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Abstract

Invasive species have been recognized as a leading threat to biodiversity. In particular,
lakes are especially affected by species invasions because they are closed systems
sensitive to disruption. Accurately controlling the spread of invasive species requires
solving a complex spatial-dynamic optimization problem. In this work we propose a
novel framework for determining the optimal management strategy to maximize the
value of a lake system net of damages from invasive species, including an endogenous
diffusion mechanism for the spread of invasive species through boaters’ trips between
lakes. The proposed method includes a combined global iterative process which deter-
mines the optimal number of trips to each lake in each season and the spatial-dynamic
optimal boat ramp fee.

Keywords Invasive species - Spatial-dynamic management - Convex optimization -
Bioeconomic

JEL Classification Q20 - Q50 - Q57

1 Introduction

Globally, invasive species have long been recognized as a leading threat to bio-
diversity (Wilcove et al. 1998; Sala et al. 2000). Lakes are especially affected
by species invasions because they are closed systems sensitive to disruption (Sala

The work of Katherine Y. Zipp was partially supported by the Department of Agricultural Economics,
Sociology, and Education at Penn State, the USDA National Institute of Food and Agriculture and
Multistate Hatch Appropriations under Project # PEN04631 and Accession # 1014400, and a seed grant
from the Institute for CyberScience at Penn State. The work of Yanggingxiang Wu was partially supported
by the Department of Agricultural Economics, Sociology, and Education at Penn State. The work of
Ludmil T. Zikatanov was partially supported by NSF Grants DMS-1720114 and DMS-1819157 and a
seed grant from the Institute for CyberScience at Penn State.

Extended author information available on the last page of the article

Published online: 30 October 2019 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12076-019-00237-x&domain=pdf
http://orcid.org/0000-0002-7206-5159
http://orcid.org/0000-0002-5189-4230

K.Y.Zipp et al.

et al. 2000; Moorhouse and Macdonald 2015). As a result, controlling the spread
of aquatic invasive species (AIS) has been a major management effort for the past
two decades. Further complicating AIS management, AIS are largely spread inadver-
tently through the movement of recreational boaters from lake to lake (Rothlisberger
et al. 2010). Therefore, management is tasked with maximizing the value of a lake
system net of AIS damages by changing boating behavior and thus the spread of
AIS.

In this article, we develop a novel spatial-dynamic framework to determine the
optimal policy to induce the optimal number of trips to each lake in a system across
many seasons to maximize the net benefits of the lake system taking into consideration
the damages from the spread of invasive species. This policy must be heterogeneous
across space and time. Spatially, it must depend on boating patterns (which depend
on the attractiveness of lakes, substitutability across lakes, the presence of invasive
species) and the ecological suitability of a lake for invasion. Temporally, it must take
into account the time dependent distribution of AIS across the system. AIS spread
is a vicious cycle, as an increase in invaded lakes provides more opportunity for
spread to uninvaded lakes. The pathways for dispersal of AIS depend on boating
behavior, which in turn depends on lake management and the presence or absence of
AIS in each lake. This leads to a complicated feedback loop where the optimal policy
depends on the dispersal of AIS and the number of trips to each lake, the dispersal
of AIS depends on boating behavior, and boating behavior depends on policy and
the dispersal of AIS [see Fig. 1]. The dispersal of AIS and boating behavior both
depend on the presence or absence of AIS in every lake in the system. Therefore, the
optimal policy must be globally coordinated across the system (Epanchin-Niell et al.
2010).

There are five major components to our optimal spatial-dynamic AIS management
framework.

1. Model of recreational boating decisions. The dispersal of AIS depends on boating
decisions, therefore, we need a model of how boaters choose where to boat. We
rely on a standard economic model known as a random utility model (RUM) in
which boaters maximize their utility by choosing where to boat.

2. Model of AIS dispersal. The dispersal of AIS requires (i) boaters to visit an invaded
lake, (ii) inadvertently transport the invasive species out of the invaded lake, (iii)
then visit an uninvaded lake while the invaded species is still alive, and finally (iv)
the invasive species must become established in a suitable lake (Zipp et al. 2019).
Given the dispersal of AIS, we model the probability that a lake becomes invaded
given that it is not already invaded as a hazard model.

