RIGHTS

SDN/NFV Security Architecture

SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

Database Criteria for Network Policy Chain

Anduo Wang
Temple University
adw@temple.edu

ABSTRACT

Network policies that offer vital functionalities are often organized
in a chain. Current practice either assumes proper policy chains as
a prior or relies on simple syntax-based input-output analysis. This
paper examines and addresses several difficulties with this approach
— context-dependent policy interaction, unnecessarily coupled poli-
cies, and policies that must be jointly examined, proposing database
integrity constraints as a means towards a semantic-based finer so-
lution. Built on a unified logical framework to describe and reason
about policy chains, our database solution gives (1) criteria that
derive correct policy chain with a more accurate estimate of policy
dependency, and (2) criteria that check and obtain atomic policy,
unit of policy that is proper for policy chain.

CCS CONCEPTS

» Networks — Network management; Programming interfaces;
« Software and its engineering — Automated static analysis;

ACM Reference Format:

Anduo Wang. 2018. Database Criteria for Network Policy Chain. In SDN-
NFV Sec’18: 2018 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization, March 19-21, 2018, Tempe, AZ,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3180465.
3180471

1 INTRODUCTION

Modern networks offer a rich set of functionalities (e.g., security and
performance guarantee) through network policies. Whether these
policies are deployed as functions fixed in traditional middleboxes
or virtualized by software running on distinct servers, conceptually,
to form a coherent network behavior, they are often organized into
some form of policy chain [12, 20] — service chain for middlebox,
priorities for SDN control modules. The majority of advancement
has been on policy chain enforcement: assuming a proper policy
chain as a prior, how to scalably deploy the policies and how to
steer traffic to enforce the policy chain [10, 13, 24]. But how to
arrive at a meaningful policy chain in the first place?

A straightforward solution is based on input-output dependency
analysis [1, 23, 26] — a dependency is identified between a pair of
service functions if the output of the first policy creates a flow space
that overlaps with the input flow space of the second. The idea is to
construct a chain consistent with the detected dependencies (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5635-0/18/03...$15.00
https://doi.org/10.1145/3180465.3180471

Ay

49

by topological sort over the dependency graph containing all pair-
wise dependencies). Unfortunately, with arbitrary network policies,
input-output dependency fails to give general and accurate criteria
that can be used to guide policy chain construction.

P orwarding {F)

firewall (FY) 5
oicy: maintain farwarding rules |

i poticy: filter flows between

blacldisted end points | | along selected paths
end > Fw > F > end
points points

Figure 1: Example policy chain of firewall (FW) and forward-
ing (F)

To see why input-output dependency falls short, consider the
policy chain of firewall (FW) and forwarding (F) policies: FW blocks
flows according to some access control list while F maintains for-
warding rules along selected paths. Conventional wisdom places FW
policy in the egress router before applying any forwarding rules on
internal nodes, or equivalently on an SDN controller, a FW module
is given a higher priority over the F module. This policy order-
ing (depicted in Figure 1) that requires traffic blocking to precede
forwarding, however, cannot be recognized by the input-output
dependency analysis. The difficulty is that (1) while firewall is a
per-node function, the forwarding policy is a network-wide one;
and (2) while firewall does generate output (packet not filtered)
that overlaps with input of forwarding, so does forwarding out-
put overlap with firewall input. In short, input-output dependency
is a syntactic-based over approximation that fails to capture the
semantic-based policy interaction of F and FW.

In addition to the obvious challenge of determining a proper pol-
icy ordering to ensure meaningful policy interaction, a more subtle
issue is what constitutes the right unit of policy? The middleboxes
that have matured [6] over the years or the more flexible units
embedded in arbitrary SDN modules [15, 25] that arise in network-
ing practice do not necessarily provide the right units of network
policies. A middlebox policy or SDN module might contain inde-
pendent sub-components (internal policies) that are unnecessarily
coupled, and only at the level of those smaller internal policies does
proper policy chain occur. On the other hand, a middlebox/module
alone may not contain sufficient information to form a proper chain,
making joint examination of multiple correlated policies necessary.

