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Abstract—Food storage security is critical to the national
economy and people’s lives. The environmental parameters of
the granary should be accurately monitored in order to provide
a better preservation environment for food storage. In this
paper, we use temperature sensors to measure and collect grain
temperature data for a period of 423 days from a real world
granary, and collect the corresponding meteorological data from
China Meteorological Data Network. We propose to leverage
weather data to predict the average temperature of the grain
pile with a support vector regression (SVR) approach. We first
analyze the correlation between a large amount of historical
data from the granary and the corresponding weather forecast
data based on the Pearson correlation coefficient. In addition,
we implement outlier detection and data normalization for data
preprocessing. Finally, we incorporate different kernel functions
in the SVR model to predict the temperature of grain pile using
weather data. The results show that the proposed approach is
highly accurate and the Gaussian radial basis function (RBF)
kernel function achieves the best performance.

Index Terms—Food storage; Temperature sensors; Weather
metrics; Support Vector Regression; Machine learning.

I. INTRODUCTION

The demand for food will be doubled by 2050 as population
and social mobility increase [1]-[5]. Globally, more than 2
billion tons of food are harvested each year [6]. However, up
to one third of the annual total global production of grain
is lost because of poor post-harvest management. Lack of
control over grain moisture content, high temperature, and
insect infestation are the three most significant factors causing
the loss. In fact, high grain moisture and temperature can
provide favorable conditions for hot spot development, mold
growth, and insect infestation [7]. Grain is still a physio-
logically active organism during storage, and is affected by
the physical and biological environment. These internal and
external factors are closely related to the safe storage of grain.
With the development of science and technology, grain storage
technology has been improved, and food security has been
better guaranteed. However, there are still many risk factors
in the process of grain storage; so green grain storage is
particularly important. The complex grain storage ecosystem
is under the joint influence of the environment sub-ecosystem
and the granary protection construction [8].

Grain temperature is an important indicator of grain condi-
tions. Its detection and control technology are critical for the
operation of grain warehouses (or, granary). In the entire grain
detection system, detection of the temperature of stored grain
is a relatively mature technology and has been widely used in
national reserves [9]. In fact, the storage temperature is highly
predictable when aggregating over thousands of granaries and
storage parameters. Different from the developed countries,
the present situation of grain storage in China is unique [7].
Recently, Yang et al. present a non-destructive and economic
wheat moisture detection system with commodity WiFi, which
can achieve high classification accuracy for both LOS and
NLOS scenarios [10], [11]. Many high-precision mathematical
models and improved measurement systems are proposed to
improve temperature monitoring and food storage management
capabilities [12]-[14]. However, the work of grain temperature
forecasting has been focused on time series models, which
does not consider the effect of external weather factors. In fact,
weather factors have been successfully utilized for accurate
solar intensity forecasting [15], [16].

To improve the accuracy of grain pile temperature forecast-
ing, we focus on the issue of using the National Meteorological
Information Center (NMIC) weather forecast to accurately
predict grain pile temperature. In this paper, we first discuss the
temperate measurement system for food storage. For a period
of 423 days, we used temperature sensors to measure and
collect of grain temperature data from the grain storage at the
No. 1 Warehouse in the Xishan District of Kunming, Yunnan
province, China. We also collect the corresponding meteoro-
logical data from China Meteorological Data Network. We
provide an analysis of the correlation between a large amount
of historical data from the granary and the corresponding
weather data. We find that the surface temperature of grain pile
has higher correlations with air temperature, relative humidity,
and Ocm ground temperature, but a smaller correlation with air
pressure. We propose to predict surface temperature of grain
pile using multiple weather factors, aiming to achieve high
predication accuracy.

In particular, we develop a support vector regression (SVR)
approach [17] to predict surface temperature of grain pile using
multiple weather factors. In fact, because of some outliers
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recorded by temperature sensors, the raw data cannot be
directly employed for the SVR model. We implement outlier
detection and removal to delete bad data samples, and apply
data normalization to all the sampled data to guarantee that
the weather data and the surface temperature of grain pile have
the same unit. Then, we leverage the calibrated meteorological
data and grain temperature data to train the SVR model.
Finally, we compare the prediction accuracy using different
kernels, such as the linear kernel function, the polynomial
kernel function, and the Gaussian radial basis function (RBF)
kernel in the SVR model.