3. Net benefits to recreational boaters. Lakes provide benefits to boaters. Our RUM
allows us to calculate the welfare benefits of boating. The net benefits of the lake
system are these benefits of boating minus the damages caused by AIS. We consider
both the damages from AIS to both shoreline property owners (Horsch and Lewis
2009; Provencher et al. 2012) and boaters (Lewis et al. 2015).

4. Optimal number of boating trips to each lake. We find the optimal number of
boating trips to each lake in each season to maximize net benefits (step 3) subject
to AIS dispersal (step 2) and the model of boating decisions (step 1).
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Fig.1 Diagram of model framework

5. Optimal policy. Finally, we find the optimal policy that leads boaters to choose the
socially optimal number of trips.

This framework makes three major contributions to the literature. First, we develop
a method that, to our knowledge, has not been previously used in the emerging works
on optimal spatial-dynamic policy management and we refer to (Epanchin-Niell et al.
2010; Brock and Xepapadeas 2008, 2010; Sanchirico et al. 2010; Eiswerth and van
Kooten 2002; Hof 1998; Horan et al. 2005; Leung et al. 2002) and the references
therein for other techniques and methods. The proposed algorithms are efficient and
do not require an intractable amount of computing resources for its implementation.
The main reason behind this is that model parameters are fixed and we are only
concerned with the direct problem of finding optimal ramp fees. We use an economic
model of recreational boating decisions to parameterize the spread of aquatic invasive
species. We also parameterize the objective function (i.e. the net benefit function) with
nonmarket valuation studies. By fixing our parameters from economic theory even as
the state space (i.e. the number of lakes times the number of seasons) increases and
our tensors become sparser we are able to calculate the spread of the invasive species
and the objective function. We use an iterative method to solve for the optimal boat
ramp fees that involves solving quadratic programs for which the analytic solution is
known. These steps only require calculations with dimensions equal to the state space.
Second, we incorporate an endogenous dispersal method. The literature on optimal
spatial-dynamic bioeconomic policies typically models the dispersal of species as
radially dispersing from an original location. Our model on AIS allows the dispersal
mechanism to depend on the movement of boaters and thus be endogenous. Third, we
have a fully-coupled natural human system where boating decisions depend on the
status of invasions and the dispersal of invasions depends on boating decisions.

2 Problem Formation

The spatial-dynamic optimal policy can be determined through an iterative process
with five major components (see Fig. 1), which will be explained in detail.
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2.1 Model of recreational boating decisions

We model boating decisions as a repeated random utility travel cost model in which
boaters n € {1, ..., N} maximize their utility U;s,; onday ¢ € {1, ..., T} in season
s € {1,..., S} by either (a) visiting lake i € {2, ..., I}; or (b) choosing not to go
boating (denoted by i = 1). Let utility' be defined as

Uisnt = Visnt + €isnt» Where

Visnt = Zismt +a(My, — fi,s) - Sxi(s—l)» W
Zisnt = Zm BmZisnt.m represents m boater, lake, day, or season attributes (Zisnr,m)
that influence decision to go boating or stay home with parameters B, and remains
constant in our model, « is marginal utility of income, M, is the income of boater n, 7,
is the boat ramp fee, £ is the effect of AIS on boater utility, x;s_1) is the status of AIS
lake i at the end of the previous season (s — 1),2 and ¢, are identically independently
distributed Type I Extreme Value random variables with variance 72/6. Under this
assumption of error distribution, the probability that boater n chooses an alternative
i € {l,...1}onday ¢ in season s is given by the conditional logit model (Train 2009)

exp(Visnr)
Pisnt = ———— ——-
Zj:l CXP(Ujsnz)
We set the total number of trips taken to lake i € {2, ..., I} (or days spent at home in

the case of i = 1)in season s tobe b;; = Z;]zv=1 Zthl P;sns (note that ZiI:l bis =NT
by definition). Clearly, b;; is a function of the boat ramp fees {7} §:2 and the invasion