To see the need to divide policies unnecessarily coupled, consider
the policy chain of firewall (FW) and load balancer (LB) in Figure 2:
FW is the same as in the previous example while LB manages traffic
from and to a collection of back-end servers that share a common
public address. The difficulty is that the proper ordering depends on
the context of the traffic: packets from the clients should follow a
chain of FW-LB so that firewall can duly performs filtering, whereas

https://doi.org/10.1145/3180465.3180471
https://doi.org/10.1145/3180465.3180471
https://doi.org/10.1145/3180465.3180471

RIGHTS

SDN/NFV Security Architecture

lead balancer (1B) policy

(1) distribute client flow to a under-loaded server, rewriting client
flow with the appropriate private server destination

(2) restore public source address in returning flow from servers

— chaining FYY and 1B in their entirety

ed __ o o__ o __ end X
points : did : L8 : points
— decompose LB before chaining with P\
clients > P > LB > servers
v
servers > 1B > PW » clients

Figure 2: Example of policy chain requiring policy division

returning traffic from the servers needs to restore their public ad-
dress (by LB) before filtering (by FW), thus demanding a different
chain LB-Fw!. [23] called this the “decompose and re-compose” prob-
lem. We also note that the recent trend of software-centric (SDN
and NFV) networking can make this problem worse: The policies
(deployed middleboxes) fixed by the topology can often utilize topol-
ogy dependency (viewed as a limitation) to naturally enforce the
symmetrically reversing policy chain; In the new software-centric
era free of this restraint, however, a meaningful policy chain solely
depends on the operator who now must carefully reason about the
internals and subtle interactions between the virtualized policies.

To see the need for joint examination, consider a network adapted
from an invasion scenario in [22], as shown in Figure 3a. The three
switch network (A,B,C) connects clients H;,H, and servers S;,S;
under three policies — firewall FW forbids communication between
H1 and S1, source modification S, and destination modification D.
Suppose also that both S and D are compliant with FW in the sense
that neither will modify a flow into one that will be blocked by FWw.
That is, when operating separately, both are perfectly independent
of FW, and can be safely placed after FW, as shown in Figure 3b (left).
Unfortunately, an implementation of this seemingly correct policy
chain, as shown in Figure 3b (top-right), will allow H1 to bypass the
firewall: H1 can reach S1 by sending packets destined to S2 that is
allowed by FW, and manipulating the rewrites at S and D to collec-
tively deliver the packet to S1 — S modifies the source to H2 followed
by D that rewrites the destination to H1). The difficulty here is that
innocent policies, when combined together (unified), can jointly
produce harmful output. A proper policy chain that prevents such
joint harm is shown in the bottom of Figure 3b. While this toy
example is artificial in nature, we believe it reveals a neglected yet
vital subtlety.

In response to these difficulties, this paper investigates database
integrity constraints as a means to a more general and accurate
understanding of policy chain construction. The key insight is to
model the semantic of network policies as integrity constraints

!In fact, performing the input-output analysis over LB and FW would result in cyclic
mutual dependency.

Ay

50

SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

maintained by database query and update. This model gives a pre-
cise logical framework to describe network policies. More impor-
tantly, it gives an accurate estimate of policy dependency through
the database analysis of queries independent of updates (or updates
that are irrelevant to queries). This finer policy dependency analysis
enables powerful correctness criteria that address all the difficulties
mentioned in the above.
To summarize, our database solution gives:

A precise logical language to describe and reason about net-
work policy We model a network as a database whose valid states
and allowed state transition are defined by a collection of database
integrity constraints (invariant) [11]. The network policies that de-
termine those states and transitions are reduced to the maintenance
of the integrity constraints through the unified database language
of queries and updates: The query statement checks the network
states for constraint violation, the update statement reconfigures
network state to repair a broken constraint. Together, the query
and update formulation allow us to characterize policy interaction
as the database problem of determining when an update cannot
affect a query (irrelevant update) [4, 9, 11, 16].

