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Abstract

Invasive species have been recognized as a leading threat to biodiversity. In particular,

lakes are especially affected by species invasions because they are closed systems

sensitive to disruption. Accurately controlling the spread of invasive species requires

solving a complex spatial-dynamic optimization problem. In this work we propose a

novel framework for determining the optimal management strategy to maximize the

value of a lake system net of damages from invasive species, including an endogenous

diffusion mechanism for the spread of invasive species through boaters’ trips between

lakes. The proposed method includes a combined global iterative process which deter-

mines the optimal number of trips to each lake in each season and the spatial-dynamic

optimal boat ramp fee.

Keywords Invasive species · Spatial-dynamic management · Convex optimization ·

Bioeconomic

JEL Classification Q20 · Q50 · Q57

1 Introduction

Globally, invasive species have long been recognized as a leading threat to bio-

diversity (Wilcove et al. 1998; Sala et al. 2000). Lakes are especially affected

by species invasions because they are closed systems sensitive to disruption (Sala
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et al. 2000; Moorhouse and Macdonald 2015). As a result, controlling the spread

of aquatic invasive species (AIS) has been a major management effort for the past

two decades. Further complicating AIS management, AIS are largely spread inadver-

tently through the movement of recreational boaters from lake to lake (Rothlisberger

et al. 2010). Therefore, management is tasked with maximizing the value of a lake

system net of AIS damages by changing boating behavior and thus the spread of

AIS.

In this article, we develop a novel spatial-dynamic framework to determine the

optimal policy to induce the optimal number of trips to each lake in a system across

many seasons to maximize the net benefits of the lake system taking into consideration

the damages from the spread of invasive species. This policy must be heterogeneous

across space and time. Spatially, it must depend on boating patterns (which depend

on the attractiveness of lakes, substitutability across lakes, the presence of invasive

species) and the ecological suitability of a lake for invasion. Temporally, it must take

into account the time dependent distribution of AIS across the system. AIS spread

is a vicious cycle, as an increase in invaded lakes provides more opportunity for

spread to uninvaded lakes. The pathways for dispersal of AIS depend on boating

behavior, which in turn depends on lake management and the presence or absence of

AIS in each lake. This leads to a complicated feedback loop where the optimal policy

depends on the dispersal of AIS and the number of trips to each lake, the dispersal

of AIS depends on boating behavior, and boating behavior depends on policy and

the dispersal of AIS [see Fig. 1]. The dispersal of AIS and boating behavior both

depend on the presence or absence of AIS in every lake in the system. Therefore, the

optimal policy must be globally coordinated across the system (Epanchin-Niell et al.

2010).

There are five major components to our optimal spatial-dynamic AIS management

framework.

1. Model of recreational boating decisions. The dispersal of AIS depends on boating

decisions, therefore, we need a model of how boaters choose where to boat. We

rely on a standard economic model known as a random utility model (RUM) in

which boaters maximize their utility by choosing where to boat.

2. Model of AIS dispersal. The dispersal of AIS requires (i) boaters to visit an invaded

lake, (ii) inadvertently transport the invasive species out of the invaded lake, (iii)

then visit an uninvaded lake while the invaded species is still alive, and finally (iv)

the invasive species must become established in a suitable lake (Zipp et al. 2019).

Given the dispersal of AIS, we model the probability that a lake becomes invaded

given that it is not already invaded as a hazard model.

3. Net benefits to recreational boaters. Lakes provide benefits to boaters. Our RUM

allows us to calculate the welfare benefits of boating. The net benefits of the lake

system are these benefits of boating minus the damages caused by AIS. We consider

both the damages from AIS to both shoreline property owners (Horsch and Lewis

2009; Provencher et al. 2012) and boaters (Lewis et al. 2015).

4. Optimal number of boating trips to each lake. We find the optimal number of

boating trips to each lake in each season to maximize net benefits (step 3) subject

to AIS dispersal (step 2) and the model of boating decisions (step 1).
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Fig. 1 Diagram of model framework

5. Optimal policy. Finally, we find the optimal policy that leads boaters to choose the

socially optimal number of trips.

This framework makes three major contributions to the literature. First, we develop

a method that, to our knowledge, has not been previously used in the emerging works

on optimal spatial-dynamic policy management and we refer to (Epanchin-Niell et al.