statuses {x(s—1) }§=2~

2.2 Model of AlIS dispersal

AIS are largely spread inadvertently through the movement of boaters across lakes
(Chivers and Leung 2012; Rothlisberger et al. 2010). We define the status of the
invasion in lake 7 in season s, denoted by x;, as the probability that lake i is invaded
at the end of season s. We assume that invasions are irreversible so that once a lake
becomes invaded it remains invaded for all remaining seasons. Let X; s be the probability
that lake 7 is invaded at the end of season s conditional on being uninvaded at the end
of season s — 1. We have the following relations.

)
X+ =1 — 1_[ (1 — Xi;m), orequivalently,

m=1

! Note that this utility function can be further generalized to allow for nonlinear impacts of income and to
allow for congestion to impact boaters (i.e. independence among boaters’ utilities).

2 We assume that the invasion status is updated at the end of the season such that boaters’ trip decisions
depend on x;_1 and at the end of the season when the invasion status is updated xs depends on the boating
decisions in season s.
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Xis+1 = Xis + (1 — Xi5)Xi(s41)- (2)
We assume that x; —; =: x;; is given. We use the following approximate hazard
model:
0, Kis < —a,
Xis = s(Kiy) = { K5t Ky e [—a,al, 3)
], K,‘X > da,

which approximates the sigmoid function.? Here, K is defined as
Kis = yLis + §ihis

where L;; is the expected number of trips carrying AIS to lake i in season s (referred
to as propagule pressure), A;; is a measure of the suitability of lake i to host AIS, and
(v, &) are estimated parameters related to the effects of propagule pressure and lake
suitability on the probability of invasion. Propagule pressure requires (i) boaters to
visit an invaded lake, (ii) inadvertently transport the invasive species out of the invaded
lake, and (iii) then visit an uninvaded lake while the invaded species is still alive. Recent
evidence suggests that the majority of AIS remains alive for approximately one day
(Bruckerhoff et al. 2014). It is not possible to spread the invasive species from lake i
to itself, so we are only concerned with trips between different lakes. Therefore, the
expected probability that a boater visits any invaded lake j 7 i on the previous day
is Y i Pjsn@—1)Xjs—1)- Let u be the probability of a boat leaving an invaded lake
with AIS (this is a constant independent of n,i,s,t). Therefore, the propagule pressure
is

T N
Lis =ZZ MZPjsn(z—nxj(s—l) Pisnt

1=2 n=1 j#i

Qisnt

where Qjg,; is the expected number of trips that boater n makes to lake i on day 7 in
season s carrying an invasive species from any lake j # i.

2.3 Net benefits

Lakes provide benefits to boaters who receive utility from boating instead of staying

home. Let wy,; = max {vigy, ..., Vs }- Without any boating, boaters just receive
utility from staying home wy,; = vi5,,. Therefore, the value of having the option to
boat at all lakes in the system i € 2, ..., I is worth ., per boater per trip per season:

3 We take a = 2.824153 which approximates the sigmoid with £ error at most 0.056075.
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! 1
-’%ssnt — —m <ln (exp(Vignt)) — In (Z CXP(Uisnr)>>

i=1

. 1 | eXp(Ulsm) 4)
= | In{ —————
|| S exp(visnr)

1
= _m (ln (Plsnt)) >0,

where « is the marginal utility of income and is used to convert measures of utility
into measures of dollars and Pj,; < 1 is the probability of boater n choosing to stay

home i = 1 on day 7 in season s. The total value of the system to all boaters across

all trips in season s is the sum of .}, over boaters n and days ¢:

1 1
V/SS = —m E In(Pignr) ~ —m E (Prsne — 1D
n,t n,t

1 1
=——(biy—NT)=— Y bjs. ®)

o] o] £

The net benefits of the lake system are these benefits #;° minus the damages
caused by AIS. Aquatic invasive species (AIS) cause damage to both shoreline prop-
erty owners (Provencher et al. 2012; Horsch and Lewis 2009) and recreational users
(e.g. boaters) (Lewis et al. 2015). We consider /; shoreline properties around lake 7,
assuming that shoreline properties are constant across seasons. We assume that shore-
line property owners incur a constant annual welfare loss, .2, per shoreline property,
h;, for each invaded lake. Therefore, we define the total welfare loss in season s from
the spread of AIS to shoreline property owners as

1
Vﬂsh = Z,,fhh,-xis
i=2

where we use that x1; = 0 for all s.