A criterion to be used in determining policy chain. We ob-
serve that, intuitively, a policy chain is meaningful if it preserves
the semantics (constraint) of every member policy. Thus, the gist to
correct policy chain is to take care of policy dependency when the
repairing update of one policy may introduce new violation to the
constraints of others. Built on this insight, we develop a criterion
that reduces policy chain correctness to compliance with behav-
ioral dependency — a more accurate estimate of policy dependency
based on database irrelevant update reasoning.

A criteria to be used in deriving atomic policy for chaining.
We formalize network policies that are “unnecessary coupled” or
“incomplete” by two novel notions — divisibility and unifiability.
Under the logical framework presented in the above, divisibility and
unifiability gives the right unit of constraints (policies) for policy
chaining. We also sketched method to check and obtain atomicity
for divisible policies. We leave the general discussion for unifiable
policies to future work.

2 A DATABASE MODEL

We first develop a logical framework for describing network polices.
We adopt a relational data model of network and represent the
entire network state — network configuration, forwarding state,
policy-specific state such as access control list etc— as database
tables [28]. The key insight is that, based on this relational model,
network policies can be seen as database integrity constraints, that
is, statements about what are that valid network state and what are
the allowed transitions. The intended behavior of a network policy
is then captured by database query and update that maintains the
constraints.

We note that a relational data model has the advantage of being
“under-specified”, without forcing any particular form of abstraction
on the network or the polices, making the representation extensible
to future needs. It also eliminates the disparate design details (e.g.,
data structures, high-level language constructs) that are adopted
for a particular policy — for example, forwarding policy is often

RIGHTS

SDN/NFV Security Architecture

§Fw; disatlow communization between H and §|

iS;rewme flow source fram H to H; if destination # S»; erﬁd - PA —>» §
D rewrite flow destinatien to 5 if source = Hp points

H —— /S' end :

— " B_C\s2 points_) e

(a) Example network under three policies
FW,S,D

SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

~ pokicy chain with ait pair-wise dependenciss -

end
. end . end X
points points_) W —> 3 =0 points |
end - campose § and D before chaining with FYW —
points epd > D P epd v
points points

(b) A proper policy chain (right) must jointly consider the effect of S and D

Figure 3: Example policy chain that requires policy unification

viewed as transformation function while middlebox chain is often
depicted as graphs, details that are likely to be irrelevant in policy
chaining.

An example network scheme [28] of the data model consists of
three tables:

tp(sid, nid)
topology: edges from sid to nid
flow(fid,srcip, dstip)
flow requirement between srcip and
dstip with id fid
cf(fid, sid, nid)
configuration (forwarding table)

tp is the topology table that stores link pairs (sid, nid). flow
is the end-to-end flow requirements between srcip and dstip. An
additional attribute fid is also introduced to uniquely identify the
flow fid. For simplicity, flow table identifies nodes only by IP ad-
dress, leaving out additional header fields (e.g., source MAC address,
TCP source port).

A unified database query and update language

As shown in Figure 4, we describe a network policy by its in-
tended behavior through a unified language of database query and
update. The idea is to model a network policy by a query program
and an update program that, together, maintain some invariant of
concern: the query program checks the network states for violations
of the invariant, the update program computes the new network
for repairing the broken invariant. The query and update program
can be specified by SQL statements as in [28]. In this paper, we
adopt the equivalent rule-like language based on datalog because
the rule form has a natural connection with formal logic — a rule
has a precise interpretation as Horn clause [2] — that simplifies
static analysis.

policy X

invariant _ query program X

violated?

