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ABSTRACT. We provide a complete and self-contained proof of spectral and
dynamical localization for the one-dimensional Anderson model, starting from
the positivity of the Lyapunov exponent provided by Firstenberg’s theorem.
That is, a Schrédinger operator in £2(Z) whose potential is given by indepen-
dent, identically distributed (i.i.d.) random variables almost surely has pure
point spectrum with exponentially decaying eigenfunctions, and its unitary
group exhibits exponential off-diagonal decay, uniformly in time. We also ex-
plain how to obtain analogous statements for extended CMV matrices whose
Verblunsky coefficients are i.i.d., as well as for half-line analogues of these

models.
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1. INTRODUCTION

1.1. The goal in a nutshell. This paper is centered around the following
fundamental result.
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3620 VALMIR BUCAJ ET AL.

Theorem 1.1 (Spectral localization for the one-dimensional (1D) Anderson model).
Consider the family {H,,}weq of random Schrédinger operators, acting in £*(Z) via

[Ho](n) = ¢(n+ 1) +(n — 1) + Vi (n)ih(n),
where the potential V,, is given by independent, identically distributed random vari-
ables. It is assumed that the common distribution has a compact support that con-
tains at least two elements. Then, almost surely, H,, is spectrally localized; that is,
it has pure point spectrum with exponentially decaying eigenfunctions.

We will provide a complete and relatively elementary derivation of this result,
starting from the classical Fiirstenberg theorem about products of random matrices.
In particular, as opposed to all previously published proofs of this result, we will
not appeal to multiscale analysis as a black box.

1.2. Background and context. Let us describe the context and the relevance of
Theorem 1.1. The Nobel Prize winning work of Philip Warren Anderson suggested
that randomness leads to the localization of quantum states in suitable energy
regions that depend on the strength of the randomness. A particular signature of
such a localization effect is a spectral localization statement, which asserts that
the spectral type of the associated Schrodinger operator is pure point in suitable
energy regions, and the eigenfunctions corresponding to the eigenvalues in these
energy regions decay exponentially.

For the sake of concreteness, let us consider the standard Anderson model,
which is just the d-dimensional generalization of the operator family considered in
Theorem 1.1. That is, given a probability measure 1z on R whose topological sup-
port is compact and contains at least two points, we consider the product space
Q = (supp ﬁ)Zd and the product measure p = ﬁzd. For every w € Q and n € Z%,
we set V,,(n) = w,. This defines, for w € Q, a potential V,, : Z¢ — R, and in turn
a Schrodinger operator

[Hotln) = Y $(m) +Va(n)i(n)

|m—n|1=1

in £2(Z%). Standard ergodicity arguments show that the spectrum and the spec-
tral type of H, are almost surely independent of w; that is, there exist sets
3, Xpps Xsc, Zac, and a set Qy C Q of full y-measure such that, for every w € Qy,
we have o(H,) = ¥ and 0.(H,) = X, ® € {pp,sc,ac}. It is not too hard to show
that
3 = [-2d,2d] + supp &t

The assumption that supp iz is compact ensures that these operators are bounded;
the real-valuedness of the potential ensures that they are also self-adjoint. The
boundedness is not crucial, and one could in fact consider probability measures
12 with unbounded support. However, the phenomenon of Anderson localization
already occurs in the bounded case, and many authors limit their attention to
this case—as do we. Furthermore, the assumption that supp gz contain more than
one point excludes the trivial case of a constant potential, for which the Anderson
localization phenomenon is obviously impossible (the spectrum is purely absolutely
continuous in this case).

The spectral signature of Anderson localization is now the following. There
exists a set X a;, € X, which is a finite union of nondegenerate intervals such
that X, C X,p (or, really, “=") and int Xap, N Xge = int Xap, N Bye = 0. This
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means that almost surely the spectrum of H,, is pure point on XAy, and hence
H, has a set of eigenvalues that is dense in X ar,. The additional feature is that
the associated eigenfunctions decay exponentially. The size of Xy, relative to the
size of ¥ depends on the dimension and the strength of the randomness. It is
expected that Ya;, = X for d = 1 and d = 2, and that for d > 3 we only have
Yar € X. However, Yoy, = X does hold in the case d > 3 when the randomness
is strong enough. More specifically, each of the connected components of X4y, is a
neighborhood of a boundary point of . The length of these intervals grows with
increasing randomness, up to a point where they cover all of ¥. From this strength
of randomness onward, we have Y, = X.

Notice that Theorem 1.1 is precisely the expected statement 51, = 3 for the
case d = 1. The localization part of the expected statement for the case d > 3
is known for sufficiently regular i as well, but proving that ¥\ Xap, = Xac # 0
for sufficiently small randomness in the case d > 3 is the main open problem in
the study of random Schrodinger operators. The expected statement for d = 2
is not known. The best known result in the case d = 2 is the same as the best
known result for d > 3, but no better. That is, one knows localization (under
suitable assumptions on ) only in neighborhoods of the boundary points of %,
not in all of 3, as is expected. This problem (“prove spectral localization for the
two-dimensional Anderson model throughout the whole spectrum for any strength
of randomness”) is the second main open problem in the field. The third main
open problem is to establish the localization result in dimensions d > 2, which, as
pointed out above, is known under suitable assumptions on fi, for any single-site
measure . For example, the case where i has a nonzero pure point part is for
the most part not covered by known localization results in higher dimensions yet,
though there has been some recent progress due to Ding and Smart in dimension
2 [22].

Proofs of spectral localization results come in two general flavors. Some of them
use methods that are strictly 1D, and others work in any dimension. Among the
strictly 1D proofs, we mention the Kunz-Souillard approach [17,21,41] and the
approach via spectral averaging [49,52]. Proofs that work in arbitrary dimension
include those based on multiscale analysis (MSA) [23-26, 30] and the fractional
moment method [2-4]. However, most of these approaches are limited in terms of
the single-site distributions to which they apply. Except for the MSA approach,
all of the approaches require i1 to have a nontrivial absolutely continuous compo-
nent, or to even be purely absolutely continuous. This leaves MSA as the only
method heretofore available in cases where g is purely singular. The special case
in which & is supported on precisely two points is the hardest; this is commonly
referred to as the Bernoulli case, and the operator family in this case is called
the Bernoulli-Anderson model. The approach based on MSA is the most complex
among the available approaches. This makes the treatment of the Bernoulli case
difficult, even in one dimension.

On the other hand, the case of one dimension is special in that Fiirstenberg’s
theorem about products of random matrices provides compelling evidence that
spectral localization holds for all single-site distributions in this case. It shows that,
for all © and throughout ¥, solutions of the generalized eigenvalue equation have a
strong tendency to be either exponentially increasing or exponentially decreasing.
Coupled with the general fact that all spectral measures are supported on the
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3622 VALMIR BUCAJ ET AL.

set of energies that admit polynomially bounded solutions, this should imply that
all such polynomially bounded solutions are in fact exponentially decreasing, and
hence are eigenfunctions, and hence the spectrum is pure point because the spectral
measures are supported on such energies, which turn out to be eigenvalues by the
argument above. The starting point of this argument, the exponential behavior
of solutions, has no analogue in higher dimensions, and this is the reason why
spectral localization is known at all energies in one dimension, is not known in two
dimensions, and is in fact expected to fail in general for dimensions greater than 2.

Alas, the argument outlined in the previous paragraph has a flaw which has to
do with exceptional sets and uncountable unions of zero-measure sets. Localization
proofs in one dimension that are based on the output of Fiirstenberg’s theorem
(i.e., all proofs other than those using the Kunz—Souillard method) must address
this flaw. That is, they do implement the general strategy, but they address the
complications that arise when uncountable unions of exceptional sets of zero mea-
sure are taken.

When p has a nontrivial absolutely continuous component, this is taken care of
in a very elegant way by spectral averaging. One of the fundamental properties of
spectral averaging (namely, that the average of spectral measures turns out to be
Lebesgue measure) allows one to simply ignore sets of zero Lebesgue measure, and
this shows in effect that the flaw is a nonissue in this case.

On the other hand, when g is singular, the only option up to this point has
been to verify the assumptions that are necessary to start an MSA throughout the
spectrum, which consists of proving a Wegner estimate and establishing an initial
length scale estimate. The former is difficult to establish in the Bernoulli case, and
the latter follows from the positive Lyapunov exponents provided by Fiirstenberg’s
theorem. Thus, the work necessary to deal with the 1D case in full generality (i.e.,
including the Bernoulli case) mainly focused on establishing a Wegner estimate.
This was accomplished, by different methods, in two papers: by Carmona, Klein,
and Martinelli in 1987 [12] and by Shubin, Vakilian, and Wolff in 1998 [47]. Once
all of the ingredients are in place, the MSA machine produces the desired spectral
localization statement, and hence Theorem 1.1.

Because of the challenges involved in verifying the Wegner estimate in order
to run an MSA, as well as the preponderance of additional tools available in one
dimension, it has therefore been a well-recognized problem in the random operator
community to find a more direct way of going from the positive Lyapunov exponents
provided by Fiirstenberg’s theorem to the spectral localization statement contained
in Theorem 1.1, that is, to find a one-dimensional proof of this one-dimensional
result. This is precisely what we accomplish in this paper.

1.3. What this paper accomplishes. We provide a complete derivation of Theo-
rem 1.1 from Firstenberg’s theorem without having to appeal to the MSA machine
as a black box. Our proof not only is more direct and conceptually tight, it is nat-
urally also substantially shorter than the previous proofs, obtained by combining
either [12] or [47] with the full-blown proof that running an MSA yields localiza-
tion.!

10n a related note, two of us wanted to include the localization result for the 1D
Bernoulli-Anderson model in the forthcoming monograph [15], and for this we needed a self-
contained proof.
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To give the reader an initial impression of one of the key realizations in this
paper, let us discuss the interplay between Lyapunov behavior and the existence of
polynomially bounded solutions in more detail.

The difference equation

(1.1) u(n+1) +u(n —1) + Vy(n)u(n) = Eu(n)

admits a two-dimensional solution space, as any two consecutive values of u deter-
mine all other values. Fixing (u(0),u(—1))" as the point of reference, the linear
map taking this vector to (u(n),u(n—1))T is given by the so-called transfer matrix
ME(w). Ergodicity of the full shift implies that, for each E, there are L(E) > 0
and QF, QF C Q with p(QF) = p(QF) = 1 such that

L(E) limy, 00 %log ||Mf(w)|| for w € QF,
C | limy, s e ﬁ log [|[MFE(w)|| for w e QF.

The number L(FE) or the function L(-) are called the Lyapunov ezponent.
Firstenberg’s theorem implies that in fact L(E) > 0 for every E. Now if w € Qf
(resp., w € QF), then, due to a result of Oseledec, there is a 1D subspace of the
solution space in which every element decays exponentially at co (resp., —o0), while
every linearly independent solution grows exponentially at co (resp., —oo). More
precisely, the rate is given by the Lyapunov exponent; that is, the decaying solutions
obey

log([u(n)|? + [u(n — 1)*)*/? = —L(E),

. 1
lim —
n—+too |n|

while growing solutions obey

1
Jim o (fu(n) + u(n — 1) = L(E).
These decay/growth statements are sometimes referred to as Lyapunov behavior.

Thus, for every E, we have Lyapunov behavior at both £oo for almost every w.
Suppose that we could turn this around and claim, for almost every w, Lyapunov
behavior at both oo for every E. Let us call this statement the Anderson localizer’s
dream. Then spectral localization would immediately follow. Indeed, fix an w
from this full-measure set. Since spectrally almost all E’s admit a polynomially
bounded solution and each solution is either exponentially increasing or decreasing
at oo, and either exponentially increasing or decreasing at —oo, it follows that
all polynomially bounded solutions must decay exponentially (at the Lyapunov
rate) at both +oo and must hence be genuine eigenfunctions. Thus, spectrally all
energies are genuine eigenvalues, and spectral localization (pure point spectrum
with exponentially decaying eigenfunctions for almost all w’s) follows.

Alas, things are not so easy. First, switching the order of the quantifiers only
gives Lyapunov behavior at both +co for almost every w and (for example) Lebesgue
almost every E, as a consequence of Fubini’s theorem (applied to the product
measure i X Leb). As briefly alluded to above, this is already sufficient to estab-
lish spectral localization thanks to spectral averaging if the single-site distribution
has an absolutely continuous component. But it is decidedly not sufficient in the
singular case. Second and more importantly, the Anderson localizer’s dream is
even known to fail. Namely, Gorodetski and Kleptsyn have shown in [35] that, for
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almost all w’s, Lyapunov behavior fails for energies F from a dense Gs subset of
the spectrum X in the sense that

1 1
0 = liminf — log | M P (w)| < limsup — log || MF(w)| = L(E)
n—oo 1 n—oo T

(and a similar statement on the left half line).? In other words, the Anderson
localizer’s dream is a mirage that should not be chased.

However, we will formulate the appropriate modification of the Anderson local-
izer’s dream. To state it, let us denote the set of energies E for which the difference
equation (1.1) admits a nontrivial solution u satisfying a linear upper bound,

(1.2) [u(n)] < Cu(1+ In),

with C,, a u-dependent constant, by G(H,,). Energies F in G(H,,) are called gen-
eralized eigenvalues of H,, and the corresponding linearly bounded solutions u
are called generalized eigenfunctions. It is a classical theorem of Shnol [46] and
Simon [48] that
G(H,) C o(Hy,)

and

Xr\G(#.,)(Hw) = 0.
In particular, G(H,,) supports all spectral measures of H,,,.

Theorem 1.2 (The modified Anderson localizer’s dream). For p-almost every
w € Q and every E € G(H,,), one has

L log [ME ()| = L(E).

o1 E .

That is, the desired Lyapunov behavior holds for all generalized eigenvalues, and
this is precisely the set of energies for which one needs Lyapunov behavior to be able
to deduce spectral localization. In particular, Theorem 1.2 implies Theorem 1.1.

