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Quantum state tomography across the
exceptional point in a single dissipative qubit

M. Naghiloo', M. Abbasi', Yogesh N. Joglekar

Open physical systems can be described by effective non-
Hermitian Hamiltonians that characterize the gain or loss of
energy or particle numbers from the system. Experimental
realization of optical” and mechanical®*®* non-Hermitian
systems has been reported, demonstrating functionalities
such as lasing'"¢, topological features™”'°, optimal energy
transfer’°?' and enhanced sensing?>?:, Such realizations have
been limited to classical (wave) systems in which only the
amplitude information, not the phase, is measured. Thus, the
effects of a systems's proximity to an exceptional point—a
degeneracy of such non-Hermitian Hamiltonians where the
eigenvalues and corresponding eigenmodes coalesce?*-*>—on
its quantum evolution remain unexplored. Here, we use post-
selection on a three-level superconducting transmon circuit
to carry out quantum state tomography of a single dissipa-
tive qubit in the vicinity of its exceptional point. We observe
the spacetime reflection symmetry-breaking transition®*' at
zero detuning, decoherence enhancement at finite detuning
and a quantum signature of the exceptional point in the qubit
relaxation state. Our experiments show phenomena associ-
ated with non-Hermitian physics such as non-orthogonality of
eigenstates in a fully quantum regime, which could provide a
route to the exploration and harnessing of exceptional point
degeneracies for quantum information processing.

In introductory treatments of quantum mechanics, one typi-
cally assumes that a Hamiltonian describing a physical system
is Hermitian, thus ensuring the reality of energy eigenvalues and
a unitary time evolution. In recent years there has been growing
interest in non-Hermitian systems, particularly those with space-
time reflection (parity-time; P7) symmetry that exhibit transi-
tions from purely real to complex conjugate spectra. A canonical
example of a P7 -symmetric system is shown in Fig. la and con-
sists of a bipartite system with balanced gain (part A) and loss (part
B). Such systems have been experimentally studied in the classical
domain. The central feature of these systems is a transition from
broken to unbroken P7" symmetry. When the coupling, given by
rate J, between the two parts is larger than the gain-loss rate y,, the
system exhibits a real spectrum and simultaneous eigenmodes of
both the Hamiltonian and the antilinear P7 operator; yet when the
coupling is small, this P7 symmetry is broken by the emergence
of complex conjugate eigenvalues. These two phases are joined by
an exceptional point (EP). The EP degeneracy also occurs for a
bipartite system with imbalanced losses. The schematic in Fig. 1b
displays such a system in which parts A and B are coupled and part
B exhibits loss. Here, we extend these studies to a fully quantum
limit where these parts are realized as quantum energy levels—with
no classical counterparts—in which the loss corresponds to transi-
tions outside that manifold of states. This two-level system in the
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presence of coupling produced by a drive with detuning A can be
described by an effective non-Hermitian Hamiltonian (A=1):

Hege =] ([f el + |e}{f]) + (A =iy, /2)|e)(el (1)

where |e) and |f) denote the first and second excited states of the
quantum system and y, is the occupation-number loss rate to the
ground state |g) (Fig. 1b). At zero detuning, the complex eigenval-
ues of H, have different imaginary components at J<y,/4, and the
system is in the P7 -broken phase. At stronger coupling, past the EP
at J=y,/4, the imaginary components for the two dissipative eigen-
modes coincide, and the system is in the P7 -symmetric phase.
When A #0, the two complex eigenvalues A, of H,; (equation (1))
have different real and imaginary parts. Here, the qubit dynamics
is governed by eigenmode energy differences Re(84(4, J)) (Fig. 1c)
and Im(84(4, J)) (Fig. 1d), where Re and Im indicate real and imagi-
nary parts, respectively, and the eigenvalue difference 84 is given by

8i=(A—A)= 4" = (A —iy,/2)

Our experiment comprises a transmon circuit formed by a pair
of Josephson junctions in a superconducting quantum interference
device (SQUID) geometry shunted by a capacitor (Fig. le). The
transmon circuit exhibits several quantum energy levels that can be
individually addressed with narrow-bandwidth microwave pulses.
By applying a magnetic flux through the SQUID loop, we can tune
the spacing between energy levels. The coupling Hamiltonian
Jo, = J (|f){el +|e){f]) is realized by a coherent resonant drive of
variable amplitude and detuning.