1
network
state tables

update program X" and X° 4

Computﬁ new state
A= statenew$tatecurrent

Figure 4: Network policy as database query and update

Ay

51

Take the network and the policies FW and F in Figure 1 as an
example. Suppose FM has a data model of two tables: acl(srcip,
dstip) that stores the pair of endpoints that are not allowed to
communicate, and fw_v(fid) that contains the flow ids identifying
flows that should be filtered. With these two tables and the three
network base tables described in the above, we can model FW by
a query program FW that checks firewall violation and an update
program FW- that specifies the repairing update. In general, a pol-
icy’s update program can specify insertion and/or deletion over the
network base tables (denoted by + and - respectively).

query program FW
rt: fw_v(F) 1= flow(F,X,Y), acl(X,Y)

update program FW~
r2: flow(F,X,Y):- fw_v(F), flow(F,6X,Y)

Each of the query program and update program contains a single
rule r1 and r2, respectively. r1 detects flow that violated FW when
the flow source and destination pair matches an acl entry. r2 is the
repairing update that removes flow entries that are detected in r1.
Note that rule r1 has a direct logical interpretation (Horn clause)
of VF flow(F,X,Y)Aacl(X,Y) = fw_v(F). That is, the FW violation
view fw_v is characterized by the constraint flow(F,X,Y)Aacl(X,Y).
Likewise, the update (flow) computed by the head of r2 is character-
ized by the constraint fw_vAflow. We call the former invariant con-
straint and the later update constraint. Together, these constraints
can be seen as the integrity constraint (or invariant) maintained by
FW. More importantly, these logical characterization enables static
analysis of the dynamic behavior of network policies (§ 3).

Similarly, the data model and database program for forwarding
policy is as follows:

query program F
r3: f_v(F) - flow(F,X,Y), path(X,Y,p),

—cf(F,M,N), MN € 7

update program F*
r4: cf(F,M,N) :- fw_v(F), flow(F,6X,Y)

Note that, in the body of r3, a negative literal —cf is used in
the absence of a configuration entry (cf). In general, to be able to
specify constraint violation, we add negation in the rule body.

3 CORRECTNESS CRITERIA

We propose to define the correctness of policy chain as a semantic-
preserving property: a policy chain is correct if it respects the
semantics (integrity constraints) of every member policy. Given a

RIGHTS LI

SDN/NFV Security Architecture

network
Dy

Figure 5: Behavioral dependency X — Y

network

by

o

> > ;

: relevant ; ByABx s SAT
Pt —| YoY* R 3 — [
o irrelevant. o ! 1=« ByaBx s UNSAT =+

Figure 6: Behavioral dependency as database (ir)relevant up-
date: X — Y if (left) Xx+/- update is relevant to query Y but
Y+/- is irrelevant to X; Or equivalently (right), if the update
constraint of X (5X) and the invariant constraint of Y (0Y) is
jointly satisfiable, but the update constraint of Y (§Y) and the
invariant constraint of X (6X) is jointly unsatisfiable.

set of policies each of which maintains some integrity constraint
about the network, a meaningful policy chain should allow each
policy to continue its constraint enforcement. Thus, the crux to
policy chain is to manage policy dependency when a policy update
that repairs its own invariant inadvertently affect other policies
(constraints).

Behavioral dependency

To capture policy dependency, we develop the formal notion of
behavioral dependency that characterizes the effect of one policy’s
update on the constraint of another. As shown in Figure 5, a policy
x depends on policy y, denoted by x—y (or y«<x), if (1) there exists
some x update (repair) that can transform the network into a state
that violates y’s constraint; (2) but there does not exist any y update
that can cause violations to x’s constraint. Intuitively, in the case of
x—y, to restore the network into a state that satisfies both x and y,
the repair update of x alone is not sufficient, additional “cooperating
updates” from y is needed.

Besides, we say x partially depends on y, denoted by x~y if only
condition (1) is known. We say x is independent of y, denoted by
xly, if neither x nor y updates will effect the other’s constraint.

By formulating the dynamic behavior of a policy by a pair of
database (Figure 5) query and update programs, we recast policy
dependency as a database problem called (ir)relevant update [4, 16].
Essentially, as shown in Figure 6 (left): X depends on Y (X—Y) if the
repairing update of X (X*,X7)is relevant to — can cause changes to
the evaluation result of — the query of Y; but the database updates
specified in Y*,Y~ is irrelevant to — will never alter — the query X.

