
Database Criteria for Network Policy Chain
Anduo Wang

Temple University

adw@temple.edu

ABSTRACT
Network policies that offer vital functionalities are often organized

in a chain. Current practice either assumes proper policy chains as

a prior or relies on simple syntax-based input-output analysis. This

paper examines and addresses several difficulties with this approach

— context-dependent policy interaction, unnecessarily coupled poli-

cies, and policies that must be jointly examined, proposing database

integrity constraints as a means towards a semantic-based finer so-

lution. Built on a unified logical framework to describe and reason

about policy chains, our database solution gives (1) criteria that

derive correct policy chain with a more accurate estimate of policy

dependency, and (2) criteria that check and obtain atomic policy,

unit of policy that is proper for policy chain.

CCS CONCEPTS
• Networks→ Network management; Programming interfaces;
• Software and its engineering → Automated static analysis;

ACM Reference Format:
Anduo Wang. 2018. Database Criteria for Network Policy Chain. In SDN-
NFV Sec’18: 2018 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization, March 19–21, 2018, Tempe, AZ,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3180465.

3180471

1 INTRODUCTION
Modern networks offer a rich set of functionalities (e.g., security and

performance guarantee) through network policies. Whether these

policies are deployed as functions fixed in traditional middleboxes

or virtualized by software running on distinct servers, conceptually,

to form a coherent network behavior, they are often organized into

some form of policy chain [12, 20] — service chain for middlebox,

priorities for SDN control modules. The majority of advancement

has been on policy chain enforcement: assuming a proper policy

chain as a prior, how to scalably deploy the policies and how to

steer traffic to enforce the policy chain [10, 13, 24]. But how to

arrive at a meaningful policy chain in the first place?

A straightforward solution is based on input-output dependency

analysis [1, 23, 26] — a dependency is identified between a pair of

service functions if the output of the first policy creates a flow space

that overlaps with the input flow space of the second. The idea is to

construct a chain consistent with the detected dependencies (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5635-0/18/03. . . $15.00

https://doi.org/10.1145/3180465.3180471

by topological sort over the dependency graph containing all pair-

wise dependencies). Unfortunately, with arbitrary network policies,

input-output dependency fails to give general and accurate criteria

that can be used to guide policy chain construction.

FW F
end

points
end

points

firewall (FW)
policy: filter flows between
 blacklisted end points

forwarding (F)
policy: maintain forwarding rules
 along selected paths

Figure 1: Example policy chain of firewall (FW) and forward-
ing (F)

To see why input-output dependency falls short, consider the

policy chain of firewall (FW) and forwarding (F) policies: FW blocks

flows according to some access control list while F maintains for-

warding rules along selected paths. Conventional wisdom places FW

policy in the egress router before applying any forwarding rules on

internal nodes, or equivalently on an SDN controller, a FW module

is given a higher priority over the F module. This policy order-

ing (depicted in Figure 1) that requires traffic blocking to precede

forwarding, however, cannot be recognized by the input-output

dependency analysis. The difficulty is that (1) while firewall is a

per-node function, the forwarding policy is a network-wide one;

and (2) while firewall does generate output (packet not filtered)

that overlaps with input of forwarding, so does forwarding out-

put overlap with firewall input. In short, input-output dependency

is a syntactic-based over approximation that fails to capture the

semantic-based policy interaction of F and FW.

In addition to the obvious challenge of determining a proper pol-

icy ordering to ensure meaningful policy interaction, a more subtle

issue is what constitutes the right unit of policy? The middleboxes

that have matured [6] over the years or the more flexible units

embedded in arbitrary SDN modules [15, 25] that arise in network-

ing practice do not necessarily provide the right units of network
policies. A middlebox policy or SDN module might contain inde-

pendent sub-components (internal policies) that are unnecessarily

coupled, and only at the level of those smaller internal policies does

proper policy chain occur. On the other hand, a middlebox/module

alone may not contain sufficient information to form a proper chain,

making joint examination of multiple correlated policies necessary.