The main contributions of this paper are summarized below.

o To the best of our knowledge, this is the first work to use
meteorological metrics to predict the average temperature
of grain pile with an SVR approach.

« We employ temperature sensors to measure the grain
temperature data from a real world grain storage for a
period of 423 days, and the collect meteorological data
for the same region and time period. Then, we analyze the
correlation between a large amount of historical granary
data and the corresponding weather data based on the
Pearson correlation coefficient.

o We implement outlier detection and data normalization
for the raw weather and grain pile temperature data.
We use different kernel functions with the SVR model
to predict the average temperature of grain pile based
on meteorological data. We compare the accuracy of
grain surface temperature prediction using different ker-
nel functions. The results show that the Gaussian RBF
kernel function achieves the best performance.

The remainder of this paper is organized as follows. The
granary temperature measurement system is presented in Sec-
tion II. Section III describes grain temperature data mea-
surement, collection process, and data analysis. Section IV
discusses data preprocessing and the SVR model. Section V
validates the performance of the proposed method using real
world data. Section VI summarizes this paper.

II. THE TEMPERATURE MEASUREMENT SYSTEM

To collect grain temperature data, we deploy a set of tem-
perature sensors in the tall granary. Fig. 1 illustrates the tall flat
granary architecture, which is divided into 10 rows from east to
west, five regions from south to north, and four layers from top
to bottom. Then 200 temperature sensors are deployed in this
granary; the sensors are encapsulated in cables and the cables
are inserted into the grain pile at certain places. In the tall
square granary, the temperature sensor layout principle is that
the distance between the horizontal and horizontal temperature
measuring cables should be no more than 5 m, the distance
between the vertical cables should be no more than 2 m, and
distance from the cables to the grain surface, granary bottom,
and granary wall should within 0.3 m to 0.5 m.

Fig. 2 presents a cross-sectional view of the granary. The
temperature monitoring system generally includes temperature
sensors, temperature measuring cables, and a computer mon-
itoring terminal. Each vertical line in the figure represents a

Fig. 1.
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Fig. 2. The cross section view of a granary.

cable, and four temperature sensors are encapsulated in each
cable. To monitor the abnormal change of temperature in the
early stage of grain damage, the distance between the temper-
ature measuring cables should be less than 0.5 m. Therefore,
a large number of cables are needed, which would be hard to
deploy (i.e., buried in the gain pile at precise locations) and
lead to high measurement cost. Fig. 3 is the structural diagram
of the grain condition measurement and control system in the
granary. The computer sends test commands to the extension,
receives test data from the extension, and then processes the
receiving data. The extension receives the computer command,
detects temperature data, and sends the results to the computer.
The digital sensor is encapsulated inside the cable and laid
inside the barn. Both digital temperature sensors and humidity
sensors use a wire bus communication protocol to report
sensory data.

The inspection time of grain temperature is preferably from
9 am to 10 am every day, when the temperature is close to
the daily average temperature. While checking the temperature
of the grain, we should also check the temperature inside the
granary and the temperature outside the granary for analysis
and comparison. All data is sampled once a day.

III. DATA COLLECTING AND ANALYSIS

We measured and collected the grain temperature data of the
grain storage in the No. I Warehouse at Xishan District of Kun-
ming, Yunnan, China for a period of 423 days since January 1,
2017. Then we downloaded the meteorological data of the cor-
responding region for the corresponding period of time from
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Fig. 3. Structure of the grain condition measurement and control system.
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Fig. 4. Average temperature of the first layer of the stored grain pile and
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China Meteorological Data Network (http://data.cma.cn/). The
weather metrics include air pressure, air temperature, relative
humidity, precipitation, evaporation, wind speed, sunshine du-
ration and 0 cm ground surface temperature. The temperature
samples of grain pile are recorded by deployed sensors at 9
am every day. Then, we measure how the surface temperature
of the grain pile changes with the weather variables and how
these variables are influenced by each other.