Furthermore, we leverage prior work [4, 9, 16] to reduce database
(ir)relevance reasoning to satisfiability analysis, shown in Figure 6
(right). An update is relevant or irrelevant to a query if the update
constraint and the query constraint is jointly satisfiable (SAT) or

Ay

52

SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

Figure 7: Example analysis of behavioral dependency FW—F.

not satisfiable (UNSAT), respectively. As an example, consider the
policies FW and F in (Figure 1). To determine the behavioral depen-
dency FW—F, it is sufficient to determine the (ir)relevant updates
depicted in Figures 7.

To see why FW™ is relevant to F, the deletion constraint for FW~
as defined in r2 is fw_v(F) Aflow(F,X,Y), the query constraint of F
as defined in r3 is flow(F,X,Y)Apath(X,Y, p)A-cf(F,M,N),MNe p.
Their conjunction is satisfiable when FW deletes a new flow (iden-
tified by flow id F) that does not match any per-switch entries
(cf(F,U,V)). To see why F+ is irrelevant to FW, note that the insertion
constraint defined in r4 results in an empty set of flow entries. Also,
the conjunction of the insertion constraint and the FW query con-
straint (defined in r1) is a partial evaluation of flow(F,X,Y)Aacl(X,Y)
over the empty set which, by definition, is unsatisfiable.

A strawman criterion
Equipped with the formal notion of behavioral dependency, we
can formalize the correctness criterion for policy chain as follows:

DEFINITION 1 (STRAWMAN CRITERION). A policy chain is correct
if it is compliant with all pairs of behavioral dependencies.

It is easy to see that a policy ordering is compliant with a behav-
ioral dependency X—V if X precedes Y. More generally, this definition
gives us a constructive method: First, build a dependency graph that
contains the behavioral dependency between all pair of policies —
each vertex in the graph represents a policy, and the edges denotes
behavioral dependency between the two endpoints. A policy chain
is then obtained by a topological sort over the graph. For example,
with the behavioral dependency of FW—F, we can build the policy
chain in Figure 1.

We also note that, our strawman criterion subsumes the input-
output dependency method [23] in the sense that the input-output
overlap dependency can always be reduced to behavioral depen-
dency, but not vice versa. To see why, consider two arbitrary func-
tional modules m,n between which a input-output dependency ex-
ists, that is the output of m overlaps with the input of n. Denote the
output of m by me,,; and input of n by nippus, We have mou s Aninpur
which is satisfiable. We construct the database representation of
m,n as follows (only show the relevant fragments of U,, and I).
This should be no surprise: while input-output dependency is a
syntax-based over-approximation of modular interactions, semantic
dependency paints a much more accurate picture.

#repairing %es of m (Un)
Mout < Flow(ATTS),some_conditions

#integrity constraint of n (I,)
—flow(ATTS), Ninpur

RIGHTS LI

SDN/NFV Security Architecture

Figure 8: Example analysis of behavioral dependency FW—F.

4 CORRECTNESS CRITERIA REVISTED

Unnecessary coupling and incompleteness? Make policies
atomic!

While the strawman approach generalizes current practice, it
is not without flaws. One fundamental limitation is illustrated in
the policy chain of firewall (FW) and load balancer (LB) (Figure 2).
As shown in Figure 8 (left), the behavioral dependency analysis
gives cyclic partial dependency. While such cycle can be triggered
by conflicting policies where a policy chain compliant with the
strawman criteria does not exist?. However, as shown in Figure 2
(bottom), a proper policy chain does exist. Only that the proper
chain is constructed between LB’s sub-policies and FW. Indeed, be-
havioral dependency is properly identified at this sub-component
level.

A dual problem is that the information contained in a policy
may be inadequate. As illustrated in policies S and D in Figure 3a,
behavioral analysis gives us the estimate of S|FW and D|FW. A seem-
ingly meaningful merge of these resulted in Figure 3b (top right),
however, opens a security hole. Indeed, a more sensible analysis
should yield (S;D)—FM (we use S;D to denote the combined effect
of firing policy S followed by D, i.e. rewrite source then destination),
which is consistent with the policy chain depicted in Figure 3b
(bottom right). In short, it is not sufficient we to examine S and FW
in separate, really, only by joint examination of S and D do we have
complete knowledge for analysis.