Notice also that one gets as a natural byproduct the result that the decay rate
of the eigenfunctions is given by the Lyapunov exponent, which is certainly to be
expected. To summarize, in this paper, we have found the natural statement and
what we believe to be the natural proof of the phenomenon of spectral localization
for the 1D Anderson model.

Our approach also allows us to prove dynamical localization,

sup | <5n, e_itHW6m> | < eclmlg=Bln—ml.
teR

see Theorem 6.4 for the precise statement and [18,29-31] for some previous results
on dynamical localization for the Anderson model. Here, € is arbitrarily small and
[ is arbitrarily close to the best possible decay rate, which is given by the minimum
of the Lyapunov exponent on the almost-sure spectrum. Thus, our spectral and
dynamical localization results are both established with the correct decay rate.

Furthermore, we can also use our method to prove localization for CMV matri-
ces with random coefficients. A CMV matrix arises in the representation of the
map f(z) — zf(z) in L?(0D,dp) relative to a suitable basis, where u denotes a

2As we were completing the work on this paper, we learned that [35] also contains a new proof
of spectral localization for the 1D Anderson model, which arises as a byproduct of their extension
of the classical Firstenberg theorem. Additionally, while the present paper was under review,
Jitomirskaya and Zhu also wrote a proof of localization based on positive Lyapunov exponents
and large deviations [37].
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probability measure on the unit circle that does not admit a finite support. It is a
five-diagonal semi-infinite matrix that is determined by a sequence of Verblunsky co-
efficients {ay, fnez, C D, which arise as the recursion coefficients of the orthogonal

polynomials associated with p, and the derived quantities p,, = (1 — |an|2)1/ %,

[0 aapo P1po
po —aQ1qp —pP100
Qz2p1 —Qa01 QP2 P3pP2
(1.3) C = pP2P1 —p201 —2_3052 P2
Qg P3 —Qiy3 Q504 P5pP4
P4pP3 —patx3  —Qs504 —pP504

This matrix defines a unitary operator in £2(Z, ), and the spectral measure corre-
sponding to C and the vector dy is given by p.

This sets up a one-to-one correspondence between measures p and coefficient
sequences {ay }nez, , which has been extensively studied in recent years, mainly
due to the infusion of ideas from Simon’s monographs [50, 51].

Similarly, an extended CMV matriz is a unitary operator on ¢2(Z) defined by a
bi-infinite sequence {ay, }nez C D in an analogous way:

Qop-1 —Qo—1  Q1po P1pPo
pPop—1 —pPod—1 —Qi0g —pP10o
(14) €= Qzp1 —Q201 Oé_ipz P3pP2
pP2pP1 —p2001 —Q3l2 —pP302
Qap3 —QrgQ3 Q5 P4 P5 P4
P4pP3 —pa3  —Q504  —pP504

From the point of view of orthogonal polynomials, the study of C is more natural,
but when the Verblunsky coefficients are generated by an invertible ergodic map
(such as, for example, the full shift of primary interest in this paper), the study of
£ is more natural.

We are interested in the case of random Verblunsky coefficients. As in the
Schrédinger case, we fix a single-site distribution that is compactly supported inside
the open unit disk D (rather than R as above). This induces random sequences
{an (W) }nez, and {a,(w)}nez, as well as random CMV matrices C,, and random
extended CMV matrices &,,.

The following theorem is the CMV analogue of Theorem 1.1.

Theorem 1.3 (Spectral localization for random extended CMV matrices). Con-
sider the family {€.,}wea of random extended CMV matrices, acting in (?(Z), where
the Verblunsky coefficents are given by independent, identically distributed random
variables. It is assumed that the topological support of the common distribution is a
compact subset of D that contains at least two elements. Then, almost surely, &, is
spectrally localized; that is, it has pure point spectrum with exponentially decaying
eigenfunctions. Moreover, the rate of decay at energy z is exactly L(z).

Due to the special interest to the orthogonal polynomial community, we also
state explicitly the half-line version of the previous result.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3626 VALMIR BUCAJ ET AL.

Theorem 1.4 (Spectral localization for random CMV matrices). Consider the
family {C.}weq of random CMV matrices, acting in (*(Z. ), where the Verblunsky
coefficents are given by independent, identically distributed random variables. It is
assumed that the topological support of the common distribution is a compact subset
of D that contains at least two elements. Then, almost surely, C,, is spectrally local-
ized; that is, it has pure point spectrum with exponentially decaying eigenfunctions.

As above, one could ask about the case in which the single-site distribution
is not compactly supported in D, and our method should extend to these cases
under the appropriate assumptions (ensuring, e.g., the existence of the Lyapunov
exponent, which is absolutely fundamental to this approach). Theorem 1.4 was
first discovered in situations where spectral averaging was applicable: the single-
site distribution was assumed to be absolutely continuous with respect to either
Lebesgue measure on D or arc length on a circle centered at the origin and of
radius smaller than 1; compare this to [51, Theorem 12.6.3], [53]. There is some
related work on another class of random unitary operators [36, 38]; their results
also require the absolute continuity of the single-site distribution. For singular
single-site distributions, Ahlbrecht, Scholz, and Werner worked out a version of
MSA for 1D quantum walks in [1]. Then, using the connection between spatially
inhomogeneous quantum walks and CMV matrices, one can use the results of [1] to
deduce Theorem 1.3. Since the necessary calculations may not be known to all of
our readers, we show how to make this connection between localization for quantum
walks and localization for CMV matrices in the appendix.

Moreover, as in the Schrodinger case, our method also yields suitable results con-
cerning exponential dynamical localization; see Theorem 7.3 below for the precise
statement.

For the sake of completeness, we mention that our approach provides a half-line
version of Theorem 1.1 as well.

1.4. Strategy of the proof. The basic strategy of our localization proof fol-
lows the ideas of Bourgain and Schlag’s localization proof for half-line Schrodinger
operators whose potentials are generated by the doubling map on the circle [10], who
in turn were inspired by the paper [9] of Bourgain and Goldstein on quasi-periodic
potentials. In particular, the main ingredients of this approach are uniform posi-
tivity of the Lyapunov exponent, a uniform large deviation theorem (LDT) for the
same, and a version of a lemma regarding the elimination of double resonances.
Here, uniformity is with respect to the spectral parameter F.

Let us also mention the papers [6,7] by Binder, Goldstein, and Voda, who im-
plemented a similar strategy for the Anderson model on the strip under the more
restrictive assumption of a single-site distribution with a bounded density.

The remainder of the paper is organized as follows. In Section 2, we show conti-
nuity and uniform positivity of the Lyapunov exponent as a function of F, starting
with verifying the conditions of Firstenberg’s theorem for SL(2,R), formulated as
Theorem 2.1. This section is largely expository, and details are provided for the
convenience of the reader.

In Section 3, starting again with the conditions of Fiirstenberg’s theorem, we
supply a relatively simple proof of a uniform LDT for the Lyapunov exponent.
Such results are known for i.i.d. random matrices [42] and one-parameter families
of i.i.d. matrices [55]. However, we wish to emphasize that this proof of the LDT is
new. It makes use of the independence of the underlying dynamics more transparent
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and may have the potential to be useful elsewhere. In fact, by the author of [57], a
version of the LDT is currently being worked out for the model in [57], where the
potentials are generated by some strongly mixing dynamics. Some of the arguments
in Section 3 may be directly used there.

In Section 4, we supply a simple proof of Holder continuity of the Lyapunov
exponent and the integrated density of states. This result is well known (compare
this to [43, Théoreme 3]), but the modern proof via the avalanche principle is
simpler.

In Section 5, we obtain suitable upper bounds on the norms of the transfer matri-
ces and relate them to estimates on the Green functions of finite-volume truncations
of the full-line model.

In Section 6, we complete the proofs of Theorems 1.1, 1.2, and 6.4; the starting
point is Proposition 6.1, which is an appropriate formulation of the elimination of
double resonances in this setting.

We wish to emphasize that the tools we develop in Sections 5 and 6 are more gen-
eral than the similar ones in [10], and this eventually enables us to show exponential
dynamical localization for the Bernoulli-Anderson model.

Finally, in Section 7, following the arguments from the proofs of Theorems 1.1
and 6.4, we prove Theorems 1.3 and 1.4, and the CMV version of an exponential
dynamical localization result, Theorem 7.3.

2. POSITIVITY AND CONTINUITY OF THE LYAPUNOV EXPONENT

In this section, we will introduce several classical results concerning positivity
and continuity of the Lyapunov exponent for products of i.i.d. random SL(2,R)
matrices, which will be instrumental in our proof of Anderson localization.

Consider a probability space (A, ), and let (Q,T,u) be the full shift space
generated by (A, 1): in other words, Q = A%, u = %, and

(Tw)p, = Wni1, we nel.

Consider a map M : A — SL(2,R). For simplicity, we assume that this map is
bounded, that is,

sup ||M(a)]| < oc.
acA
This generates a map Q — SL(2,R), which we also denote by M, via
M(w) = M(wo), w e,
which in turn induces an SL(2,R)-cocycle over T in a canonical way:
(2.1) (T, M) : Q x R* = Q x R?, (T, M)(w,v) = (Tw, M(w)7).

We define the iterates of M over the skew product by (T, M)" = (T", M,,) for
n € Z. One can check that

M(Trw) - M(w), n>0,
M”l(o‘)) = ]L n = O;
[M_,(T"w)] ™", n <0,

We can (and do) view M, as the product of n i.i.d. random SL(2, R) matrices with
common distribution & when n € Z,.
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The Lyapunov exponent of the cocycle (2.1) is defined by
1 1
L=L(T M):= lim —/log||Mn||d,u = inf —/10g||Manu > 0.
n—oo N Jq n>1ln Jo
By Kingman’s subadditive ergodic theorem, one also has
1
L= lim = log [ Ma(w)]
n—,oo N

for p-almost every w € €.

In the current setting, it is convenient to consider the Lyapunov exponent as a
function of the probability measure on SL(2,R). Concretely, through the probabil-
ity space (A, 1) and the map M, we obtain a probability measure on SL(2,R) via
v = M., that is, the push-forward measure of i under the map M. Thus, in our
setting, we also sometimes write the Lyapunov exponent as L = L(M,1).

We denote by RP! the real projective line; that is, RP! is the set of lines in R?
that pass through the origin. It clear that each M € SL(2,R) induces a map on
RP!, which will again be denoted by M. We say that a subgroup G C SL(2,R) is
strongly irreducible if there is no finite nonempty set F C RP! such that M (F) = F
for all M € G.

The following (special case of a) deep theorem of Fiirstenberg is essential for our
analysis.

Theorem 2.1 (Firstenberg [27, Theorem 8.6]). Let v be a probability measure on
SL(2,R) that satisfies

/log | M| dv(M) < oo.
Denote by G, the smallest closed subgroup of SL(2,R) that contains supp v.

Assume the following:

(i) G, is not compact.
(ii) G, is strongly irreducible.

Then L > 0.

Remark 2.2. Under condition (i), strong irreducibility of G, is equivalent to the
following:

(ii") There is no set F C RP* of cardinality 1 or 2 such that M (F) = F for all
M e G,.

From this, one can immediately deduce global positivity of the Lyapunov expo-
nent for the Anderson model as soon as the single-site distribution has at least two
points in its support. We now precisely define the Anderson model and set up our
notation.

Definition 2.3. Suppose that our probability space (A, 1) consists of a compact
set of real numbers; that is, we assume henceforth that

A =suppp C R,
and that A is compact. Then, for each w € €,
[HoY)(n) = (n—1) +(n+1) +wup(n),  n€eZ, ¢ € l*Z),
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defines a bounded self-adjoint operator on ¢2(Z). For each E € R, we define the
map M¥ : A — SL(2,R) via
EFE—a -1
E( N _
M(a)—{ 1 0}, ae A,
which may be extended to €2 as above. Then it is straightforward to verify that

MF(w) is the n-step transfer matrix of the eigenvalue equation H,¢ = E¢. More
specifically, H,¢ = E¢ if and only if

[qs(i(ﬁ)l)] = ME(w) [qfi(_oi)} for all n € Z.

The induced measure on SL(2, R) will be denoted by vg = MF i, and the Lyapunov
exponent at energy F is then defined and denoted by L(FE) := L(vg).

Defining
(2.2) Y=A+[-22={z+y:z €A ye[-272]},

one can check that o(H,) = X for p-a.e. w € Q, e.g., by using generalized eigen-
functions.

Clearly, if #.4 = 1, then the theory is quite trivial. Concretely, if A consists of the
single point a € R, then  contains only the constant sequence w,, = a; in this case,
o(H,) =X =[a—2,a+ 2], and the spectral type is purely absolutely continuous.
Henceforth, we adopt the standing nontriviality assumption that #.4 > 2.

Theorem 2.4. In the Anderson model, v = MFE[ satisfies assumptions (i) and
(ii) from Theorem 2.1 for every E € R. In particular, we have L(E) > 0 for every
E eR.

Proof. Fix E € R. Since the support of the single-site distribution has cardinality
at least 2, it follows that vg also has at least two points in its support. Thus, G
contains at least two distinct elements of the form

r —1

say, M, and M, with a # b. Note that

VE

1 a-b»
0 1

Taking powers of the matrix A, we see that G, is not compact.

Now consider V; := span(é}), the projection of & := (1,0)T to RP!. Then
AVy = Vi and, for every V € RP!, A"V converges to Vi. Thus, if there is a
nonempty finite invariant set of directions 7 C RP!, one must have F = {V;}.
However, we also have

A—MaMbl—{ ] € Gyy.

