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Large deviation estimates the way we note that a Large Deviation Theorem holds uni-
Schroédinger operators formly on compacts.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Background

It is well understood that random Schrodinger operators in one space dimension ex-
hibit Anderson localization!

While this introductory statement is correct in many ways, it is nevertheless important
to clarify what is actually meant. Does one talk about spectral localization or dynamical
localization? Does one consider the discrete setting or the continuum setting? Even if
one considers the (easier) discrete setting, is the assertion made for the standard model,
or for more general models such as the ones considered in [8]? What is assumed about
the single-site distribution?

It is true that no matter how one answers these questions, localization is indeed known.
However, the difficulty of the known proofs depends heavily on the answers. For example,
the proofs are short and elegant in the discrete setting with an absolutely continuous
single-site distribution, but they can be quite difficult once the continuum setting and/or
singular single-site distributions are considered.

Some of the landmark papers are Kunz-Souillard [12] (standard discrete model with
an absolutely continuous single-site distribution), Carmona-Klein-Martinelli [5] (stan-
dard discrete model with a general single-site distribution), and Damanik-Sims-Stolz [7]
(standard continuum model with a general single-site distribution).

In the case of a general single-site distribution, the localization proof typically consists
of two steps. First, one proves that the Lyapunov exponent is positive for a sufficiently
large set of energies by an application of Fiirstenberg’s theorem, and second, one par-
lays this positivity statement into the exponential decay of generalized eigenfunctions,
showing in effect that the spectrum is pure point and the eigenfunctions decay exponen-
tially. A second look at the structure of the eigenfunctions then allows one to control
their semi-uniform localization properties, which in turn yields dynamical localization.
Traditionally, this second step was performed via multi-scale analysis.

The first step is very easy to implement in the discrete case and the Lyapunov ex-
ponent turns out to be positive for every energy via a straightforward verification of
the assumptions of Fiirstenberg’s theorem. In the continuum case, on the other hand,
verifying these assumptions is less straightforward; it was accomplished in [7] away from
a discrete set of energies via inverse scattering theory.

In scenarios where the initial proofs were involved, it is of interest to find simpli-
fications of the arguments. For the standard discrete model with a general single-site
distribution studied in [5], there have been several recent papers proposing such simpli-
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fications [4,10,11]. These new proofs simplify the second step in the two-step procedure
described above (since the first step cannot be simplified, as indicated above).

In this paper we take a new look at the first step in this procedure for continuum
models. Rather than using inverse scattering theory we will use inverse spectral theory,
and the resulting proof of positive Lyapunov exponents for energies outside a discrete
set turns out to be significantly simpler. Our setting is also more general than that of
[7], so that technically speaking, we generalize the scope of the approach.

We also discuss a Large Deviation Theorem (LDT), which demonstrates that the
second step in the localization proof for continuum models can then be carried out in
complete analogy to the treatment of the discrete case developed in [4]. Since this is
entirely straightforward, we do not carry this out explicitly, but merely note that with
the present work and [4], both steps in the two-step procedure to prove localization for
1D continuum Anderson models have been simplified.

1.2. Main result

Fix two parameters 0 < § < m, and define

W = U L?[0, s).

i<s<m
To distinguish the fibers, let us denote the length of the domain by s = £(f) whenever

f € L?[0, s). We specify a continuum Anderson model by choosing a probability measure
©oon W such that

ji-esssup | fl| 12 < oo. (jiBd)
We naturally obtain the full shift
Q= WZa n= ﬁza [TLU]n = Wn+1-

Then, for each w € (), we obtain a potential V,, by concatenating ... ,w_1,wp, w1, ...,
and an associated Schrédinger operator H, = —92 + V,,. More specifically, define

ST lw)  n>1
Sn = sp(w) =10 n=0 (1.1)

S ley) n< -,

denote I, = [$pn, Sn+1), and define

Vo(z) = wp(x —sy,), for each z € I,. (1.2)
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Let us note that this setting, which is related to those considered in [6,8], includes
that of [7] as a special case.
For each w € W, E € C, let A¥(w) denote the unique SL(2, C) matrix with

¢(S1)] E V(O)]
=A% (w 1.3
| =4z | o (1.3
whenever H 1 = Ev with wy = w. For each E, the Lyapunov exponent is given by