To see the need to divide policies unnecessarily coupled, consider

the policy chain of firewall (FW) and load balancer (LB) in Figure 2:

FW is the same as in the previous example while LB manages traffic

from and to a collection of back-end servers that share a common

public address. The difficulty is that the proper ordering depends on

the context of the traffic: packets from the clients should follow a

chain of FW-LB so that firewall can duly performs filtering, whereas

SDN/NFV Security Architecture SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

49

https://doi.org/10.1145/3180465.3180471
https://doi.org/10.1145/3180465.3180471
https://doi.org/10.1145/3180465.3180471

SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA Anduo Wang

FW LB1clients servers

load balancer (LB) policy
(1) distribute client flow to a under-loaded server, rewriting client
 flow with the appropriate private server destination
(2) restore public source address in returning flow from servers

LB2 FWservers clients

FW LB
end

points
end

points

decompose LB before chaining with FW

chaining FW and LB in their entirety

�

�?? ?

Figure 2: Example of policy chain requiring policy division

returning traffic from the servers needs to restore their public ad-

dress (by LB) before filtering (by FW), thus demanding a different

chain LB-FW1. [23] called this the “decompose and re-compose” prob-

lem. We also note that the recent trend of software-centric (SDN

and NFV) networking can make this problem worse: The policies

(deployedmiddleboxes) fixed by the topology can often utilize topol-

ogy dependency (viewed as a limitation) to naturally enforce the

symmetrically reversing policy chain; In the new software-centric

era free of this restraint, however, a meaningful policy chain solely

depends on the operator who now must carefully reason about the

internals and subtle interactions between the virtualized policies.

To see the need for joint examination, consider a network adapted

from an invasion scenario in [22], as shown in Figure 3a. The three

switch network (A,B,C) connects clients H1,H2 and servers S1,S2
under three policies — firewall FW forbids communication between

H1 and S1, source modification S, and destination modification D.

Suppose also that both S and D are compliant with FW in the sense

that neither will modify a flow into one that will be blocked by FW.

That is, when operating separately, both are perfectly independent

of FW, and can be safely placed after FW, as shown in Figure 3b (left).

Unfortunately, an implementation of this seemingly correct policy

chain, as shown in Figure 3b (top-right), will allow H1 to bypass the

firewall: H1 can reach S1 by sending packets destined to S2 that is

allowed by FW, and manipulating the rewrites at S and D to collec-

tively deliver the packet to S1— Smodifies the source to H2 followed

by D that rewrites the destination to H1). The difficulty here is that

innocent policies, when combined together (unified), can jointly

produce harmful output. A proper policy chain that prevents such

joint harm is shown in the bottom of Figure 3b. While this toy

example is artificial in nature, we believe it reveals a neglected yet

vital subtlety.

In response to these difficulties, this paper investigates database

integrity constraints as a means to a more general and accurate

understanding of policy chain construction. The key insight is to

model the semantic of network policies as integrity constraints

1
In fact, performing the input-output analysis over LB and FW would result in cyclic

mutual dependency.

maintained by database query and update. This model gives a pre-

cise logical framework to describe network policies. More impor-

tantly, it gives an accurate estimate of policy dependency through

the database analysis of queries independent of updates (or updates

that are irrelevant to queries). This finer policy dependency analysis

enables powerful correctness criteria that address all the difficulties

mentioned in the above.

To summarize, our database solution gives:

A precise logical language to describe and reason about net-
work policyWe model a network as a database whose valid states

and allowed state transition are defined by a collection of database

integrity constraints (invariant) [11]. The network policies that de-

termine those states and transitions are reduced to the maintenance

of the integrity constraints through the unified database language

of queries and updates: The query statement checks the network

states for constraint violation, the update statement reconfigures

network state to repair a broken constraint. Together, the query

and update formulation allow us to characterize policy interaction

as the database problem of determining when an update cannot

affect a query (irrelevant update) [4, 9, 11, 16].

A criterion to be used in determining policy chain. We ob-

serve that, intuitively, a policy chain is meaningful if it preserves

the semantics (constraint) of every member policy. Thus, the gist to

correct policy chain is to take care of policy dependency when the

repairing update of one policy may introduce new violation to the

constraints of others. Built on this insight, we develop a criterion

that reduces policy chain correctness to compliance with behav-

ioral dependency — a more accurate estimate of policy dependency

based on database irrelevant update reasoning.