1 0
a—0b 1
and A'Vy # V4. Thus, G,, is strongly irreducible, so conditions (i) and (ii)
of Theorem 2.1 are met. Consequently, L(E) = L(vg) > 0 by Fiirstenberg’s
theorem. ]

A’_Male_{ ]EGV

The main application of positive Lyapunov exponents is that one obtains precise
asymptotic statements about orbits under cocycle iterates. The following deter-
ministic theorem supplies what we need.
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Theorem 2.5 (Ruelle [45]). Suppose that A™ € SL(2,R) obeys
1
lim —log |[A™| =0
n—,oo N

and

1
lim —log||[A™ ... AM|| =L > 0.

n—o00 N

Then there exists a 1D subspace V€ RP! such that

1 —L §eV\{0
lim — 10g||A(”) .. .A(l)@'” _ ge \ {0},
n—oo M L 7e RQ \ V.

For a proof of Theorem 2.5, see [45] or [14, Theorem 2.8].

For the Anderson model, we will also want to know that L(E) is a continuous
function of E, which follows easily from a theorem that goes back to Fiirstenberg
and Kifer in the 1980s. Given a sequence of Borel probability measures {1} sup-
ported in SL(2,R), we say that v, converges to v weakly and boundedly if

(2.3) / log™ || M || dvg (M) +/ log™t || M||dv(M) — 0
IM[=N IM|>N

as N — oo, uniformly in k& and

/fduk—>/fdz/

for all f € C.(SL(2,R),C), the space of continuous complex-valued functions on
SL(2,R) with compact support. In (2.3), we use log™ () = max(log z,0) to denote
the positive part of logz. We first state a (special case of a) theorem of Fiirstenberg
and Kifer, which is another cornerstone for our analysis.

Theorem 2.6 (Fiirstenberg and Kifer [28, Theorem B]). Let v be a probability
measure on SL(2,R) for which

Fix(G,) := {V €RP' : MV =V for every M € GV}
contains at most one element. Then, if v, — v weakly and boundedly, it holds that

kli_g)lo L(vg) = L(v).

Applying this theorem to the Anderson model, we obtain continuity of L as a
function of E € R.

Theorem 2.7. In the Anderson model, L(E) is continuous as a function of E. In
particular, L is uniformly positive in the sense that

24 = inf L(E .

(24) v:= jnf L(E) >0

Proof. Let E € R be given, and, as above, let vy = MZEF denote the induced
measure on SL(2,R). By Theorem 2.4, G, is strongly irreducible; in particular,
Fix(G,,) is empty, so vg satisfies the assumption of Theorem 2.6. Consequently,
to prove continuity of L(E) in E, it suffices to show that vg, — vg weakly and
boundedly whenever F,, — E.
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Given a sequence F,, — F, one can verify that there is a uniform compact subset
of SL(2,R) that simultaneously supports vg and every vg, , so (2.3) follows. Thus,
we only need to show the “weakly” part. By dominated convergence, we obtain

lim [ fdvg, = lim /foME"dﬁ:/foMEdﬁ:/fduE
n—oo

n— oo

for every f € C'(SL(2,R),C), which concludes the proof of continuity.

Combining the continuity of L with Theorem 2.4, we see that L(F) is uniformly
bounded from below away from zero on any compact set. On the other hand, one
can check that

lim L(E) = +oo,

|E|—00

o (2.4) follows. O

Remark 2.8. We have defined v to be the global minimum of L(E) over E € R.
However, it turns out that

(2.5) 7 = min L(E);

that is, L achieves its minimum value on 3. To see this, one may use the Thouless
formula [5, 13, 54]:

(2.6) L(E) = /Rlog |E — x| dN(z).

In (2.6), dN denotes the density of states (DOS) measure associated with the family
{H, }weca, which is defined by

/ 9(E)AN(E) = /Q (80, 9(H.,)50) du()

for bounded measurable functions g. The DOS is a Borel probability measure with
suppdN = X [5]. Then, if £ ¢ ¥, L is differentiable at E with

L - [ 5

oAl Ay
This follows by using dominated convergence and noting that E ¢ ¥ allows one to
uniformly bound h=1(log |E + h — z| —log |E — z|) over x € X for sufficiently small
h. Applying this argument again, one gets
d?L dN
Tl [ AN
dE? r (F—x)?
Then, since L is continuous on R and L(E) — oo as |E| — oo, (2.5) follows. The

reader should note that the argument used to deduce differentiability of L no longer
works if £ € ¥ =suppdN, so we only get smoothness of L outside of X.

< 0.

The last piece of information that we will need to run our arguments is a state-
ment to the effect that, for any sequence of unit vectors v, € R2?, | MEF(w)v,||
grows like e"M(F) as n — oo (p-almost surely); this statement will enable us to
prove an initial scale estimate that we can then use to inductively prove an LDT.
To do this, we must verify one final technical hypothesis on the group G, .

Definition 2.9. Given a subset G of GL(d,R), we say that G is contracting if there
exists a sequence {g, }°°; in G for which ||g, || "¢, converges to a rank-1 operator.

Proposition 2.10. In the Anderson model, G, is contracting for every E.
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Proof. Given E, let a, b, and A be as in the proof of Theorem 2.4, and take g,, = A™.
It is easy to check that

1 0 1
lonl ™90 = [o ]
which concludes the proof. O

Proposition 2.11. For any E and any convergent sequence {UH}ZO:1 of unit vectors
in R?,
1 B/ \~
nlbrr;o - log || M. (w)¥, || = L(E)
for almost every w € €.

Proof. This follows from [8, pp. 53 and 54, Corollary 3.4], which may be invoked
because G, is strongly irreducible and contracting. ([l

Proposition 2.11 represents the starting point of our new proof of the LDT. We
want to say a few words about this proposition since it is already a highly nontrivial
result. First, Proposition 2.11 trivially holds true if the Lyapunov exponent is zero;
that is, when L = 0. Consequently, the nontrivial part of this proposition lies in
the case in which L > 0.

From Oseledec’s multiplicative ergodic theorem, we know that if L > 0, the
cocycle (2.1) has two invariant sections (i.e., measurable maps A% A% : Q — RP!
with AA® = A® o T for e € {s,u}) that are called stable and unstable sections.
For almost every w, vectors drawn from the stable subspace A®(w) will contract
exponentially fast in forward time (under the cocycle map) with the rate L, while
vectors drawn from the unstable subspace A%(w) contract in backward time. Away
from the stable direction, every vector grows exponentially in forward time with
the rate L. Thus, Propsition 2.11 is a more general and sophisticated version of the
following statement: for products of i.i.d. random SL(2,R) matrices obeying the
conditions of Theorems 2.1 and 2.6, every nonzero vector in R? is not in the stable
direction of the phase w with probability 1.

3. LARGE DEVIATION ESTIMATES FOR PRODUCTS OF I.I.D. MATRICES

For all £ € R, Theorem 2.4 and Proposition 2.10 imply that G = G, is non-
compact, strongly irreducible, and contracting. From Theorem 2.7, we know that
L is a continuous function of E (which is a consequence of continuity of the cocy-
cle map and the contracting property). We will use these properties to deduce a
suitable uniform (in E) LDT.

Henceforth, define

S = [k, K], K =2+ max |af.
acA

In particular, ¥ is a compact interval containing the almost-sure spectrum, 3,
defined in (2.2). The goal of this section is to supply a simple proof of the following
uniform LDT using strong irreducibility and contractivity of G,,.

Theorem 3.1. For any € > 0, there exist C = C(e) > 0, n =n(e) > 0 such that

1
u{w €Q: ‘ElogHMf(w)H — L(E)

> 6} < Ce M

foralln € Z, and all E € 3.
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We begin by proving a first step toward this estimate. Let us denote the set of
all unit vectors in R? by

St = {1761@2 : |’Ul|2 + |’Ug|2 = 1}.

Proposition 3.2. For anye >0,0< §d <1, and E € f], there exists an N =
N(e,d, E) such that

(3.1) u{w:‘%logHMf(w)ﬁH —L(E)‘ 25} <4

for alln > N and ' € S*.

Proof. Suppose, for the sake of establishing a contradiction, that the statement of
the proposition is false; that is, suppose that there exist Ey € X, §p € (0,1), g9 > 0,
a sequence of integers ny — 0o, and unit vectors #;, € S! such that

(3.2) ,u{w :

Since Ey plays no role in the argument, we suppress it from the notation for the re-
mainder of the proof. By passing to a subsequence, we may assume that the vectors
¥ converge to a vector U, € S'. Consequently, since ny ' log || M, @x|| — L is uni-
formly bounded on €2, we may apply Proposition 2.11 and dominated convergence
to get

1
o 108 [[ M2 )| = L(Eo)

> 50} > do for every k € Z .

(3.3) lim

k—o0 Q

On the other hand, letting Ay denote the set on the left-hand side of (3.2), we
get

1 S
o |0, ()] - £ ) =0,

1 N 1 .
/ ’— log || My, Uk || — L} dp > / — log || My, k|| — L} dp > €pdo
Q| "k A | Tk

for every k € Z,, which contradicts (3.3). O

Our next goal is to extend this proposition to a neighborhood of F, so we need
to estimate how changes in F perturb M,,. To do this, we define

1
(3.4) Fo(w,E) = Tl log|MEF(W)|, n€Z weQ EeR,
n

where we adopt the convention F, = 1. Throughout the paper, there will be
various uniform bounds that can be controlled in terms of bounds on the single-
step matrices. Hence, we introduce

(3.5) F::sup{HME(oz)H:EEXA),aEA}.

Since  and 3 are compact and M (w) is continuous as a function of (E,w) € £xQ,
it follows that I' is finite. From the definitions, it is easy to see that

|Fp(w, E)| <logT foralln€Z, weQ, Ec¥.
Combining this with (2.4), we get the uniform bounds
(3.6) v < L(E)<logl'  forall E e %.

The following lemma is a straightforward calculation.
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Lemma 3.3. We have

n

(3.7) HMf(w) ~ MF' (W)

<nl™ ' (|E - E'| + max |w; — )|
0<j<n J

forall EJE' € X, w,w' €9, and n € Z. Therefore,

(3.8) |Fp(w, E) — F(w', E")| < T ! (|E — F'| 4+ max |wj — w;|)
0<j<n

foral E, E', w, W', and n. Furthermore, with

Lu(B) = [ Fafo. ) du(o).
one has
(3.9) |Ln(E) = Lo (E")| <T"YE - E|.

Proposition 3.4. For anye >0,0< 6 <1, and E € 2, there exists an N/ =
N'(e, 4, E) such that, for every integer n > N', there exists a p = p(n) > 0 with the
property that

(3.10) i {w : ‘%bg HMf (w)d| — L(E)

2€}<5,

for all unit vectors € S', whenever |E — E'| < p and E' € 3.

Proof. Fix e > 0,0 < 6 < 1, and E € ¥, and put N/ = N(e/2,6, F) from
Proposition 3.2. Let n > N be given, and let p = p(n) > 0 be chosen such that

|L(E) — L(E")| <e/4  whenever E' € ¥ and |E — E'| < p,

which can be done by continuity of the Lyapunov exponent and compactness of .
If necessary, shrink p to ensure that

< €
P=4rn—1
where T is as in (3.5). For any @ € S!, we have

(3.11)
fos | Log 1 i - e

>ehc o \%mgan(wm —L(E)\ > 2}

whenever E/ € ¥ and |E — E’| < p. Concretely, if w lies in the complement of the
right-hand side of (3.11), we have

1 / .
o8 |ME 7] - L(E)

1
< E- B+ ]— log || ME (w)l| — L(E')
n

<

+ \%Mg 1M (w)3] — L(E)} +|L(B) - L(E")

3
4
&,

A

where the first inequality uses Lemma 3.3. Thus, (3.11) holds and the conclusion
of the proposition follows from Proposition 3.2 and our choice of N. O

In what follows, we will need to use the following discrete Chebyshev-type
inequality.
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Lemma 3.5. Let P € Z4 and aq,...,ap € R be given. Given L < maxja; < B
and 6 > 0, define
Jrs={j:a; >L+d}.

If
1 B
(3.12) ﬁzaszjLa
j=1
for some € > 0, then
(3.13) #I15 > P%

for every 0 <6 < B— L.

Proof. Assume that (3.12) holds, and let m := #JL 5. Using (3.12) and splitting
the sum over Jr s and its complement, one obtains

P
P(L—i—E)SZaj: Z a; + Z a; <mB+ (P —m)(L+59).
j=1 JETL,s J€TL,s

Solving for m, we get (3.13). O

We may now combine our foregoing work to fashion the final stepping stone
before proving the main LDT: a vectorwise uniform LDT. Compare this to [55,
Theorem 4].

Proposition 3.6. For every e > 0, there exist constants C,n > 0 such that

o

for everyn € Z,, v€S', and E € s,

Proof. Let I' be defined as in (3.5), put B =logI'+1, fix ¢ € (0, 1), and notice that
e<B—-L(FE) for every E € 3

by (3.6). Motivated by Lemma 3.5, we define £ > 0 by

1
~log | M (w)d]| — L(E)

> 5} < Ce M

£= L.
4
and we observe that
(3.14) &< A for every E € &
“B-L(E) -

by (3.6). In particular, £ depends on €, but not on E. Now fix 6 > 0 small enough
that 1 + de < €¥/2, and let E € 3 be given. Then, put N = N'(g/4,6; E) and
p = p(N) as in Proposition 3.4, and let E' € (E — p, E+ p) and n € Z; be given.
Writing n = NP 4+ r with P € Z, and 0 < r < N, one can check that

)

P-1
log 1M ()3 = > log || ME (TN w)7,
=0

+logHMTEl(TPNw)17p

where o
(w)v

U, =t(w, E) = —2 " 0g<p<P

P 1M (w) 7|
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We first deal with the set

1 !
Bf = B (Ee,7) = {w : ~ log HM,;E W) - L) > 5} .

For n large enough, one has

{ PZ log | MY (7w >p<w,E’>|zL<E’>+§}.

