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AN ADAPTIVE MULTIGRID METHOD BASED ON PATH COVER∗

XIAOZHE HU† , JUNYUAN LIN† , AND LUDMIL T. ZIKATANOV‡

Abstract. We propose a path cover adaptive algebraic multigrid (PC-αAMG) method for solv-
ing linear systems with weighted graph Laplacians that can also be applied to discretized second
order elliptic partial differential equations. The PC-αAMG is based on unsmoothed aggregation
AMG (UA-AMG). To preserve the structure of smooth error down to the coarse levels, we approx-
imate the level sets of the smooth error by first forming a vertex-disjoint path cover with paths
following the level sets. The aggregations are then formed by matching along the paths in the path
cover. In such a manner, we are able to build a multilevel structure at a low computational cost.
The proposed PC-αAMG provides a mechanism to efficiently rebuild the multilevel hierarchy during
the iterations and leads to a fast nonlinear multilevel algorithm. Traditionally, UA-AMG requires
more sophisticated cycling techniques, such as AMLI-cycle or K-cycle, but as our numerical results
show, the PC-αAMG proposed here leads to a nearly optimal standard V-cycle algorithm for solving
linear systems with weighted graph Laplacians. Numerical experiments for some real-world graph
problems also demonstrate PC-αAMG’s effectiveness and robustness, especially for ill-conditioned
graphs.
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1. Introduction. Weighted graphs are frequently employed as data representa-
tions to describe a rich spectrum of application fields, including social, sensor, energy,
and neuronal networks [3, 51, 21, 11]. The associated graph Laplacians naturally arise
in large-scale computations of various application domains. For example, solving sys-
tems with weighted graph Laplacians is the core component for solving ranking and
user recommendation problems [20, 24, 14]. In [12, 13, 31], similarities of proteins
are calculated by solving graph Laplacian systems associated with the protein inter-
action networks. Furthermore, these similarities are used in clustering and labeling
proteins. In addition, the marriage of graph Laplacian and popular computer-science
topics such as convolutional neural networks and tensor decomposition has also been
a dominating trend [18, 9, 26, 19, 10, 43, 30]. Advanced algorithms that adapt graph
Laplacian properties to improve tasks include image reconstruction, clustering im-
age datasets, and classification [1, 37, 23, 28]. To efficiently solve graph Laplacian
systems, algebraic multigrid (AMG) is often applied. The standard AMG method
was proposed to solve partial differential equations (PDEs) and mainly involves two
parts: smoothing out the high-frequency errors on the fine levels, and eliminating the
low-frequency errors on the coarse grids [49, 47, 42, 5, 40, 41]. AMG has been proven
to be one of the most successful iterative methods in practical applications and many
AMG methods have been developed for solving graph Laplacian systems, such as
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combinatorial multigrid [27], lean AMG [32], and algebraic multilevel preconditioner
based on matchings/aggregations [25, 38, 6, 15].

Traditional AMG methods usually build the multilevel structures beforehand and
there is no interplay between the remaining errors and coarsening schemes. This re-
sults in many computational inefficiencies. For example, the cycling scheme applies
the same multilevel hierarchy during the solve phase even when the convergence rate
is slow, which is inefficient. To reduce the computational redundancy, adaptivity
becomes essential. Substantial efforts have been made to incorporate adaptivity in
iterative methods. Back in 1984, the original adaptive AMG algorithm [5] was pro-
posed, laying the foundation for the development of self-learning and bootstrap AMG.
The bootstrap AMG approach was further developed in [35, 4] and starts with sev-
eral test vectors, while the adaptive approaches typically start with only one test
vector. Directed by the theory of smoothed aggregation AMG (SA-AMG) developed
in [46, 45], Brezina et al. introduced adaptive SA-AMG that determines interpolation
operators based on information from the system itself rather than on explicit knowl-
edge of the near-kernel space [7]. In the following year, the same authors further
proposed an operator-induced interpolation approach that automatically represents
smooth components [8]. In both these works, the basic idea is to iterate with the
currently constructed AMG method (initially this is just a simple relaxation) toward
the trivial solution x = 0 of the homogeneous problem (Ax = 0). These terations
start with a random initial guess. In this way, the slow-to-converge errors are exposed
after few iterations and the adaptive coarsening process is improved by accurately in-
terpolating the algebraically smooth errors. MacLachlan, Manteuffel, and McCormick
further developed a two-level, reduction-based nonlinear adaptive AMG and achieved
local convergence and possibly global convergence in special cases [34]. The devel-
opment of the unsmoothed aggregation AMG (UA-AMG) method is fairly recent.
In [15], D’Ambra and Vassilevski applied a coarsening scheme that uses compatible
weighted matching, which avoids reliance on the characteristics of connection strength
in defining both the coarse space and the interpolation operators. There have also
been other ideas on how to provide a good approximation to the smooth errors from
the ranges of adaptively constructed interpolation operators. The majority of the ex-
isting works, however, use the assumption that the coarsening (aggregation or choice
of coarse nodes) is already done and is independent of the right-hand side or the error
distribution during iterations. This motivates us to focus on algorithms that use the
smooth error for not only building interpolation operators but also determining the
aggregates. We further follow such an idea and in this paper we propose an adap-
tive AMG method based on UA-AMG [2] where the aggregates are formed along the
constancy sets of the slow-to-converge error.