The transmon circuit is embedded in a three-dimensional wave-
guide cavity. The dispersive interaction between the transmon cir-
cuit and fundamental electromagnetic mode of the cavity results in
a state-dependent shift in the cavity frequency. This frequency shift
is detected by probing the cavity with a weak microwave tone; the
resulting state-dependent phase shift is detected with homodyne
measurement using a Josephson parametric amplifier. The low-
est energy level |g) is the stable ground state, and we use it as an
effective continuum—an environment that is ‘outside’ of the sub-
manifold of states |e) and |f) that form the qubit system under
investigation. To implement H,y, we require the respective energy
decay rates y,>>y,. The presence of a finite decay rate y; shifts the
EP to J=y/4=(y,—yy)/4. We achieve this hierarchy of decay rates
by inserting an impedance mismatching element between the
cavity and parametric amplifier. This causes an interference in the
cavity field that alternately suppresses and enhances the density of
states in the transmission line, resulting in a frequency dependence
of the Purcell decay rate. Thus, by tuning the transition frequency
between the |g) and |e) states to regions where the density of states
is enhanced, we enhance the decay rate of the |e) state.
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Fig. 1| Experimental overview. a, A system with balanced gain and loss exhibits P7" symmetry. b, Systems with mode-selective losses where one mode
exhibits loss manifest the same topological features as PT -symmetric systems with balanced gain and loss. We realize these features in the quantum
regime by using a sub-manifold of quantum states; transitions out of this sub-manifold are described by H.. €,d, The real (¢) and imaginary (d) parts of 51
show an EP at J=y,/4 along the J axis (zero detuning). The yellow shading depicts the region explored in this experiment, with A =, — w,, where @, is the
drive frequency and w, is the transition frequency between the |e) and |f) levels. e, The experiment uses the three lowest levels of a transmon circuit. The
circuit is embedded in a three-dimensional cavity, and an impedance mismatch element (IME) is used to shape the density of states that drive the decay
of the transmon states through spontaneous emission. A Josephson parametric amplifier (JPA) is used for high-fidelity readout of the transmon state. As
shown in the inset, different decay rates can be obtained by threading a d.c. magnetic flux @, with @, the magnetic flux quantum, through the SQUID loop,
which tunes the frequency of the transmon energy levels. The highlighted region indicates the bias condition used for the experiment.
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Fig. 2 | P7 symmetry-breaking transition in a single dissipative qubit. a, Colour map of P,'? versus t for various values of J. b, Detail of PF for small values
of J, highlighting the transition from the PP7 -broken to the P7 -unbroken phase. ¢, The Pfn versus time plot for two values of J (J =1, red circles; J =3,
blue circles) from b show oscillatory to steady-state behaviour. The solid lines are curve fits. d, The extracted £ for different values of J. The solid line
indicates a fit to the analytical result 2=Re(84). e, Evolution of the quantum state in the Bloch sphere for parameters in the PT -broken region (orange)
for t=[0, 2] ps, and in the P7-symmetric region (blue) for t=[0, 0.4] ps. Both time intervals correspond to the same scaled time 2Jt. f, By tuning the
transition frequencies of the transmon, different decay rates y, can be obtained (inset). The P7 symmetry-breaking threshold is obtained as in d for four
different values of the decay rate (blue circles), showing good agreement with J,=7/4. The error bars indicate the estimated error of the fit.

We first investigate the P7 symmetry-breaking transition, which /=0, and at time t=0, we switch J to a finite value for a variable
occurs when A=0. We tune the transmon such that y,=6.7ps™  period of time. The experimental sequence is concluded with a
and y;=0.25us™". We then initialize the system in the state |f) with  projective measurement of the transmon energy. Evolution under
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H, leads to exponential decay of the norm of a given initial state.
Experimentally, we focus on the evolution in the {|e), |f)} qubit man-
ifold, which results in normalized populations P¢= P, /(P + P,) and
P}=P,/(P;+P,)=1-P}. This is achieved through post-selection;
experimental sequences conclude with a projective measurement of
the transmon in the energy basis, and only experiments in which
the transmon remains in the qubit manifold are included in the
analysis. Thus, for longer experimental durations, the success rate
decreases exponentially.