A criteria to be used in deriving atomic policy for chaining.
We formalize network policies that are “unnecessary coupled” or

“incomplete” by two novel notions — divisibility and unifiability.
Under the logical framework presented in the above, divisibility and

unifiability gives the right unit of constraints (policies) for policy

chaining. We also sketched method to check and obtain atomicity

for divisible policies. We leave the general discussion for unifiable

policies to future work.

2 A DATABASE MODEL
We first develop a logical framework for describing network polices.

We adopt a relational data model of network and represent the

entire network state — network configuration, forwarding state,

policy-specific state such as access control list etc— as database

tables [28]. The key insight is that, based on this relational model,

network policies can be seen as database integrity constraints, that

is, statements about what are that valid network state and what are

the allowed transitions. The intended behavior of a network policy

is then captured by database query and update that maintains the

constraints.

We note that a relational data model has the advantage of being

“under-specified”, without forcing any particular form of abstraction

on the network or the polices, making the representation extensible

to future needs. It also eliminates the disparate design details (e.g.,

data structures, high-level language constructs) that are adopted

for a particular policy — for example, forwarding policy is often

SDN/NFV Security Architecture SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

50

Database Criteria for Network Policy Chain SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA

FW: disallow communication between H1 and S1

S: rewrite flow source from H1 to H2 if destination ≠ S1

D: rewrite flow destination to S1 if source = H2

FW S
end

points
end

pointsD

S,D FW
end

points
end

points

compose S and D before chaining with FW

policy chain with all pair-wise dependencies

�

�FW S
end

points
end

points

FW D
end

points
end

points

{

H1

H2
A C

S1

S2

B

(a) Example network under three policies
FW,S,D

FW: disallow communication between H1 and S1

S: rewrite flow source from H1 to H2 if destination ≠ S1

D: rewrite flow destination to S1 if source = H2

FW S
end

points
end

pointsD

S,D FW
end

points
end

points

compose S and D before chaining with FW

policy chain with all pair-wise dependencies

�

�FW S
end

points
end

points

FW D
end

points
end

points

{

H1

H2
A C

S1

S2

B

(b) A proper policy chain (right) must jointly consider the effect of S and D

Figure 3: Example policy chain that requires policy unification

viewed as transformation function while middlebox chain is often

depicted as graphs, details that are likely to be irrelevant in policy

chaining.

An example network scheme [28] of the data model consists of

three tables:

tp(sid, nid)
topology: edges from sid to nid

flow(fid,srcip, dstip)
flow requirement between srcip and

dstip with id fid
cf(fid, sid, nid)

configuration (forwarding table)

tp is the topology table that stores link pairs (sid, nid). flow

is the end-to-end flow requirements between srcip and dstip. An

additional attribute fid is also introduced to uniquely identify the

flow fid. For simplicity, flow table identifies nodes only by IP ad-

dress, leaving out additional header fields (e.g., source MAC address,

TCP source port).

A unified database query and update language
As shown in Figure 4, we describe a network policy by its in-

tended behavior through a unified language of database query and

update. The idea is to model a network policy by a query program

and an update program that, together, maintain some invariant of

concern: the query program checks the network states for violations

of the invariant, the update program computes the new network

for repairing the broken invariant. The query and update program

can be specified by SQL statements as in [28]. In this paper, we

adopt the equivalent rule-like language based on datalog because

the rule form has a natural connection with formal logic — a rule

has a precise interpretation as Horn clause [2] — that simplifies

static analysis.

policy X

invariant
violated?

compute new state
Δ = statenew-statecurrent

update program X+ and X-

network
state tables

query program X

Figure 4: Network policy as database query and update

Take the network and the policies FW and F in Figure 1 as an

example. Suppose FM has a data model of two tables: acl(srcip,

dstip) that stores the pair of endpoints that are not allowed to

communicate, and fw_v(fid) that contains the flow ids identifying

flows that should be filtered. With these two tables and the three

network base tables described in the above, we can model FW by

a query program FW that checks firewall violation and an update

program FW− that specifies the repairing update. In general, a pol-

icy’s update program can specify insertion and/or deletion over the

network base tables (denoted by + and - respectively).

query program FW
r1: fw_v(F) :- flow(F,X,Y), acl(X,Y)

update program FW−

r2: flow(F,X,Y):- fw_v(F), flow(F,X,Y)

Each of the query program and update program contains a single

rule r1 and r2, respectively. r1 detects flow that violated FW when

the flow source and destination pair matches an acl entry. r2 is the

repairing update that removes flow entries that are detected in r1.