We setup the multilevel structure by first finding a path cover [39] that approx-
imates the level sets of the smooth error, then coarsening along the paths so that
the structure of smooth error is well represented on the coarse levels, and building
the smooth error into the range of interpolation operator to effectively eliminate it.
The setup phase is reactivated when the convergence rate becomes slow, which makes
the scheme adaptive to the slow-to-converge errors. Instead of using AMLI- or K-
cycles for standard UA-AMG [6, 22, 47], we simply use V-cycle and achieve nearly
uniform convergence for model problems. The design of combining UA-AMG and
V-cycle has advantages in its simplicity and efficiency and therefore is favorable for
solving a large linear system with ill-conditioned matrices. While the existing adap-
tive methods need to first solve the homogeneous problem, Ax = 0, to determine
the near-nullspace components and use this knowledge to solve Ax = b, our adaptive
method solves Ax = b directly, for a general right-hand-side b.



S222 X. HU, J. LIN, AND L. T. ZIKATANOV

The rest of the paper is organized as follows. In section 2, we discuss the path
cover finding algorithm that we use for coarsening. Our main adaptive AMG algorithm
is discussed in section 3. Numerical results are shown in section 4. Finally, in section 5,
we provide concluding remarks and enumerate possible future directions.

2. Preliminaries. In this section, we review basic aggregating methods and,
more importantly, the path cover approximation algorithm [36]. We use these com-
ponents in our main algorithm presented in section 3.

2.1. Basic algorithms for aggregation. There are various off-the-shelf ag-
gregating methods that are frequently applied to graphs, such as the maximal inde-
pendent set [33], the heavy edge coarsening algorithm [44], and maximal weighted
matching (MWM) [17]. In this paper, we choose to compare the performance of
our matching-like aggregating method (Algorithm 3.2) with the most closely related
MWM. Similar comparison results could be observed between Algorithm 3.2 and other
graph matching methods as well. Since we adopt an MWM aggregating scheme in
our numerical experiments for comparison, we briefly recall the procedure of MWM.

The MWM algorithm forms matchings by visiting edges in the graph, from heav-
iest to lightest, and matches two endpoints of the edge if they are unaggregated.
Commonly, there might be isolated nodes after applying MWM. We add those iso-
lated nodes to existing matchings in order to keep the number of aggregates low, and
at the same time we set three as an upper bound to the diameter of each aggregate.

2.2. Constructing a vertex-disjoint path cover. Consider a graph G =
(V,E, ω) with positive weights but no self-loops or parallel edges, where V is the
vertex set, E is the edge set, and ω > 0 represents the weight set. A path cover, S, of
G is a set of vertex-disjoint paths that covers all the vertices of G [39]. Now define

ω∗(G) := max
S

∑

e∈S

ω(e),

which is the maximum possible weight of a path cover S ofG. In [36], Moran, Newman,
and Wolfstahl pointed out that to find the exact maximal weighted path cover of a
graph is an NP-complete problem, but on the other hand, they showed that one can
find a 1

2
-approximated path cover, S̃ of G, in O(|E| · log |E|) time, such that

ω
S̃
(G) =

∑

e∈S̃

ω(e) >
1

2
ω∗(G).

The 1
2
-approximation path cover finding algorithm presented in Algorithm 2.1 is a

slightly modified version of the algorithm from [36].
Algorithm 2.1 is a greedy algorithm that checks each edge from the heaviest to

the lightest and incorporates edges as long as the set still contains only paths. The
complexity of Algorithm 2.1 is O(|V | log |V |) when the graph is sparse, O(|E|) =
O(|V |). Figure 1 illustrates a resulting path cover of a random graph, with weights
displayed on its edges. Notice that there might be isolated points after finding the
path cover. Later we include the isolated points using Algorithm 3.2, so that all the
points on the original graph are represented on coarse levels.

3. Adaptive algorithm. The main idea and details of our path cover adap-
tive AMG (PC-αAMG) method are presented in this section. In subsection 3.1, the
main idea of the algorithm is presented and demonstrated with an intuitive exam-
ple. We present in subsections 3.2 and 3.3 the essential subroutines of approximating
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Algorithm 2.1. Path cover.

1: procedure [ cover ] = PathCover(A)
2: Input: A—graph Laplacian of an undirected positive weighted graph G =

(V,E, ω)
3: Output: cover—a path cover of graph G

4: sorted edges ← Sort the edges in descending order based on weights sug-
gested in A

5: for e(u, v) ∈ sorted edges do

6: if neither u nor v is in any paths in cover then

7: Add {u, v} as a new path in cover

8: else if u is the endpoint of a path in cover and v is not in any paths
then

9: Append {v} to cover{path that contains u}
10: else if v is the endpoint of a path in cover and u is not in any paths then
11: Append {u} to cover{path that contains v}
12: else if v and u are the endpoints of different paths in cover then

13: Merge two paths
14: end if

15: end for

16: end procedure

Fig. 1. Path cover found by Algorithm 2.1 on a random graph with weights.

smooth error using previously built multilevel hierarchies (Algorithm 3.1), building
aggregations and prolongation operators from path cover (Algorithm 3.2), and setting
up a multilevel structure using path cover and approximated error (Algorithm 3.3).
Finally, the full PC-αAMG algorithm is presented in subsection 3.4.

3.1. Basic ideas and rationale of the adaptive algorithm. As mentioned,
AMG reduces error during two procedures: smoothing out the high-frequency errors
and eliminating low-frequency errors that are restricted to the coarse grids. Our adap-
tive algorithm contributes to the latter aspect by using adaptively
designed multilevel hierarchies to preserve the current smooth error onto the coarse
levels well enough, so that the current dominating smooth error can be efficiently
eliminated on the coarsest level. Specifically, we utilize the path cover finding al-
gorithm, Algorithm 2.1, to capture the level sets of the smooth error on the finest
level, aggregate/match along these paths to preserve the smooth error on the coarser
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levels, and reconstruct the AMG hierarchy to aim at this specific remaining smooth
error. In this manner, we can eliminate the dominating smooth errors which cause
slow convergence one by one, until the desired accuracy is met. In our opinion, it
could be beneficial to have multilevel hierarchies which approximate the errors well
when b 6= 0. One possible approach, albeit beyond the scope of our considerations
here, is to use adaptive aggregations based on a posteriori error estimates on graphs
as proposed in [50]. Unlike other adaptive AMG methods, the PC-αAMG algorithm
proposed here integrates the setup and solve phase together by identifying the smooth
errors while solving the linear system Ax = b.