Fig. 4 presents the surface temperature of the grain pile and
the air temperature of the period. We find that the surface
temperature of the grain pile and the air temperature are
positively correlated. In other words, the temperature of the
first layer of the stored grain pile becomes higher or smaller
as the air temperature increases or decreases. However, there
are other factors that also contribute to the surface temperature
of the grain pile reading, since the surface temperature of the
grain pile has been delayed for several months compared to
the air temperature. It is noticed the highest air temperature
was in June, while the highest temperature of the first layer
of the grain pile was in September.

In Fig. 5, we can see that air temperature (subplot (a)), 0 cm
ground surface temperature (subplot (b)), and relative humidity
(subplot (c)) are all positively correlated with the surface
temperature of the grain pile, especially at higher values. If the
air temperature, 0 cm ground surface temperature, or relative
humidity become larger, the surface temperature of the grain
pile will likely increase too.

To study the correlation between the average temperature of
the first layer of the stored grain pile and the weather metrics,
we compute the Pearson correlation coefficients between pair
of the factors. Table I provides the Pearson product moment
correlation coefficients for all the weather variables and the
surface temperature of grain pile. The higher the absolute
value of the correlation coefficient, the higher the correlation
between the two parameters. From Table I, we find that the
surface temperature of grain pile has higher correlations with
air temperature, relative humidity, 0 cm ground temperature,
but with a smaller correlation with air pressure. Based on this
study, we develop an SVR algorithm to predict the surface
temperature of grain pile using multiple weather parameters,
which is discussed in the following section.

IV. PREDICTION MODEL FOR GRAIN PILE SURFACE
TEMPERATURE

In this section, SVR is utilized to predict the surface
temperature of grain storage. Due to some outliers recorded
by the sensors, the data units are inconsistent; thus the raw
data cannot be directly used by the SVR model. Therefore,
the data must be processed first before SVR predition. The
data processing module includes outlier detection and data
normalization, which are discussed in the following.

e Outlier detection: Some abnormal values are reported
by temperature sensors. Outlier detection is used to
recognize bad data values, which should be removed from
the raw data. In this paper, we leverage the Pauta criterion
method and the linear trend at point method to get rid
of outliers. The outlier detection method is as follows.

Step 1: Let X;, ¢ = 1,2, ..., n, be the ith value of weather
metrics or the average temperature of the first layer of
grain pile. We calculate the arithmetic mean value as

N
X =— X;.
o)X )
i=1
Step 2: We then obtain the residual e; as in (2) and the
standard deviation o of the weather metrics or the average
temperature of the first layer of grain pile as in (3).

ei=Xi—X, i=1,2..,n )

= X; — X)2 3
o n_lg;( ) 3)
Step 3: For all X;, i = 1,2,...,n, if |e;] > 30, we
consider X; as an abnormal value and replace it with
the arithmetic mean value X.
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Fig. 5. Average temperature of the first layer of the
temperature, and (c) relative humidity.
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stored grain pile generally increases with increased (a) air temperature, (b) O cm ground surface