To accommodate these two problems, we develop the formal
notion of policy atomicity and revise the strawman criterion ac-
cordingly.

First, we introduce the auxiliary notions of policy division and
unification. Assume a collection of arbitrary policies P expressed as
database queries and updates, p,q € P are two arbitrary policies. We
say p is divisible by q (or g divides p), if a proper decomposition (for
now;, just understood as normal software decomposition, a formal
treatment is presented in the next subsection) of p into p;,p2 would
result in p; — g and ¢ — p2. A policy p € P is indivisible if there
does not exists a g € P that divides p. We say p unifies with q if
there exists a policy r € P such thatp | rand q | r but (p;q) - r
or (g;p) = r.

DEFINITION 2 (POLICY ATOMICITY). A policy p is atomic in a
collection of policies P if there does not exist a policy q € P that
divides or unifies p.

ZFor example, a power saving policy moving traffic off the under-loaded path may
conflict with a traffic engineering policy that moves traffic to the under-loaded paths.

Ay

53

SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

DEFINITION 3 (REVISED CRITERION). A policy chain is correct if it
is compliant with behavioral dependencies over all pairs of behavioral
atomic policies.

Dividing and unifying Policies

In this paper, we sketch a method that divides policies to break
cyclic partial dependency. We leave the general treatment of unify-
ing policies, the revised criterion relies based on atomic policy to
future work.

As an example, we show how to divide LB by FW. FW is the same
as in Figure 1. The query and update program — FW and FW, re-
spectively — is defined in rules r1,r2. The LB policy introduces a
new table mapping(public_add,private_add) that maps a server’s
public address (visible to external clients) and the various private
addresses. The behavior of LB is as follows: the query LB defines
flows (1b_v) that either have a public destination address or a pri-
vate source address. These flows need to be translated, as defined
in LB~ and LB*. These policies form cyclic partial dependencies:
FW~-»LB, LB~FW, as shown in Figure 8 (left).

query program LB
r5 lb_v(F) :- flow(F,X,Y), mapping(Y,Y")
ré lb_v(F) :- flow(F,X,Y), mapping(X',6X)

update program LB-
r7 flow(F,X,Y) :- flow(F,X,Y), lb_v(F)

update program LB+

r8 flow(F,X,Y') :- 1b_v(F), flow(F,X,Y),
mapping(Y,Y")

r9 flow(F,X',Y) :- 1b_v(F), flow(F,X,Y),
mapping(X',Y)

The objective is to divide LB into two sub-components such that
one sub-component depends on FW while the other is depended on,
shown in Figure 8 (right). Observe that LB, differs from LB, in that
FW—LB; while LB, —FW. That is, FW~ is irrelevant to LB, but relevant
to LB;. Thus, the key idea is to use FW~ as a filter to divide LB. More
precisely, we leverage the residue method in database semantic
query optimization [7], the main idea of which is to accelerates
query answering by “utilizing” semantic knowledge — integrity con-
straint — in the database: a query is transformed into an equivalent
form that embodies integrity constraint.

We take the update constraint (defines FW™ in rule r2) as an in-

tegrity constraint, and embeds its positive form — fw_v wedgeflow(F,X,Y)

which expands into ac1(X,Y)wedgeflow(F,X,Y))wedgeflow(F,X,Y)
by rule r1 — into r5-r6. This transforms LB to LB;. The crux is that,
the body of ré contradicts the update constraint whereas the body
of r5 subsumes the constraint, thus the transformed program LB1
is left with r5.

query program LB;
r5 lb_v(F) :- flow(F,X,Y), mapping(Y,Y"),

By embedding the negative form of the update constraint in LB,
we obtain LB;:

query program LBy
ré6 lb_v(F) :- flow(F,X,Y), mapping(X',6X)