To test if the aggregations/matchings along the level sets of smooth error can
successfully preserve the smooth error onto coarse levels, we take a manufactured
smooth error (Figure 2, upper left), manually build matchings (Figure 2, lower left) on
its level sets (Figure 2, upper right), and use the matchings to build the prolongation
operator to restrict and prolongate the error back to the original level. We include
a plot of the difference between the two smooth errors (Figure 2, lower right). The
l2-norm of the difference is below 10−15. This reassures us that the aggregating scheme
based on level set is efficient in capturing the smooth error. In our algorithm, we use
path cover to approximate level sets, where each path in the path cover represents one
level set. In this way, finding level sets can be done purely algebraically using only the
matrices. The smooth error, which is symbolized by the manufactured error (Figure 2,
upper left), can be approximated by subsection 3.2 when solving slows down. We
present subroutines in subsection 3.3 to automatically aggregate along each path in
the path cover that approximates the level sets of the approximated smooth error.

Fig. 2. Upper left: smooth error. Upper right: level sets of smooth error. Lower left: matchings
on level sets. Lower right: difference between the original smooth error and the error after restricting
and prolongating.



AN ADAPTIVE AMG BASED ON PATH COVER S225

It is verifiable that we can achieve a similar effect that the manufactured aggregates
(Figure 2, lower left) have in preserving the smooth error structure.

3.2. Approximating the smooth error. Since all the subroutines that aim to
preserve and ultimately eliminate the smooth error rely on the fact that the smooth
error on the fine level can be well approximated, one essential step of our algorithm is
to approximate the smooth error accurately when the convergence rate becomes slow.
The fact is, at the kth iteration, the approximated solution x

k is available at hand;
however, the error ek cannot be computed straightforwardly. Based on the well-known
error equation Ae

k = r
k = b−Ax

k, we try to approximately solve the error equation
by applying several steps of the multigrid preconditioned conjugate gradient (PCG)
method (see Algorithm 3.1 for details). For the first several re-setups, we use several
W-cycles to get a good approximation (this corresponds to the case “Re 6 numW”
in Algorithm 3.1). In practice, we minimize the usage of W-cycle (see section 4 for
details). For later re-setups, we simply use V-cycles based on the existing multilevel
structures. More precisely, in step 10 of Algorithm 3.1, we use a symmetric composite
preconditioner proposed in [15]:

e←
2·Re+1∏

j=0

(I −BjA)e,

where Re is the number of re-setups, and BRe+j = BRe+1−j , j = 1, . . . Re+1. Each Bj

corresponds to the preconditioning effect of multilevel hierarchy built from the jth
re-setup, i.e., hist{j}. In this manner, we recycle all the hierarchies ever built and
reduce the computational waste.

Algorithm 3.1. Approximate smooth error.

1: procedure [ e ] = ApproximateSmoothError(A, {Aℓ}
L
ℓ=2, r, hist, Re, e)

2: Inputs:
a: {Aℓ}

L
ℓ=2—a set of graph Laplacians of the 2nd to Lth level graphs

b: r—residual vector
c: hist—all the hierarchies ever created
d: Re—re-setup count

3: Choose parameters:
a: numW ⊲ Number of smooth errors (re-setups) using W-cycle
b: iterW ⊲ Number of iterations of W-cycle PCG
c: iterV ⊲ Number of iterations of V-cycle PCG

4: if Re 6 numW then

5: for i← 1 : iterW do

6: e← W cycle PCG(A, r, e, hist{Re})
7: end for

8: else

9: for i← 1 : iterV do

10: e← V cycle PCG(A, r, e, hist{1:Re})
11: end for

12: end if

13: Make e orthogonal to 1 ⊲ Since 1 is in the nullspace of A
14: end procedure
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(3.2) (Pℓ)ki =

{
1 if k ∈ V i

ℓ ,

0 otherwise.

Here V i
ℓ is the ith aggregate on ℓ’s level graph, where Vℓ =

⋃
i=1 V

i
ℓ and V i

ℓ ∩ V j
ℓ =

∅, i 6= j. ek is the kth entry of the (approximate) smooth error e. Obviously, we
have e ∈ Range(P1).