In light of this, Lemma 3.5, and our choice of £ in (3.14), we obtain

(3.15) B U ) A

JCl0,P—1)NZ peT
#.7,§P

where A, = A,(E’,¢,7) is given by

]_ ’
A, = {w P47 log |ME (TPN W), (w, E)|| > L(E') + Z} )
Thus, it remains to bound the measure of sets of the form

Az =) 4

peEJ

with J C [0, P — 1] N Z being a set of cardinality at least £P. To that end, we
notice that whether or not w € A, depends only on the coordinates (wg,ws, ...,
W(p+1)N—1). To capture this dependence, we introduce the following grouping of
coordinates. Suppose that #J = m > P, write J = {p1 <p2 < -+ < pm}, and
define

@ = (W +DN - WppN-1), 1< j<m,

where we take pg = —1 by convention. Thus, we obtain the following grouping of
the coordinates of w:

W = ( NNV IR ,w(phLl)N,l, ce ,w(pm_lJrl)N, ce ,w(perl)N,l, .. )

G1E€Q i =AP1FHN QMEQmZ=A(Pm*Pm71)N

Denoting the (p; — pj—1)N-fold product of g with itself on Q; by g, (3.15)
gives us

n(Ag) = /HXA ) dpu(w)

O PEJ
(3.16)

m
I x4, @1 @5) | din (@) -+ dpa (@),
Q1 Q. U

In the innermost integral, the “important variables” that govern the growth of
|MnTp,,|| correspond to the last N coordinates of Wp,. So we further split &,
into its last N entries and first (p,, — pm—1 — 1)N entries. Write & = (01,...,0n)
for the terminal N coordinates of &,,, and let &} denote the remaining initial
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(Pm — Pm—1 — 1)N coordinates of &,,. Then our goal is to estimate

/ X, (@1, s Bn) Ao ()

Qi
(3.17)

- / / X, (@@L, 3) dEY () dEEm—Pm DN (L)
N

uniformly over &y, ...,&,—1. Note that, in the definition of A, , My (TP"Nw)
depends only on &, and @,,, depends only on (&,ds, . ..,d},). Consequently,

I 1 o a~Nym N f o L g €
/XApm (wl,wQ,...,w}n,U) duN(o') =N {a : NlogHMﬁ (6)Tp,, || > L+ Z} <4d
AN
for our choice of N by Proposition 3.4. Now plugging back into (3.17) gives us

/XAM (@1, @, -, Gon) At (@) < 0.
Qp

Inductively applying the same argument m times, we get
(3.18) w(Agz) <™ whenever J C [0, P — 1] NZ and #J = m.

Bounding the measure of B is now a matter of counting and our choice of 4.
Namely, if we write I = [0, P — 1] N Z, (3.15) and (3.18) imply that

uBH < S 6 < S (5e)* = e (14 be)F < e P/

JCcI JCI
#IT2EP

by our choice of §. Taking
§
= E =
no = no(E, €) 3N
we find that
w(Br) < e §F/2 < o mon

for all sufficiently large n (note that the largeness condition depends solely on E
and ). One bounds the p-measure of

1 /
B, =B, (E' ¢e,0) = {w : Elog |ME (w)d]| — L(E') < —5}

similarly and obtains

u(By) <emmn
for all sufficiently large n by following the argument used to estimate p(B;). Nat-
urally, this yields

(3.19) [ {w :

for n sufficiently large.

Thus, for each F in 3, we find ny = no(E,e), p=p(E,e), and N” = N"(E,¢),
so (3.19) holds for all B/ € (E — p, E + p), n > N” and ¥ € S'. Then we obtain
the conclusion of the theorem via a straightforward compactness argument (using
compactness of 3). O

1 ’
~log HM;? (w)7]| - L&)

- 5} = (B} UB,) < 2¢7m"
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Proof of Theorem 3.1. Let E € ¥ and € > 0 be given. Notice that
(3.20) {w : ‘%log|Mf(w)|| —L‘ 25} =BuB,,
where B = B (E, ¢) are given by

1
BE = {w D+ (—log | ME (w)|| - L) > E} .
n
In terms of the sets from Proposition 3.6, one has
Bi(E.e)= ] Bl (E,e, %), B,(E,e)= () B,(E ez
Fest Fest
Thus, denoting the standard basis in R? by {€1, &}, we get B, (E,¢) C B,, (E, ¢, 1),
and hence
p (B, (E,e)) < (B, (E e 6)) < Ce ™"
by Proposition 3.6.
It remains to estimate the measure of B} (E,¢). Since
M@ <V mas [ Mo )7 ]
we get
B} (E,2) C B} (E,e/2,6) UB; (E,¢/2,é)
for all n large enough that ne > log 2, which in turn gives
w(Bi(E,e)) < Ce ™" 4 Ce ",
Choosing 1 = min {n1, 72,73}, the theorem follows. ]

4. HOLDER CONTINUITY OF THE LYAPUNOV EXPONENT

The purpose of this section is to supply a simple proof of the Holder continuity
of the Lyapunov exponent of the Anderson model. In essence, once we have a
uniform lower bound on the Lyapunov exponent as in (2.4) and a uniform LDT
as in Theorem 3.1, Holder continuity of L follows from the approach developed by
Goldstein and Schlag [34].

We will concentrate on the regularity of L on the interval s By Remark 2.8, L
is already a smooth function of F away from X.

Theorem 4.1. There exist constants C > 0,5 > 0 depending solely on i such that
(4.1) |L(E) — L(E')| < C|E — E'|°
for all E,E' € 3.

Remark 4.2. Another important object in the spectral analysis of the Anderson
model is the accumulation function of the DOS, called the integrated density of

states (IDS):
N(E) = / dN.
(7OO>E]

By the Thouless formula, the IDS is (almost) the Hilbert transform of L; conse-
quently, one can deduce quantitative continuity estimates for the IDS from such
estimates on L. In particular, one can deduce Hélder continuity of NV as a function
of E from Theorem 4.1 with the same choice of .
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Corollary 4.3 ([43, Theoreme 3]). There exists a constant C' > 0 such that
IN(E) - N(E')| < C|E - E')f
for all E,E" € R, where (3 is as in Theorem 4.1.

Proof. This follows from the uniform positivity of L, Theorem 4.1, and standard
arguments using the Thouless formula, (2.6). See, e.g., [34, proof of Theorem 6.1,
particularly the argument on pp. 175 and 176]. (Il

The key ingredient in the approach of Goldstein and Schlag is the avalanche
principle [34]. Basically, the avalanche principle permits us good control on the
norm of a product of SL(2,R) matrices provided that we have suitable estimates on
consecutive pairwise products. A bit more precisely, if we consider a product like

1
A= H AW = A g(n=1) A1)
j=n

then, if [[AUTDAU)| is not too small compared to [[AUFD| - ||AY)|, the most
contracted direction of AU+ is not too close to the most contracted direction of
(AU))=1 If this holds for each 1 < j < n, then one has good norm control for the
product A.

The avalanche principle allows one to move from small scales of matrix products
to large scales in an inductive fashion. In particular, in Lemma 4.5, we are able to
relate finite-step LEs at different scales using the positivity of L and the LDT.

Lemma 4.4 (Avalanche principle). Let AM ... A" be o finite sequence in
SL(2,R) satisfying the following conditions:

(4.2) min |[AD| >\ > n,
1<j<n
) ) ) ) 1
(48)  max [log [ AU + log |AV] ~ log AUV AV | < J log
Then
n—1 n—1
(4.4) log A .. AW+ "log [AD] = > " log AT AD|| < cg.
j=2 j=1

See [34, Proposition 2.2] for a proof of Lemma 4.4.

Lemma 4.5. There are constants ¢,C > 0 that depend only on [ with the property
that

(4.5) |L(E) + Lu(E) — 2Lon(E)| < Ce™e"
for allm € Z, and every E € s

Proof. Let E € ¥ be given; all estimates in the present argument will be uniform
over I/ € f], so we will suppress it from the notation, writing L, L,,, M, in place of
L(E), L,(E), M. Throughout the argument, we let C' denote a large $-dependent
constant. It is straightforward to verify that the value of C' increases only finitely
many times as the argument progresses, and that it can indeed be chosen uniformly
over E € 3. Now choose ¢ > 0 small enough that

4e 1
<z

4.6 0<
(4.6) T 3
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where y is the constant from (2.4), and pick n > 0 small enough that n < 4(y — ¢)
and that the conclusion of Theorem 3.1 holds for this choice of 7 and . Given
n € Z4 large, choose ¢ € Z4 such that

(4.7 el <n <etl < b9t
where the final inequality follows from our choice of 7. For each w € €, consider
A(j)(w) = M, (T(jfl)zw) , 1<j<n.

From Theorem 3.1, by choosing n, and hence /¢, large, we obtain that there is an
exceptional set B = B(n) with

nt

Bl

n(B) <e”
such that
1
’ 20
whenever w ¢ B and 1 < j < n. Consequently, we have
JAD (w)]| > =9 > n
for all w € Q\ B and 1 < j < n. Moreover, for 1 < j < n, we get

log | AV (w) | + log | AV (w)]| — log | AV (w) AV (w) || < 4ee

1 ,
48 [jlgl A0 -2

g [ 4000} AP )] - I <

from (4.8). Thus, for w € Q\ B, conditions (4.2) and (4.3) of Lemma 4.4 are fulfilled
upon taking A = exp((L — €)¢), where we have used (4.6) to verify that (4.3) holds
true. Consequently, we obtain the conclusion of (4.4) for each w ¢ B, which reads

n—1 n—1
log || Men (w)]] + Y log [ Me(TU V)| = 3 log | Mae(T0 D w) | < O
j=2 j=1

Dividing the inequality above by #n, integrating it against u, and splitting the
domain of integration into 2 \ B and B, we get

~2 2(n — 1 ,
Len + "TL,Z - #L% <O+ u(B)) < Cem i

Thus, we obtain
(4.9) |Len + Ly — 2Lo| < C L et < cetot.
n

Notice that (4.9) holds for any sufficiently large n and ¢ that are related via (4.7).
Thus, we now can build up estimates on large scales inductively. To make this
precise, let us define a relation > by declaring

als

x

NS

y>r < es* < =< —e

SHES
N

For the first scale, we choose n; € Z, large and ne > ny a multiple of ny; apply-
ing (4.9) with £ = n; and n = ny/ny yields

(4.10) Ly, + Ly, — 2Lop,| < Ce™ 5"
and
(4.11) |Lap, + L, — 2Lon,| < Ce™ 57
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Combining (4.10) and (4.11) gives us
(4.12) |Lan, — Lp,| < Ce™ 5.
Inductively, choosing ns11 > ng such that ng|nsi1, we get (4.10) and (4.12) with

the pair (nj,ng) replaced by (ns,nsy1), which in turn yields

|L —L,,| < Ce5Mme-1 for every s > 2.

MNs41

Putting these estimates together, we obtain

0< Lﬂz - L < Z'Lns+1 - Lns
s=2

[ee]
<y ot
s=1
< Ce 3,
Consequently, we obtain (4.5) upon replacing L,, with L in (4.10). O
Now we are ready to prove Theorem 4.1.
Proof of Theorem 4.1. Let E,E’ € 3 be given. Recall that
|Ln(E) - Ln(E,)| < Fn|E - E/|
by (3.9). Combining this with (4.5), we get
(4.13) |L(E) — L(E")| < C"|E — E'| + Ce™"

for all large n, where C,c > 0 are suitable constants. Holder continuity of L then
follows by choosing n well. More precisely, with

1 1 1 3 . [2 c
= =minq =, ——
" 3logC °8 |[E—F'|]’ 37 3logC |’

(4.13) yields

IL(E) - L(E")| < C|E - E'|°,
which proves Theorem 4.1. O

5. ESTIMATING TRANSFER MATRICES AND (GREEN FUNCTIONS

In the present section, we work out the next main thrust of the localization
proof—namely, suitable upper bounds on Green functions of finite-volume trun-
cations of H,. In the 1D setting, the truncated Green functions are intimately
connected with the transfer matrices; hence, the main technical result of the sec-
tion is actually an estimate on the transfer matrices. We use the LDT to prove
bounds on transfer matrices on blocks of length n on a full-measure subset of €2, at
the price of averaging over n? consecutive blocks. In fact, we prove a “centered”
version of this result that allows us to shift the result to the center of localization
(once we know that the eigenfunctions are localized, that is). We then parlay this
result into an upper bound on the Green functions. Recall the function F;, defined
in (3.4), that is,

1

Fo(w, E) = ] log || M7 (w)]]-
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Lemma 5.1. For any € > 0, there exists an ng = no(e) such that
> e} <e ®

Proof. Since p is T-invariant, we need to deal only with £ = 0. Fix E € i, fixe > 0,
and suppress F from the notation. By the triangle inequality and Chebyshev’s
inequality, we have

r—1

1

L(E) -~ > F(T*"w,E)
s=0

(5.1) " {w :

for everyl € Z, E € S, re Zy, and every n > ng.

r—1

r—1
1 1
/L{W DL = ;ZOFn(Tsnw) > 5} < ﬂ{w : ;ZOM—Fn(TS"w)\ > 6}
r—1
< efre/exp <Z|L—FnoTsn> dp.
Q s=0

Since F,, oT*" and F,, o T* " depend on disjoint sets of coordinates whenever s # s,
it follows that e/~ °T""| are independent random variables on Q for distinct s.
Thus,

r—1 r—1
/exp <Z |L _ Fn ° T5n|> d,LL — H \/e‘LiF"OTSTq dlu,
Q 0 =0/

pa
which in turn implies that

Iz {w :
(5.2)

r—1

1
L-- > Fu(T"w)

s=0

r—1
zep <ot [T [ty
s=0"7

_ <€_€/€L_F"dll> ,
Q

where the second line follows from the T-invariance of p.

