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In this short note, we prove positivity of the Lyapunov expo-
nent for 1D continuum Anderson models by leveraging some 
classical tools from inverse spectral theory. The argument is 
much simpler than the existing proof due to Damanik–Sims–
Stolz, and it covers a wider variety of random models. Along 
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Large deviation estimates
Schrödinger operators

the way we note that a Large Deviation Theorem holds uni-
formly on compacts.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

It is well understood that random Schrödinger operators in one space dimension ex-
hibit Anderson localization!

While this introductory statement is correct in many ways, it is nevertheless important 
to clarify what is actually meant. Does one talk about spectral localization or dynamical 
localization? Does one consider the discrete setting or the continuum setting? Even if 
one considers the (easier) discrete setting, is the assertion made for the standard model, 
or for more general models such as the ones considered in [8]? What is assumed about 
the single-site distribution?

It is true that no matter how one answers these questions, localization is indeed known. 
However, the difficulty of the known proofs depends heavily on the answers. For example, 
the proofs are short and elegant in the discrete setting with an absolutely continuous 
single-site distribution, but they can be quite difficult once the continuum setting and/or 
singular single-site distributions are considered.

Some of the landmark papers are Kunz-Souillard [12] (standard discrete model with 
an absolutely continuous single-site distribution), Carmona-Klein-Martinelli [5] (stan-
dard discrete model with a general single-site distribution), and Damanik-Sims-Stolz [7]
(standard continuum model with a general single-site distribution).

In the case of a general single-site distribution, the localization proof typically consists 
of two steps. First, one proves that the Lyapunov exponent is positive for a sufficiently 
large set of energies by an application of Fürstenberg’s theorem, and second, one par-
lays this positivity statement into the exponential decay of generalized eigenfunctions, 
showing in effect that the spectrum is pure point and the eigenfunctions decay exponen-
tially. A second look at the structure of the eigenfunctions then allows one to control 
their semi-uniform localization properties, which in turn yields dynamical localization. 
Traditionally, this second step was performed via multi-scale analysis.

The first step is very easy to implement in the discrete case and the Lyapunov ex-
ponent turns out to be positive for every energy via a straightforward verification of 
the assumptions of Fürstenberg’s theorem. In the continuum case, on the other hand, 
verifying these assumptions is less straightforward; it was accomplished in [7] away from 
a discrete set of energies via inverse scattering theory.

In scenarios where the initial proofs were involved, it is of interest to find simpli-
fications of the arguments. For the standard discrete model with a general single-site 
distribution studied in [5], there have been several recent papers proposing such simpli-
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fications [4,10,11]. These new proofs simplify the second step in the two-step procedure 
described above (since the first step cannot be simplified, as indicated above).

In this paper we take a new look at the first step in this procedure for continuum 
models. Rather than using inverse scattering theory we will use inverse spectral theory, 
and the resulting proof of positive Lyapunov exponents for energies outside a discrete 
set turns out to be significantly simpler. Our setting is also more general than that of 
[7], so that technically speaking, we generalize the scope of the approach.

We also discuss a Large Deviation Theorem (LDT), which demonstrates that the 
second step in the localization proof for continuum models can then be carried out in 
complete analogy to the treatment of the discrete case developed in [4]. Since this is 
entirely straightforward, we do not carry this out explicitly, but merely note that with 
the present work and [4], both steps in the two-step procedure to prove localization for 
1D continuum Anderson models have been simplified.

1.2. Main result

Fix two parameters 0 < δ ≤ m, and define

W =
⋃

δ≤s≤m

L2[0, s).

To distinguish the fibers, let us denote the length of the domain by s = �(f) whenever 
f ∈ L2[0, s). We specify a continuum Anderson model by choosing a probability measure 
μ̃ on W such that

μ̃-ess sup ‖f‖L2 < ∞. (μ̃Bd)

We naturally obtain the full shift

Ω = WZ, μ = μ̃Z, [Tω]n = ωn+1.

Then, for each ω ∈ Ω, we obtain a potential Vω by concatenating . . . , ω−1, ω0, ω1, . . ., 
and an associated Schrödinger operator Hω = −∂2

x + Vω. More specifically, define

sn = sn(ω) :=

⎧⎪⎪⎨⎪⎪⎩
∑n−1

j=0 �(ωj) n ≥ 1
0 n = 0
−
∑−1

j=n �(ωj) n ≤ −1,
(1.1)

denote In = [sn, sn+1), and define

Vω(x) = ωn(x− sn), for each x ∈ In. (1.2)
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Let us note that this setting, which is related to those considered in [6,8], includes 
that of [7] as a special case.