3.4. Main algorithm. The overall PC-αAMG algorithms are presented in Al-
gorithms 3.4 and 3.5. Algorithm 3.4 is for the general case Ax = b. In Algorithm 3.4,
we save a small number of hierarchical structures in order to approximate the smooth
error more accurately in step 18, which is the key step for the adaptive scheme to
work well. While such an approach increases the storage, it pays off for graph Lapla-
cian systems that are hard to solve (very ill-conditioned) because the convergence
rate is under control. As the numerical experiments (section 4) clearly show, storing
the additional coarse-level graph Laplacians adds no more than |E| real numbers to
the total storage. Furthermore, since we use a matching-like aggregation method,
storing the prolongation operators requires storing at most 2|V | real numbers. As a
result, storing all the hierarchical structures created from Re times re-setups requires
(|E|+2|V |) ·Re real numbers. In all of the test cases, we observed that Re averages to
less than 10. Thus, the increase in storage is asymptotically negligable and the total
required memory is of order O(|V |+ |E|), which is optimal. Notice that Algorithm 3.5
is a special algorithm for solving Ax = 0. One of the main reasons to include such
a case is that the solution is trivial to find, and hence, the (smooth) error can be di-
rectly computed with no additional storage cost. Another reason is that following the
basic idea of adaptive AMG methods, Algorithm 3.5 can also be used as a standalone
setup phase and build several multilevel structures that are effective for eliminating
smooth errors. The two versions of the algorithm include all of the aforementioned
components, yet the main procedure of both versions is rather straightforward. We
use MWM to build the initial multilevel structure and use it as the preconditioner
to solve the model problem. For well-conditioned graph Laplacian problems, MWM
might already give good performance, so there is no need to use the adaptive proce-
dure. Our PC-αAMG aims at difficult problems which have error components that
are slow to converge for MWM. When the current multilevel hierarchy is not desirable
anymore, we re-setup using aggregations based on path cover of the current smooth
error. Re-setup is invoked when the convergence slows down, in order to create hier-
archical structures that efficiently eliminate slow-to-converge smooth errors. We use
Figure 5 to demonstrate our PC-αAMG for the homogeneous case (Algorithm 3.5).
The procedure for general b (Algorithm 3.4) is very similar, except that the smooth
error e can only be approximated rather than directly computed.

4. Numerical results. In this section, we conduct numerical experiments on
different types of graph Laplacians. Some of them are related to discrete PDEs and
the rest of them are from real-world networks.

We compare the performances of V-cycle UA-AMG using MWM as a coarsen-
ing scheme and Gauss–Seidel as a smoother with proposed Algorithms 3.4 and 3.5.
For Algorithm 3.4, we choose two values for threshold, which results in two differ-
ent re-setup strategies. In the first case (denoted as Algorithm 3.4(1)), we choose
threshold = 10−6, which essentially rebuilds the multilevel hierarchy after each it-
eration. Since the newly built hierarchy is specifically for eliminating the current
smooth error, we expect that re-setup at each step would give the best performance
in terms of iteration counts. However, re-setup at every iteration is computationally
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Algorithm 3.4. PC-αAMG (for general b).

1: procedure [ x ] = AdaptiveAMG(A, b,x, tol, max iter, threshold)
2: {Aℓ}

L
ℓ=2, {Pℓ}

L
ℓ=1 ←MWM setup(A)

3: k ← 1 ⊲ Initialization for iteration number
4: Re ← 1 ⊲ Initialization for re-setup counts
5: hist{Re} ← {Aℓ}

L
ℓ=2, {Pℓ}

L
ℓ=1 ⊲ hist saves all the hierarchical structures

6: e← 0 ⊲ Initialize approximated smooth error at 0
7: x

k ← x

8: r
k ← b−Ax

k

9: while k < max iter and ‖rk‖/‖r1‖ > tol do

10: x
k+1 ← V cycle(A, b,xk, {Pℓ}

L
ℓ=1, {Aℓ}

L
ℓ=2)

11: Make x
k orthogonal to 1 ⊲ Since 1 is in the nullspace of A

12: r
k+1 ← b−Ax

k+1

13: ConvF← ‖rk+1‖
‖rk‖

⊲ Compute convergence factor at (k + 1) step

14: if average ConvF of iterations after the last re-setup > threshold then

15: e← ApproximateSmoothError(A, rk+1, hist, Re, e)
16: {Aℓ}

L
ℓ=2, {Pℓ}

L
ℓ=1 ← PathCoverAMG setup(A, e)

17: Re ← Re +1
18: hist{Re} ← {Aℓ}

L
ℓ=2, {Pℓ}

L
ℓ=1

19: x
k+1 ← x

k+1 + e

20: end if

21: k ← k + 1
22: end while

23: end procedure

Algorithm 3.5. PC-αAMG (for b = 0).

1: procedure [ x ] = AdaptiveAMG(A,0,x, tol, max iter, threshold)
2: {Aℓ}

L
ℓ=2, {Pℓ}

L
ℓ=1 ←MWM setup(A)

3: k ← 1 ⊲ Initialization for iteration number
4: x

k ← x

5: r
k ← 0−Ax

k

6: while k < max iter and ‖rk‖/‖r1‖ > tol do

7: x
k+1 ← V cycle(A,0,xk, {Pℓ}

L
ℓ=1, {Aℓ}

L
ℓ=2)

8: Make x
k orthogonal to 1 ⊲ Since 1 is in the nullspace of A

9: r
k+1 ← 0−Ax

k+1

10: ConvF← ‖rk+1‖
‖rk‖

⊲ Compute convergence factor at (k + 1) step

11: if average ConvF of iterations after the last re-setup > threshold then

12: e← x
k+1−0

‖xk+1−0‖

13: {Aℓ}
L
ℓ=2, {Pℓ}

L
ℓ=1 ← PathCoverAMG setup(A, e)

14: end if

15: k ← k + 1
16: end while

17: end procedure

expensive. Therefore, we consider another case where we set threshold = 0.4 (de-
noted as Algorithm 3.4(2)) so that re-setup will not be triggered every iteration. This
choice balances the re-setup times and error reduction efficiency, which potentially
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4.1. Tests on graphs corresponding to regular grids. We first tested the
performance of the algorithms on graph Laplacians of unweighted two-dimensional
(2D) regular uniform grids in Tables 1–3. Those regular grids correspond to solving a
Poisson equation with Neumann boundary condition on a 2D square using the finite-
difference or finite-element method (see Figure 6 for the case |V | = 16). In this case,
A is the graph Laplacians of the unweighted grids.