It remains to bound the integral on the right-hand side of (5.2). To that end,
take 0 < £/2, split © into the regions where |L — F,| > § and |L — F,,| < 0, and
then apply Theorem 3.1 to estimate the measure of the former region:

(5.3) /e‘L_F”(“’)‘ dp(w) < CT2e™™ 4 ¢,
Q

Since ¢ < /2, we may choose ng = ng(e) large enough that

(5.4) CT2e™M0 4 ¢% < e%,
In view of (5.2), (5.3), and (5.4), we have

u{w: zs}ge—%

foralln >mng and all 7 € Z . O

r—1
1
L— - E F,(T°"
r s=0 ( UJ)

Using the lemma, we can get a full-measure set of w € €2 on which one can
control transfer matrices across blocks of length n if one is willing to average over

n2 consecutive blocks.
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Proposition 5.2. For any 0 < € < 1, there exists a subset Q1 = Q4 (e) C Q of
full u-measure such that the following statement holds true. For every € € (0,1)
and every w € 4 (e), there exists an ng = no(w, €) such that

(5.5) L(E)— = Y Fp (T""(w),E)| <e
s=0

for all n, ¢y € Z with n > max (7o, (log(|¢o| + 1))%?) and all E € .

Proof. The key realization in this proof is that one can obtain good control of the
averages of the functions F),(w, E') globally over E € N by controlling F,, on suitable
finite subsets of 3 whose cardinality can in turn be bounded via the perturbative
estimates from Lemma 3.3 and the compactness of 3.

For a given large enough n (we will determine largeness later), we first consider
sets By, = B¢, (€) where (5.5) fails to hold:

n?—1
1
Bug i=qw:sup |L(E)— — > F(TOV"w, E)| > ¢
Ees [ —

Given 0 < § < 1/2, define the naive grid
Do = [2 (26 Z)] U {£x}.
It is straightforward to check that ¥ is d-dense in 3 in the sense that
(5.6) scJr-ot+4
teXo
Moreover, we may estimate the cardinality of 3¢ via
K 2K
o< —+3< —;
# 0> 5 +3=< 5 )
note that we used 6 < 1/2 and x > 2 in the second step. Now fix 0 < & < 1, and
let I' denote the uniform bound on ||M|| from (3.5). Taking 6 = £(3I'™)~! in the
discussion above, we may produce a finite set 3y C 3 which is £(3I™)~1-dense in
3 in the sense of (5.6), with cardinality bounded above by

6k
(5.7) 43, < ’1 .
If necessary, enlarge n to ensure that
eN\B €
(5.8) C (3r_n) <z

where C' and f are from Theorem 4.1. Then (3.8) and Theorem 4.1 yield

Bug C |J w:|L(E) - 1 > B, (TT"w, E)| >
EES, [y

Wl ™

Consequently, by taking n large enough that n > ng(e/3) and that (5.8) holds and
using the T-invariance of p, one obtains

n 2
(5.9) p(Br) < X5 exp (—1)
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by Lemma 5.1. Now, with
Boi= |J Buc

ol <en®/?

it is clear that p (B,) < e~ for n large, so Q4 = O\lim sup B, satisfies u(Q4) =
1 by the Borel-Cantelli lemma. Naturally, for each w € Q4, we can find ng =
no(w, €) large enough that w ¢ B,, whenever n > 7. In other words,

w ¢ B whenever n > 7ig(w, e) and |(o| < ol

Changing the order of n and (p, the statement above clearly implies that
w ¢ B, whenever (y € Z and n > max <ﬁ0, (log(|¢o] + 1))2/3) .
By the definition of B,, ¢,, we obtain the statement of the proposition. |

We are now in a position to estimate the finite-volume Green functions. Before
stating the estimate, we fix some notation. Let A = [a,b]NZ be a finite subinterval
of Z, and denote by Py : ¢*(Z) — ¢*(A) the canonical projection. We denote the
restriction of H, to A by

Hy, A= PrH,Py.

For any E ¢ o(H, ), define
GL A= (Hon—E)"!

to be the resolvent operator associated with H,, 5. Like H, , GﬁA has a repre-
sentation as a finite matrix; denote its matrix elements by GE)A (m,n), that is,

GL A(m,n) := (0, GE A0n) n,m € A.

Additionally, for N € Z, let us define H,, y := H,, [o,n) to be the restriction of
H,, to the box Ay := [0, N) N Z. We will likewise use the same notation for the
associated resolvent Gf’ N

Using Cramer’s rule, we know that

det[Hw j — E] det[HTk+1 N—k—1 — E}

5.10 GE (k) = ! ks
( ) w,N(]? ) det[Hw’N — E] 3
forany0 < j <k < N-—land E ¢ o(H,, ~), where one interprets det[H,, o—E] = 1.

Another relation that will be important in what follows is

- det(E — Hw,N) — det(E — HTW’Nfl)
o det(E — Hw,N—l) — det(E — HTUJ,N_Q)
This is a standard fact which one may prove inductively.

In particular, since the norm of a matrix majorizes the absolute value of any of
its entries, we obtain

(5.11) ME(w) N >2.

[ MP ()| MG (TFw) |

| det[H,, v — F]|
forall0 < j < k < N—1 by combining (5.10) and (5.11). Thus, it is straightforward
to transform estimates on transfer matrices into estimates on Green functions of

truncations of H,; to complete our goal of estimating Green functions, we will use
Proposition 5.2 to estimate transfer matrix norms and then apply (5.12).

(5.12) GEnG )| <
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Corollary 5.3. Givene € (0,1) and w € Q4 (g), there exists an ny = ny(w,€) such
that the following statements hold true. For all E € f], we have

(5.13) %lognﬂlf(Tf%uﬂ|§<L(E)4—26

whenever n,(y € Z satisfy n > max (7, log?(|¢o| + 1)).
Moreover, for all n,{y € Z with n > e~' max (71, 2log?(|¢o| + 1)), we have

| —|j = k) L(E) + Coen]
y . ol < exp[(n — |j
(5.14) o 0:1)] < [ det[Hrco,, — E

forall E € XA]\U(HTCOW’”) and all j, k € [0,n), where Cy is a constant that depends
only on .

Proof. Fix e € (0,1), w € Q,(e), and E € . As usual, our estimates are inde-
pendent of the energy, so we suppress E from the notation. Choose n; € Z, large
enough that

- ~ . 12logT
(5.15) n1 > max (7g(w, €)®, 471, 2986)  and %
ny" —3

Given n, {y € Z with n > max (ﬁl, log2(|§0| + 1))7 we want to apply Proposition 5.2
with m = [n'/?]. Notice that 0 < m? —n < 3m?. Thus, by submultiplicativity of
the matrix norm and unimodularity of the transfer matrices, we have

m2—1
(5.16) Mo (Tw)|| < T3 T 1Mo (TOF"w)]|.
s=0

By our choice of 7, we have m > 7ip and m > (log(|¢o| + 1))*/%. Thus, combin-

ing (5.16) with Proposition 5.2 and (5.15), a direct computation shows that

3m2logl  m?3
8 T (L+e)
n n

610gF+ m
m—-3 m-—3

< L+ 2e¢,

1
~log [ M, (Tw)]| <

(5.17) i+

e

which yields (5.13).
Now suppose that n > ¢! max (ﬁ1,2log2(|§o| +1))), and put h := [en]. For
7 >0, we have

AT < [[Myen (T )| [T )] 7|

Clearly, 5 > 0 and h > n;. Moreover, by our choice of 7 and the relation between
n and (p, a direct computation shows that h > log?(|¢op — h| + 1). Thus, we can
apply (5.17) to estimate the norms on the right-hand side and obtain

(5.18) ||M] (TCow)H < i 2R L(E)+2e(j+2h) < eJ‘L(E)JrCoen7

where Cj is a constant that depends only on f.
Naturally, one can also apply the analysis above to estimate the transfer matrix
M, (T w) with j < k < n — 1. Using (5.15) and the relationships among h,
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Co, and k, a direct computation shows that log*(|¢o — k +h|+ 1) < h. Thus, (5.17)
yields
_ h -1
1M 4 (TS| < [[ Moo (TP [| [ (705 R0)] 7|
<exp[(n—k)L(E)+ Coen].

Combining equations (5.18) and (5.19) with the observation (5.12), one sees that,
for a suitable choice of Cy,

(5.19)

, M (Tw) || M1 (T Fw) |
GE ,k < H J n
G < et — B
< expl(n — |7 — k|)L(F) + Coen]
B | det[HTCOw,n - E)H

forall E € % \0(Hrey, ) and all 0 < j < k < n. The case j > k follows because
H is self-adjoint and FE is real. |

6. PROOF OF SPECTRAL AND EXPONENTIAL DYNAMICAL LOCALIZATION

In the present section, we conclude the proof of Theorem 1.2, which, as discussed
in the Introduction, implies Theorem 1.1 by standard reasoning. We also state and
prove Theorem 6.4, which contains our exponential dynamical localization result.

The key remaining cornerstone is supplied by Proposition 6.1, which is a version
of an argument usually referred to as the elimination of double resonances. We
note that double resonances appear frequently in, and are one of the most subtle
parts of, the mathematical analysis of Anderson localization. In particular, from
the proof of the present paper, or the proof of [9,10], one may see that, for 1D
ergodic Schrodinger operators, uniform positivity and uniform LDT of the Lya-
punov exponent, together with the elimination of double resonances, imply Ander-
son localization for suitable parameters. Moreover, the set of parameters (phases,
frequencies) for which Anderson localization holds true depends exactly on the bad
set that is eliminated by the exclusion of double resonances.

It is also interesting to note that, in some sense, the elimination of double
resonances detects the randomness of the base dynamics in a very sensitive manner.
For instance, a version of Proposition 6.1 was developed by Bourgain and Goldstein
for real-analytic quasi-periodic potentials in [9], where the authors invoked suitable
complexity bounds for semialgebraic sets. Bourgain and Schlag [10] considered
operators with strongly mixing potentials, where the elimination becomes a bit
easier due to the strong mixing property. Obviously the Anderson model consid-
ered in the present paper is closer to the one in [10], and the elimination process is
even more transparent because of the independence of the potential values.

After we prove Proposition 6.1, this result is then used to supply estimates that
enable us to run the avalanche principle and prove positivity (and existence) of
nonaveraged LEs

— lim B
L(E,w):= nhﬁrr;o - log || M, (w)]].
Once we have existence and positivity of L(E,w) for a full-measure set of w €
2 and a suitably rich (w-dependent) set of energies, we are able to deduce the
modified Anderson localizer’s dream. Thus, the avalanche principle in some sense

plays the role of MSA in our arguments. As discussed in the Introduction, the
Anderson localizer’s dream itself is false; that is, one does not have positivity (or
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even existence) of L(E,w) for all E and a uniform full-measure set of w € . After
proving the modified Anderson localizer’s dream, we can then make a second pass
through the localization argument to obtain better estimates; in particular, we
obtain centered versions of the localization estimates with constants that depend
only on w and the center of localization. This supplies a sufficient input to deduce
almost-sure exponential dynamical localization.

For N € Z, we define

N = |NlsN| = {e(logN)QJ ’
which is a superpolynomially and subexponentially growing function of N.

We now introduce the set of double resonances. Given € > 0 and N € Z,, let
Dy = Dn(e) denote the set of all w € Q such that

2
(6.1) G T -y o | = €
and
(6.2) Fo(T“""w,B) < L(E) — ¢

for some choice of ¢ € Z, K > max(N,log?(|¢| + 1)), 0 < N;,N, < K E € %,
K'Y <r <K,and m € {K,2K} (F,, is as defined in (3.4)).
Proposition 6.1. For all 0 < € < 1, there exist constants C > 0 and 1 > 0 such
that

#(Dn(e)) < Ce™
for all N € Z.
Proof. Define auxiliary “bad sets” for fixed { and K:
Dg ¢ = {w: (6.1),(6.2) are satisfied for some choice of E, Ny, Na,7,m as above} .
Fix € € (0,1), and begin by noticing that

(63) DK’C - U U 51(N17N27T7<) UﬁQ(N17N27T7C)7
K10<r<K O<N;,N2<K®

where Zsj(Nl,Ng,r, ¢) denotes the collection of all w €  for which there exists
E € ¥ such that (6.1) and (6.2) hold with m = jK. We will estimate pu(D;).
The estimates for '52 are completely analogous. To that end, suppose that w €
Dy (N1, N, 7, (), ie., (6.1) and (6.2) hold for some E € ¥. By the spectral theorem,
there exists an Ey € o(Hpcy, [~ N, N,]) With

g2
(6.4) B = Eol < || B vg]| <7

On the other hand, choosing K large enough that MKe—K* < 7 and CePK’ <
(where C, 8 are from (4.1)), we get

£
4

F (T "w, By) < Fie(TSHw, E) + i

< L(E) —5+Z
< L(Eo) - 3,
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where we have used Lemma 3.3 in the first line, (6.2) in the second line, and
Theorem 4.1 in the final line. Thus, when K is large enough, we get

(65) 51(N1,N27’I"7C)gﬁl(Nl,Ng,T,C) for all Nl,NQ,T, and C,
where Dy = D, (N1, No, 7, () denotes the set of all w € Q such that

Fr(TH"w, By) < L(Ey) — ©

for some Ey € o (HTgw’[,N11N2]).
Now the conditions (6.1) and (6.2) depend only on a finite number of entries of

w. Concretely, we notice that G%w’[le’NQ] depends on &' 1= (We—nNy s -+ WeEN, ),
while ME(TS*"w) depends only on & = (w¢iry ... ,Wetrik—1)- In particular,

(6.1) and (6.2) depend on independent sets of random variables. Consequently, we
obtain

/ X, () A (&) < CNy + Ny e
AlCHr CHrtK)

for each fixed choice of & € Al-N1+GN24C - Then, since membership in Dy is
determined entirely by coordinates in ¢ + [Ny, N3] and ¢ + [r,r + K), we have

(Dy) = /szsl(w) du(w)

- / / Xp, (w) dfi (@) A TN ()

ACH[=N1,Na] AC+[rr+K)
< CK% mKk
< CemK,
Thus, we obtain ,u(’ﬁl (N1, Na,7,()) < Ce~"K by applying (6.5). Applying similar

reasoning to Ds, one can estimate y(Do(Ny, Na,7,¢)) < Ce K, putting every-
thing together yields

pPr)< Y > (Bi(Ni, Na, 7)) + pu(Da(Ni, Na,) )
0<N1,N2<KY K10<p<K
< CK¥Ke MK
S 06—277K

for some suitable choice of 77. Changing the order of K and ¢, we have

Dy = U PreC | U Dre

C€Z K>max{N,log?(|¢|+1)} K>N |¢|<evVE
Then the estimates above yield

uDy) < Y (2eVE +1)Ce 2K < 0oV
K>N

for large enough N. Adjusting the constants to account for small N concludes the
proof. O

By Proposition 6.1, the set
Q_=0Q_(g) :=Q\ limsup Dy ()
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has full y-measure. We are now in a position to define the full-measure set upon
which Anderson localization holds. First, put

Qo=0s0 (] Q) NQ_(e),
€€(0,1)
where Q4 (¢) is as defined in Proposition 5.2, and s denotes the set of w €
for which o(H,) = 3. In essence, w € Q4 gives us upper bounds on Fiy(w, E) on
3, while w € Q_ will give us lower bounds on F provided that we can prove an
estimate like (6.1). Then we define
0 = Qo NR[Q],

where R denotes the reflection [Rw], = w_1_,. It is straightforward to verify that
Q, has full y-measure.