1
L(E) = lim - [1og|AE@)] dufw).  where AB(w) = AP(w,1)- A (wn), n 2 1.

n—oo n
Q

One obvious obstruction to localization is if all elements of the support of 1 commute
in the free product sense, so that one cannot distinguish permutations of elements of the
support after concatenation. When this is the case, all realizations V,, are periodic, and
localization clearly fails. This is the only obstruction to localization; we formulate the
negation of this as our nontriviality condition. For f; € L?)0, a;), j = 1,2, we write

fi(z) 0<z<a
(fi* fa)(@) =

folx —a1) a1 <z <ay+as.
The nontriviality condition is then the following:

There exist f; € supp it such that fi x fo # fax f1. (NC)

Let us note that the equality that fails in (NC) is in L2, so we really mean that fi x fo
and fo x fy differ on a set of positive Lebesgue measure.

Theorem 1.1. If i satisfies (NC) and (1 Bd), then there is a discrete set D C R such
that the Lyapunov exponent is positive away from D:

L(E)>0 forall E€R\D.

Furthermore, for any compact set K C R\ D and any e > 0, there exist C = C(e, K) >0
and n =n(e, K) > 0 such that

pfos|Soelag@ - 1e)| 2 <f < cem
n
forallneZy and all E € K.

In particular, the nontriviality condition (NC) implies the critical assumptions of
Fiirstenberg’s theorem and a contractivity property crucial to proving the Large Devi-
ation result. The boundedness assumption (;zBd) then provides a sufficient regularity
property of the cocycle to complete the proof.
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2. Proof of the theorem
2.1. A one-parameter reformulation of Firstenberg’s theorem

Let G C SL(2,R) be a subgroup. We say that G is contracting if there exist g1, go, ... €
G such that ||g,||1g, converges to a rank-one operator as n — oco. Let us say that G is
a type-F subgroup if G satisfies the following conditions:

(1) G is a contracting subgroup” of SL(2,R).
(2) There does not exist A C RP! of cardinality one or two such that gA = A for all
g€aqG.

Note that being type-F is monotone in the sense that if G; C G2 are subgroups of
SL(2,R) and G is type-F, then G is also type-F.

Theorem 2.1. Suppose A, B : C — SL(2,C) satisfy the following properties:

A and B are real-analytic functions

tr A and tr B are nonconstant functions
trA(z) € [-2,2] = z€R

[A(z0), B(20)] # 0 for at least one zy € C.

Then, there is a discrete set D C R such that the subgroup generated by A(x) and B(x)
is a type-F subgroup of SL(2,R) for any x € R\ D.®

Proof. Using (2.1) and (2.4), we deduce that there is a discrete set Dy C C such that
[A(2), B(2)] # 0 for all z € C\ Dy. Combining this with (2.2) and applying Picard’s
Theorem to tr A(-), we see that there exists w € C \ Dg such that tr A(w) € (-2,2). By
(2.3), one has w € R, hence A(w), B(w) € SL(2,R) by (2.1).

Notice det [A(w), B(w)] # 0. To see this, suppose on the contrary that det [A(w), B(w)]
= 0. Then, A(w) and B(w) have a common eigenvector; since A(w) is elliptic and
B(w) has real entries, this would imply that A(w) and B(w) commute, contradicting
[A(w), B(w)] # 0.

Since det[A(z), B(z)] is an analytic function of z which does not vanish identically,
there is a discrete set Dq such that det [A(z), B(2)] # 0 for z € C \ D;. Combining this
with (2.1) and (2.2), we obtain D, a discrete set such that

det [A(2),B(2)] #0, trA(z)#0, trB(z)#0, ze€C\D.