Note that rule r1 has a direct logical interpretation (Horn clause)

of ∀F flow(F,X,Y)∧acl(X,Y) =⇒ fw_v(F). That is, the FW violation

view fw_v is characterized by the constraint flow(F,X,Y)∧acl(X,Y).

Likewise, the update (flow) computed by the head of r2 is character-

ized by the constraint fw_v∧flow. We call the former invariant con-
straint and the later update constraint. Together, these constraints
can be seen as the integrity constraint (or invariant) maintained by

FW. More importantly, these logical characterization enables static

analysis of the dynamic behavior of network policies (§ 3).

Similarly, the data model and database program for forwarding

policy is as follows:

query program F
r3: f_v(F) :- flow(F,X,Y), path(X,Y, #»p),

¬cf(F,M,N), MN ∈ #»p

update program F+

r4: cf(F,M,N) :- fw_v(F), flow(F,X,Y)

Note that, in the body of r3, a negative literal ¬cf is used in

the absence of a configuration entry (cf). In general, to be able to

specify constraint violation, we add negation in the rule body.

3 CORRECTNESS CRITERIA
We propose to define the correctness of policy chain as a semantic-

preserving property: a policy chain is correct if it respects the

semantics (integrity constraints) of every member policy. Given a

SDN/NFV Security Architecture SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

51

SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA Anduo Wang

yx

ix

Δx

network

¬iy

Δy

yx ix

Δx
net

iy

Δy

yx

ix

Δx

network

iy

Δy

Figure 5: Behavioral dependency X → Y

X

X-,X+

Y

Y-,Y+

irrelevant

relevant

FW

FW-

F

F+

irrelevant

FW → F

relevant

X → Y

θX

δX

θY

δY

δY∧θX is UNSAT

δY∧θX is SAT

Figure 6: Behavioral dependency as database (ir)relevant up-
date: X → Y if (left) X+/- update is relevant to query Y but
Y+/- is irrelevant to X; Or equivalently (right), if the update
constraint of X (δX) and the invariant constraint of Y (θY) is
jointly satisfiable, but the update constraint of Y (δY) and the
invariant constraint of X (θX) is jointly unsatisfiable.

set of policies each of which maintains some integrity constraint

about the network, a meaningful policy chain should allow each

policy to continue its constraint enforcement. Thus, the crux to

policy chain is to manage policy dependency when a policy update

that repairs its own invariant inadvertently affect other policies

(constraints).

Behavioral dependency
To capture policy dependency, we develop the formal notion of

behavioral dependency that characterizes the effect of one policy’s

update on the constraint of another. As shown in Figure 5, a policy

x depends on policy y, denoted by x→y (or y←x), if (1) there exists

some x update (repair) that can transform the network into a state

that violates y’s constraint; (2) but there does not exist any y update

that can cause violations to x’s constraint. Intuitively, in the case of

x→y, to restore the network into a state that satisfies both x and y,

the repair update of x alone is not sufficient, additional “cooperating

updates” from y is needed.

Besides, we say x partially depends on y, denoted by x;y if only

condition (1) is known. We say x is independent of y, denoted by

x |y, if neither x nor y updates will effect the other’s constraint.

By formulating the dynamic behavior of a policy by a pair of

database (Figure 5) query and update programs, we recast policy

dependency as a database problem called (ir)relevant update [4, 16].

Essentially, as shown in Figure 6 (left): X depends on Y (X→Y) if the

repairing update of X (X+,X−)is relevant to — can cause changes to

the evaluation result of — the query of Y; but the database updates

specified in Y+,Y− is irrelevant to — will never alter — the query X.

