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Abstract The interaction between cracks and inclu-
sions plays an important role in the fracture behavior
of particulate composites. It is commonly recognized
that an inclusion stiffer than the matrix tends to deflect
an approaching crack away while a softer inclusion
attracts the crack. Here, we demonstrate by analyti-
cal modeling and numerical simulations that the crack-
inclusion interaction can be tuned by an applied T-
stress. Under a sufficiently large compressive applied
T -stress, cracks can be attracted to stiffer inclusions
while repelled by softer ones, thus reversing the con-
ventional trend. Potential applications of this work
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1 Introduction

Particulate composites are widely used in many engi-
neering applications, ranging from structural com-
posites to energy storage materials. The interaction
between cracks and second phase particles (viz., inclu-
sions with different elastic properties) has been exten-
sively investigated. Analytical approaches have been
developed to calculate the near-tip stress field, stress
intensity factors (SIFs) and the configurational force
for a crack in the vicinity of an inclusion (Atkinson
1972; Erdogan et al. 1974; Faber and Evans 1983a;
Gdoutos 1985; Han and Chen 2000; Hwu et al. 1995;
Li and Lv 2017; Li and Yang 2004; Rubinstein 1991;
Sendeckyj 1974; Tamate 1968; Zhou and Li2007; Zhou
et al. 2011). Simulations using finite element method
(FEM) have been performed to evaluate the SIF and
energy release rate (ERR) for a stationary crack inter-
acting with an inclusion (Haddi and Weichert 1998; Li
and Chudnovsky 1993a,b; Lipetzky and Knesl 1995;
Lipetzky and Schmauder 1994). In order to predict the
trajectory and associated ERR of a propagating crack,
various numerical techniques have been developed and
applied, including boundary element method (BEM)
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(Bush 1997; Kitey et al. 2006; Knight et al. 2002; Lei
et al. 2005; Wang et al. 1998; Wang and Chau 2001),
extended finite element method (XFEM) (Nielsen et al.
2012; Wang et al. 2012, 2015, 2018), element-free
Galerkin (EFG) method (Muthu et al. 2013, 2016) and
cohesive zone type models (CZM) (Ponnusami et al.
2015). Advances in experimental techniques have also
allowed direct observation of crack trajectory in partic-
ulate composites (Chudnovsky et al. 1987; Faber and
Evans 1983b; Kitey and Tippur 2005a, b, 2008).

A widely known conclusion from existing studies
is that a stiff, well-bonded inclusion tends to reduce
the SIF of an approaching mode I crack and deflect
it away, while a soft or debonded inclusion tends to
attract a crack (Bush 1997; Erdogan et al. 1974; Kitey
et al. 2006; Knight et al. 2002; Lei et al. 2005; Muthu
etal. 2013; Wang et al. 1998, 2012; Zhou et al. 2011).
However, one might note that this conclusion has been
primarily drawn from the behavior of the singular stress
field near the crack tip, i.e. the K-field. On the other
hand, it is also known that the constant term in the
Williams expansion of the crack tip field (Williams
1957), the so-called T'-stress which acts in parallel to
the crack, can strongly influence the propagation path
of a mode I crack (Cotterell 1966; Cotterell and Rice
1980; Gupta et al. 2015). So far, the effect of T-stress
on crack-inclusion interaction has only been discussed
in a few studies in the literature. For example, Han
and Chen (2000) showed that T'-stress can influence
the SIFs of an interfacial crack in the vicinity of a
microvoid using a ‘psuedo-traction-edge-dislocation’
method. Zhou and Li (2007) found that T'-stress has a
shielding (or amplification) effect on the mode I SIF
(K ;) during crack-inclusion interaction. Wang et al.
(2018) presented an interaction integral method com-
bined with XFEM to evaluate the SIFs and T -stress for
a center crack in the vicinity of an inclusion subject
to far field tension, including the effect of the inclu-
sion on T-stress at the crack tip. In their model, the
T -stress is influenced by a remote loading acting nor-
mal to the crack as well as the inclusion. In many engi-
neering applications, an applied stress/loading parallel
to the crack plane can alter the T -stress, which will be
referred to in this paper as an applied T -stress, TP,
in order to distinguish it from the T'-stress at the crack
tip. To the best of our knowledge, the effect of 7PP
on the trajectory of a crack in the vicinity of an inclu-
sion has not been investigated, even though it could
be critical to the reliability and performance of not
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only conventional particle reinforced composites but
also many other particulate composite systems. For
instance, composite electrodes in lithium-ion batter-
ies (Fig. 1a) undergo substantial compressive stresses
due to Li intercalation into active materials (Hassoun
et al. 2008; Kumar et al. 2017; Obrovac and Chevrier
2015). The attraction between cracks and active mate-
rial particles can induce capacity fade through loss of
contact between the matrix and active materials. In
addition, hydraulic fracturing designed for stimulat-
ing unconventional reservoirs (e.g., tight gas and shale)
has attracted interests from the oil and gas industry
in recent years (Barati and Liang 2014). Underground
shales (Fig. 1b) naturally undergo a triaxial compres-
sive loading (Gomez and He 2006; Gramberg 1965),
resulting in significant 7-stress during the fracturing
process. The T-effect on crack-inclusion interaction
can play a crucial role in promoting/suppressing crack
networks in connecting rock pores which store natural
gas, affecting overall gas production.