2010; Brock and Xepapadeas 2008, 2010; Sanchirico et al. 2010; Eiswerth and van

Kooten 2002; Hof 1998; Horan et al. 2005; Leung et al. 2002) and the references

therein for other techniques and methods. The proposed algorithms are efficient and

do not require an intractable amount of computing resources for its implementation.

The main reason behind this is that model parameters are fixed and we are only

concerned with the direct problem of finding optimal ramp fees. We use an economic

model of recreational boating decisions to parameterize the spread of aquatic invasive

species. We also parameterize the objective function (i.e. the net benefit function) with

nonmarket valuation studies. By fixing our parameters from economic theory even as

the state space (i.e. the number of lakes times the number of seasons) increases and

our tensors become sparser we are able to calculate the spread of the invasive species

and the objective function. We use an iterative method to solve for the optimal boat

ramp fees that involves solving quadratic programs for which the analytic solution is

known. These steps only require calculations with dimensions equal to the state space.

Second, we incorporate an endogenous dispersal method. The literature on optimal

spatial-dynamic bioeconomic policies typically models the dispersal of species as

radially dispersing from an original location. Our model on AIS allows the dispersal

mechanism to depend on the movement of boaters and thus be endogenous. Third, we

have a fully-coupled natural human system where boating decisions depend on the

status of invasions and the dispersal of invasions depends on boating decisions.

2 Problem Formation

The spatial-dynamic optimal policy can be determined through an iterative process

with five major components (see Fig. 1), which will be explained in detail.
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2.1 Model of recreational boating decisions

We model boating decisions as a repeated random utility travel cost model in which

boaters n ∈ {1, . . . , N } maximize their utility Uisnt on day t ∈ {1, . . . , T } in season

s ∈ {1, . . . , S} by either (a) visiting lake i ∈ {2, . . . , I }; or (b) choosing not to go

boating (denoted by i = 1). Let utility1 be defined as

Uisnt = visnt + εisnt , where

visnt = Zisnt + α(Mn − τi,s) − ξ xi(s−1),
(1)

Zisnt =
∑

m βm zisnt,m represents m boater, lake, day, or season attributes (zisnt,m)

that influence decision to go boating or stay home with parameters βm and remains

constant in our model, α is marginal utility of income, Mn is the income of boater n, τis

is the boat ramp fee, ξ is the effect of AIS on boater utility, xi(s−1) is the status of AIS

lake i at the end of the previous season (s −1),2 and εisnt are identically independently

distributed Type I Extreme Value random variables with variance π2/6. Under this

assumption of error distribution, the probability that boater n chooses an alternative

i ∈ {1, . . . I } on day t in season s is given by the conditional logit model (Train 2009)

Pisnt =
exp(visnt )∑I

j=1 exp(v jsnt )
.

We set the total number of trips taken to lake i ∈ {2, . . . , I } (or days spent at home in

the case of i = 1) in season s to be bis =
∑N

n=1

∑T
t=1 Pisnt (note that

∑I
i=1 bis = N T

by definition). Clearly, bis is a function of the boat ramp fees {τ js}
I
j=2 and the invasion

statuses {x j(s−1)}
I
j=2.

2.2 Model of AIS dispersal

AIS are largely spread inadvertently through the movement of boaters across lakes

(Chivers and Leung 2012; Rothlisberger et al. 2010). We define the status of the

invasion in lake i in season s, denoted by xis , as the probability that lake i is invaded

at the end of season s. We assume that invasions are irreversible so that once a lake

becomes invaded it remains invaded for all remaining seasons. Let x̃is be the probability

that lake i is invaded at the end of season s conditional on being uninvaded at the end

of season s − 1. We have the following relations.

xi(s+1) = 1 −

s∏

m=1

(1 − x̃im), or equivalently,

1 Note that this utility function can be further generalized to allow for nonlinear impacts of income and to

allow for congestion to impact boaters (i.e. independence among boaters’ utilities).