For each w ∈ W, E ∈ C, let AE(w) denote the unique SL(2, C) matrix with[
ψ(s1)
ψ′(s1)

]
= AE(w)

[
ψ(0)
ψ′(0)

]
(1.3)

whenever Hωψ = Eψ with ω0 = w. For each E, the Lyapunov exponent is given by

L(E) = lim
n→∞

1
n

∫
Ω

log ‖AE
n (ω)‖ dμ(ω), where AE

n (ω) = AE(ωn−1) · · ·AE(ω0), n ≥ 1.

One obvious obstruction to localization is if all elements of the support of μ̃ commute 
in the free product sense, so that one cannot distinguish permutations of elements of the 
support after concatenation. When this is the case, all realizations Vω are periodic, and 
localization clearly fails. This is the only obstruction to localization; we formulate the 
negation of this as our nontriviality condition. For fj ∈ L2[0, aj), j = 1, 2, we write

(f1 � f2)(x) =
{
f1(x) 0 ≤ x < a1

f2(x− a1) a1 ≤ x < a1 + a2.

The nontriviality condition is then the following:

There exist fj ∈ supp μ̃ such that f1 � f2 �= f2 � f1. (NC)

Let us note that the equality that fails in (NC) is in L2, so we really mean that f1 � f2
and f2 � f1 differ on a set of positive Lebesgue measure.

Theorem 1.1. If μ̃ satisfies (NC) and (μ̃Bd), then there is a discrete set D ⊂ R such 
that the Lyapunov exponent is positive away from D:

L(E) > 0 for all E ∈ R \D.

Furthermore, for any compact set K ⊂ R \D and any ε > 0, there exist C = C(ε, K) > 0
and η = η(ε, K) > 0 such that

μ

{
ω :

∣∣∣∣ 1n log ‖AE
n (ω)‖ − L(E)

∣∣∣∣ ≥ ε

}
≤ Ce−ηn

for all n ∈ Z+ and all E ∈ K.

In particular, the nontriviality condition (NC) implies the critical assumptions of 
Fürstenberg’s theorem and a contractivity property crucial to proving the Large Devi-
ation result. The boundedness assumption (μ̃Bd) then provides a sufficient regularity 
property of the cocycle to complete the proof.
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2. Proof of the theorem

2.1. A one-parameter reformulation of Fürstenberg’s theorem

Let G ⊆ SL(2, R) be a subgroup. We say that G is contracting if there exist g1, g2, . . . ∈
G such that ‖gn‖−1gn converges to a rank-one operator as n → ∞. Let us say that G is 
a type-F subgroup if G satisfies the following conditions:

(1) G is a contracting subgroup7 of SL(2, R).
(2) There does not exist Λ ⊆ RP 1 of cardinality one or two such that gΛ = Λ for all 

g ∈ G.

Note that being type-F is monotone in the sense that if G1 ⊆ G2 are subgroups of 
SL(2, R) and G1 is type-F, then G2 is also type-F.

Theorem 2.1. Suppose A, B : C → SL(2, C) satisfy the following properties:

A and B are real-analytic functions (2.1)

trA and trB are nonconstant functions (2.2)

trA(z) ∈ [−2, 2] =⇒ z ∈ R (2.3)

[A(z0), B(z0)] �= 0 for at least one z0 ∈ C. (2.4)

Then, there is a discrete set D ⊆ R such that the subgroup generated by A(x) and B(x)
is a type-F subgroup of SL(2, R) for any x ∈ R \D.8

Proof. Using (2.1) and (2.4), we deduce that there is a discrete set D0 ⊆ C such that 
[A(z), B(z)] �= 0 for all z ∈ C \ D0. Combining this with (2.2) and applying Picard’s 
Theorem to trA(·), we see that there exists w ∈ C \D0 such that trA(w) ∈ (−2, 2). By 
(2.3), one has w ∈ R, hence A(w), B(w) ∈ SL(2, R) by (2.1).

Notice det [A(w), B(w)] �= 0. To see this, suppose on the contrary that det [A(w), B(w)]
= 0. Then, A(w) and B(w) have a common eigenvector; since A(w) is elliptic and 
B(w) has real entries, this would imply that A(w) and B(w) commute, contradicting 
[A(w), B(w)] �= 0.

Since det[A(z), B(z)] is an analytic function of z which does not vanish identically, 
there is a discrete set D1 such that det [A(z), B(z)] �= 0 for z ∈ C \D1. Combining this 
with (2.1) and (2.2), we obtain D, a discrete set such that

det [A(z), B(z)] �= 0, trA(z) �= 0, trB(z) �= 0, z ∈ C \D.