Furthermore, we leverage prior work [4, 9, 16] to reduce database

(ir)relevance reasoning to satisfiability analysis, shown in Figure 6

(right). An update is relevant or irrelevant to a query if the update

constraint and the query constraint is jointly satisfiable (SAT) or

X

X-,X+

Y

Y-,Y+

irrelevant

relevant

FW

FW-

F

F+

irrelevant

FW → F

relevant

X → Y

θX

δX

θY

δY

δY∧θX is UNSAT

δY∧θX is SAT

Figure 7: Example analysis of behavioral dependency FW→F.

not satisfiable (UNSAT), respectively. As an example, consider the

policies FW and F in (Figure 1). To determine the behavioral depen-

dency FW→F, it is sufficient to determine the (ir)relevant updates

depicted in Figures 7.

To see why FW− is relevant to F, the deletion constraint for FW−

as defined in r2 is fw_v(F)∧flow(F,X,Y), the query constraint of F

as defined in r3 is flow(F,X,Y)∧path(X,Y, #»p)∧¬cf(F,M,N),MN∈ #»p .
Their conjunction is satisfiable when FW deletes a new flow (iden-

tified by flow id F) that does not match any per-switch entries

(cf(F,U,V)). To see why F+ is irrelevant to FW, note that the insertion

constraint defined in r4 results in an empty set of flow entries. Also,

the conjunction of the insertion constraint and the FW query con-

straint (defined in r1) is a partial evaluation of flow(F,X,Y)∧acl(X,Y)

over the empty set which, by definition, is unsatisfiable.

A strawman criterion
Equipped with the formal notion of behavioral dependency, we

can formalize the correctness criterion for policy chain as follows:

Definition 1 (strawman criterion). A policy chain is correct
if it is compliant with all pairs of behavioral dependencies.

It is easy to see that a policy ordering is compliant with a behav-

ioral dependency X→Y if X precedes Y. More generally, this definition

gives us a constructive method: First, build a dependency graph that

contains the behavioral dependency between all pair of policies —

each vertex in the graph represents a policy, and the edges denotes

behavioral dependency between the two endpoints. A policy chain

is then obtained by a topological sort over the graph. For example,

with the behavioral dependency of FW→F, we can build the policy

chain in Figure 1.

We also note that, our strawman criterion subsumes the input-

output dependency method [23] in the sense that the input-output

overlap dependency can always be reduced to behavioral depen-

dency, but not vice versa. To see why, consider two arbitrary func-

tional modules m,n between which a input-output dependency ex-

ists, that is the output of m overlaps with the input of n. Denote the

output of m by mout and input of n by ninput , we have mout∧ninput
which is satisfiable. We construct the database representation of

m,n as follows (only show the relevant fragments of Um and In).
This should be no surprise: while input-output dependency is a

syntax-based over-approximation ofmodular interactions, semantic

dependency paints a much more accurate picture.

#repairing updates of m (Um)
mout←flow(

»
ATTS),some_conditions

#integrity constraint of n (In)
←flow(

»
ATTS), ninput

SDN/NFV Security Architecture SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

52

Database Criteria for Network Policy Chain SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA

FW

FW-

F

F+

relevant

irrelevant

FW

FW-

LB

LB+,LB-

relevant

relevant LB1

LB1+

LB1-

FW

FW-

LB2

LB2+

LB2-

FW → LB1 LB2 → FW

FW → F

Figure 8: Example analysis of behavioral dependency FW→F.

4 CORRECTNESS CRITERIA REVISTED

Unnecessary coupling and incompleteness? Make policies
atomic!

While the strawman approach generalizes current practice, it

is not without flaws. One fundamental limitation is illustrated in

the policy chain of firewall (FW) and load balancer (LB) (Figure 2).

As shown in Figure 8 (left), the behavioral dependency analysis

gives cyclic partial dependency. While such cycle can be triggered

by conflicting policies where a policy chain compliant with the

strawman criteria does not exist
2
. However, as shown in Figure 2

(bottom), a proper policy chain does exist. Only that the proper

chain is constructed between LB’s sub-policies and FW. Indeed, be-

havioral dependency is properly identified at this sub-component

level.