Next, we define the welfare loss from the spread of AIS to boaters. We assume that
boaters incur a constant welfare loss, %7, per trip b;; to an invaded lake in season s A
Therefore, we define the expected total welfare loss in season s from the spread of
AIS to recreational boaters as

1
st = Z jbbisxis-
i=2

Therefore, the net beneﬁt’s\gf the entire lake system is the discounted sum of the
benefits of the lake system, ;¥ minus the damages from AIS, %" + #:

4 Accounting for a non-constant welfare loss that depended on the number of lakes invaded was found to
be minor in Zipp et al. (2019) (around 2%), however, future work could allow the welfare loss per boater
to depend on the number of invaded lakes.
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=0 (7 == n?) ©)
N
)
where p* = (%-w) is the discount factor and r is the discount rate.

2.4 Optimal number of boating trips to each lake

With this net benefit function, .7, our objective is to find the optimal boat ramp fee 7',
that maximizes the net benefit of the lake system subject to the dispersal function of
AIS (10). This is a difficult optimization problem to solve. We make two contributions
that allow us to more easily solve this problem. First, we rewrite the objective function

Z (b, x) as a function of the matrix of boating trips b = ((bis) i1=1 )le and the matrix

of invasion probabilities x = ((x,-s)l.lzl)f:1 in the following general form (with the
specific details after Eq. (11) below)

F (b, b) = (D(B)b, b) +2(f (b), b) + (g(b, P),1). )

The reason this is can be written as function of b is because, as discussed after Algo-
rithm 4, the boat ramp fee T in the model can be determined by the number of trips
b, and the probabilities of invasion x are also uniquely determined from the taxes t.
It is important to note that in general we would like to maximize .% (-, -) above when
b = b. Thus, for a fixed b we have the following maximization to find the optimal
number of trips to each lake b* to maximize net benefits with three constraints:(i) AIS
dispersal follows (10), (ii) the total number of trips has to equal the number of trip
occasions (9), (iii) the minimum number of trips boaters can take to lake i is zero (9).

Optimization Problem

Find 7, = argmax .7 (b(z), P(1)) = ((D(B)b. b) +2(f (b). b) + (g(b. P(). 1)}.  (8)
Subject to the constraints:
1
Do bis=NxT, 0<b ©)
where x; is computed with given initial values {x”}il= | and

xis = Xijg—1 + (1 — x; s—1)5(Kjs) (10)

fori =2,..., lTands =2,...,8S.

In what follows we will use iterative approximation of .# by quadratic forms which
can be easily optimized. In such cases we evaluate all terms such as D(b), f(b),
g (b, P) at our previous iterates, denoted here by b, T. We thus have

F (b, b) := (D(b)b, b) + 2(f(b), b) + (g(b, P(T)), 1). (11
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To be more specific, let us introduce the quantities involved in writing the explicit
functional form of D, f, and g. We define:

1 —xi5-1 I+ x5 I —xi5-1
miis = Wiy + , M2 s = ————YisAs,

2a 2 2a
b h b
Clis = L°myjs + L hima s, ¢2is = L"my 5.

A direct calculation from the definition of .% gives
—p*L"himy ;5, Kis € [—a, al,
8is =10, Kis < —a,
—p*L"h;, Kis > a,

_psc2,iS9 KIS € [_a’a]a

Dy iy = ,
s 0’ KU ¢ [_a7 a]s

1
P’ (Cl,is - W) , Kis €[—a,dal,
ﬁS == |/0_" Kis < —a,

[y

In (11) the values of D, f and g are all evaluated at b which could be the previous
iterate in the iterative procedure or we may have b = b and in such case .% (b, b) will
be the objective function.