7 Note that if G is contracting, then trivially, G is not compact.
8 In (2.1), we mean that A(z) and B(z) are analytic functions of z whose entries are real when Im z = 0.
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Let us show that the subgroup generated by A(x) and B(x) is of type F for any 
x ∈ R \ D; to that end, fix x ∈ R \ D, write A = A(x), B = B(x), and let G denote 
the group generated by A and B. Since [A, B] �= 0, this implies that G contains a 
non-elliptic element, h (cf. [15, Theorem 10.4.14]) and hence is contracting (use gn = hn

to see this). Since det [A, B] �= 0, it follows that A and B have no common eigenvectors. 
In particular, there cannot be a set Λ ⊆ RP 1 of cardinality one with AΛ = BΛ = Λ. 
Suppose instead there exists Λ ⊆ RP 1 of cardinality two such that AΛ = BΛ = Λ, and 
denote Λ = {ū1, ̄u2}. Since trA �= 0, one cannot have Aū1 = ū2 and Aū2 = ū1, which 
forces Aūj = ūj for j = 1, 2. Similarly, trB �= 0 forces Būj = ūj . However, this again 
contradicts the lack of shared eigenspaces between A and B. �
2.2. Proof of the theorem

In our setting, a special case of a classical theorem of Fürstenberg will yield positive 
Lyapunov exponents:

Theorem 2.2. For E ∈ R, define AE : W → SL(2, R) as above, let νE := AE
∗ μ̃ be the 

pushforward of μ̃ under AE, denote by GνE
the smallest closed subgroup of SL(2, R) con-

taining supp νE, and suppose that 
∫

log ‖M‖ dνE(M) < ∞. If GνE
is a type-F subgroup 

of SL(2, R), then the Lyapunov exponent L(E) > 0 is positive.

Theorem 2.2 was originally proved by Fürstenberg under the assumption that GνE

is noncompact and strongly irreducible [9]. The sufficient criterion stated here implies 
strong irreducibility and noncompactness; see, e.g. [3].

Under regularity assumptions on the cocycle one can conclude a uniform Large Devi-
ation Theorem:

Theorem 2.3 (Theorem 3.1, [4]). Let K ⊂ R be a compact set, and consider a map A :
K ×W → SL(2, R) such that, for every E ∈ K, AE := A(E, ·) satisfies the assumptions 
of Theorem 2.2. Suppose that A also satisfies the following properties:

{E �→ AE(w) : w ∈ W} is uniformly equicontinuous; (UnifEq)
∃C > 0 such that sup

E∈K
‖AE(w)‖ ≤ C for μ̃-a.e. w; (UnifBd)

and, for all E ∈ K,

GνE
is a contracting subgroup of SL(2,R). (Ctrct)

Then, for any ε > 0, there exists C = C(ε, K) > 0, η = η(ε, K) > 0 such that

μ

{
ω :

∣∣∣∣ 1n log ‖AE
n (ω)‖ − L(E)

∣∣∣∣ ≥ ε

}
≤ Ce−ηn

for all n ∈ Z+ and all E ∈ K.
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For the 1D continuum Anderson model described above, (NC) implies that GνE
is a 

type-F subgroup of SL(2, R) away from a discrete set of energies:

Theorem 2.4. With notation as above, if μ̃ satisfies (NC), then there is a discrete set 
D ⊂ R such that, for any E ∈ R \D, GνE

is a type-F subgroup of SL(2, R).

Theorem 2.4 resolves the foremost obstructions to proving Theorem 1.1. Indeed, the 
boundedness condition (μ̃Bd) and the cocycle structure (1.3) of AE imply (UnifEq)
and (UnifBd) (cf. [4, Lemma 3.3]). Thus, Theorem 1.1 follows from Theorems 2.2, 2.3, 
and 2.4.

To prove Theorem 2.4 we will use the following Lemma, which essentially follows from 
classical inverse spectral theory – namely the Borg–Marchenko theorem; compare [1,2,
13].

Lemma 2.5. If V1, V2 ∈ L2[0, T ) and

AE(V1) = AE(V2) for every E ∈ C, (2.5)

then V1 = V2 Lebesgue almost everywhere on [0, T ).

Proof. Denote the m-function associated with Vj by mj . That is, taking β large enough, 
then, for every E ∈ C \ [−β, ∞), there is a unique (modulo an overall multiplicative 
constant) solution uj = uj(·, E) of −u′′

j +Vjuj = Euj that satisfies a Dirichlet boundary 
condition at T . One then defines the m-functions by

mj(E) =
u′
j(0, E)

uj(0, E) .

However, by equality of the cocycles (2.5), it is easy to see m1 ≡ m2, whence V1 ≡ V2
(a.e.) by [14, Theorem 1.1]. �

We are now ready to prove Theorem 2.4, and consequently Theorem 1.1.

Proof of Theorem 2.4. Let fj be as in assumption (NC), denote by Mj(E) = AE(fj) the 
associated monodromies. Notice that Assumptions (2.1), (2.2), and (2.3) are satisfied by 
M1 and M2. Lemma 2.5 and (NC) imply that [M1(E), M2(E)] does not vanish identically, 
i.e. (2.4) holds. Thus, the theorem follows from Theorem 2.1. �
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