A dual problem is that the information contained in a policy

may be inadequate. As illustrated in policies S and D in Figure 3a,

behavioral analysis gives us the estimate of S |FW and D |FW. A seem-

ingly meaningful merge of these resulted in Figure 3b (top right),

however, opens a security hole. Indeed, a more sensible analysis

should yield (S;D)→FM (we use S;D to denote the combined effect

of firing policy S followed by D, i.e. rewrite source then destination),

which is consistent with the policy chain depicted in Figure 3b

(bottom right). In short, it is not sufficient we to examine S and FW

in separate, really, only by joint examination of S and D do we have

complete knowledge for analysis.

To accommodate these two problems, we develop the formal

notion of policy atomicity and revise the strawman criterion ac-

cordingly.

First, we introduce the auxiliary notions of policy division and

unification. Assume a collection of arbitrary policies P expressed as

database queries and updates,p,q ∈ P are two arbitrary policies. We

say p is divisible by q (or q divides p), if a proper decomposition (for

now, just understood as normal software decomposition, a formal

treatment is presented in the next subsection) of p into p1,p2 would
result in p1 → q and q → p2. A policy p ∈ P is indivisible if there
does not exists a q ∈ P that divides p. We say p unifies with q if

there exists a policy r ∈ P such that p | r and q | r but (p;q) → r
or (q;p) → r .

Definition 2 (policy atomicity). A policy p is atomic in a
collection of policies P if there does not exist a policy q ∈ P that
divides or unifies p.

2
For example, a power saving policy moving traffic off the under-loaded path may

conflict with a traffic engineering policy that moves traffic to the under-loaded paths.

Definition 3 (revised criterion). A policy chain is correct if it
is compliant with behavioral dependencies over all pairs of behavioral
atomic policies.

Dividing and unifying Policies
In this paper, we sketch a method that divides policies to break

cyclic partial dependency. We leave the general treatment of unify-

ing policies, the revised criterion relies based on atomic policy to

future work.

As an example, we show how to divide LB by FW. FW is the same

as in Figure 1. The query and update program — FW and FW−, re-

spectively — is defined in rules r1,r2. The LB policy introduces a

new table mapping(public_add,private_add) that maps a server’s

public address (visible to external clients) and the various private

addresses. The behavior of LB is as follows: the query LB defines

flows (lb_v) that either have a public destination address or a pri-

vate source address. These flows need to be translated, as defined

in LB− and LB+. These policies form cyclic partial dependencies:

FW;LB, LB;FW, as shown in Figure 8 (left).

query program LB
r5 lb_v(F) :- flow(F,X,Y), mapping(Y,Y')
r6 lb_v(F) :- flow(F,X,Y), mapping(X',X)

update program LB-
r7 flow(F,X,Y) :- flow(F,X,Y), lb_v(F)

update program LB+
r8 flow(F,X,Y') :- lb_v(F), flow(F,X,Y),

mapping(Y,Y')
r9 flow(F,X',Y) :- lb_v(F), flow(F,X,Y),

mapping(X',Y)

The objective is to divide LB into two sub-components such that

one sub-component depends on FW while the other is depended on,

shown in Figure 8 (right). Observe that LB1 differs from LB2 in that

FW→LB1 while LB2 →FW. That is, FW− is irrelevant to LB2 but relevant

to LB1. Thus, the key idea is to use FW− as a filter to divide LB. More

precisely, we leverage the residue method in database semantic

query optimization [7], the main idea of which is to accelerates

query answering by “utilizing” semantic knowledge — integrity con-

straint — in the database: a query is transformed into an equivalent

form that embodies integrity constraint.

We take the update constraint (defines FW− in rule r2) as an in-

tegrity constraint, and embeds its positive form— fw_v wedдeflow(F,X,Y)
which expands into acl(X,Y)wedдeflow(F,X,Y))wedдeflow(F,X,Y)
by rule r1 — into r5-r6. This transforms LB to LB1. The crux is that,

the body of r6 contradicts the update constraint whereas the body

of r5 subsumes the constraint, thus the transformed program LB1

is left with r5.

query program LB1
r5 lb_v(F) :- flow(F,X,Y), mapping(Y,Y'),

By embedding the negative form of the update constraint in LB,

we obtain LB2:

query program LB2
r6 lb_v(F) :- flow(F,X,Y), mapping(X',X)

SDN/NFV Security Architecture SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

53

SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA Anduo Wang

5 RELATEDWORK
Database research has been inspiring networking practice for a

long time. In the early days, network practitioners often made use

of home grown database to simplify network management [5, 27].