RIGHTS LI N

SDN/NFV Security Architecture

5 RELATED WORK

Database research has been inspiring networking practice for a
long time. In the early days, network practitioners often made use
of home grown database to simplify network management [5, 27].
Declarative networking [17-19] explores a more systematic use
of database language (recursive datalog) to enable a more com-
pact and higher-level specification of routing protocols, enabling
rapid deployment of declarative protocols with distributed query
optimization. Following this line of work, [8] extends declarative
protocols to more general network management. More recently, in
the software-centric era of SDN and NFV, FlowLog[21] explores the
event-condition aspect of database language to provide a unified
abstraction for the control-, data- planes. Deductive database lan-
guage [14] also saw application in accelerating network forwarding
decision computation. In addition to leveraging database as a cross-
layer, distributed, higher-level, and highly efficient domain-specific
language, Onix and ONOS [3, 15] utilized database concurrency
control for state replication when strong consistency is needed
among network components.

Unlike all previous application of database research, in this paper,
rather than leveraging the database for managing data — describing,
replicating, reasoning about factual data, we utilize database system
for managing semantics constraints [11] — non-factual data of the
network policies. To the best of our knowledge, this is the first work
that explores database integrity constraints in networking.

REFERENCES

[1] [n.d.]. Ph.D. Dissertation.
[2] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Foundations of
Databases: The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.
Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow,
and Guru Parulkar. 2014. ONOS: Towards an Open, Distributed SDN OS. In
Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, New York, NY, USA, 1-6. https://doi.org/10.1145/2620728.
2620744
José A. Blakeley, Neil Coburn, and Per-:1Vke Larson. 1989. Updating Derived
Relations: Detecting Irrelevant and Autonomously Computable Updates. ACM
Trans. Database Syst. 14, 3 (Sept. 1989), 369-400. https://doi.org/10.1145/68012.
68015
Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert Greenberg, Gisli Hjalmtysson,
and Jennifer Rexford. 2004. The Cutting EDGE of IP Router Configuration.
SIGCOMM Comput. Commun. Rev. 34, 1 (Jan. 2004), 21-26. https://doi.org/10.
1145/972374.972379
[6] B. Carpenter and S. Brim. 2002. Middleboxes: Taxonomy and Issues. RFC 3234
(Informational). (February 2002). http://www.ietf.org/rfc/rfc3234.txt
[7] Upen S. Chakravarthy, John Grant, and Jack Minker. 1990. Logic-based Approach
to Semantic Query Optimization. ACM Trans. Database Syst. 15, 2 (June 1990),
162-207. https://doi.org/10.1145/78922.78924
[8] Xu Chen, Z. Morley Mao, and Jacobus van der Merwe. 2007. Towards Automated
Network Management: Network Operations Using Dynamic Views. In Proceed-
ings of the 2007 SIGCOMM Workshop on Internet Network Management (INM ’07).
ACM, New York, NY, USA, 242-247. https://doi.org/10.1145/1321753.1321757
Charles Elkan. 1990. Independence of Logic Database Queries and Update. In
Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ’90). ACM, New York, NY, USA, 154-160. https:
//doi.org/10.1145/298514.298557
Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul. 2013.
FlowTags: Enforcing Network-wide Policies in the Presence of Dynamic Mid-
dlebox Actions. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN °13). ACM, New York, NY, USA,
19-24. https://doi.org/10.1145/2491185.2491203
Parke Godfrey, John Grant, Jarek Gryz, and Jack Minker. 1998. Integrity Con-
straints: Semantics and Applications. In Logics for Databases and Information
Systems (the book grow out of the Dagstuhl Seminar 9529: Role of Logics in Infor-
mation Systems, 1995). 265-306.