Notice that for regular grids, while the number of iterations for regular V-cycle
UA-AMG in all cases grows rapidly and quickly exceeds 2500, the number of iterations
for Algorithm 3.4 in Tables 1 and 2 is nearly uniform and in Table 3 is uniform. Total
CPU time is plotted in Figure 7 and we can see that the total CPU time of PC-αAMG
increases nearly linearly with respect to the matrix size for both zero and nonzero b

(the line with slope 1 is added for reference). The growth rate of the CPU time is

Table 1
Performance of solving regular grids with low-frequency b, tol=10−8.

UA-AMG w/MWM Algorithm 3.4(1) Algorithm 3.4(2)
n Iter ConvF t OC Iter t OC Iter Re t OC

642 278 0.948 0.34 2.07 7 0.78 2.10 13 6 0.73 2.10
1002 431 0.967 0.73 2.08 8 1.37 2.10 15 7 1.63 2.10
1282 878 0.979 2.07 2.08 9 2.93 2.12 15 7 2.81 2.11
2002 1000 0.986 5.85 2.09 9 5.35 2.12 18 7 5.85 2.12
2562 1960 0.990 18.10 2.09 10 10.11 2.12 19 9 9.56 2.13
4002 2065 0.994 48.29 2.09 11 28.12 2.13 19 9 26.27 2.13
5122 – 0.996 – 2.09 11 44.39 2.14 21 10 53.15 2.15

Table 2
Performance of solving regular grids with zero-sum random b, tol=10−8.

UA-AMG w/MWM Algorithm 3.4(1) Algorithm 3.4(2)
n Iter ConvF t OC Iter t OC Iter Re t OC

642 269 0.949 0.25 2.07 7 0.65 2.10 14 6 0.80 2.10
1002 392 0.967 0.69 2.08 8 1.39 2.11 16 6 1.36 2.13
1282 625 0.979 1.65 2.08 8 2.19 2.15 16 7 2.19 2.14
2002 960 0.986 6.43 2.09 9 5.73 2.15 17 8 6.33 2.15
2562 1383 0.991 13.02 2.09 10 12.20 2.16 18 8 10.45 2.15
4002 1459 0.994 35.96 2.10 11 31.73 2.16 20 10 34.08 2.15
5122 – 0.996 – 2.10 11 59.83 2.17 20 10 54.08 2.16

Table 3
Performance of solving regular grids with b = 0, tol=10−8.

UA-AMG w/MWM Algorithm 3.5
n Iter ConvF t OC Iter Re t OC

642 112 0.948 0.12 2.06 22 4 0.32 2.07
1002 152 0.967 0.27 2.08 22 4 0.34 2.11
1282 203 0.979 0.60 2.08 22 4 0.54 2.13
2002 246 0.984 1.66 2.09 23 4 1.78 2.14
2562 283 0.986 2.77 2.09 22 4 3.07 2.15
4002 313 0.989 5.56 2.13 22 4 6.25 2.16
5122 375 0.992 17.42 2.10 22 4 10.76 2.17
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Fig. 6. Example of a regular grid with |V | = 16.

Fig. 7. CPU time elapsed for solving regular grids with b = 0 (left) and nonzero b (right).

slightly slower than linear for small n, which is probably due to the fact that overhead
cost is more pronounced than the actual computing cost when n is small. But for
large n, we can see the nearly linear growth asymptotically, which demonstrates that
the computational cost of our PC-αAMG is nearly optimal. In addition, although
compared to Algorithm 3.4(1), Algorithm 3.4(2) takes more iterations to converge, it
needs slightly less CPU time because it re-setups fewer times than Algorithm 3.4(1).
This justifies our choices of different thresholds.

To investigate different choices of smoothers and the potential of applying them
in the parallel version of PC-αAMG algorithm, we included additional numerical
experiments based on using the Jacobi method as the smoother in Algorithms 3.4(1)
and 3.5. We compared the results obtained by using Jacobi and sequential Gauss–
Seidel smoothers in Tables 4 and 5. In both tables, we can see that the Gauss–
Seidel smoother outperforms the Jacobi smoother as expected since it provides a
more accurate approximate smooth error than the Jacobi smoother. However, when
applying the Jacobi smoother, our adaptive AMG algorithm is still nearly optimal in
terms of number of iterations and computational cost. Note that since our current
implementation for the Jacobi method is still sequential, we should expect much faster
CPU times if we use parallel implementation.

4.2. Tests for ring graphs. For the second example, we use the Watts–
Strogatz [48] model and set the rewiring probability β = 0 (this removes the ran-
domness in generating edges) and set the mean node degree to be 4 in order to
produce unweighted ring graphs as in Figure 8. For this test problem, A is the graph
Laplacians of these unweighted ring graphs. The condition numbers of the graph
Laplacians of the ring graphs also grow rapidly when the size of the graphs increases.



AN ADAPTIVE AMG BASED ON PATH COVER S233

Table 4
Performance of solving regular grids with low-frequency b and different smoothers using

Algorithm 3.4(1), tol=10−8.

Gauss–Seidel Jacobi
n Iter t OC Iter t OC

642 7 0.78 2.10 9 0.71 2.10
1002 8 1.37 2.10 10 1.44 2.13
1282 9 2.93 2.12 10 2.28 2.15
2002 9 5.35 2.12 11 6.52 2.15
2562 10 10.11 2.12 12 11.67 2.16
4002 11 28.12 2.13 13 34.62 2.16
5122 11 44.39 2.14 15 74.05 2.17

Table 5
Performance of solving regular grids with b = 0 and different smoothers using Algorithm 3.5,

tol=10−8.

Gauss–Seidel Jacobi
n Iter Re t OC Iter Re t OC

642 22 4 0.32 2.07 32 22 1.19 2.16
1002 22 4 0.34 2.11 32 22 2.48 2.18
1282 22 4 0.54 2.13 33 22 4.28 2.20
2002 22 4 1.78 2.14 32 22 10.73 2.21
2562 22 4 3.07 2.15 31 22 17.03 2.21
4002 22 4 6.25 2.16 31 22 48.65 2.22
5122 22 4 10.76 2.17 31 22 84.54 2.22

Fig. 8. Example of a ring graph with |V | = 10.