The present work is aimed to investigate the effect
of an applied T -stress on the trajectory of a crack in the
vicinity of an inclusion. Through an integrated theoret-
ical and numerical approach, we will demonstrate that
a sufficiently large compressive applied T-stress can
fundamentally change the interaction between cracks
and inclusions in particulate composites.

2 Theoretical analysis

In many engineering applications, the geometry and
loading condition involving crack-inclusion interaction
could be very complicated. Without loss of general-
ity, the present work focuses on the universal feature
of crack tip fields and studies the model problem of
an semi-infinite edge crack in a two dimensional (2D)
plane-strain elastic medium subjected to a mode I SIF,
K7° as well as an applied T-stress, TP, According
to linear elastic fracture mechanics (LEFM), the stress
field, ¢4 (r, 0), around the crack tip under such loading
reads,

K7 0 36
(1 —sin§sin 3 )cos + TP,

JT
Uzz(r’ 0) = «/7 (1 + sin 2 sin 320) cos %,

Ull(r 0) =

0 36
012(;’ 0) = F Cos 7 sin 2 Ccos 7.

ey
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Fig.1 a TEM image of a
Sn—C nanocomposite
electrode in lithium
batteries (reprinted from
Hassoun et al. (2008) with
permission from
Wiley-VCH STM
Copyright); b fractures in
Nahr Umr shale (Gomez
and He 2006)

The corresponding strain field is,

A _ K[oc _ M _ i 0 i 30 I 1—vM app
511("~9)*2MM oa (1-2v sin § sin z)COSz"'TLM TP

A ___ kP — oM o gin @ gin 3¢ o _ M rapp
822("’9)72,‘/”\/2;7(1 20M + sin § sin %) cos § Z;AMT ,

e (r, 9)2%52? cos % sin % cos %.

2
where 1™ and v¥ are the shear modulus and Poisson’s
ratio of the matrix material, (r, 6) are the polar coordi-
nates originated at the crack tip and the crack lies along
0=—m.

To consider the effect of inclusion, assume there
exists an inclusion with different elastic properties
(u!, v!) located at position (!, 67), as illustrated in
Fig. 2a. We aim at estimating the potential energy
change due to the creation of such an inclusion. For sim-
plicity, here the inclusion is assumed to be circular with
arelatively small radius of R, i.e., R < r!. Under such
conditions, the stress/strain fields in Egs. (1) and (2) are
expected to be approximately valid everywhere except
in the vicinity of the inclusion. Near the inclusion, the
problem could be treated as an Eshelby inhomogeneity
subjected to a remote loading, o (r/, #7). Based on
Eshelby’s equivalent inclusion theory (Eshelby 1957),
the equivalent transformation strain in the inclusion
takes the following form,

L= [(Cl _ CM)S+CM]71(CM —C]), (3)

{eT =LeA(r!, 07,
where S is the Eshelby tensor, C! and C¥ are the elas-
tic stiffness tensors of the inclusion and matrix. For
simplicity, we assume both the matrix and inclusion
materials are isotropic and share the same Poisson’s
ratio, v, and we write,

Ccl=aCM, (4)

200 microns

where @ = ! /uM is the non-dimensional stiffness of
the inclusion. For circular inclusions, the Eshelby ten-
sor is constant (Mura 1987), and the non-trivial com-
ponents of the L tensor in Eq. (3) can be expressed as
(Li and Yang 2004; Zhou et al. 2011),