2 We assume that the invasion status is updated at the end of the season such that boaters’ trip decisions

depend on xs−1 and at the end of the season when the invasion status is updated xs depends on the boating

decisions in season s.
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xi,s+1 = xis + (1 − xis)x̃i(s+1). (2)

We assume that xi,s=1 =: xi1 is given. We use the following approximate hazard

model:

x̃is = s(Kis) =

⎧
⎪⎨
⎪⎩

0, Kis < −a,
Kis+a

2a
, Kis ∈ [−a, a],

1, Kis > a,

(3)

which approximates the sigmoid function.3 Here, Kis is defined as

Kis = γ L is + ξlλis

where L is is the expected number of trips carrying AIS to lake i in season s (referred

to as propagule pressure), λis is a measure of the suitability of lake i to host AIS, and

(γ, ξl ) are estimated parameters related to the effects of propagule pressure and lake

suitability on the probability of invasion. Propagule pressure requires (i) boaters to

visit an invaded lake, (ii) inadvertently transport the invasive species out of the invaded

lake, and (iii) then visit an uninvaded lake while the invaded species is still alive. Recent

evidence suggests that the majority of AIS remains alive for approximately one day

(Bruckerhoff et al. 2014). It is not possible to spread the invasive species from lake i

to itself, so we are only concerned with trips between different lakes. Therefore, the

expected probability that a boater visits any invaded lake j �= i on the previous day

is
∑

j �=i Pjsn(t−1)x j(s−1). Let μ be the probability of a boat leaving an invaded lake

with AIS (this is a constant independent of n,i ,s,t). Therefore, the propagule pressure

is

L is =

T∑

t=2

N∑

n=1

⎛
⎝μ

∑

j �=i

Pjsn(t−1)x j(s−1)

⎞
⎠

︸ ︷︷ ︸
Qisnt

Pisnt

where Qisnt is the expected number of trips that boater n makes to lake i on day t in

season s carrying an invasive species from any lake j �= i .

2.3 Net benefits

Lakes provide benefits to boaters who receive utility from boating instead of staying

home. Let wsnt = max {v1snt , . . . , vI snt }. Without any boating, boaters just receive

utility from staying home wsnt = v1snt . Therefore, the value of having the option to

boat at all lakes in the system i ∈ 2, . . . , I is worth L s
snt per boater per trip per season:

3 We take a = 2.824153 which approximates the sigmoid with ℓ∞ error at most 0.056075.
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L
s

snt = −
1

|α|

(
ln (exp(v1snt )) − ln

(
I∑

i=1

exp(visnt )

))

= −
1

|α|

(
ln

(
exp(v1snt )∑I
i=1 exp(visnt )

))

= −
1

|α|
(ln (P1snt )) ≥ 0,

(4)

where α is the marginal utility of income and is used to convert measures of utility

into measures of dollars and P1snt ≤ 1 is the probability of boater n choosing to stay

home i = 1 on day t in season s. The total value of the system to all boaters across

all trips in season s is the sum of L s
snt over boaters n and days t :

W
s

s = −
1

|α|

∑

n,t

ln(P1snt ) ≈ −
1

|α|

∑

n,t

(P1snt − 1)

= −
1

|α|
(b1s − N T ) =

1

|α|

I∑

i=2

bis . (5)

The net benefits of the lake system are these benefits W s
s minus the damages

caused by AIS. Aquatic invasive species (AIS) cause damage to both shoreline prop-

erty owners (Provencher et al. 2012; Horsch and Lewis 2009) and recreational users

(e.g. boaters) (Lewis et al. 2015). We consider hi shoreline properties around lake i ,

assuming that shoreline properties are constant across seasons. We assume that shore-

line property owners incur a constant annual welfare loss, L h , per shoreline property,

hi , for each invaded lake. Therefore, we define the total welfare loss in season s from

the spread of AIS to shoreline property owners as

W
h

s =

I∑

i=2

L
hhi xis

where we use that x1s = 0 for all s.

Next, we define the welfare loss from the spread of AIS to boaters. We assume that

boaters incur a constant welfare loss, L b, per trip bis to an invaded lake in season s.4

Therefore, we define the expected total welfare loss in season s from the spread of

AIS to recreational boaters as

W
b

s =

I∑

i=2

L
bbis xis .

Therefore, the net benefits of the entire lake system is the discounted sum of the

benefits of the lake system, W̃ s
s minus the damages from AIS, W h

s + W b
s :

4 Accounting for a non-constant welfare loss that depended on the number of lakes invaded was found to

be minor in Zipp et al. (2019) (around 2%), however, future work could allow the welfare loss per boater

to depend on the number of invaded lakes.

123



Optimal management to minimize the damages of AIS

F =
∑

s

ρs
(
W̃ s

s − W
h

s − W
b

s

)
(6)

where ρs =
(

1
1+r

)s

is the discount factor and r is the discount rate.