We will need the following standard formula that relates solutions of the dif-
ference equation (1.1) and truncated Green functions at energy E. Suppose that
a < b are integers, and that n € A := [a,b] N Z. If u is a solution of the difference
equation Hu = Fu in the sense of (1.1) and E ¢ o(H,), then
(6.6) u(n) = —G¥(n,a)u(a —1) — G¥(n,b)u(d +1).

We now have all of the necessary pieces to do the following two things:

(1) Prove the modified Anderson localizer’s dream. That is, we will show that
generalized eigenfunctions exhibit Lyapunov behavior for almost every w €
O and every E € G(H,,).

(2) The following version of SULE (semiuniformly localized eigenfunctions),
from which we will deduce exponential dynamical localization for p-a.e. w.

Theorem 6.2 (SULE). For every § > 0 and w € Q., there exist constants Cs and
Cy.,s such that, for every eigenfunction u of H,, and every n € Z,

(6.7) luw(C +n)| < Cus oCs 1og?* ([C|+1) ,—(1=8) L(E)|n|

for some ¢ that depends on u.

Jull oo

It turns out that these two can be done via two passes through the same argu-
ment. We begin with a generalized eigenfunction u of H, at energy E € G(H,),
obeying (1.2). Since u cannot vanish identically, we can pick ¢ € Z such that
u(¢) # 0 and normalize u so that w(¢{) = 1. In fact, at this stage, we may choose
¢ =0or 1. Since w € Qo, we have w € Q) := Q, () \ Dy (e) for all N > Ny,
where Ny is sufficiently large.

We will then use Proposition 6.1, the bounds on the norms of the Green functions,
and the avalanche principle in a somewhat subtle fashion. Initially, since we are
dealing with w in the good set QW ), our goal is to establish that there are some
0 < Ny, Ny < K? such that (6.1) holds; that is,

2
(6.8) Hchw,[le,NﬂH > e

Having established (6.8), it then follows that expression (6.2) fails for all choices
of K1 <r < K and m € {K,2K}. This supplies lower bounds on Fx and Fyg
that we can then use to run the avalanche principle. This will lead to the modified
Anderson localizer’s dream, and hence to exponential decay of w. In this process,
the constants and largeness conditions depend not only on w and ¢ but also on wu.
However, once we know that u is exponentially decaying, we can pass it through

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3650 VALMIR BUCAJ ET AL.

the same argument centered around its global maximum to get much better control
on the constants involved; in particular, we get uniformity of constants in u at
the expense of introducing a constant that grows subexponentially in the center of
localization.

We wish to emphasize that, to get spectral localization, it suffices to deal with
¢ =0 or 1, from which we may get estimates like |u(¢+n)| < C(w,u)e™¢"; here, the
constants depend not only on w but also on the eigenfunction u. Thus, we cannot
get any meaningful estimates of dynamical quantities from the “first pass” through
the localization argument, since such quantities tend to involve all eigenfunctions
at once.

To tackle this issue, we need the full strength of the statements from Section 5
and the present section to get all ( € Z involved. In particular, we will see that
the base scale for a function localized at ¢ is K > ¢! max(N, 2log*(|¢| + 1)) for a
suitable choice of € > 0 and some large N independent of (.

Proof of Theorem 1.2 (Modified Anderson localizer’s dream). We will show that .
is the desired full-measure subset of . So let w € Q. and E € G(H,,) be given.
Since €2, is R-invariant and G(Hg.,) = G(H,,), it suffices to show that

.1 B
(6.9) Jim_ Clog [ ME W) = L(2).
Since w € Q4 (¢) for each € > 0, Corollary 5.3 yields
1
lim sup = log | ME(w)]| < L(E);
N—o0 N

s0, to prove (6.9), it remains to show that
1
(6.10) lim inf — log | M% (w)|| > L(E).
N—oco N

To that end, let € € (0,1) be given, and let u denote a generalized eigenfunction
of H, corresponding to energy E and satisfying (1.2). After normalizing, we may
assume that u(¢) = 1 for some choice of ¢ € {0,1}. Define

(6.11) K= K(N,¢) = E max (N, 21og2(|¢| + 1))} ,

where N € Z, is sufficiently large. More specifically, we take N > Ny, where Ny =
No(w, €) := max {ng(w, €), n1(w, €), n2(w, ) }, where g comes from Proposition 5.2,
where n; is from Corollary 5.3, and where 7y is chosen such that w € QW) =
Q4 (e) \ Dn(e) whenever N > na(w,e). Of course, right now, ¢ € {0,1}, so K ~
e~ 'N. We keep up with the dependence on ( to facilitate the “second pass” through
the argument with ¢ chosen to be a location at which |u| is maximized.

Let us begin by first proving the following claim.

Claim 1. There exist integers a;, b;, ¢ = 1,2 such that

(6.12) —K%<a; < —-K3+1,

(6.13) 0<ay <K?,

and b; € {a; + K3 —2,a; + K3 — 1,a; + K*} such that

(6.14) |GFen, (G k)| < exp (= |7 — KIL(E) 4+ CoeK?),

for any j,k € A; := [a;,b;), where Cj is a constant that depends only on .
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Proof. The claim follows by using Corollary 5.3 to estimate the Green function,
(5.11), to exchange the characteristic polynomial for a norm of a transfer matrix,
and Proposition 5.2 to find a suitable starting point for said transfer matrix.
More precisely, we begin by applying Proposition 5.2 with n = K3 twice: once
with (o = ¢ and once with (y = ¢ — K°. With {y = (, we get
K6-1
‘L(E) K Y Fre (T<+8K3w)‘ <&
s=0

with ¢y = ¢ — K, we have

K°%—1
’L(E) K Y P (TC*K“’“K%)‘ <e.
s=0

Note that the second invocation of Proposition 5.2 requires that K3 > 1og2/ 3(|§0 —
K?| 4+ 1), which may be obtained by a direct computation.

Thus, a straightforward argument by contradiction yields s; satisfying —K° <
51 < —K3,0< sy <K —K3, and

1
K3
Since the norm of a 2 x 2 matrix can be dominated by 4 times its greatest entry,
this yields

(6.15) L(E) log || MEs (T¢*iw)| < e.

1
(6.16) L(E) - e log |det[Hpctasy, p, — E]| < 2¢

for some choice of a; € {s;,s; + 1} and k; € {K3, K3 — 1, K® — 2} as long as Ny is
large enough that N(;?’ logd <e. Put b; = a; + k; and A; = [a;, ;).
Now, combining (5.14) with (6.16), we obtain

e, G 1) = |G, G — 0 — 1)
_ xp (ki = |j = F)L(E) + Cocky)
- | det[Hypcraiy g, — £
exp ((K® —|j — k|)L(E) 4+ CoeK?)
exp (K3(L(E) — 2¢))
=exp (—|j — k|L(E) + (Co + 2)eK?)

for all j,k € A;. Note here we may need to uniformly enlarge Ny to ensure
ek; > max(n1, 21og?(|¢ + ai| + 1)). O

Claim 2. Recall that v satisfies |u(n)| < Cy,(1 + |n|) and |u(¢)| = 1. Then with A;

as in Claim 1, put
6= V”’”J .
2

u(C+6)] <e2K° =12

whenever N > Ny is large enough. Here, the size of Ny depends on w, e, and u
(with the dependence on u entering solely through C,).

Then we have
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Proof. From (6.6), we obtain
[u(C + 6)] < |GE A (i, a0)|[u(C + ai — 1)+ |GE A, (3,0 — 1) [|u(C + bs).
Recall that log®(|¢| + 1) < K, which implies that |¢| < eVX. This yields
[u(C + ;)] < Cu(K° +e\/?)eCOEK3(€—\€i—ai\L(E) +e—|€i—(bi—1)|L(E))
< 20, (K° + ¢V exp ( — L(E)K?®/3 + C05K3).

Then, for N large enough (depending only on w, e, u), we can estimate the last line

—2K?

by e , which concludes the proof of the claim. O

Remark 6.3. Claim 2 is the only place that requires the dependence of Ny on wu,
and the dependence comes from the u-dependent constant C,,. In particular, if it is
known that u is a normalized eigenvector with max |u(n)| = 1, then the largeness
of N depends only on (w,e). In the argument after this remark, the largeness
of Ny will be independent of w. In particular, whenever we say “enlarge Ny if
necessary”, the reader may verify that such an enlargement may be performed in
a u-independent fashion.

Now we use |u(¢)] =1 and (6.6) witha=(+¥¢; +1and b=+ ¢ — 1 to get
1= [u(Q)]
NG ) (G (¢ + 0)] + |GE 4 (¢ D) [u(C + £2)]
< (GF g (G )+ 1GE (G D)) 25",

From this, we deduce
2
HGE,[a,b]H > HGE,[a,bﬁcH > %eQKQ > 57

Thus, (6.1) follows; since 0 < —(a — (), (b—¢) < K?, we can in turn conclude that
expression (6.2) fails for every K'© <r < K and m = K, 2K that is, we have

1
(6.17) — log [|ME(T<"w)|| > L(E) - ¢

whenever K19 <r < K and m € {K,2K}.
Now use (6.17)_‘50 apply the avalanche principle. Concretely, choose n € Z with
K0 <n< K 'K — K?, define

AW .— ME(T<+KIO+U_1)K(U), 1<j<n.
With A := exp(K(L(E) —€)), (6.17) gives
AP > A >n

for all j, where the second inequality holds as long as Ny is sufficiently large. Since
K > 7 and K > log?(|¢| + | K| + 1) (enlarge Ny if necessary), we may use (5.13)
to obtain

IAV]| < exp (K(L(B) +2)),  1<j<n
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Thus, (6.17) implies

log [|AVHD +log [ AD]| —log [ AUHD AW
< 2K(L(E) + 2¢) — 2K (L(E) — ¢)
=6Ke
1
< §log)\,

where the final inequality needs e to be sufficiently small; it is easy to see that this
smallness condition depends only on f (through +). Thus, taking N = nK and
ro = K10 we have N € [K'!, K — K'°], and the avalanche principle (Lemma 4.4)
yields

log || Mg (TSH0w)|| = log [|A™ ... AW

n—1 n—1
> N 0e [AGFD A — S g 4D — o2
> log| =3 tog 49 - €5
j=1 Jj=2
>(n—12K(L(E)—¢)— (n—2)K(L(E)+2¢) - C
> N(L(E) — 5¢)
by choosing Nj large.
~ Putting this together, we can control || M (T w)]| for general K'' + K0 < ¢ <
K by interpolation. In particular, writing { = nK + p with 0 < p < K and
n > K194+ K, we have
My g0 (TSHE ) |
[Mgcr0(Tw)|
_K0_ 10
(6.18) >T P Mg oo (THw)|
> P—Klo—pe(nK—Klo)(L(E)—55)

IMF(TCw)]| >

> l(L(B)=62)

as long as N is sufficiently large. Since the intervals [K'! + K'° K] cover all
sufficiently large integers, the foregoing estimates yield

1
(6.19) lim inf — log M (Tw)[| > L(E) — 6e.

n—oo

Since ¢ € {0, 1} and since (6.19) holds for all e > 0, we obtain (6.10), as desired. O

Proof of Theorem 6.2 (SULE). Let w € Q., F € G(H,), and 6 > 0 be given. By
Theorem 1.2, the associated eigenvector u decays exponentially, and hence (after
normalization), we may define the center of localization ¢ via u({) = ||ule = 1.
There is an unimportant ambiguity here—namely, that |u| can obtain its maximum
value multiple times. However, since u € £2, it may do so only finitely many times,
and it does not matter which of those occurrences we use for (. Then define
K = K(N,() as in (6.11), and suppose that N is large.