(1—a)(1 —v)3—4v + 50 —4va)

Lo = L= 0+ 3 — dva)
Li1oo = Lypn=— (= — vl = 4) ,
(I+a—2v)(1 4+ 3a —4va)
Lz = L22%%=w, L3zzz =1—a,
P ra—2vy T
L = %, Li313=L2323 = %-
5

The potential energy change associated with the cre-
ation of such an inclusion is given by (Eshelby 1957),

R2
AU = T A0 T oy 6T (0T, (6)

Note that AU explicitly depends on the location of the
inclusion, (!, 61), due to the non-uniform stress/strain
fields, (oA, sA), around the crack tip. Recall that the J-
integral vector, (J1, J2), measures the potential energy
release rate due to the translational shift of defects such
as cracks and inclusions, also known as the configura-
tional force or material force. Thus, the J-integral vec-
tor along a contour I"! that encloses only the inclusion
in Fig. 2b can be calculated as,

aaU!
gl= dAUD (7)

1
8xl.1
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where xil ,1 = 1,2 are Cartesian coordinates of the where
inclusion. Combining Egs. (1), (3), (6) and (7) yields
an explicit expression for the J-integral vector of the c - (I —a)(1—2v) ) — (1 -
inclusion, 14+a—-2v) 2(1 + 3 — 4av)

1
J]I = _J]oo [ﬁfl (91, o, U) + %gl (91, o, v)i| )
®)
H =g [ifz(e',a, W+ L0, v)} ,
p? o/P

€))

where J2° = (1 — vM)(K$)?/2uM is the J; integral
around the crack tip without the presence of the inclu-
sion; p = r!/R is a normalized distance between the
crack tip and inclusion; = 7 RT4PP /K ;’o is a nor-
malized applied T -stress; f; 6!, o, v)and gi 6!, a,v),
fori = 1, 2, show the dependence on the inclusion ori-
entation 87 and material properties («, v), as the fol-
lowing,

J 6! 39! o J
fi1(0 ,a,v):C1c057c057+3C2sm 6" cosf”,
1 [ =Cycos 367 +3C cos 16!
V2 \ 401Gy Um0 o5 397 )
7O U)_l Cysinf! + Cysin20’ — 3C; sin o/
20V =5\ 250, sin6! cos 28! +4C, cos? 6 sing! )

210", a,v) =

1 {3Cysin 26! +3C;sin 26!
I 2 2
20", a,v) = ( ’ el |

ﬁ +C1C247a(l—v)(l—4v)

1—a 1-2v

(10)
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(1)

In Egs. (8) and (9), the first terms in the brackets rep-
resent the interaction solely between the crack tip and
the inclusion while the second terms result from the
three-party interaction between the crack tip, the inclu-
sion and the applied T -stress. It should be noted that
the former scales with the normalized crack-inclusion
distance as p~2 while the latter as p—3/% for p > 1.
Next, we estimate the local SIFs at the crack tip in the
presence of the inclusion and the applied T -stress.

To connect J-integrals at the crack and the inclusion,
in addition to the inclusion contour, I'!, the following
contours and paths are constructed (Fig. 2b): ¢, an
infinitesimal circular contour surrounding the crack tip;
"™, an infinite large contour enclosing both the crack
and the inclusion; 't and ", line paths along the
upper and lower crack surfaces connecting the infinite
contour " and the crack tip contour rc. rm and
I'", line paths that connect the crack tip contour "¢
and the inclusion contour I" and are infinitely close
to each other. The combined path, I u r¢urfu
'y rt*Jrtur-, with the marked directions in
Fig. 2b, encloses a simply connected region of matrix
material containing no singularities or defects. So, the
J-integral vector vanishes along this path, i.e.,

JE+ I+ Jilpm 4 Jilpn
+Jilp+ + Jilp- + Jilpe =0, i = 1,2 (12)

ou j . .
where J; = fr(wni — akjnk%) dI’, w is the strain
energy density, ny the components of the unit nor-



Tuning crack-inclusion interaction. . .