The results for nonzero b are presented in Tables 6 and 7. Like the results of
the regular grids, the PC-αAMG method on ring graphs requires a small number of
iterations and re-setups to converge, while the standard V-cycle UA-AMG eventually
cannot converge within 2500 iterations for large graphs. In Table 8, we show the
results for the homogeneous case. Compared to V-cycle UA-AMG, Algorithm 3.5
solves all the test cases with a steady number of iterations and re-setups. Therefore,
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Table 6
Performance of solving ring graphs with low-frequency b, tol=10−6.

UA-AMG w/MWM Algorithm 3.4(1) Algorithm 3.4(2)
n Iter ConvF t OC Iter t OC Iter Re t OC

322 108 0.894 0.07 1.59 6 0.24 1.57 12 5 0.20 1.57
502 217 0.947 0.11 1.58 7 0.26 1.59 11 5 0.25 1.59
642 421 0.974 0.29 1.59 7 0.42 1.59 15 6 0.34 1.59
1002 832 0.987 1.33 1.60 9 1.12 1.60 17 8 1.08 1.60
1282 1598 0.993 3.61 1.60 10 1.98 1.60 17 8 1.73 1.59
2002 – 0.996 – 1.60 11 5.32 1.60 18 9 4.82 1.60
2562 – 0.998 – 1.60 14 12.41 1.60 18 10 10.84 1.60

Table 7
Performance of solving ring graphs with zero-sum random b, tol=10−6.

UA-AMG w/MWM Algorithm 3.4(1) Algorithm 3.4(2)
n Iter ConvF t OC Iter t OC Iter Re t OC

322 103 0.894 0.06 1.56 6 0.22 1.57 11 5 0.22 1.58
502 225 0.947 0.17 1.58 7 0.24 1.59 12 6 0.24 1.59
642 428 0.973 0.31 1.59 8 0.46 1.60 13 7 0.40 1.60
1002 832 0.987 1.47 1.60 9 1.12 1.60 15 8 1.08 1.60
1282 1561 0.993 3.91 1.60 10 1.96 1.60 17 9 1.98 1.60
2002 – 0.997 – 1.60 12 6.12 1.60 18 10 6.13 1.60
2562 – 0.998 – 1.60 13 11.25 1.60 18 11 11.50 1.60

Table 8
Performance of solving ring graphs with b = 0, tol=10−6.

UA-AMG w/MWM Algorithm 3.5
n Iter ConvF t OC Iter Re t OC

322 33 0.859 0.03 1.56 15 2 0.04 1.58
502 47 0.923 0.03 1.58 17 2 0.05 1.59
642 56 0.948 0.04 1.59 17 2 0.05 1.60
1002 65 0.961 0.10 1.60 18 2 0.11 1.61
1282 76 0.964 0.16 1.60 17 2 0.19 1.61
2002 85 0.966 0.35 1.60 17 2 0.42 1.61
2562 96 0.968 0.58 1.60 17 2 0.71 1.61

when solving larger ring graphs with sizable condition numbers, the efficiency gain of
Algorithm 3.5 would be more significant. Since the tested linear systems are relatively
well-conditioned when the matrix sizes are small, they could be quickly solved even
using V-cycle UA-AMG.

In Figure 9, we plotted the total CPU times in seconds for both zero and nonzero
b. The results are similar to those of the regular grids. When the matrix size is
small, the CPU time grows slower than linear. Asymptotically, the CPU time grows
nearly linearly with respect to n, which demonstrates that our PC-αAMG has nearly
optimal convergence. Moreover, compared to Algorithm 3.4(1), Algorithm 3.4(2) still
takes slightly shorter CPU times to converge for most cases.

4.3. Tests for real-world graphs. Besides the graphs generated above, we
also tested real-world graphs from the Stanford Large Network Dataset Collection [29]
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Fig. 9. CPU time elapsed for solving ring graphs with b = 0 (left) and nonzero b (right).

Table 9
Largest connected components of the networks from Stanford Large Network Dataset Collection.

n nnz Description

com-DBLP 3.17080e5 2.41681e6 DBLP collaboration network
web-NotreDame 3.25729e5 1.09011e6 Web graph of Notre Dame
amazon0601 4.03364e5 5.28999e6 Amazon product copurchasing network

Table 10
Largest connected components of the networks from the UF sparse matrix collection.

n nnz Description

333SP 3.71282e6 2.22173e7 2D FE triangular meshes
belgium osm 1.44129e6 3.09994e6 Belgium street network

M6 3.50177e6 2.10038e7 2D FE triangular meshes
NACA0015 1.03918e6 6.22963e6 2D FE triangular meshes

netherlands osm 2.21669e6 4.88247e6 Netherlands street network
packing-500x100x100-b050 2.14584e6 3.49765e7 DIMACS Implementation Challenge

roadNet-CA 1.95703e6 5.52078e6 California road network
roadNet-PA 1.08756e6 3.08303e6 Philadelphia road network
roadNet-TX 1.35114e6 3.75840e6 Texas road network

fl2010 4.84466e5 2.83072e6 Florida census 2010
as-Skitter 1.69642e6 2.21884e7 Autonomous systems by Skitter

hollywood-2009 1.06913e6 1.13682e8 Hollywood movie actor network

and from the University of Florida Sparse Matrix Collection (UF) [16]. We selected
graphs that are ill-conditioned and have relatively higher density. Those graphs are
quite challenging for standard AMG methods.