7 Note that if G is contracting, then trivially, G is not compact.
8 In (2.1), we mean that A(z) and B(z) are analytic functions of z whose entries are real when Im z = 0.
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Let us show that the subgroup generated by A(z) and B(z) is of type F for any
x € R\ D; to that end, fix x € R\ D, write A = A(z), B = B(z), and let G denote
the group generated by A and B. Since [A, B] # 0, this implies that G contains a
non-elliptic element, i (cf. [15, Theorem 10.4.14]) and hence is contracting (use g, = h"
to see this). Since det [A4, B] # 0, it follows that A and B have no common eigenvectors.
In particular, there cannot be a set A C RP! of cardinality one with AA = BA = A.
Suppose instead there exists A C RP! of cardinality two such that AA = BA = A, and
denote A = {uy,us}. Since tr A # 0, one cannot have Au; = 4y and Aus = 4y, which
forces Au; = u; for j = 1,2. Similarly, tr B # 0 forces Bu; = u;. However, this again
contradicts the lack of shared eigenspaces between A and B. O

2.2. Proof of the theorem

In our setting, a special case of a classical theorem of Firstenberg will yield positive
Lyapunov exponents:

Theorem 2.2. For E € R, define A¥ : W — SL(2,R) as above, let vy := AF[ be the
pushforward of fi under A¥, denote by G,,,, the smallest closed subgroup of SL(2,R) con-
taining supp vg, and suppose that [log||M| dvg(M) < . If Gy, is a type-F subgroup
of SL(2,R), then the Lyapunov exponent L(E) > 0 is positive.

Theorem 2.2 was originally proved by Fiirstenberg under the assumption that G,
is noncompact and strongly irreducible [9]. The sufficient criterion stated here implies
strong irreducibility and noncompactness; see, e.g. [3].

Under regularity assumptions on the cocycle one can conclude a uniform Large Devi-
ation Theorem:

Theorem 2.3 (Theorem 3.1, [}]). Let K C R be a compact set, and consider a map A :
K x W — SL(2,R) such that, for every E € K, AF .= A(E,-) satisfies the assumptions
of Theorem 2.2. Suppose that A also satisfies the following properties:

{E — AF(w) : w € W} is uniformly equicontinuous; (UnifEq)
3C > 0 such that sup ||A®(w)|| < C for fi-a.e. w; (UnifBd)
EeK

and, for all E € K,
G, s a contracting subgroup of SL(2,R). (Ctret)
Then, for any € > 0, there exists C = C(e, K) > 0, n = n(e, K) > 0 such that
wfos|Tloslafl - e) e} < e

forallneZy and oll E € K.



V. Bucaj et al. / Journal of Functional Analysis 277 (2019) 3179-3186 3185

For the 1D continuum Anderson model described above, (NC) implies that G, is a
type-F subgroup of SL(2,R) away from a discrete set of energies:

Theorem 2.4. With notation as above, if 11 satisfies (NC), then there is a discrete set
D C R such that, for any E € R\ D, G, is a type-F subgroup of SL(2,R).

Theorem 2.4 resolves the foremost obstructions to proving Theorem 1.1. Indeed, the
boundedness condition (i Bd) and the cocycle structure (1.3) of AP imply (UnifEq)
and (UnifBd) (cf. [4, Lemma 3.3]). Thus, Theorem 1.1 follows from Theorems 2.2, 2.3,
and 2.4.

To prove Theorem 2.4 we will use the following Lemma, which essentially follows from
classical inverse spectral theory — namely the Borg—Marchenko theorem; compare [1,2,
13).

Lemma 2.5. If V1, V5 € L?[0,T) and
AF (V) = AF(Vy) for every E € C, (2.5)
then Vi =V, Lebesgue almost everywhere on [0,T).

Proof. Denote the m-function associated with V; by m;. That is, taking 3 large enough,
then, for every E € C \ [-3,00), there is a unique (modulo an overall multiplicative
constant) solution u; = u;(-, E) of —u + Vju; = Eu; that satisfies a Dirichlet boundary
condition at T'. One then defines the m-functions by
u’(0, E)
(F) =21 —=.
m]( ) uj (0, E)
However, by equality of the cocycles (2.5), it is easy to see mi = mgy, whence V; = V5
(a.e.) by [14, Theorem 1.1]. O

We are now ready to prove Theorem 2.4, and consequently Theorem 1.1.

Proof of Theorem 2.4. Let f; be as in assumption (NC), denote by M;(E) = AP (f;) the

associated monodromies. Notice that Assumptions (2.1), (2.2), and (2.3) are satisfied by

My and Ms. Lemma 2.5 and (NC) imply that [M;(E), M2 (FE)] does not vanish identically,
e. (2.4) holds. Thus, the theorem follows from Theorem 2.1. O
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