17

mal vector along the path, oy; and u; the stress
and displacement components, respectively, Jl.C =
lim,—o /7 (wn; — Ukjnk%)rde is the J-integral
along an infinitesimal circular path,! "¢, surround-
ing the crack tip. As the paths ™™ and I'" approach
each other, it is straightforward to show that J;|fm +
Jilr» = 0. Using the stress/strain field in Egs. (1)
and (2) as an approximation to the real stress/strain
field and plugging it into the J-integral definition, we

have J;|+ + Ji|;- = 0.2 Along the infinite contour
I"'®° where the effect of inclusion becomes “invisi-
ble”, we have Ji|re = —J and Jp|p~ = 0, where

JP=01- vM)(K;’O)z/Z,uM is the J; integral around
the crack tip without the presence of the inclusion.
Therefore, Eq. (12) can be reduced to,

I = g5 -]
. 13
=220 "

Inserting Eqgs. (8) and (9) into Eq. (13), we have
the J-integral at the crack tip in the presence of the
inclusion and the applied T -stress,

I = a1+ b A e + L@l o)
IE = IR L RO ) + e )]

(14)

Recall that the J-integral and the SIFs (K, Kj) at
the crack tip have the following relation,

s€ =T ki 4 ki
= I 11 ’
1—vM

JZC:— M KiK. (15)

Combining Egs. (14) and (15), it is straightforward to
calculate the SIFs in the presence of the inclusion as
well as the applied T -stress.

To further demonstrate the physical implication of
the solution, let us focus on the initial stage of a crack
approaching the inclusion, i.e., when the normalized

! This infinitesimal contour limit is required by the definition of
J> while it is not for Jj.

2 1t should be emphasized that for Jo, Jo|p+ + Jo|p- =
/ 0 oo (W —w7™) dxy is not necessarily equal to zero even through
itis well known that J; integral vanishes along 1" and I" ™ (Eis-
chen 1987; Herrmann and Herrmann 1981).

distance between the crack tip and inclusion is still rel-
atively large, i.e., p > 1. According to Eqgs. (8) and
(9), we have [J°| > |J{]], 7] and thus Eq. (13) can
be approximated as

X

I~ U

With the aids of Egs. (15), (16), we can derive the mode
IT SIF of the crack under the presence of the inclusion
and the applied T -stress explicitly as,
MM I

Kp~———0f.
T —nke?

A7)

It is generally accepted that the deflection of a crack
is mainly governed by the mode II SIF, K;; (Cot-
terell and Rice 1980). For example, considering a crack
approaching an inclusion above the prospective crack
path (i.e., 0 < 87 < 90°), Eq. (17) above implies that
the repelling configurational force between the inclu-
sion and crack in the vertical direction (i.e., J21 > 0)
tends to deflect the crack away from the inclusion (i.e.,
K;; > 0), while an attractive configurational force is
likely to deflect the crack path towards the inclusion.
It is important to note that the configurational force on
the inclusion depends on not only the inclusion but also
the applied T -stress. Equations (8), (9), (14), (16) and
(17) are the main results of the theoretical model and
will be further discussed in Sect. 4.

3 Numerical simulations
3.1 FEM calculations for SIF

In order to validate the results from our theoretical anal-
ysis, FEM simulations were performed in a 2D, plane
strain, square domain of length L, as illustrated in Fig.
S1. The domain consists of a straight edge crack of
length a with its tip located at the center of the domain
(i.e., a = L/2) and a circular inclusion of radius R
embedded at the matrix at a distance r! from the crack
tip and an angle 6/ from the reference axis x;. As the
theoretical analysis considers an infinite medium, the
size of the FEM domain is sufficiently large by tak-
ing L/r! = 50 to reduce the boundary effect. The
superposition of the applied K7° and T9P” is achieved
by applying displacement boundary conditions to the
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FEM domain (see Fig. S1). For K ;°, the components of
the displacement are given by the following equations
(Bower 2010),

K9 .

=y 5= [1—2vM + sin? §] cos § s
Ko e

uy = 5= [2—2vM — cos® §] sin §

where r and 6 are polar coordinates along the boundary
of the domain. The displacements corresponding to the
applied T -stress are

1—vM
up = WTappxl

Iy (19)

Uy = ;MLMTQP P xp
where x; and x; are Cartesian coordinates along the
boundary. In the FEM model, combined displace-
ment boundary conditions given in Eqgs. (18) and
(19) are applied. The interaction integral method pro-
vided by the commercial software ABAQUS (Das-
sault Systemes Simulia Corp., Providence, RI) was
adopted to calculate the SIFs of the crack, with 8-
noded biquadratic plane strain quadrilateral elements
(CPESR) assigned to the entire mesh.