2.5 Optimal policy

To compute optimal tax values we propose the following algorithms to find the optimal
boat ramp fees, Ii’; for each lake i in season s, that map from the optimal number of
trips to each lake, b, .

Algorithm 1 Global iteration

1. Input: given an initial state of invasions x; s—; (a vector with I ele-

ments) and an initial guess of the boat ramp fee ti(sO) (an (I x S)
matrix), we propose the following iterative procedure.
For k = 1, 2, ... until convergence:

(a) Compute the spread of AIS xi(f) foralls € (2,...,S5) from Ti(sk )
using Algorithm 2.

(b) Find the 57%) that maximizes the net benefits via Algorithm 3
for fixed P from the previous iteration.

(c) Find r;;(k) from the computed h;.ks(k) by solving the nonlinear
system of equations relating these quantities via Algorithm 4.

2. If a convergence criteria is met, or iteration number is too large Then
Stop

We now rewrite L;s as a linear function of b;s plus some “noise”. To do this, let
us introduce A;; — the average of Q;,; with respect to n and ¢ or the share of boater
trips where the boater removes an invasive species from an invaded lake, namely.
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Z Z Qisnt = NT Z Z Zﬂx](Afl)P]m(tfl)

roLj#

Then for L;; we have,

Lis = Aisbis + Z Z(Qisnt - Ais)Pisnt
t n

8is

In the algorithms that follow, the second term in the right side above is lagged, i.e.
taken from the previous iteration. As a result, e can write K; as a linear function of
b:

Kis = yAisbis + v gis(b, P) + &1Ais

where A; b, is the average propagule pressure on lake i, i.e. the average number of
trips to lake i that carry an invasive species in season s, and g;s is a measure of the
deviance across trip occasions from the average propagule pressure.

The algorithms described below, follow the steps outlined in the Global Iteration
Algorithm 1.

Algorithm 2 Compute x;; given T

1. Input: a vector x. | = (x11, X2, .- .,x1,1)’ e R! (fors = 1) and ri(f) e RIS,
2. Output: xFQSH € RI*S and bff).
Fors=2,...,(S+1)

k k
(k) eXP(Zmzmntmﬂm EX,((Y) 1) 0”-'( >)

isnt Zj {exp(Zm stnr,mﬁm*é)f;]zifl) oT ](lz))}

(k) _ (k) (k) (k)
bis _Zﬂlptsnt’ tsm‘ Z/?’51 sn(t 1) ](x 1)

(k) (k) (k) (k) k) pk)
Ay = NT Zn t Lisner 8is Z” t ( isnt Ais )Pisnt

k k k k), (k k
()—Vngz(s)’ () )/A( )b()-i-d()-i-glkm
Now, for a given b; g, we update x;

B o (k)

lS

Notice that .7 (Z, -) is a quadratic functional for fixed b with negative definite
diagonal matrix ID. The solution then to the optimization problem in Algorithm 3, is
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Algorithm 3 Maximization (Find b given 5" and x))
(k)

Input: x. 2:5+1 € RIXS
Output: b(k"'l) e RIXS,
Seth = b®)

Find the p*+D: pk+1) — arg maxp F®P | p), subject to the constraints:

bl S

k
exp (”imt(‘v ti(s )))
o
n,t Z§=1 exp (vjsnt(W T]('S))>

0 < bjy <vjy =

given by (see Deutsch (2001, Theorem 4.1, p.43))

1 D™ lf]zs <0
bt(s+ ) [Dilf]ls <[D~ lf]ts = Vjs (12)
Uis, lf]is > Uis-

(k+1) from b(k+1)

Algorithm 4 Computation of ;; and x l.(f)

L. Input: b = p*+D from Algorithm 3 and x® from Algorithm 2.
2. Output: T+1 which solves 2(z *+1) = p*k+D,
where, fori > 2,
2=y, ¥ M and0® _ exp( 50 ) 2 — exp—az®), and.
" net I:Z ()(k> 77 ] isnt isnt
jsnt'ljs

k k
Z,(S,),, Zzisnt.mlsm - {xi((s)—])'
m

This nonlinear system is solved by the following iterative method:

Set ;s = 1 (or r =0),S =2,...,5+ 1. This reduces the number of unknowns, but number
of equations is also reduced as bb = N T — Y bs.
i>2

Set an initial guess ‘[( ) (which gives us r](o))
Forg =1,2,. untll convergence:

Fors=2,...,5+ 1,i =2,..., I solve for nl.(;{)

@ism‘n(q)
Jis @) = by — ZZ By =0 (13)
tUnan,S +Zj7é1 jsntMl jg

If a convergence criteria is met, Then Stop

A comment on the solution of the nonlinear equations given in Algorithm 4 (see
(13)) is in order. By a closer inspection of the functions f;s(-) on the right side of this
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equation we observe that f; < 0. Furthermore, the upper bounds on b given in (9)

guarantee that f;5(0) > 0 and f;s(1) < O whenever n(q € (0, 1). Hence, niqs e 0,1
is unique (from the monotonicity of f;s(-)) and this guarantees that riqs is also unique
and positive.

3 Discussion

These algorithms allow us to empirically estimate the optimal spatial-dynamic policies
to maximize the value of lakes net of damages from invasive species. To interpret these
results we focus on the cases where i and s are such that K;; € [—a, a]. In these cases
the optimal number of boating trips are defined as

:/ﬂb 1 'Cl S— 1 'Cl S— 1 ”Cl S
\_ozl - (( 2a( 1)) Wis ( 1)) ‘.,iﬂhhi (_ <_l)> yUA
b ] VC! S
<z (—( 1)) Vis Ajs

b}, = (14)

We can simplify Eq. (14) so that the optimal number of trips to each lake occurs
when

axis 1
Ny (15)

R T ohp. -
(xis Xi(s l))+ labis ™

The left-hand side of Eq. (15) is the expected marginal costs from boating. .Z b (xis—
Xi(s—1)) 1s the expected marginal damages to boaters from the spread of AIS and
L, ‘324 is the marginal damages to homeowners from boaters spreading AIS. The
right- hand side of Eq. (15) is the marginal benefit of boating.

This makes intuitive sense; if AIS dispersal from boaters is small, then the optimal
policy is to have no boat ramp fee. On the other hand when the benefits from boating are
lower than the damages from boating then the optimal number of boating trips might
reach the lower bound, which is zero.” The lower bound of boating trips corresponds to
an optimal boat ramp fee that approaches infinity, 7, — oo. This also makes intuitive
sense; if the damages from AIS are worse than the benefits from boating it makes
sense to close the lake to boating.

3.1 A numerical example

Next, we provide a simple numerical illustration of how the proposed method works.
We consider a system with 2 lakes, 10 boaters, 2 seasons, and with 11 days per
season, i.e. (I,S,N,T) = (3,1, 10, 11). For the rest of the model parameters, we
have set .£? = 100, £ = 1400, y = 5,& = 0.1, f = 0.03, h; = 1, for
i=1,...,1, A5 =—0.001,r =05 x 1071, X.5=1 =05, 7, =10, and Z,‘m, ~
Uniform(—2,—1). In Table 1 we show the optimal number of boating trips, tax
values, invaded probabilities and the total total benefits value. The data are for three

5 Clearly, allowing a negative number of boating trips would not be realistic.
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Table 1 Optimal number of boating trips for varying values of the parameter o

o 0.010 0.133 0.015

Upper bound (U) on b;¢2,3},5=2 36.16, 36.39 53.53,53.81 53.27, 53.56
Lower bound (L) on bj¢( 3} s=2 0,0 0,0 0,0

Optimal boating b;ke{2,3},x:2 36.16, 36.39 34.74,33.02 0.00, 0.00
Optimal tax Ti*e{2,3},s:2 0.02, 0.02 57.64,63.72 375.04,374.71
Invaded prob. x?€(2,3},s=2 0.83,0.83 0.74,0.74 0.75,0.75
F(bis = L), F(bjs =U) —8802, — 1522 — 8054, —3678 — 1115, —3479
F(bjs = b)) —1522 — 1669 —1115

simulations with varying « in which we have the optimal value of the boating trips b;;
to be at the upper bound, at the lower bound, or in the middle.