We preprocessed the graphs as follows. The largest connected component of each
graph is extracted, any self-loops from the extracted component are discarded, and
edge weights of the component are modified to be their absolute values to satisfy the
requirements of the path cover finding algorithm. We also made the largest connected
components undirected if they were originally directed. In Tables 9 and 10, the basic
information of graphs collected from two sources is presented after preprocessing.

The results are presented in Tables 11 and 12. As we can see, for those graph
Laplacians corresponding to more complicated (real-life) graphs whose properties are
far from standard, a typical V-cycle UA-AMG method struggles to converge and
actually fails to converge for more than half of the graphs with low-frequency right-
hand side and zero-sum random right-hand side. However, our PC-αAMG converges
in fewer than 20 iterations for all tested graphs and building the coarse grid hierarchy
needs 10 re-setups on average, which demonstrates the effectiveness of PC-αAMG.
Moreover, the average operator complexity in our adaptive algorithm is just slightly
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Table 11
Performance of solving graphs collected from UF and Stanford with low-frequency b, tol=10−6.

UA-AMG w/MWM Algorithm 3.4(1) Algorithm 3.4(2)

Iter ConvF t OC Iter t OC Iter Re t OC

UF large network datasets collection

333SP – 0.997 – 1.89 9 1125.69 2.01 14 7 958.31 2.08
belgium osm 1629 0.996 553.67 1.99 11 270.80 2.02 15 9 248.65 2.02

M6 – 0.997 – 1.86 10 1464.31 2.11 15 8 1268.61 2.11
NACA0015 – 0.995 – 1.86 9 313.54 2.10 14 7 284.47 2.10

netherlands osm – 0.997 – 1.98 10 387.94 2.02 16 9 418.64 2.02
packing – 0.999 – 1.06 11 1623.80 2.46 19 10 1624.28 2.46

roadNet-CA 878 0.991 458.47 2.05 8 294.54 2.08 14 7 323.46 2.08
roadNet-PA 1382 0.991 294.36 2.05 8 157.31 2.10 14 7 166.42 2.09
roadNet-TX 1424 0.994 460.09 2.04 9 228.66 2.08 14 7 195.26 2.08

fl2010 – 0.998 – 1.83 9 121.48 2.19 15 7 102.18 2.19
as-Skitter – 0.998 – 1.21 10 393.75 3.13 19 8 393.86 3.14

hollywood-2009 – 0.999 – 1.01 5 470.46 3.17 11 3 455.01 3.18

Stanford Large Network Dataset Collection

com-DBLP 297 0.986 41.31 2.01 4 78.45 3.22 11 2 55.48 3.22
web-NotreDame – 0.999 – 1.26 7 1059.29 2.43 13 6 1026.46 2.40

amazon0601 – 0.998 – 1.58 5 347.60 3.49 12 4 337.97 3.52

Table 12
Performance of solving graphs collected from UF and Stanford with zero-sum random b, tol=10−6.

UA-AMG w/MWM Algorithm 3.4(1) Algorithm 3.4(2)

Iter ConvF t OC Iter t OC Iter Re t OC

UF large network datasets collection

333SP – 0.997 – 1.89 9 1142.14 2.09 6 1 159.94 2.08
belgium osm – 0.996 – 1.99 11 274.49 2.02 15 9 268.83 2.02

M6 – 0.997 – 1.86 8 1146.93 2.11 5 1 174.75 2.11
NACA0015 1565 0.995 770.03 1.86 8 294.76 2.10 5 1 42.66 2.10

netherlands osm – 0.997 – 1.98 12 549.34 2.02 17 11 524.62 2.02
packing – 0.999 – 1.06 11 1777.93 2.46 17 10 1800.77 2.47

roadNet-CA 1308 0.994 492.38 2.08 8 323.84 2.08 15 7 351.60 2.08
roadNet-PA 970 0.991 188.99 2.05 8 171.80 2.09 14 6 139.95 2.08
roadNet-TX 1168 0.992 285.48 2.04 9 248.76 2.08 14 7 204.42 2.08

fl2010 – 0.998 – 1.83 8 111.81 2.19 16 7 104.45 2.19
as-Skitter – 0.998 – 1.21 10 478.38 3.04 17 7 468.94 3.06

hollywood-2009 – 0.999 – 1.01 7 495.46 3.17 13 5 502.04 3.18

Stanford Large Network Dataset Collection

com-DBLP 573 0.987 65.25 2.01 4 86.36 3.23 11 3 83.41 3.22
web-NotreDame – 0.999 – 1.26 7 1121.71 2.47 15 6 1109.56 2.56

amazon0601 – 0.998 – 1.58 6 467.71 3.49 10 4 378.44 3.50

above 2, which suggests that our path covering aggregation scheme keeps the sparsity
pattern on the coarse levels relatively well. This fact, together with the usage of V-
cycle, makes our adaptive AMG method attractive for computing large-scale graphs.

In Figures 10 and 11, we reported the CPU times (more precisely, CPU times per
number of nonzeros) for real-world graphs. We capped the height for all the cases
where V-cycle UA-AMG did not converge within 2500 steps. For low-frequency b

(Figure 10), we observe that when the density (nnz/n) of the matrix is large, it is
more likely that the V-cycle UA-AMG would fail to converge within 2500 iterations.
However, PC-αAMG (both Algorithms 3.4(1) and 3.4(2)) converges for all the cases
and is faster than the regular AMG for all the tested graphs, especially for denser
graphs. Between Algorithms 3.4(1) and 3.4(2), the CPU times are comparable, while
Algorithm 3.4(2) is slightly better for some graphs. For randomly generated zero-sum
b (Figure 11), the relationship between the convergence of V-cycle UA-AMG and the
density of the matrices is more unpredictable. However, we can still observe that
our PC-αAMG outperforms V-cycle UA-AMG for all the tested graphs. In addition,
Algorithm 3.4(2) seems to be faster than Algorithm 3.4(1) for most of the tested
graphs, which guides us to choose Algorithm 3.4(2) over Algorithm 3.4(1) for its
flexibility.
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Fig. 10. CPU time elapsed for solving real-world graphs with low-frequency b using regular
AMG and PC-αAMG Algorithm 3.4.