3.2 Extended FEM model for crack trajectory
prediction

The analytical model in Sect. 2 that yields explicit
expressions of SIFs is based on the configuration of a
straight crack interacting with an inclusion. However, it
is likely that a propagating crack starts to deflect when it
is still far away from the inclusion. In order to capture
the crack propagation trajectory, we implemented an
extended finite element method (XFEM) (Belytschko
and Black 1999; Daux et al. 2000; Moes et al. 1999)
in ABAQUS with the maximum principal stress crite-
rion. The details of the XFEM model will be discussed
in Sect. 4.3.

4 Results and discussions

The effect of an applied T -stress on the crack-inclusion
interaction results from a three-party interaction involv-
ing the crack, the inclusion and the applied T -stress,
and can be influenced by varying combinations of mate-
rial properties, defect positions and loading conditions
in different engineering problems. To validate and elab-
orate the theoretical and numerical results and their
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implications, the main results are addressed and dis-
cussed in the following.

4.1 Driving force on the crack tip

a. In the absence of an inclusion, i.e. « = 1, Egs. (8)
and (9) show that the configurational force between
the crack tip and the inclusion vanishes. Thus, the
driving force and SIFs at the crack tip are indepen-
dent of the applied T -stress, as expected.

b. Without the applied T-stress, the presence of the
inclusion can still affect the driving force at the
crack tip. Letting the normalized applied T -stress
vanish, i.e., 8 = 0, in Eq (14), one obtains the
driving force at the crack tip as

JE =g [1 + 5@ V)]

C L oelpl (20)

IE =1 [ L am]

which are in agreement with the previous reported

results (Li and Lv 2017).> Correspondingly, the

change in crack tip driving force, JZ.C - J>i =

1, 2, induced by the crack-inclusion (C-I) interac-
tion are

1
AJE o1 = J{"’;fi(@’, av), i=1,2 (21

which scales with the normalized crack-inclusion
distance as p~2 for p > 1.

In the special case of 01 = 0, i.e., for the inclusion
sitting right ahead of the crack tip, Eq. (20) reduces
to

{]1C = I [1 +L(l—a)(l—2v):|

p? (I+a—2v) (22)
=0

In this case, a softer inclusion (i.e. 0 < o < 1)
amplifies the crack tip driving force (i.e. J 1C /I >
1) while a stiffer inclusion (i.e. « > 1) has a
shielding effect on the crack (i.e. JC/J® < 1).
More generally, Eq. (20) predicts that a softer/stiffer
inclusion tends to attract/repel the crack.

3 1t should be noted that the counterpart of .IZC obtained in (Li
and Lv 2017) misses one term compared to our results due to
possible mistakes in derivation.
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c. In the presence of an inclusion, an applied T-
stress provides an effective way to tune the crack-
inclusion interaction. Comparing Eq. (14) with
Eq. (20), one can see that the applied T -stress alters
the crack tip driving force by the following crack-
inclusion-T -stress (C-I-T') interaction terms

(23)

which scale with the normalized crack-inclusion
distance as p~3/2, in proportion to the normalized
applied T-stress 8, and also depend on the elastic
properties of the inclusion.

Comparing Eqgs. (21) and (23), it is important to
note that the scaling of the T -effect terms in Eq. (23)
decays slower than that of the solo influence of
the inclusion in Eq. (21) for p > 1. Consequently,
by choosing a proper applied T -stress, there exists
the possibility for the applied T -stress to compete
with, and even overcome the solo effect of the inclu-
sion, which provides a pathway to tune the crack-
inclusion interaction.

To validate the theoretical predictions and demon-
strate this capability of tuning crack-inclusion interac-
tion via the applied T'-stress, we performed FEM sim-
ulations to calculate and compare the SIFs of the crack
tip under the presence of varying inclusion and applied
T -stress in the next section.

4.2 SIF calculations

Without loss of generality, consider a crack approach-
ing an inclusion above the prospective crack path (i.e.,
0 < 61 < 90°). As the deflection of a crack is governed
by mode II SIF (Cotterell and Rice 1980), we consider
normalized K7,

—= 2Ky (1 —v)
K= T (24)
as an indicator of attraction or repulsion between a
crack and inclusion. A positive K ;; indicates that the
crack deflects downwards and thus is repelled by the
inclusion, while a negative K ;; indicates that the crack
will propagate upwards due to the attraction of the
inclusion.