We now characterize the P7 symmetry-breaking transition
using the observed experimental signatures in the populations and
the coherences in the {|e), |f)} qubit manifold. In Fig. 2a we show P}
versus time for different coupling rates J. For a large ] we observe
oscillatory dynamics in Py. These Rabi oscillations occur because
the initial state |f) can be expressed as a superposition of eigen-
modes of H,; with corresponding time evolution e™#; the equal
imaginary parts of A, for /> y/4 result in the oscillatory evolution
at angular frequency £ for the post-selected occupation probabili-
ties. This region is referred to as the P7 -unbroken region. The time
evolution of P¢ shows a striking transition at the finite coupling
rate, as detailed in Fig. 2b. Here, we observe that when J<y/4,
the oscillations cease due to the vanishing real parts of A,. This is
referred to as the P7 -broken region. Figure 2c displays time-trace
cuts from Fig. 2b in the broken and unbroken regions with decay-
ing and oscillatory behaviour, respectively. Although Fig. 2 displays
only data for which the transmon did not leave the {|e), [f)} qubit
manifold, the post-selection on the qubit manifold leads to mea-
surement back-action favouring the |f) state, leaving a clear signa-
ture of the decay in the temporal evolution within this manifold.

The P7 symmetry-breaking transition can be quantified by
looking at the Rabi frequency £2 as a function of the coupling rate.
This £2 is obtained from a simple, exponentially damped sinusoidal
fit to P7(¢) (Fig. 2c). In Fig. 2d we plot the observed £ versus J,
which displays a square-root singularity that is associated with
increased sensitivity near the EP*>*. The solid curve displays a fit to

Redl=2Re,/]J*—J;, where ], is the sole free parameter. From the
fit we find J,=1.714+0.07 ps™!, which is in agreement with the
expected value based on the independently measured decay rates
(r.—rpl4=yl4=1.61ps™".

Next, we characterize the evolution of the qubit in the broken
and unbroken regimes using quantum state tomography. Figure 2e
displays y=(o,) and z=(c,) (the initial state and Hamiltonian
confine the evolution to the Y-Z plane of the Bloch sphere)
versus time for two different experimental conditions. While
evolution in the P7 -symmetric phase shows oscillatory behav-
iour, in the PT -broken phase the state approaches a fixed point in
the Y-Z plane. Both state trajectories are plotted for the same
scaled time interval, 0 <2Jt<5.24rad, highlighting the difference
in quantum evolution in the symmetric and broken phases.

We repeat the experiment for different values of y by tuning
the flux threading the transmon SQUID loop and thereby chang-
ing the SQUID inductance, placing the transmon levels in contact
with different parts of the engineered bath, as depicted by arrows
in Fig. 2f (inset). Figure 2f shows the results from four different
experiments. The P7 transition determined from fits of £ for
different values of J (as in Fig. 2d) is in close agreement with the
analytical result J,=y/4.

In Fig. 3 we study the locations of the eigenstates of H,; on
the Bloch sphere as the system traverses the P7 transition at the
second-order EP. We prepare different states of the qubit given
by polar (0) and azimuthal (¢) angles on the Bloch sphere. In the
broken region (Fig. 3a) the eigenstates appear as places where
6P}‘= P}l(t= 0)—P}(t=500ns) is zero for different initial prepara-
tions in the Y-Z plane. For the unbroken region (Fig. 3b), these
stationary states appear on the X-Y plane. The expected stationary
states, which are based on the diagonalization of H,g, are represented

1234

NATURE PHYSICS

J(rad ps™)

J(rad ps™")

..

~ A

Unbroken
€ 10F 2
N
0.8 - \
¢.\ < ¢| *
= 0.6 [
T o ~
< o4t (] oo ¥~ ¢
02y 44¥HT% |
2% .
ol ®
2 3 4 5 6789 2 3
10
J(rad ps™")

Fig. 3 | Non-orthogonality of eigenstates in the vicinity of the EP.