2.4 Optimal number of boating trips to each lake

With this net benefit function, F , our objective is to find the optimal boat ramp fee τ ∗
is

that maximizes the net benefit of the lake system subject to the dispersal function of

AIS (10). This is a difficult optimization problem to solve. We make two contributions

that allow us to more easily solve this problem. First, we rewrite the objective function

F (b, x) as a function of the matrix of boating trips b =
(
(bis)

I
i=1

)S

s=1
and the matrix

of invasion probabilities x =
(
(xis)

I
i=1

)S

s=1
in the following general form (with the

specific details after Eq. (11) below)

F (̃b, b) = 〈D(̃b)b, b〉 + 2〈 f (̃b), b〉 + 〈g(̃b, P), 1〉. (7)

The reason this is can be written as function of b is because, as discussed after Algo-

rithm 4, the boat ramp fee τ in the model can be determined by the number of trips

b, and the probabilities of invasion x are also uniquely determined from the taxes τ .

It is important to note that in general we would like to maximize F (·, ·) above when

b̃ = b. Thus, for a fixed b̃ we have the following maximization to find the optimal

number of trips to each lake b∗ to maximize net benefits with three constraints:(i) AIS

dispersal follows (10), (ii) the total number of trips has to equal the number of trip

occasions (9), (iii) the minimum number of trips boaters can take to lake i is zero (9).

Optimization Problem

Find τ∗ := arg max
τ

F (b(τ ), P(τ )) = {〈D(b)b, b〉 + 2〈 f (b), b〉 + 〈g(b, P(τ )), 1〉} , (8)

Subject to the constraints:

∑I

i=1
bis = N × T , 0 ≤ bis (9)

where xis is computed with given initial values {xi1}I
i=1 and

xis = xi,s−1 + (1 − xi,s−1)s(Kis ) (10)

for i = 2, . . . , I and s = 2, . . . , S.

In what follows we will use iterative approximation of F by quadratic forms which

can be easily optimized. In such cases we evaluate all terms such as D(b), f (b),

g(b, P) at our previous iterates, denoted here by b̃, τ̃ . We thus have

F (̃b, b) := 〈D(̃b)b, b〉 + 2〈 f (̃b), b〉 + 〈g(̃b, P (̃τ )), 1〉. (11)
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To be more specific, let us introduce the quantities involved in writing the explicit

functional form of D, f , and g. We define:

m1,is =
1 − xi,s−1

2a
wis +

1 + xi,s−1

2
, m2,is =

1 − xi,s−1

2a
yis As,

c1,is = Lbm1,is + Lhhi m2,is, c2,is = Lbm2,is .

A direct calculation from the definition of F gives

Dis,is =

{
−ρsc2,is, Kis ∈ [−a, a],

0, Kis /∈ [−a, a],
, gis =

⎧
⎪⎨
⎪⎩

−ρs Lhhi m1,is, Kis ∈ [−a, a],

0, Kis < −a,

−ρs Lhhi , Kis > a,

fis =
1

2

⎧
⎪⎪⎨
⎪⎪⎩

ρs
(

c1,is − 1
|α|

)
, Kis ∈ [−a, a],

ρs

|α|
, Kis < −a,

ρs
(

Lb − 1
|α|

)
, Kis > a.

In (11) the values of D, f and g are all evaluated at b̃ which could be the previous

iterate in the iterative procedure or we may have b̃ = b and in such case F (b, b) will

be the objective function.

2.5 Optimal policy

To compute optimal tax values we propose the following algorithms to find the optimal

boat ramp fees, τ ∗
is for each lake i in season s, that map from the optimal number of

trips to each lake, b∗,is .

Algorithm 1 Global iteration

1. Input: given an initial state of invasions xi,s=1 (a vector with I ele-

ments) and an initial guess of the boat ramp fee τ
(0)
is

(an (I × S)

matrix), we propose the following iterative procedure.

For k = 1, 2, . . . until convergence:

(a) Compute the spread of AIS x
(k)
is

for all s ∈ (2, . . . , S) from τ
(k)
is

using Algorithm 2.

(b) Find the b
∗(k)
is

that maximizes the net benefits via Algorithm 3

for fixed P from the previous iteration.