[3

[4

&

[9

=

[10]

[11]

54

SDN-NFVSec’18, March 21, 2018, Tempe, AZ, USA

[12] Joel M. Halpern and Carlos Pignataro. 2015. Service Function Chaining (SFC)
Architecture. RFC 7665. (2015). https://doi.org/10.17487/rfc7665

Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Ab-
hashkumar, and Aditya Akella. 2016. Paving the Way for NFV: Simplifying Mid-
dlebox Modifications Using StateAlyzr. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 239-253. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/khalid

Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew
Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben
Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj
Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. 2014. Network
Virtualization in Multi-tenant Datacenters. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). USENIX Association, Seat-
tle, WA, 203-216. https://www.usenix.org/conference/nsdil4/technical-sessions/
presentation/koponen

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama,
and Scott Shenker. 2010. Onix: a distributed control platform for large-scale
production networks. In Proceedings of the 9th USENIX conference on Operating
systems design and implementation (OSDI'10).

Alon Y. Levy and Yehoshua Sagiv. 1993. Queries Independent of Updates. In
Proceedings of the 19th International Conference on Very Large Data Bases (VLDB
’93). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 171-181. http:
//dLacm.org/citation.cfm?id=645919.672674

Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. 2006. Declarative Networking: Language, Execution and Optimization. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data (SIGMOD °06). ACM, New York, NY, USA, 97-108. https://doi.org/10.1145/
1142473.1142485

Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. 2009. Declarative Networking. In Communications of the ACM.

Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan. 2005.
Declarative Routing: Extensible Routing with Declarative Queries. SIGCOMM
Comput. Commun. Rev. 35, 4 (Aug. 2005), 289-300. https://doi.org/10.1145/
1090191.1080126

Thomas Nadeau and Paul Quinn. 2015. Problem Statement for Service Function
Chaining. RFC 7498. (2015). https://doi.org/10.17487/rfc7498

Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishna-
murthi. 2014. Tierless Programming and Reasoning for Software-Defined Net-
works. In Proceedings of the 11th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014. 519-531. https:
//www.usenix.org/conference/nsdil4/technical-sessions/presentation/nelson
Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,
and Guofei Gu. 2012. A Security Enforcement Kernel for OpenFlow Networks.
In Proceedings of the First Workshop on Hot Topics in Software Defined Networks
(HotSDN ’12). ACM, New York, NY, USA, 121-126. https://doi.org/10.1145/
2342441.2342466

Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
[n. d.]. PGA: Using Graphs to Express and Automatically Reconcile Network
Policies. In SIGCOMM ’15.

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN.
SIGCOMM Comput. Commun. Rev. 43, 4 (Aug. 2013), 27-38. https://doi.org/10.
1145/2534169.2486022

Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David
Walker. [n. d.]. Modular SDN Programming with Pyretic. ([n. d.]).

Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. 2014. A Network-state Management Service. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 563—
574. https://doi.org/10.1145/2619239.2626298

Philip Taylor and Timothy Griffin. 2009. A model of configuration languages for
routing protocols. In PRESTO.

Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Caesar, and Brighten Godfrey.
2016. Ravel: A Database-Defined Network. In SOSR.

[13

(14

[15

[16]

(18]

[19

[20

[22

[23

[24

[25

[26]

[27

https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/68012.68015
https://doi.org/10.1145/68012.68015
https://doi.org/10.1145/972374.972379
https://doi.org/10.1145/972374.972379
http://www.ietf.org/rfc/rfc3234.txt
https://doi.org/10.1145/78922.78924
https://doi.org/10.1145/1321753.1321757
https://doi.org/10.1145/298514.298557
https://doi.org/10.1145/298514.298557
https://doi.org/10.1145/2491185.2491203
https://doi.org/10.17487/rfc7665
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
http://dl.acm.org/citation.cfm?id=645919.672674
http://dl.acm.org/citation.cfm?id=645919.672674
https://doi.org/10.1145/1142473.1142485
https://doi.org/10.1145/1142473.1142485
https://doi.org/10.1145/1090191.1080126
https://doi.org/10.1145/1090191.1080126
https://doi.org/10.17487/rfc7498
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/2534169.2486022
https://doi.org/10.1145/2534169.2486022
https://doi.org/10.1145/2619239.2626298

	Abstract
	1 Introduction
	2 A database model
	3 Correctness Criteria
	4 Correctness Criteria Revisted
	5 Related Work
	References