TABLE I
CORRELATION MATRIX SHOWING CORRELATION BETWEEN DIFFERENT FORECAST PARAMETERS

| Airpre | Airtem | Relhum | Preci | Eva | Windspeed | Sunduration | Ocmgrotem | graintem
Air pressure 1.000 -0.499 0.13 -0.119 | -0.241 -0.099 -0.175 -0.436 -0.088
Air temperature -0.499 1.000 -0.005 0.228 0.125 -0.070 0.135 0.953 0.706
Relative humidity 0.135 -0.005 1.000 0.394 | -0.788 -0.633 -0.715 -0.091 0.494
Precipitation -0.119 0.228 0.394 1.000 -0.215 -0.217 -0.403 0.152 0.350
Evaporation -0.241 0.125 -0.788 -0.215 1.000 0.539 0.566 0.213 -0.339
Wind speed -0.099 | -0.070 -0.633 -0.217 | 0.539 1.000 0.362 -0.039 -0.396
Sunshine duration -0.175 0.135 -0.715 -0.403 | 0.566 0.362 1.000 0.221 -0.260
0 cm ground temperature -0.436 0.953 -0.091 0.152 0.213 -0.039 0.221 1.000 0.623
Surface temperature of grain pile | -0.088 0.706 0.494 0.350 | -0.339 -0.396 -0.260 0.623 1.000

Step 4: Repeat the above three steps till all the X;s are
processed.

o Data normalization: To guarantee that the weather data
and the surface temperature of grain pile have the same
unit, we choose the zero-mean normalization method to
normalize all sampled data. The normalized value Z; is
computed as

1 _
Zi=—-(X;—X),i=1,2,...,n. 4)
g
After data preprocessing, the training samples are
T: {(X17y1)7(X21y2)7'“7(xn7yn)}7 (5)

where x; is a vector of eight calibrated meteorological metrics
in the ith sample, and y; represents the calibrated average
surface temperature of grain pile in the ith sample. The SVR
model is then utilized to learn a function f(x), which is close
to the gain surface temperature y as much as possible [17].
The function is defined by

f(x) =w" - p(x) +b, (6)
where w and b are the parameters to be determined, and ¢(-)
is a generic function. A deviation ¢ is used to evaluate the
loss between the output f(x) of the model and the true grain
surface temperature y. In other words, when |f(x) — y| < €,
the prediction result can be considered to be accurate.

The SVR problem can be formulated as follows.

Hw||2 +C- Zl — i), )
where C' is a regularization constant and [.(-) is an insensi-
tive loss function of €. Adding a slack variable to the loss
metric, problem in (7) can be transformed into a minimization
problem (8) as follows.

oin %\lel2 +C- ; (& + 5) ®)
st f(x)—yi <& +e i=1,2,..,n )
yi—f(x) <& 4e i=1,2....,n  (10)
6>0,6>0,i=12 .n, (11)

where &; and fl are slack variables. To solve problem (8),
we first obtain the following Lagrange function using the
Lagrange multiplier method, defined as follows.

L(w, by, &, &, €, i, fi)

Dl +0 3 (6+€) - St -
i=1 i=1
Z &JrZozl ( X;) fs—f¢)+

Zdi'(yi_f(xi)_€

12)

n

— &),
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where pu, fi, o, and & are Lagrange multipliers. Applying
the duality theory, the average temperature and humidity of
the grain surface can be estimated as
n
. T
fx) = Z(ai — ;) o (x;)" P (x)+0.
i=1

V. PERFORMANCE EVALUATION

(13)

In this section, we evaluate the performance of our proposed
approach using real measurement data: the temperature data
of grain storage at the No. I Warehouse in the Xishan District
of Kunming, Yunnan, China for a period of 423 days. The
meteorological data of the corresponding region and period
are obtained from the China Meteorological Data Network
(http://data.cma.cn/). We leverage SVR to predict the surface
temperature of grain piles based on meteorological metric data.

Because of the poor thermal conductivity of the grain
kernel itself and the thermal insulation of the silo wall of
the granary, some samples cannot be linearly divided in the
two dimensional space. Thus, we consider a kernel function
to map the samples to a higher dimensional space, which can
achieve a better separability performance. Under the Python
2.7 environment, the training process of the regression model
is as follows. After outlier detection and data normalization,
all calibrated meteorological factors are taken as independent
variables, and the calibrated average temperature of grain stack
surface as dependent variables, both of which are considered
as input and output of SVR. In order to ensure that the same
training set and test set are segmented in each run for the
SVR model, the same random number seed is set [17]. In
this paper, the linear kernel function, the polynomial kernel
function, and the Gaussian RBF kernel function are used to
predict the average temperature of the first layer of the stored
grain pile [17], [18]. We discuss the detailed experimental
results in the following.