(c) Find τ
∗(k)
is

from the computed b
∗(k)
is

by solving the nonlinear

system of equations relating these quantities via Algorithm 4.

2. If a convergence criteria is met, or iteration number is too large Then

Stop

We now rewrite L is as a linear function of bis plus some “noise”. To do this, let

us introduce Ais − the average of Qisnt with respect to n and t or the share of boater

trips where the boater removes an invasive species from an invaded lake, namely.
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Ais =
1

N T

∑

n

∑

t

Qisnt =
1

N T

∑

n

∑

t

⎡
⎣∑

j �=i

μx j(s−1) Pjsn(t−1)

⎤
⎦ .

Then for L is we have,

L is = Aisbis +
∑

t

∑

n

(Qisnt − Ais)Pisnt

︸ ︷︷ ︸
gis

In the algorithms that follow, the second term in the right side above is lagged, i.e.

taken from the previous iteration. As a result, e can write Kis as a linear function of

b:

Kis = γ Aisbis + γ gis(b, P) + ξlλis

where Aisbis is the average propagule pressure on lake i , i.e. the average number of

trips to lake i that carry an invasive species in season s, and gis is a measure of the

deviance across trip occasions from the average propagule pressure.

The algorithms described below, follow the steps outlined in the Global Iteration

Algorithm 1.

Algorithm 2 Compute xis given τis

1. Input: a vector x·,1 = (x11, x21, . . . , x I ,1)t ∈ R
I (for s = 1) and τ

(k)
is

∈ R
I×S .

2. Output: x
(k)
·,2:S+1 ∈ R

I×S and b
(k)
is

.

For s = 2, ..., (S + 1)

P
(k)
isnt

=
exp

(∑
m zisnt,mβm−ξ x

(k)
i(s−1)

−ατ
(k)
is

)

∑
j

{
exp

(∑
m z jsnt,mβm−ξ x

(k)
j(s−1)

−ατ
(k)
js

)}

b
(k)
is

=
∑

n,t P
(k)
isnt

, Q
(k)
isnt

=
∑

j �=i μP
(k)
jsn(t−1)

x
(k)
j(s−1)

A
(k)
is

= 1
N T

∑
n,t Q

(k)
isnt

, g
(k)
is

=
∑

n,t

(
Q

(k)
isnt

− A
(k)
is

)
P

(k)
isnt

d
(k)
is

= γis g
(k)
is

, K
(k)
is

= γ A
(k)
is

b
(k)
is

+ d
(k)
is

+ ξlλis

Now, for a given bis , we update xis

x
(k)
is

= x
(k)
i,s−1 + s

(
K

(k)
is

)

Notice that F (̃b, ·) is a quadratic functional for fixed b̃ with negative definite

diagonal matrix D. The solution then to the optimization problem in Algorithm 3, is
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Algorithm 3 Maximization (Find b given b̃
(k)

and x))

1. Input: x·,2:S+1 ∈ R
I×S , b̃

(k)
.

2. Output: b(k+1) ∈ R
I×S .

3. Set b̃ = b(k)

4. Find the b(k+1): b(k+1) = arg maxb F (b(k), b), subject to the constraints:

0 ≤ bis ≤ υis :=
∑

n,t

exp
(
visnt (·, τ

(k)
is

)
)

∑I
j=1 exp

(
v jsnt (·, τ

(k)
js

)
) .

given by (see Deutsch (2001, Theorem 4.1, p.43))

b
(k+1)
is =

⎧
⎨
⎩

0, [D−1 f ]is < 0

[D−1 f ]is, 0 ≤ [D−1 f ]is ≤ υis

uis, [D−1 f ]is > υis .

(12)

Algorithm 4 Computation of τ
(k+1)
is from b

(k+1)
is and x

(k)
is .

1. Input: b = b(k+1) from Algorithm 3 and x(k) from Algorithm 2.

2. Output: τ (k+1) which solves R(τ (k+1)) = b(k+1),

where, for i ≥ 2,

R(τ
(k+1)
is

) =
∑

n

∑
t

Θ
(k)
isnt

η
(k)
is[∑

j Θ
(k)
jsnt

η
(k)
js

] and Θ
(k)
isnt

= exp
(

Z̃
(k)
isnt

)
, η

(k)
is

= exp(−ατ
(k)
is

), and,

Z̃
(k)
isnt

=
∑

m

zisnt,mβm − ζ x
(k)
i(s−1)

.