Figure 3 plots the variations of K;; as a func-
tion of @/ with different dimensionless parameters
a=pl/uMand g = T“W\/ﬁ/l(;’o that represent
the relative stiffness of the inclusion and the normal-
ized applied T -stress, respectively. If the inclusion is
stiffer than the matrix (@ = 3), as shown in Fig. 3a, it
repels the crack subject to a pure K7° loading without
applied T -stress (8 = 0), but surprisingly it is found
that in the presence of a sufficiently large compres-
sive applied T -stress (8 = —1/3) the stiffer inclusion
strongly attracts the crack when 0 < 8/ < 60°. Fig-
ure 3b shows that the crack is attracted towards the
softer inclusion (o = 1/3) without an applied T -stress
while deflected away from the inclusion under a com-
pressive T-stress when 0 < 6/ < 60°. In addition,
higher magnitude of 8 enhances the magnitude of K ;;,
as shown in Fig. S2. In this regard, by applying a suffi-
ciently large far field compressive T -stress, the conven-
tional interaction trend between a propagating crack
and an inclusion can be fundamentally changed, i.e.,
from attraction to repulsion and vice versa. Fig. 3 also
shows that a tensile 7977 ( = 1/3) keeps the same
trend but amplifies the attraction or repulsion effect in
the absence of T9P when 0 < 6! < 60°. FEM results
with 7/ /R = 10 (dots in Fig. 3) show good agreement
with the analytical solution obtained under assump-
tion R < r!. It is also shown that the discrepancy
between analytical predictions and FEM simulations
rises as r/ /R decreases, but the analytical solution still
provides an acceptable estimate of K ;; even in the case
of r'/R = 2 (see Fig. S3).

4.3 Crack trajectory near an inclusion under an
applied T -stress

Figure 4a illustrates the adopted XFEM model, as a
plane strain square domain of length L, consisting a
pre-existing edge crack of length @ and a circular inclu-
sion of radius R located at an offset from the prospec-
tive crack path by a distance d. The chosen geometric
parameters (R/L = 0.05,a/L = 0.1 andd/R = 1)
and mesh size ensure that the calculated crack trajec-
tory is not sensitive to the domain size, initial crack
length or mesh. The shear modulus ratio between the
inclusion and matrix is taken to be « = 10 (a stiffer
inclusion) or ¢ = 0.1 (a softer inclusion). The Pois-
son’s ratios of the two phases are assumed to be iden-
tical (v = v™ = 0.33). The domain is subject to a
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Fig. 3 Normalized mode II SIF as a function of 87 for different
values of parameter § for a crack interacting with an inclusion
a stiffer (0« = 3) or b softer (@ = 1/3) than the matrix. The
distance between the crack tip and inclusion center is fixed at
r! = 10R. The solid lines correspond to the analytical solution
and the dots are FEM results

biaxial loading: uniform tensile stress acting normal
to the crack plane (o in Fig. 4a) and uniform normal
stress acting parallel to the crack (o, in Fig. 4a). To
study the T -effect, two different loadings, o, = 0 and
oy = —30y, were applied for comparison. It should
be pointed out that even for a homogeneous square
domain (¢ = 1) under uniaxial tension (i.e., o, = 0),
the T -stress at the crack tip is non-zero and varies with
the crack length, from about —0.530 ata/L = 0.1 to
about 0.630 ata/L = 0.5 (Sherry et al. 1995). In this
regard, the normalized applied T -stress 8 varies from
—0.32ata/L = 0.1t00.16ata/L = 0.5wheno, = 0,
and from —2.1 ata/L = 0.1 to —0.59 ata/L = 0.5
when o, = —30,. Thus, the crack in the latter case
experiences a much higher compressive T-stress than
in the former case.

The crack trajectories in the vicinity of the inclusion
under uniaxial tension (o = 0) are shown in Fig. 4b.
The stiffer inclusion deflects the approaching crack
away while the softer inclusion attracts the crack, simi-
lar to the trend reported in previous studies (Muthu et al.
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2013; Wang et al. 2012). Interestingly, when the com-
pressive loading acting parallel to the crack is applied
(ox = —30y), Fig. 4c shows that the crack is attracted
by the stiffer inclusion while repelled by the softer one,
suggesting that the trend of crack-inclusion interaction
has been reversed.