Fig. 11. CPU time elapsed for solving real-world graphs with randomly generated zero-sum b

using regular AMG and PC-αAMG Algorithm 3.4.

Overall, our PC-αAMG performs quite robustly and efficiently for graphs from
real-world applications, especially the highly ill-conditioned and large-scale graphs.

5. Conclusions. In this paper, we propose the PC-αAMG algorithm for solv-
ing linear systems with weighted graph Laplacians. The algorithm uses a novel
adaptive strategy and UA-AMG where the aggregations along paths are from an
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optimal path cover—specifically, Algorithm 3.4 (with two different re-setup condi-
tions) for solving general b and Algorithm 3.5 for the homogeneous problem. The
basic idea relies on adaptive construction of a multilevel hierarchy as follows: (1) use
a standard smoother to quickly reduce the high-frequency errors; (2) approximate the
(algebraically) smooth errors on an adapted coarse grid using matching. As the error
changes during the iterations, the second step may require a re-setup (constructing
a new multilevel hierarchy) to efficiently eliminate the current smooth error. We ap-
proximate the level set of the smooth error using a path cover and aggregate along
the paths (because the error is constant along paths following the level set). We
then approximate the smooth error on the coarse grid based on such aggregation.
The numerical tests on different model problems show that, after each re-setup, the
dominating low-frequency errors are quickly damped (with damping factor < 0.2
on average). Thus, the proposed algorithm effectively eliminates the algebraically
smooth errors using several multilevel hierarchies and, according to our numerical
experiments, scales nearly optimally with respect to the size of the testing matrices,
even when applying standard V-cycle and unsmoothed aggregation schemes.

For the b = 0 case (Tables 3 and 8) on each test problem, uniform conver-
gence is observed. The work for generating a new multilevel hierarchy is of order
O(|V | log(|V |)), as the path cover algorithm runs only on the fine level, which costs
O(|V | log(|V |)). We also note that in the numerical tests, the number of re-setups
needed is small (three or four on average) and is independent of the size or the type of
the model problem considered. Notice that when b = 0, the exact error is known and
these benchmark problems are just to show how the PC-αAMG works. In addition,
in this case, PC-αAMG can also be used as a standalone setup phase for traditional
adaptive AMG methods.

In the case of a general right-hand side, the iteration count increases slightly with
the matrix size, since we can only use an approximation of the smooth error in this
case. Total CPU time scales nearly linearly according to the numerical tests. Solving
graph Laplacian systems corresponding to real-world graphs requires flexibility in
choosing when to rebuild a new multilevel hierarchy. With such flexible choices,
Algorithm 3.4 requires fewer than 20 iterations to achieve the specified tolerance
and the number of re-setups remains relatively small, which results in faster CPU
time compared to the standard V-cycle UA-AMG. This shows the robustness of our
adaptive algorithm for general graph Laplacians. Indeed, we observe such behavior
on a wide range of real-world graphs tested (Tables 11 and 12).

While the proposed algorithm clearly has the qualities needed to be useful in
practice, we would also like to comment on several ideas that will improve robust-
ness and the efficiency of the PC-αAMG algorithm. In our opinion, it is crucial to
design aggregation algorithms which approximate the errors well when b 6= 0. As
we mentioned, a viable approach for this is to use the adaptive aggregations based
on a posteriori error estimates on the underlying graph as proposed in [50]. Another
enhancement is to involve more advanced aggregations/cycles/solvers to approximate
the smooth error. A combination of such approaches has the potential to provide
robust multilevel algorithms for solving linear systems with graph Laplacians. We
also want to point out that our algorithm has the potential to tackle time-dependent
and nonlinear problems efficiently. A typical situation is when an implicit time step-
ping or a linearization leads to a sequence of linear systems with graph Laplacians.
In such cases, if the near kernels of the corresponding graph Laplacians do not change
much with time/nonlinear iterations, then the hierarchical structure can be reused
and new AMG setups are not needed. Clearly, in such cases, the resulting PC-αAMG
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should perform reasonably well since the space of smooth errors will be (almost) in-
variant with respect to time. However, if the near kernels do change dramatically as
the time/iterations progress, then we cannot reuse the AMG hierarchy and finding
a reliable and fast strategy for re-setup constitutes an important research line in the
future development of the PC-αAMG method.

Furthermore, there are several interesting questions related to the parallelization
of the proposed AMG algorithm on different computer architectures. Most of the
components of the algorithm, such as matchings on the path cover and smoothing the
error, are suitable for parallelization and can further expedite the algorithm. In sec-
tion 4, we also showed numerical results demonstrating that the adaptive PC-αAMG
algorithm with parallel smoother (such as Jacobi relaxation) works efficiently. PC-
αAMG, in its current stage, still needs more work to scale well in a parallel setting.
A careful look at the issues related to the parallelization of the PC-αAMG algorithm
shows that the challenge is due to the setup phase, which is sequential in our current
implmentation (for example, finding a path cover is sequential). For the solve phase,
PC-αAMGmainly uses standard V-cycles and/or W-cycles. Therefore, we expect that
the solver part would be scalable as traditional AMG methods. Hence, parallelizing
the path cover component is the only challenging task in designing fully parallel PC-
αAMG. We have encountered several interesting questions in such a process and they
are subjects of our current and future research.
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