Declarative networking [17–19] explores a more systematic use

of database language (recursive datalog) to enable a more com-

pact and higher-level specification of routing protocols, enabling

rapid deployment of declarative protocols with distributed query

optimization. Following this line of work, [8] extends declarative

protocols to more general network management. More recently, in

the software-centric era of SDN and NFV, FlowLog[21] explores the

event-condition aspect of database language to provide a unified

abstraction for the control-, data- planes. Deductive database lan-

guage [14] also saw application in accelerating network forwarding

decision computation. In addition to leveraging database as a cross-

layer, distributed, higher-level, and highly efficient domain-specific

language, Onix and ONOS [3, 15] utilized database concurrency

control for state replication when strong consistency is needed

among network components.

Unlike all previous application of database research, in this paper,

rather than leveraging the database for managing data — describing,

replicating, reasoning about factual data, we utilize database system

for managing semantics constraints [11] — non-factual data of the

network policies. To the best of our knowledge, this is the first work

that explores database integrity constraints in networking.

REFERENCES
[1] [n. d.]. Ph.D. Dissertation.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Foundations of
Databases: The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA.

[3] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow,

and Guru Parulkar. 2014. ONOS: Towards an Open, Distributed SDN OS. In

Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/2620728.

2620744

[4] José A. Blakeley, Neil Coburn, and Per-:1Vke Larson. 1989. Updating Derived

Relations: Detecting Irrelevant and Autonomously Computable Updates. ACM
Trans. Database Syst. 14, 3 (Sept. 1989), 369–400. https://doi.org/10.1145/68012.

68015

[5] Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert Greenberg, Gisli Hjalmtysson,

and Jennifer Rexford. 2004. The Cutting EDGE of IP Router Configuration.

SIGCOMM Comput. Commun. Rev. 34, 1 (Jan. 2004), 21–26. https://doi.org/10.

1145/972374.972379

[6] B. Carpenter and S. Brim. 2002. Middleboxes: Taxonomy and Issues. RFC 3234

(Informational). (February 2002). http://www.ietf.org/rfc/rfc3234.txt

[7] Upen S. Chakravarthy, John Grant, and Jack Minker. 1990. Logic-based Approach

to Semantic Query Optimization. ACM Trans. Database Syst. 15, 2 (June 1990),
162–207. https://doi.org/10.1145/78922.78924

[8] Xu Chen, Z. Morley Mao, and Jacobus van der Merwe. 2007. Towards Automated

Network Management: Network Operations Using Dynamic Views. In Proceed-
ings of the 2007 SIGCOMM Workshop on Internet Network Management (INM ’07).
ACM, New York, NY, USA, 242–247. https://doi.org/10.1145/1321753.1321757

[9] Charles Elkan. 1990. Independence of Logic Database Queries and Update. In

Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ’90). ACM, New York, NY, USA, 154–160. https:

//doi.org/10.1145/298514.298557

[10] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul. 2013.

FlowTags: Enforcing Network-wide Policies in the Presence of Dynamic Mid-

dlebox Actions. In Proceedings of the Second ACM SIGCOMMWorkshop on Hot
Topics in Software Defined Networking (HotSDN ’13). ACM, New York, NY, USA,

19–24. https://doi.org/10.1145/2491185.2491203

[11] Parke Godfrey, John Grant, Jarek Gryz, and Jack Minker. 1998. Integrity Con-

straints: Semantics and Applications. In Logics for Databases and Information
Systems (the book grow out of the Dagstuhl Seminar 9529: Role of Logics in Infor-
mation Systems, 1995). 265–306.