Comparison of Figs. 3 and 4 demonstrates that the
variations of mode II SIF from the analytical solution is
in qualitative agreement with the simulated crack tra-
jectory by XFEM. For a crack in the vicinity of the
softer inclusion under a compressive applied 7 -stress,
the mode II SIF (red line in Fig. 3b) is positive when
0 < 67 <60°, turns negative when 60° < 07 < 100°,
and becomes positive again when 100° < 0/ < 150°,
which is consistent with the crack trajectory (red solid
line in Fig. 4c) where the vertical distance between the
crack and inclusion initially increases, then decreases
around the top region of the inclusion, and increases
and decreases again as the crack propagates away from
the inclusion. Another observation is that the crack
does not deflect until it is about one radius away from
the inclusion-matrix interface in the absence of o, in
Fig. 4b; while if the compressive oy is applied, signif-
icant deflection occurs when the crack is about three
radii away from the inclusion, as shown in Fig. 4c.
This is in agreement with the SIF plots in Fig. 3 and
Fig. S2 where the magnitude of K in the presence of
sufficiently large compressive T'-stress (8 < —1/3) is
higher than that in the absence of T -stress as the crack
approaches the inclusion (0 < 6/ < 60°). Both SIF
calculations and XFEM simulations thus support the
conclusion that a sufficiently large compressive applied
T -stress can reverse the conventional trend of crack-
inclusion interaction.

5 Conclusion

For particulate composites subject to uniaxial tension,
it is widely known that an inclusion well-bonded to
and stiffer/softer than a matrix tends to repel/attract an
approaching crack. In the present work, we have pre-
sented an integrated theoretical and numerical study
on the effect of an applied T '-stress on crack—inclusion
interaction. Our analytical solution and finite element
results both suggest that a sufficiently large compres-
sive applied T-stress can reverse the above conven-
tional trend of crack—inclusion interaction, in the sense
that the applied 7 can render the crack attracted toward
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Fig. 4 a Initial configuration and boundary conditions of XFEM simulations. XFEM simulated crack paths in the vicinity of a stiffer
inclusion (o = 10) or softer inclusion (e = 0.1) with b o, =0 and ¢ 0y /oy = —3

a stiffer inclusion and repelled away from a softer inclu-
sion. This T-effect on crack-inclusion interaction is
potentially important for the following particulate com-
posite systems.

e For particle reinforced composites, previous stud-
ies have shown that stiff and tough particles in
a compliant matrix with strong interfacial bond-
ing can toughen the material if crack arrest occurs
(Wang et al. 1998). In this regard, applying a large
compressive loading parallel to the crack plane
could be a strategy to facilitate crack arrest as
the repulsion between the cracks and stiff particles
turns into attraction.

e Composite electrodes used in commercial lithium-
ion batteries are typically particulate composites
where active material particles are embedded in a
matrix that consists of binders, conductive mate-
rials, pores, etc. Lithium intercalation into high
capacity active materials such as silicon can induce
substantial compressive stress in the electrodes.
Thus, cracks propagating in the matrix would be
attracted towards the stiff active particles, which
could further induce capacity fade through the
detachment of the active material particles from the
conductive matrix.

e Rock pores in underground shales, which trap nat-
ural gas, can be seen as inclusions with zero stiff-
ness (i.e., voids) in a stiff matrix. In the field of
hydraulic fracturing, the induced fracture network

is expected to pass through as many rock pores as
possible. High compressive T -stress for hydraulic
fractures might cause repulsion between the pores
and induced cracks. Due to the gravity effect, under-
ground shales undergo a triaxial differential com-
pressive loading and the major compressive prin-
ciple stress is usually along the vertical direction,
so horizontal hydraulic fractures are likely to pro-
vide higher gas production by passing through more
rock pores in comparison with vertical fractures.

Depending on the application that a particulate com-
posite is designed for, attraction (or repulsion) between
cracks and inclusions is probably desirable in some par-
ticulate composites, while should be avoided in some
others. The present work suggests a strategy to tune
crack-inclusion interaction with an applied T -stress,
which may shed some light on the design of particulate
composites with improved reliability and performance.
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