4 Conclusions

In conclusion, we have developed a novel method to solve for the optimal management
of acomplex spatial-dynamic process (the spread of AIS) with an endogenous diffusion
mechanism. The benefits of our method include an analytical solution for the optimal
number of trips to each lake in each season and an iterative method to solve for
the spatial-dynamic optimal boat ramp fee t from b that is likely to converge. A
careful look at the algorithms given here show that the main computational cost is
in evaluating the function .%. Applying this novel framework to empirical data, to
more general utility functions that allow for non-constant marginal utility of income
and interdependence among boaters, to other management strategies such as boat
washing stations, to other migration processes, as well as the mathematical analysis
of the proposed algorithms such as the convergence and approximation properties are
subject of current and future research.

Appendix: On the convergence of the algorithm

The algorithm we proposed above utilizes a sequence of quadratic programming prob-
lems which, as we have shown in Sect. 2.5, are solvable analytically. This is a novel
approach and to support this design we give a brief analysis of its convergence.

We note that the goal is to maximize ¢ (b) given by [(see (11)]:

4(b)=[(D(®B)b, b) +2(f (), b) + (g(b, P()), 1)] |_
b=b

= Z(b, b)
b=b

=.7(b,b).

In the equations above, one can think of .7 (b b) as extending ¢ from the “line”
b = b to the “plane” (b b). It should be clear that we use the terms “line” and “plane”
loosely here to identify the multidimensional analogues of such objects.
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Since we are free to choose the extension .% we may assume that we have extended
the profit function so that

4G(b) = F(b,b) <.F (Z, b), V(z, b), satisfying constraints. (16)

Recall that, Algorithm 3, for a given by maximizes .% (by, ¢) with respect to ¢, and
the optimal value of .7 is at ¢ = by41. Note that this implies that

where b, is the optimal solution which maximizes .% (b, b) (the optimal value we
want to find). As we have shown, such relation holds because at ¢ = by, the
function .% (by, ¢) viewed as function of ¢, is at a maximum. Therefore, the value
of .Z (b, by+1) cannot be smaller than the value of .7 (b, b,.).

If we further assume that limy_, oo by = boo (Which we found numerically to be
always true in all examples we tried) and take the limit on both sides. Since % is
continuous (not necessarily differentiable, just merely continuous is enough here), we
obtain that

F by, by) = F (boo, boo) > F (boo, bs) = F (b, by).

The first inequality holds because b, is the optimal solution, the second holds because
of the limit w.r.t k in (17) and last inequality follows from (16).

Since the left and right sides of these inequalities are equal, we must have equal-
ity everywhere. In conclusion, under the simple assumptions we made above, if the
sequence of iterates converges then it converges to an optimal value of the objective
function.

To make the argument precise, let us point out that the sequence of all iterates may
not converge, but may have one, two or more convergent subsequences. As is known,
by Heine—Borel theorem, as long as this sequence is bounded (which it is because
of the constraints), it must be a convergent subsequence. The considerations given
above apply to any convergent subsequence as well. We can then conclude that the
function values of the limit of any such convergent subsequence is the optimal value
of the benefit function. We have the following result and its proof is an immediate
consequence of the considerations above.

Lemma 1 If the extension satisfies (16), then for every convergent subsequence of

iterates {bkj }]!:], lim bk/. = beo, j the function values converge to the optimal value,
J—>00 )

namely,

F(beo,j, boo,j) = F(bs,by), j=1,2,...,J.
We further remark that, while the optimal solutions, i.e. the limits of subsequences,
{beo,j) f: | may be different, the function values at such points are the same.

Finally, let us note that the technique of extending a function to a higher dimensional
space (from one variable to two) is well known in the theory of partial differential
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equations and can be viewed as a special reguralization. The reason is that aless regular
problem can be extended to more regular and better behaved in higher dimension.
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