[12] Joel M. Halpern and Carlos Pignataro. 2015. Service Function Chaining (SFC)

Architecture. RFC 7665. (2015). https://doi.org/10.17487/rfc7665

[13] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Ab-

hashkumar, and Aditya Akella. 2016. Paving the Way for NFV: Simplifying Mid-

dlebox Modifications Using StateAlyzr. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara,

CA, 239–253. https://www.usenix.org/conference/nsdi16/technical-sessions/

presentation/khalid

[14] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda,

Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew

Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben

Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj

Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. 2014. Network

Virtualization in Multi-tenant Datacenters. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). USENIX Association, Seat-

tle,WA, 203–216. https://www.usenix.org/conference/nsdi14/technical-sessions/

presentation/koponen

[15] TeemuKoponen,Martin Casado, NatashaGude, Jeremy Stribling, Leon Poutievski,

Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama,

and Scott Shenker. 2010. Onix: a distributed control platform for large-scale

production networks. In Proceedings of the 9th USENIX conference on Operating
systems design and implementation (OSDI’10).

[16] Alon Y. Levy and Yehoshua Sagiv. 1993. Queries Independent of Updates. In

Proceedings of the 19th International Conference on Very Large Data Bases (VLDB
’93). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 171–181. http:

//dl.acm.org/citation.cfm?id=645919.672674

[17] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. 2006. Declarative Networking: Language, Execution and Optimization. In

Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’06). ACM, New York, NY, USA, 97–108. https://doi.org/10.1145/

1142473.1142485

[18] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. 2009. Declarative Networking. In Communications of the ACM.

[19] Boon Thau Loo, JosephM. Hellerstein, Ion Stoica, and Raghu Ramakrishnan. 2005.

Declarative Routing: Extensible Routing with Declarative Queries. SIGCOMM
Comput. Commun. Rev. 35, 4 (Aug. 2005), 289–300. https://doi.org/10.1145/

1090191.1080126

[20] Thomas Nadeau and Paul Quinn. 2015. Problem Statement for Service Function

Chaining. RFC 7498. (2015). https://doi.org/10.17487/rfc7498

[21] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishna-

murthi. 2014. Tierless Programming and Reasoning for Software-Defined Net-

works. In Proceedings of the 11th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014. 519–531. https:

//www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson

[22] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,

and Guofei Gu. 2012. A Security Enforcement Kernel for OpenFlow Networks.

In Proceedings of the First Workshop on Hot Topics in Software Defined Networks
(HotSDN ’12). ACM, New York, NY, USA, 121–126. https://doi.org/10.1145/

2342441.2342466

[23] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya

Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.

[n. d.]. PGA: Using Graphs to Express and Automatically Reconcile Network

Policies. In SIGCOMM ’15.
[24] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and

Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN.

SIGCOMM Comput. Commun. Rev. 43, 4 (Aug. 2013), 27–38. https://doi.org/10.

1145/2534169.2486022

[25] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David

Walker. [n. d.]. Modular SDN Programming with Pyretic. ([n. d.]).

[26] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan

Arefin. 2014. A Network-state Management Service. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 563–

574. https://doi.org/10.1145/2619239.2626298

[27] Philip Taylor and Timothy Griffin. 2009. A model of configuration languages for

routing protocols. In PRESTO.
[28] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Caesar, and Brighten Godfrey.

2016. Ravel: A Database-Defined Network. In SOSR.

SDN/NFV Security Architecture SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

54

https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/68012.68015
https://doi.org/10.1145/68012.68015
https://doi.org/10.1145/972374.972379
https://doi.org/10.1145/972374.972379
http://www.ietf.org/rfc/rfc3234.txt
https://doi.org/10.1145/78922.78924
https://doi.org/10.1145/1321753.1321757
https://doi.org/10.1145/298514.298557
https://doi.org/10.1145/298514.298557
https://doi.org/10.1145/2491185.2491203
https://doi.org/10.17487/rfc7665
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
http://dl.acm.org/citation.cfm?id=645919.672674
http://dl.acm.org/citation.cfm?id=645919.672674
https://doi.org/10.1145/1142473.1142485
https://doi.org/10.1145/1142473.1142485
https://doi.org/10.1145/1090191.1080126
https://doi.org/10.1145/1090191.1080126
https://doi.org/10.17487/rfc7498
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/2534169.2486022
https://doi.org/10.1145/2534169.2486022
https://doi.org/10.1145/2619239.2626298

	Abstract
	1 Introduction
	2 A database model
	3 Correctness Criteria
	4 Correctness Criteria Revisted
	5 Related Work
	References