Now fix € > 0 small; it will be apparent that “how small” depends only on 1
and 0. Then, running the proof of Theorem 1.2 with ¢ replaced by ¢, we obtain

everything from Claim 1 to (6.18) (with ¢ replacing ¢). However, this time, we
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get N > Ny(w,¢); that is, Ny no longer depends on w. Then, for any ¢ with
K"+ K0 </ <K, we get

1 _
3 log | MP(T%w)|| > L(E) ~ 6=
In particular, combining this with (5.11) and (5.14) implies that there exist
¢'e{(,¢+1}and ¢ € {¢,£ —1,¢ — 2} such that
GEy (5, k)] < exp (=1 — KIL(E) + (Co + 6)e)
for any j, k € [0,¢'). Pick n € [+, 3(¢' — 1)] (notice that £ — n > n). Then (6.6)
and the normalization ||ul|s = 1 yield
[0 + )] < 1GEe, (0, m)] + 1GEer, o (n, € = 1)]
<exp(—L(E)n+ (Co+6)el’) + exp (—L(E)(' —n) + (Co + 6)l’)
<2exp(—L(E)n+4(Cy + 6)en)
< e (=OLEM
where the last line needs ¢ sufficiently small, depending on the choice of § > 0.
Shifting things back to ( if necessary, we get
_ 1 1—
(6.20) |u(¢+n)| < Ce~ (=) LB for every n € Z(K11 + K9, §K —-3].

These intervals are overlapping for Ny large enough (and here the largeness does
not depend on any parameters), so we conclude that (6.20) holds true for any

—11

n> max(No, 21og?(|¢| + 1)),

where Ny depends only on w (recall that e depends on ). For 0 < n < 5;11 max

(No, 21og®(|¢| 4+ 1)), we may estimate |u(C + n)| trivially and adjust constants
accordingly:

e—11

lu(¢ +n)| < e(1=0) L(E) &— max(No,2log?([¢|+1))" o~ (1-8) L(E)n

<C, 5605 1og22(\E|+1)e—(1—6)L(E)n7

where C,, 5 depends on w, d, and Cs depends only on 6. This proves the estimates
in (6.7) for all n > 0. To deal with n < 0, simply use the reflection-invariance
of Q,. O

We can use the version of SULE from Theorem 6.2 to prove the following version
of almost-sure exponential dynamical localization. Recall that v denotes the global
uniform lower bound on the Lyapunov exponent—compare this to (2.4)—and that it
coincides with the minimum of the Lyapunov exponent on the almost-sure spectrum
Y —compare this to (2.5).

Theorem 6.4 (Exponential dynamical localization). For any w € ., € > 0, and
0 < B <7, there is a constant C = Cy, g > 0 such that

sup | (6n, efitH“5m> | < Ceflmlg=Fln—ml
teR

for allm,n € Z.
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For the remainder of the present section, we fix w € (2, and leave the dependence
of various quantities on w implicit. Let {uy: ¢ € Z} denote an enumeration of
the normalized eigenvectors of H,. By Theorem 6.2, each u, satisfies (6.7) for a
suitable choice of localization center (; € Z. For the remainder of this section, fix
an arbitrary 8 € (0,7). We need the following proposition, which concerns the
distribution of centers of localization.

Proposition 6.5. There exists an Lo € Z4 large enough that
#{0: ¢ <L} < I
for all L > Lg.

Proof. Let Uy, :=={¢ € Z:|(| < L}. When L is sufficiently large, (6.7) yields
lug(n)| < e2PLeAInl < e~ 2hlnl whenever ¢ € Uy, and |n| > 4L.
This in turn implies that

(6.21) > fue(n)? < e F

In|>4L

whenever L is sufficiently large. Let u, 1, € R3+1 pe P_41.4r)ue. Using (6.21) and
the fact that {uy : £ € Uy} is an orthonormal set, a direct computation shows that
>1—e Bl =10,

22 y
(6.22) |(we,z, wer )| {S 3e-BL. 040

whenever L is sufficiently large. Now consider the Gram matrix associated with
{ue,r : £ € Ur}, that is, the matrix M having entries
Mgvg/ = <uz7L,ue/,L>, 6,8/ EUL.

For sufficiently large L, (6.22) implies that M is strictly diagonally dominant and
hence invertible. In particular, {usr, : £ € Ur} is a linearly independent set. Since
these vectors are elements of R®+1 it follows that #/;, < 8L+1. Since SL+1 < L?
whenever L > 9, the proposition follows. ([l

Now we are ready to prove Theorem 6.4. In fact, it is well known that
SULE-type conditions imply almost-sure exponential dynamical localization. We
supply the details to keep the paper self-contained, following the argument in
[20, Theorem 7.5].

Proof of Theorem 6.4. Given 8 and €, choose 3’ with 8 < 8/ <y and f'—8=:n < e.
Expanding §,, in the basis of eigenfunctions of H,,, we obtain

(G, e F60)| <D fue(n)ug(m)].

LeZ

Then, using (6.7), we get
Z lug(n)ug(m)| < C2 Z C2 108”2 (ICe|+1) o =B (In—Cel+Im—Cel)
¢ ¢

Next, we have

=B (In=Cel+m=Cel) < =nlCe| gnlm] o= (8'=m)|m—n]

< ¢l gelml g—Blm—n|
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by the triangle inequality. Consequently,

sup | (6, efitH“’(soM <c? Z @2 108" ([6el+1) g=mlCe| gelml g —Bln—m]
teR 7
But then, by Proposition 6.5, we have

Ay =Y ol (Gl =nldel = §° 7 (Colog®™ () =nldel < o,
¢ L>0 |¢o|=L

Thus, we obtain B
sup |(0,,, e~ 5p)| < Ceclmle=Aln—mi
teR

with C = A,C2. 0

7. LOCALIZATION FOR CMV MATRICES WITH RANDOM VERBLUNSKY
COEFFICIENTS

In the present section, we will describe how to prove spectral and dynamical
localization for CMV matrices with i.i.d. random Verblunsky coefficients. The
overall outline of the proof is identical to the Schrodinger case. We will describe
carefully the places where the proofs differ.

Let D C C be the open unit disk. Suppose that our probability space (A, i)
consists of a compact set of complex numbers in D; that is, we assume henceforth
that

A =suppp C D,
and that A is compact. As in the Schrédinger case, we assume that #A4 > 2 to
avoid trivialities. Let (Q,u) = (A%, %) and T : Q — Q denote the left shift. As
before, the function o : @ — D given by a(w) := wp can be used to generate
Verblunsky coefficients via

a,(n) == a(T"w) = why, n €7z,

and we can (and do) view «a,, = {a,(n)}nez as a sequence of i.i.d. random variables
on D with common distribution p. For each w € Q, let C,, denote the CMV matrix
associated with the Verblunsky coefficients {a,(n)}22,, and let &, be the extended
CMYV matrix associated with the coefficient sequence «,,. Our immediate goal is
to prove Theorems 1.3 and 1.4. We will discuss the proof of Theorem 1.3 in detail
and then comment at the end of the section on the necessary changes for the proof
of Theorem 1.4.

Theorem 1.3 will be a corollary of the following theorem from which we may see
the difference between Schrédinger operators and CMV matrices. In short, there is
an exceptional set D C JID containing no more than three spectral parameters at
which the hypotheses of Fiirstenberg’s theorem may fail; thus, we work on compact
arcs away from D, and we may exhaust 9D \ D by countably many such arcs.

In the theorems below, L(z) denotes the Lyapunov exponent for the operator
family {&, }, which shall be defined presently.

Theorem 7.1 (Anderson localization for CMV matrices). With «,, as above, there
erists a finite set D with #D < 3 such that the following holds true. For any
compact interval T C OD \ D, there is a full-measure set Qr C Q such that &,
has pure point spectrum on I for every w € Qz, and the eigenfunctions of &,
corresponding to any eigenvalue z € I decay exponentially. Moreover, the rate of
decay is exactly L(z).
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Using the same two-pass approach as in Section 6, we can prove a CMV version
of SULE.

Theorem 7.2 (SULE for CMV matrices). Let Z and Qz be as in Theorem 7.1,
and suppose that w € Q7. For every § > 0, there exist constants Cs, C,, 5 such that,
for every eigenfunction of u of £, having eigenvalue z € I, one has

[U(C + )] < Co gl o E D) ==Ll
for all n € Z and some ¢ = ((u).

Following the same arguments that led to Theorem 6.4, Theorem 7.2 implies a
version of dynamical localization for CMV matrices.

Theorem 7.3 (Dynamical localization for CMV matrices). Let Z and Qz be as in
Theorem 7.1. For any w € Qz, € > 0, and any 8 > 0 with

B <1(T) i=min L(2)

there is a constant C = CN'wﬁ’E > 0 such that

sup ’<5m,5£PI)w5n>’ < vaee\m|efﬁ\nﬂn\7
kEZ

for all m,n € Z, where Pz, denotes the spectral projection of &, to the interval I.

Assume for the moment that Theorem 7.1 holds true.

Proof of Theorem 1.3. For z € 0D, define
Q, :={w € Q: z is not an eigenvalue of &,}.

By a standard argument, u(€2,) = 1 for each z € 9D (for example, the arguments
of [44] can easily be modified to the CMV setting). For each integer n > 2, let Q,,
be the full-measure set obtained from Theorem 7.1 for

7, == 0D\ (U {z¢¥: —1/n <0< 1/n}> :

z€D

Then take

Q=) m(ﬂ%).

n>2 z€D

Clearly, u(€.) = 1. Moreover, for each w € Q,, &, has pure point spectrum on
0D\ D, exponentially decaying eigenfunctions for all eigenvalues z € 9D \ D, and
D contains no eigenvalue of £,. Hence, &, exhibits Anderson localization for each
w € Q. O

Theorems 7.1 and 7.3 hold true for C, as well, and the proofs are nearly iden-
tical. Once one has the half-line analogue of Theorem 7.1 in hand, the proof of
Theorem 1.4 is exactly the same as the proof of Theorem 1.3. We will focus on
the proof of Theorem 7.1 in the remainder of the present section and point out the
differences between &, and C,, in Remark 7.9 at the end of the paper.
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7.1. Uniform positivity, continuity, and LDT of the Lyapunov exponent.
For each oo € A and z € 0D, we define the corresponding Szegd transfer matrices
by

(7.1)
z o 1 z —Q z . ,—1/2¢gz _ 1 \/E _%
S(a).—p—a{_az 1], M*(a) =z S(a)—p—a —ayE % ,
where p, := /1 — |a|?. For concreteness, we choose the branch of /- defined by
Veil = /2 —rT <0 <.

Notice that ||S?|| = ||M*?] for all z € ID.
We note that M#(«) € SU(1,1) for every z € 0D and o € D, where SU(1,1) is
defined by

(7.2)
SU(1,1) := Q- SL(2,R) - Q* = {A € C**?: A = QBQ* for some B € SL(2,R)}
and
-1 (1 —i
= — , U(2).
© 1+i[1 @}e @)
Equivalently, SU(1, 1) consists of all 2 x 2 unimodular matrices that preserve the
standard quadratic form of signature (1,1), that is, SU(1,1) = {4 € SL(2,C) :
A*JA = J} with J = &1€] —ééy . We will freely use facts about the group SU(1, 1)
throughout this section; the interested reader is referred to [51, Section 10.4] for a
thorough account. For w € Q, we define an SU(1, 1)-cocycle via M*(w) = M#(wy)
and
M (@) = M*(I™7'w) - M*(w) = M*(wn_1) - M (o)

for n € Z,, as before. The Lyapunov exponent of the cocycle is then given by

M@=m14mmmmmw»

n—,oo M

Our first main goal is to obtain positivity and continuity of L and use those
characteristics to deduce a suitable uniform LDT. We will deduce the positivity
and continuity by appealing to the machinery of Section 2 and using the fact that
SU(1,1) is unitarily conjugate to SL(2,R), as in (7.2). The M&bius transformation
induced by @ maps the upper half-plane to the unit disk and sends the real line to
the unit circle. Thus, in view of (7.2), the M&bius transformation induced by any
element SU(1, 1) preserves the unit circle and unit disk just like SL(2,R) preserves
the real line and the upper half-plane. Henceforth, we use A to denote the Mobius
transformation induced by an element A € GL(2,C).

Thus, to verify all the necessary conditions, we may treat SU(1, 1) matrices just
as SL(2,R) matrices. More concretely, condition (i) of Theorem 2.1 and the con-
traction property may be verified directly (and these properties are clearly invariant
under conjugation by Q). Since @ maps the real line to the unit circle, we will say
that a subgroup G C SU(1,1) is strongly irreducible if there is no finite subset
F C 0D such that B(F) = F for all B € G; in particular, G € SU(1,1) is strongly
irreducible in this sense if and only if Q*G(Q is a strongly irreducible subgroup of
SL(2,R). In fact, once we know that G is noncompact, we need only to verify
condition (ii’) as stated in the remark following Theorem 2.1. If v is supported
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in SU(1,1), the appropriate version of condition (ii’) is the statement: there is no
F C 9D with cardinality 1 or 2 such that B(F) = F for every B € G,,.

In view of the foregoing discussion, our goal is to show that G, is noncompact
and contracting for every z € 9D, and to find a finite set D = D(A) such that
G, is strongly irreducible (as a subgroup of SU(1,1)) for every z € 0D\ D (here,
v, = MZ as before). Then Theorem 2.1 ensures that L(z) > 0 for all z ¢ D.
Moreover, since G, is contracting, L(z) is continuous on 0D. Consequently, we
obtain L(z) >« > 0 for all z in any compact interval Z C 0D \ D. From there,
the strong irreducibility condition and the contraction property ensure the uniform
LDT (uniform over z € 7). Then, Holder continuity of L(z) on Z follows from the
uniform positivity and uniform LDT of L(z) and the fact that SU(1, 1) is conjugate
to SL(2,R) (which ensures the applicability of the avalanche principle).

First, the following proposition follows from [51, Lemma 10.4.14].

Proposition 7.4. If [M*(a), M*(8)] := M*(a)M*(5) — M*(8)M*(a) # 0, then
the subgroup generated by {M?(a), M*(B)} contains a nonelliptic element.