a,b, The eigenstates in the broken (unbroken) region lie in the Y-Z (X-Y)
plane (Bloch spheres). The fractional change in P,'? for different polar (a)
and azimuthal (b) preparation angles (right panels). The calculated angles
for the eigenstates in the broken (a) and unbroken (b) regions are indicated
as dashed lines. ¢, The overlap between the two eigenstates in both regions
satisfies [(+|—)| =min(x, 1/x) (dashed line) where x=4J/y. The overlap
was determined from the preparation angles for the eigenstates, which
were found from the zero-crossing of the SPF plots, determined from
min(abs(SPf”)). The error in the preparation angle was estimated as the
distance to the next-nearest minima, and the error bars in ¢ indicate this
error propagated to the inner product. For some data points, the error bar
is smaller than the marker.

by dashed lines. The non-orthogonality of the eigenstates across
the PT transition, including in the vicinity of the EP, is charac-
terized in terms of the overlap |(+|—)| of the two eigenstates, dis-
played in Fig. 3c. The dashed line indicates the theoretical value
[{(+|-)| =min(x, 1/x), where x=4]J/y.

With access to the quantum coherent dynamics in the vicinity
of the EP, it is natural to investigate the role of decoherence in this
regime. As shown in Fig. 1c,d, the eigenvalue difference 84 of H,
exhibits rich dependence on J and A, which in turn determine the
time evolution of the dissipative qubit. Figure 4a depicts the time
evolution of the qubit state given by Bloch coordinates x(t), y(t)
and z(t), which were measured with quantum state tomography for
different values of the detuning. In the PT -symmetric phase, we
fit the oscillations to determine both £ and the Rabi oscillation
damping rate I'y for different detunings, yielding, respectively, the
real and imaginary parts of d4 (Fig. 4b). At A=0, the eigenmode
decay rates are equal, and we observe only a residual, small coher-
ence damping in the qubit manifold, characterized by I';=0.6 ps™';
this damping is larger than expected from the small y; and is pri-
marily due to charge and flux noise. As |A| increases, the difference
in the eigenmode decay rates leads to faster coherence damping.
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Fig. 4 | Coherence damping and steady state of a single dissipative qubit. a, Time evolution of the Bloch components are fit to decaying sinusoidal curves
to extract £2 and I, for different values of A. b, Observed Rabi frequencies and I'; versus 4 in the PT -symmetric region for J=6.9rad us™ and y,=7.1ps™.
The dashed line in the top panel is the analytical result Re(81); the dashed line in the bottom panel is the analytical result offset by the residual coherence-
damping term, Im(84) + I',. The error bars (vertical red lines, bottom panel) indicate the estimated error from the fit to a damped exponential function.

¢, Quantum state tomography of the qubit for an evolution time t=4 ps shows the steady states reached for different parameter regimes. The dashed line
indicates the location of the EP. Grey points indicate data points where there were insufficient numbers of successful post-selections. d, A line-cut across

the EP as a function of A shows the steady-state Bloch coordinates x, y and z.

The observed 2 and Iy are in good agreement with the analytical
predictions offset by I'.

Quantum state tomography also allows us to study the steady
states of the qubit system evolving under H in the vicinity of the
EP. Figure 4c displays the steady-state results of quantum state
tomography after 4 ps of time evolution. Along the PT -symmetric
phase line (A =0 and J>y/4), the qubit reaches a maximally mixed
state. When |A|> 0, the qubit reaches a mixed steady state in the
X-Zplane, thatis, y~0. In close proximity of the EP, when y,approa-
ches 0, the qubit reaches a steady state given by (|e) +i[f))/~/2,
that is, the single eigenmode of H,; at the EP (see Methods). In
our experiment this appears as a peak in the y component in the
tomography in Fig. 4c along with a vanishing x component and a
z component that is suppressed in magnitude. These results indicate
that the dissipation of the system stabilizes the qubit to non-trivial
steady states for different drive and detuning parameters.

While the dynamics of the three-level transmon are described by
a Lindblad equation with two dissipators that characterize sponta-
neous emission from levels |f) and |e), the non-Hermitian evolution
and EP effects only manifest when quantum jumps to the |e) state
are eliminated by post-selection®. This approach, combined with
the toolbox of circuit quantum electrodynamics, serves as a versatile
platform to explore fundamental questions in the quantum mechan-
ics of open systems. Recent work identifying enhanced sensitivities
in the vicinity of the EP has spurred interest in the role of quantum
noise in EP-based sensors™. Our system forms an ideal platform for
characterizing quantum sensing applications using non-Hermitian
systems, including the role of noise introduced by dissipation (see
Methods). Real-time control of parameters in H,, will enable studies
of the topological features associated with adiabatic perturbations
that encircle the EP and of higher-order exceptional surfaces that
arise in time-periodic (Floquet) non-Hermitian dynamics''. Finally,
in concert with very recent work on superconducting circuits* and
nitrogen—vacancy centres®, our study provides the opportunity for
non-Hermitian physics to play a leading role in a range of quantum
information-processing applications.

