in Fig. 11.

Consider that all the data are sampled as a time sequence,
and nodding causes an obvious change of calibrated phase
difference, as shown in Fig. 10. LSTM is an effective tool for
capturing the nodding features, because LSTM can better learn
the long-range dependency in data than traditional recurrent
neural networks. The mean vector and the variance vector are
estimated by two liner modules from the output of LSTM,
which are employed to calculate the latent vector z in the
autoencoder, as z = pg(r) + o4(z) © €, where pg(z) is
the mean vector, ai(x) is the variance vector, € represents
a Gaussian noise, and ® represents the element-wise product
operation. Based on the latent vector, the variance vector U; (2)
and mean vector ug(z) for the reconstructed signal can be
decoded from the LSTM network. Eventually, the input signal
can be reconstructed as the output of the decoder.

2) Online Drowsy Detection: After offline training, the
newly collected signal in realtime can be reconstructed by
the network. Since our LSTM-autoencoder model has been
trained by nodding features, the new signals sampled during
nodding can be better reconstructed than the signals sampled
during other types of head movements (and when there are no
head movements). Thus, we can detect if the driver is nodding
or not, by calculating the divergence between the input signal
and the reconstructed signal.

In the NodTrack system, we adopt a sliding window with 2s
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Fig. 9. Phase difference in the frequency domain. Fig. 10. Derivative of the filtered phase difference.

size to extract the input signal from calibrated phase difference
to guarantee that all nodding movement can be captured in
the window. The divergence is calculated in the form of
Mean Absolute Error (MAE), which can be expressed as:
MAE = 15" |y; — y7|, where n is the total number of
samples in the sliding window, y; is the ith sample of the input
signal, and y; is the ¢th sample of the reconstructed signal.
Then we group the MAEs from nodding and normal driving
respectively, and plot all the errors in the form of cumulative
distribution function in Fig. 12. The figure shows that 91.26%
MAE:s of the nodding signal is lower than the minimum error
of the reconstructed normal driving signal, which is 0.21.
Thus, we conclude that nodding movement can be effectively
distinguished by MAE from other head movements. Finally
we set the threshold of MAE as 0.23 for the proposed drowsy
detection system.

IV. EXPERIMENTAL STUDY
A. Test Configuration

To evaluate the proposed drowsy detection system, we
attach 2 passive RFID tags ALE-9470 on the back side of
a hat worn by the driver. The tags are scanned by an off-
the-shelf RFID reader Impinj R420, which is equipped with
a polarized antenna S9028PCR. Low level data, such as
RFphase, RSSI, and timestamps are provided by the RFID
reader using the Low Level Reader Protocol (LLRP). The
reader hops among 50 channels from 902MHz to 928MHz
following FCC regulations. All sampled data will be processed
in an MSI laptop computer with a Navidia GTX 1080 GPU
and Intel Core i7-6820HK CPU.

The experiments are conducted in a 8.8m x 4.5m laboratory,
and three volunteers are involved in the experiments. The
volunteers are required to wear a hat with two RFID tags
attached, and emulate driving actions on a chair. During
driving emulation, the volunteers can nod, rotate their head,
and move their body naturally, while the reader continuously
interrogates the tags on the hat. Then, all collected data are
transmitted to the laptop for calibration and nodding detection.

B. Results and Discussions

The experimental results of our drowsy detection system
are presented in Fig. 13. The figure shows the True Positive
(TP) and True Negative (TR) rates in two different scenarios,
where TP rate means the accuracy of nodding detection, and
TN rate is the accuracy of normal driving recognition. For the
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first scenario, the volunteers are asked to never rotate their
head but only nod during the test. For the other scenario, the
volunteers can move their head and body casually. The results
show that our system can achieve a 97.23% TP rate and a
96.72% TN rate when no other head movements are present.
The achieved TP rate and TN rate are 91.48% and 95.38%,
respectively, even though the drivers rotate or shift their heads
during the experiment. The high detection accuracy in different
scenarios proves that our system can effectively mitigate the
influence of head rotation and shifting during driving.

Fig. 14 shows the impact of the sliding window size used
in offline training. The figure presents the TP rate and TN
rate when the training dataset has different sliding window
size from 0.5s to 5s. When the window size is smaller than
1.5s, the TP rate is lower than 79.67% and the TN rate is
lower than 83.51%. In addition, when the window size is larger
than 3.5s the TP rate and TN rate are lower than 74.64% and
85.24%, respectively. The observation shows that the highest
detection accuracy requires a suitably set sliding window size
for training. Thus, based on the result shown in the figure, we
set the sliding window size of our training dataset to 2s for
best accuracy.

V. CONCLUSIONS

In this paper, we proposed a driving fatigue detection
system using the received phase values in RFID tag responses.
We designed the proposed NodTrack system, including data
sensing, movement feature extraction, offline training, and
online drowsy detection modules. Features were extracted by
filtering and differentiating the phase difference between two
tags, which were attached to the back side of a hat worn
by the driver. We employed an LSTM autoencoder model to
learn the nodding features. Nodding motion was detected by
the divergence between the input signal and the reconstructed
signal of the learning model. The high detection accuracy
of the prosed system was demonstrated by experiments with
commercial tags and readers.
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