A. Results with Different Kernel Functions
The linear kernel function is defined as follows.

kE(x,X;) =X+ X;. (14)

We use a linear kernel for the SVR model, where the
dimension of the feature space is the same as the input
space. It requires fewer parameters and also achieves a faster
computational speed. The collected meteorological data of 423
days and the corresponding average temperature of the first
layer of grain pile are used as data samples. The temperature
of the first layer of grain pile per day corresponds to eight
metrics of meteorology at the same time. We randomly select
80% of the samples as the training set, and the remaining
20% of the samples as the test set. The results of predicting
the average temperature of the first layer of grain pile using
the linear kernel function are presented in Fig. 6.
The polynomial kernel function is defined as follows.

k (Xv Xi) = ((X ’ Xi) + 1)d7

where d represents the order of the polynomial. In our experi-
ment, we set d = 2, which achieves a good performance. Due

5)
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Fig. 6. Observation and predicted average temperature of the first layer of
the stored grain pile using the linear kernel function.
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Fig. 7. Observed and predicted average temperature of the first layer of the
stored grain pile using the polynomial kernel function.

to the ventilation and food turning operations during grain stor-
age, the sample size collected within a time period is limited
and the feature dimension is relatively small. The polynomial
kernel function can map the low-dimensional input space
to a high-dimensional feature space, but the corresponding
computational complexity is higher. The results of predicting
the average temperature of the first layer of grain pile obtained
by the polynomial kernel function are shown in Fig. 7.
The Gaussian RBF kernel function is defined as follows.

2
X —X;
k(x,Xx;) = exp <—”252H> )

where § is the parameter of the Gaussian RBF. This is a
locally strong kernel function that maps samples into a higher
dimensional space. It can achieve a good performance for both
large and small samples, and requires fewer parameters than
the polynomial kernel function. The results of predicting the
average temperature of the first layer of grain pile using the
Gaussian RBF kernel function are shown in Fig. 8.

(16)

259



s Observation
© 20r - #» =RBF-SVR H
2

& 18F i
g

<

& 16t 1
3

o L. 4
2 14 12

=

2 12r . i
=] i

&

3 101 : l B
E [
P 1

6 i i i i i i i i i
0 10 20 30 40 50 60 70 80 90

Day Index

Fig. 8. Observed and predicted average temperature of the first layer of the
stored grain pile using RBE.

B. Comparison

In order to quantitatively measure the prediction perfor-
mance of the SVR method using different kernel functions,
the root mean square error (RMSE) is used as the evaluation
criteria. We obtain the RMSE results using the different kernel
functions in the SVR model to predict the average temperature
of the first layer of grain pile. We find that all the three
schemes are quite accurate, while SVR with the Gaussian
RBF kernel function achieves the smallest RMSE result. The
polynomial kernel function achieves a 10.50% reduction over
the linear kernel function. The Gaussian RBF kernel function
achieves a reduction of 15.08% and 5.12% over the linear and
polynomial kernel function, respectively.

VI. CONCLUSIONS

In this paper, we leveraged an SVR approach to predict
the average temperature of the first layer of the stored grain
pile using meteorological metrics. Due to the poor thermal
conductivity of the grain kernel itself and the thermal insu-
lation properties of the granary wall, the average temperature
of the first layer of grain pile is usually delayed by a certain
amount of time than the outside air temperature. Among eight
factors of meteorology, there are three factors, including air
temperature, Ocm ground temperature, and relative humidity,
that have a greater impact on the average temperature of the
first layer of grain pile. We applied SVR with three different
types of kernel functions, i.e., the linear kernel function, the
polynomial kernel function, and the Gaussian RBF kernel
function, to perform regression analysis of the grain pile
temperature. Grain temperature data measured from a real
granary and the corresponding weather data were used in our
study. We found all the three schemes achieved very accurate
prediction of grain temperature, while SVR using the Gaussian
RBF kernal function achieved the best prediction performance.
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