This nonlinear system is solved by the following iterative method:

Set η1s = 1 (or τ
(k)
1s

= 0), S = 2, . . . , S + 1. This reduces the number of unknowns, but number

of equations is also reduced as b1s = N T −
∑
i≥2

bis .

Set an initial guess τ
(0)

i s
(which gives us η

(0)
is

).

For q = 1, 2, . . . until convergence:

For s = 2, . . . , S + 1,i = 2, ..., I solve for η
(q)
is

fis (η
(q)) := bis −

∑

n

∑

t

Θisnt η
(q)
is

Θisnt η
(q)
is

+
∑

j �=i Θ jsnt η
(q−1)
js

= 0 (13)

If a convergence criteria is met, Then Stop

A comment on the solution of the nonlinear equations given in Algorithm 4 (see

(13)) is in order. By a closer inspection of the functions fis(·) on the right side of this
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equation we observe that f′is < 0. Furthermore, the upper bounds on b given in (9)

guarantee that fis(0) > 0 and fis(1) < 0 whenever η
(q−1)

is ∈ (0, 1). Hence, η
q
is ∈ (0, 1)

is unique (from the monotonicity of fis(·)) and this guarantees that τ
q
is is also unique

and positive.

3 Discussion

These algorithms allow us to empirically estimate the optimal spatial-dynamic policies

to maximize the value of lakes net of damages from invasive species. To interpret these

results we focus on the cases where i and s are such that Kis ∈ [−a, a]. In these cases

the optimal number of boating trips are defined as

b∗
is =

1
|α|

− L b
(

(1−xi(s−1))

2a
wis +

1+xi(s−1)

2

)
− L hhi

(
1−xi(s−1)

2a

)
yis Ais

L b
(

1−xi(s−1)

2a

)
yis Ais

. (14)

We can simplify Eq. (14) so that the optimal number of trips to each lake occurs

when

L
b(xis − xi(s−1)) + L

hhi

∂xis

∂bis

=
1

|α|
. (15)

The left-hand side of Eq. (15) is the expected marginal costs from boating. L b(xis −

xi(s−1)) is the expected marginal damages to boaters from the spread of AIS and

L hhi
∂xis

∂bis
is the marginal damages to homeowners from boaters spreading AIS. The

right-hand side of Eq. (15) is the marginal benefit of boating.

This makes intuitive sense; if AIS dispersal from boaters is small, then the optimal

policy is to have no boat ramp fee. On the other hand when the benefits from boating are

lower than the damages from boating then the optimal number of boating trips might

reach the lower bound, which is zero.5 The lower bound of boating trips corresponds to

an optimal boat ramp fee that approaches infinity, τ ∗
is → ∞. This also makes intuitive

sense; if the damages from AIS are worse than the benefits from boating it makes

sense to close the lake to boating.

3.1 A numerical example

Next, we provide a simple numerical illustration of how the proposed method works.

We consider a system with 2 lakes, 10 boaters, 2 seasons, and with 11 days per

season, i.e. (I , S, N , T ) = (3, 1, 10, 11). For the rest of the model parameters, we

have set L b = 100, L h = 1400, γ = 5 , ξ = 0.1, f = 0.03, hi = 1, for

i = 1, . . . , I , λis = −0.001, r = 0.5 × 10−1, x·,s=1 = 0.5, τi,s = 1.0, and Z̃isnt ∼

Uni f orm(−2,−1). In Table 1 we show the optimal number of boating trips, tax

values, invaded probabilities and the total total benefits value. The data are for three

5 Clearly, allowing a negative number of boating trips would not be realistic.
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Table 1 Optimal number of boating trips for varying values of the parameter α

α 0.010 0.133 0.015

Upper bound (U) on bi∈{2,3},s=2 36.16, 36.39 53.53, 53.81 53.27, 53.56

Lower bound (L) on bi∈{2,3},s=2 0, 0 0, 0 0, 0

Optimal boating b∗
i∈{2,3},s=2

36.16, 36.39 34.74, 33.02 0.00, 0.00

Optimal tax τ∗
i∈{2,3},s=2

0.02, 0.02 57.64, 63.72 375.04, 374.71

Invaded prob. x∗
i∈{2,3},s=2

0.83, 0.83 0.74 , 0.74 0.75, 0.75

F (bis = L), F (bis = U ) −8802, −1522 −8054, −3678 −1115, −3479

F (bis = b∗
is

) −1522 −1669 −1115

simulations with varying α in which we have the optimal value of the boating trips bis

to be at the upper bound, at the lower bound, or in the middle.