Proof. If either M?(«) or M*#(8) is nonelliptic, there is nothing to do; otherwise,
both are elliptic, in which case one may apply [51, Lemma 10.4.14] to deduce the
existence of a hyperbolic element in the subgroup of SU(1, 1) that they generate. O

We first verify condition (i) of Theorem 2.1 and the contraction property.
Proposition 7.5. For every z € 0D, the group G, is noncompact and contracting.

Proof. Let z € 0D be given, denote G = G,,_, and let us note that it suffices to find
a nonelliptic element A € G to obtain both noncompactness and the contraction
property; more specifically, if A € SU(1,1) is hyperbolic or parabolic, then || A™||
becomes unbounded as n — oo and ||A"||71A™ converges to a rank-1 operator.
There are two cases to consider:

Case 1. z = 1. Since A contains at least two points, choose o # 0 in A. Then

satisfies tr(A4) = 2p,! > 2, so A is a hyperbolic element of SU(1,1).
Case 2. z # 1. In this case, choose o #  in A. Then one can check that

(7.3)

M ()M*(8) = M*(B)M*(e) = ﬁ La " 51 ’ 2) ; _aBB)(_laf@z_l) #0.

Therefore, GG, contains a nonelliptic element by Proposition 7.4, as desired. |

Next, we note that strong irreducibility condition (ii’) essentially follows from [51,
Theorem 10.4.15].

Proposition 7.6. Suppose that #A > 2. Then condition (ii') fails at most on a
finite set D C 0D with #D < 3.
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From the proof of Proposition 7.6, as in [51], we see that the set D arises from
very particular geometric degeneracies, and it is in fact empty for many choices of
a compact set A C D. More precisely, in view of [51, Theorem 10.4.19], we see that
D is empty as soon as the following two conditions are met:

e A is not contained in a single circle or line that intersects 0D orthogonally.

e The set B
{'Iﬁl(fag”:a;éﬂanda,ﬁe./l}

contains at least two elements.

In particular, one can simply take Z = 0D when these conditions hold true. Note
this in particular implies that a full version of exponential dynamical localization
in Theorem 7.3, i.e., there is no need to add Pz(€,). One may find more details
regarding the first condition in [51]. To meet the second condition, A must contain
at least three noncolinear points, and, if #.4 = 3, then the incenter of the triangle®
with vertices at the points of 4 must be distinct from 0.

7.2. Estimating transfer matrices and Green functions. From now on, we
will focus on an arbitrary fixed compact interval Z C 9D \ D, on which a uniform
LDT for L(z) shall hold. Following the arguments of previous sections, one can
show the following analogue of Proposition 5.2. The proof is nearly identical; one
need only replace E € N by z € Z and make small cosmetic modifications.

Proposition 7.7. For any 0 < € < 1, there exists a subset Q1 = Q4 (e) C Q of
full u-measure such that the following statement holds true. For every € € (0,1)
and every w € Q4 (g), there exists ng = Ng(w, &) such that

n?-1
1 1 z ST
(7.4) L(z) — 2 2 - log || M (T +<w)” <e

for every ¢ € Z, every n > max{ﬁo,10g§(|<\ + 1)}, and every z € T.

Now we consider the results in Section 5 for finite-volume truncations of CMV
matrices. We will exploit the perspective on CMV Green functions developed
in [40]. Here, it will helpful to use the following factorization of &,. Writing

(7.5)

o)=| omr VT L= @eten). M= @6
VI=TF  -a D D
where ©(a,(w)) acts on coordinates n and n + 1, one can confirm that £, and
M, are unitary, and that &, = L,M,. Of course, £, = zv if and only if
(2L — M) = 0. Given 71,72 € D and an interval A = [a,b] C Z, we define
ETV™ to be the CMV matrix whose Verblunsky coefficients coincide with those of
&, except for ay_1 = 1 and ap = 79. We then define

ETTE = PAETT P

w7

One can verify that £'') is unitary whenever 71, 72 € 9D. Following the convention

of [40], we use “o” to indicate that the corresponding Verblunsky coefficient is

3That is, the point of intersection of the angle bisectors of that triangle.
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unaltered, e.g.,

ECN =& ELN =&
As be_fore, we abbreviate £!* = Elffng). The truncations £ {* and M (* with
7; € DU {e} are defined similarly. Then we define the polynomials
1 _
eIl (2) = =———— det [z - 5;1[’\72} , z€C, 1, e DU {e}.
' [Teea Pr '

The associated finite-volume Green functions are defined by

e = (s ene] - M)
and
G;{Xz (4, k; z) = (95, G;{Xz(z)ék% j, k€A
By [40, Proposition 3.8], for 7; € JD, these objects are related via

1| Pafag-1 )P0 k1 (2)
’GLl’X-Q (J’ k’ Z) = . - 1]7—177—2 (7[I;+17b] ’ a < .7 < k < ba
PiPk ww,[mb] <

which furnishes the CMV analogue of (5.10). To connect Green functions and trans-
fer matrices & la (5.11), we use [40, Corollary 3.11 and the proof of Theorem 4.4],
which gives

i n@| S VASHTDI el ()] < VEISL(THW)),
as well as
T1,7T2 —T1,72 —_
(7.6) Poien() Cufasf ) —{Z _—Tﬂ S (T"w){1 : }
Tere) e o] T

Consequently, the minor twist here is the following: when we want to deduce good
Green function estimates from largeness of the transfer matrices, we wiggle the
boundary condition instead of the interval. That is, if ||SZ(w)]| is large, then (7.6)

implies that gpzjl”[gfn)(z) is large for at least one choice of 7; € {£1}.

Proposition 7.8. For any 0 <e <1 andw € Q4 (g), there exists an 1y = n1(w,€)
large enough such that the following statements hold true.

1
N

for all ¢ € 7, n > max{m,log?(|¢| + 1)}, z € . Moreover, the following holds with
Co dependent only on p:

(7.7) log | Mz(TSw)|| < L(z) + 2¢

o e(N=lj—k|)L(2)+CoeN
(7.8) GTlg;jN(j,k;z)‘ <
ngw,[O,N)(Z)
for all j,k € [0.n), ¢ € Z, n > Lmax{ny,2log(|¢| + 1)}, 7j € {£1}, 2 € T\
U(ngclu?N)'

The proof of Proposition 7.8 is entirely analogous to that of Corollary 5.3. The
Cy in front comes from the factor pj_1 plzl and hence depends only on the support
of .
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7.3. Proof of Anderson localization. The statement and proof of the CMV
analogue of Proposition 6.1 (elimination of double resonances) is almost identical
to the Schrodinger operator setting, with the twist that we need to allow for four
different boundary conditions. Concretely, one defines Dy () to denote those w
such that

|Fon (T w, 2)| < L(2) — ¢

and
T1,T K2
e o]
for some choice of m, ¢, r, K, N; as before, some z € Z, and some choice of
Tj € {:l:l}

Once we eliminate double resonances, we are ready to prove our Theorem 7.1.
We need an appropriate version of Shnol’s theorem to guarantee that spectrally
almost every z € 9D is a generalized eigenvalue of £, which is supplied by [16]. So,
as before, we may work with w in a full-measure set and with £ a linearly bounded
generalized eigenfunction of &,, normalized by & = 1. We note the following
difference between the proofs of Claims 1 and 2 in this setting.

In the proof of Claim 1, the appropriate CMV analogue of (6.15) is the same as
in the Schrodinger case. Then, by (7.6), one can choose 71,72 € {£1} such that

(p;lc,mA (Z)’ > eKs(L(z)72s).

w,L\g -

Combining this with (7.8), we obtain the CMV version of (6.14), i.e.,
(9) (GR2 G ks 2)| < exp (— [ — kIL(:) + CeK),

for any j,k € A; and this same choice of 7;, which is enough for our purposes.

Finally, in the proof of Claim 2, we need the CMV version of (6.6), which is
supplied by [40, Lemma 3.9]. Concretely, if u is a solution of the difference equation
Eu = zu, define

3a) = (271 — aq) u(a) — pgu(a+1), ais even,
) (zoe — 1) u(a) + zpau(a + 1), ais odd,
and
() = (272 — ap) u(b) — ppu(b — 1), b is even,
N (zap — 12) u(b) + zpp—1u(b — 1), bis odd.
Then we have
(7.10) uln) = GL 7 (n, 03 2)(a) + GTT (. b 2)(D)

for a < n < b, and, of course, ¥ is linearly bounded whenever v is. Then, combin-
ing (7.10) with (7.9) and following the proof of Claim 2, we obtain, for all k£ near
the center of A;,

(7.11) 6] < Cem2K7,

Now, writing A; = [a;, b;], take a = | (a1 + b1)/2], b = [ (a2 + b2)/2], and consider
Grc o). By the foregoing arguments, &, satisfies (7.11) for £ near or at a,b and £
is normalized so that £y = 1, we obtain

2
HG%Cw,[a,b]” > |G§“C,[a,b] (O>£)| > CeK

for some ¢ near or at a or b.
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Then the remainder of the proof of Theorem 7.1 is almost identical to the cor-
responding arguments for the Schrodinger case. In particular, we get

. 1
lim —

log || M (w)[| = L(z) > 0.

To relate this back to quantitative exponential decay estimates for the generalized
eigenfunctions of &,,, we need to use the Gesztesy—Zinchenko transfer matrices [33],
not the Szegd transfer matrices. However, this is not a big deal because there
is a simple connection between these matrices [16]. Thus, we conclude that the
generalized eigenfunctions of &, are exponentially decaying at +oo (at the rate

Finally, using the CMV tools, we can make a second pass through the argument
and prove Theorem 7.2 (SULE), which in turn implies Theorem 7.3 (dynamical
localization).

Remark 7.9. For the proof of the half-line version of Theorems 7.1 and 7.3, we note
that Cjq 4 = &[a,p) whenever 1 < a < b; when a = 0, we have Cjo ) = o) With the
modification a—; = —1. Moreover, the Szeg6 transfer matrices M7 (w) remain the
same as long as n > 0. We can then obtain the half-line analogues of the results
in Sections 7.1 and 7.2 simply by following the arguments in those sections and
suitably restricting the domains of n and [a, b].

The main difference is in the statement of the elimination of double resonances.
Here, we need to change GZT%’[le’Nﬂ to G;Cw’[o,%] in one of the conditions. Note
that GZO, ) now refers to the Green function for 2—Cjg n). After that, the remainder
of the proof follows the same argument as before.

APPENDIX A. CMV LOCALIZATION FROM QUANTUM WALK LOCALIZATION

One can deduce localization for CMV matrices with i.i.d. random Verblunsky
coefficients from [1]. Since they prove localization for 1D quantum walks with
i.i.d. random quantum coins, let us briefly describe the CGMV connection between
CMYV matrices and quantum walks in 1D, named for the contributions of Cantero,
Griinbaum, Moral, and Veldzquez [11].

A quantum walk on Z is a unitary operator on the Hilbert space Hqw = (*(Z) ®
C?; Hqw enjoys a basis consisting of vectors of the form §F = 6, ® ex, where
er = (1,007 and e_ = (0,1) " denote the usual basis of C2. To specify a quantum
walk, choose for each n a unitary matrix

0, — lq%ﬁ gt

e U(2,C).
@ g

Then the quantum walk operator takes the form U = SQ, where S denotes the
conditional shift

555 = (ﬁila

and Q denotes the direct sum of the coins (viewing Hqw = €, ., C?), that is,

nez
Qo =qtlof +¢2s,, Qo =gt +q2%,.

If every @, lies in the set i SU(1,1) = {Q € U(1,1) : det(Q) = —1}, then U is
a CMV matrix. Concretely, if A : Hqw — ¢*(Z) is the unitary operator defined
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by AS; = 62,1 and A5, = Jap,, then AUA* is a CMV matrix with Verblunsky
coeflicients

ag; =0,  azi1 =gl
More generally, any quantum walk operator is unitarily equivalent to a CMV
operator after a suitable gauge transformation, but we do not need this more general
fact [11].

Thus, the work of Ahlbrecht, Scholz, and Werner [1] gives localization for CMV
matrices for which ay; =0 and {ag;-1} ez is a sequence of i.i.d. random variables
in D. It remains to be seen how one can then deduce localization for random
CMV matrices without zeros interlaced. This is a standard construction (known as
steving), which we now describe.

Given a CMV matrix £ with Verblunsky coefficients {a, }nez, consider g , the
CMYV matrix with coefficients

ag; =0, owj_1=cq5 JjEL.

Then one can verify by hand that E2 >~ £@ ET. The calculation is known to
experts but may not be obvious to the Bniniﬁiﬁed, so we will sketch the 0ut~line
for the reader’s convenience. First, let £ = LM denote the factorization of £ as
in (7.5). Then, straightforward calculations using the definitions yield
Loyj=0ajp1,  Loajyr = 6
and
Mboj1 = 5051 + pjbaj,  Mbaj = pjdaj_1 — ;.

Therefore, one can verify that
(A1)
E204n—1 = Wanpan—104n—1 — TanQ2n—104n—1 + Tans1p2n0an + P2n+1P2n04n+3,
(A.2)

E%84n = PanPan—104n—a — P2nQan—104n—1 — Tan 1020040 — P2nt1C2n04n +3,
(A.3)
g254n+1 =02n11P2n04n—2—02n 11020 0an+1 + W2nt2P2n+104n+2 + P2n+2P2n+104n+5,
(A4)
E204n+2= Pont1P2004n—2— P2n+10200an+1 — GanT 2024104042 — P2n+202n+104n45.

Defining subspaces
X=0r{kcZ:k=0 mod4ork=3 mod4}),
YV=0r{keZ:k=1 mod4ork=2 mod4}),

the calculations in equations (A.1)~(A.4) show that £2 leaves X and ) invariant,

and that €2y = T and 2|y
implies spectral localization for £.

E. In particular, spectral localization for R
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