4 Conclusions

In conclusion, we have developed a novel method to solve for the optimal management

of a complex spatial-dynamic process (the spread of AIS) with an endogenous diffusion

mechanism. The benefits of our method include an analytical solution for the optimal

number of trips to each lake in each season and an iterative method to solve for

the spatial-dynamic optimal boat ramp fee τ from b that is likely to converge. A

careful look at the algorithms given here show that the main computational cost is

in evaluating the function F . Applying this novel framework to empirical data, to

more general utility functions that allow for non-constant marginal utility of income

and interdependence among boaters, to other management strategies such as boat

washing stations, to other migration processes, as well as the mathematical analysis

of the proposed algorithms such as the convergence and approximation properties are

subject of current and future research.

Appendix: On the convergence of the algorithm

The algorithm we proposed above utilizes a sequence of quadratic programming prob-

lems which, as we have shown in Sect. 2.5, are solvable analytically. This is a novel

approach and to support this design we give a brief analysis of its convergence.

We note that the goal is to maximize G (b) given by [(see (11)]:

G (b)=
[
〈D(̃b)b, b〉 + 2〈 f (̃b), b〉 + 〈g(̃b, P (̃τ )), 1〉

] ∣∣∣∣̃
b=b

= F (̃b, b)

∣∣∣∣̃
b=b

= F (b, b).

In the equations above, one can think of F (̃b, b) as extending G from the “line”

b = b̃ to the “plane” (̃b, b). It should be clear that we use the terms “line” and “plane”

loosely here to identify the multidimensional analogues of such objects.
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Since we are free to choose the extension F we may assume that we have extended

the profit function so that

G (b) = F (b, b) ≤ F (̃b, b), ∀(̃b, b), satisfying constraints. (16)

Recall that, Algorithm 3, for a given bk maximizes F (bk, c) with respect to c, and

the optimal value of F is at c = bk+1. Note that this implies that

F (bk, bk+1) ≥ F (bk, b∗), (17)

where b∗ is the optimal solution which maximizes F (b, b) (the optimal value we

want to find). As we have shown, such relation holds because at c = bk+1, the

function F (bk, c) viewed as function of c, is at a maximum. Therefore, the value

of F (bk, bk+1) cannot be smaller than the value of F (bk, b∗).

If we further assume that limk→∞ bk = b∞ (which we found numerically to be

always true in all examples we tried) and take the limit on both sides. Since F is

continuous (not necessarily differentiable, just merely continuous is enough here), we

obtain that

F (b∗, b∗) ≥ F (b∞, b∞) ≥ F (b∞, b∗) ≥ F (b∗, b∗).

The first inequality holds because b∗ is the optimal solution, the second holds because

of the limit w.r.t k in (17) and last inequality follows from (16).

Since the left and right sides of these inequalities are equal, we must have equal-

ity everywhere. In conclusion, under the simple assumptions we made above, if the

sequence of iterates converges then it converges to an optimal value of the objective

function.

To make the argument precise, let us point out that the sequence of all iterates may

not converge, but may have one, two or more convergent subsequences. As is known,

by Heine–Borel theorem, as long as this sequence is bounded (which it is because

of the constraints), it must be a convergent subsequence. The considerations given

above apply to any convergent subsequence as well. We can then conclude that the

function values of the limit of any such convergent subsequence is the optimal value

of the benefit function. We have the following result and its proof is an immediate

consequence of the considerations above.

Lemma 1 If the extension satisfies (16), then for every convergent subsequence of

iterates {bk j
}J

j=1, lim
j→∞

bk j
= b∞, j the function values converge to the optimal value,

namely,

F (b∞, j , b∞, j ) = F (b∗, b∗), j = 1, 2, . . . , J .

We further remark that, while the optimal solutions, i.e. the limits of subsequences,

{b∞, j }
J
j=1 may be different, the function values at such points are the same.

Finally, let us note that the technique of extending a function to a higher dimensional

space (from one variable to two) is well known in the theory of partial differential
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equations and can be viewed as a special reguralization. The reason is that a less regular

problem can be extended to more regular and better behaved in higher dimension.
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