NATURE PHYSICS | VOL 15 | DECEMBER 2019 | 1232-1236 | www.nature.com/naturephysics

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of code and data availability and
associated accession codes are available at https://doi.org/10.1038/
$41567-019-0652-z.

Received: 26 January 2019; Accepted: 30 July 2019;
Published online: 7 October 2019

References
1. Riiter, C. E. et al. Observation of parity-time symmetry in optics. Nat. Phys.
6, 192-195 (2010).
2. Regensburger, A. et al. Parity—time synthetic photonic lattices. Nature 488,
167-171 (2012).
3. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan,
M. Parity-time-symmetric microring lasers. Science 346, 975-978 (2014).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by
parity-time symmetry breaking. Science 346, 972-975 (2014).
5. Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities.
Nat. Phys. 10, 394-398 (2014).
6. Feng, L, El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on
parity-time symmetry. Nat. Photon. 11, 752-762 (2017).
7. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14,
11-19 (2018).
8. Bender, C. M., Berntson, B. K., Parker, D. & Samuel, E. Observation
of PT phase transition in a simple mechanical system. Am. J. Phys. 81,
173-179 (2013).
9. Guo, A. et al. Observation of PJ -symmetry breaking in complex optical
potentials. Phys. Rev. Lett. 103, 093902 (2009).
. Zeuner, J. M. et al. Observation of a topological transition in the bulk of a
non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).
. Li, J. et al. Observation of parity-time symmetry breaking transitions in a
dissipative Floquet system of ultracold atoms. Nat. Commun. 10, 855 (2019).
. Weimann, S. et al. Topologically protected bound states in photonic
parity-time-symmetric crystals. Nat. Mater. 16, 433-438 (2016).
. Xiao, L. et al. Observation of topological edge states in parity-time-symmetric
quantum walks. Nat. Phys. 13, 1117-1123 (2017).
. Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346,
328-332 (2014).
. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464-467
(2016).

1235


https://doi.org/10.1038/s41567-019-0652-z
https://doi.org/10.1038/s41567-019-0652-z
http://www.nature.com/naturephysics

LETTERS

16.

17.

18.

19.

20.

2

—

22.
23.
24.
25.
26.
27.
28.
29.

30.

3

—

32.

Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10,
796-801 (2016).

Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljai¢, M. Observation of
unidirectional backscattering-immune topological electromagnetic states.
Nature 461, 772-775 (2009).

Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496,
196-200 (2013).

Chang, L. et al. Parity-time symmetry and variable optical isolation in
active—passive-coupled microresonators. Nat. Photon. 8, 524-529 (2014).
Xu, H., Mason, D, Jiang, L. & Harris, J. Topological energy transfer in an
optomechanical system with exceptional points. Nature 537, 80-83 (2016).

. Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a

nonlinear parity-time-symmetric circuit. Nature 546, 387-390 (2017).
Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points.
Nature 548, 187-191 (2017).

Chen, W, Kaya Ozdemir, S., Zhao, G., Wiersig, J. & Yang, L. Exceptional

points enhance sensing in an optical microcavity. Nature 548, 192-196 (2017).

Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric
mode switching. Nature 537, 76-79 (2016).

Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones.
Nature 525, 354-358 (2015).

Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic
exciton-polariton billiard. Nature 526, 554-558 (2015).

Kato, T. Perturbation Theory for Linear Operators (Springer, 1995).

Heiss, W. D. The physics of exceptional points. J. Phys. A 45, 444016 (2012).
Zhang, D., Luo, X.-Q., Wang, Y.-P, Li, T.-F. & You, J. Q. Observation of the

exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017).

Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians
having PT symmetry. Phys. Rev. Lett. 80, 5243-5246 (1998).

. Mostafazadeh, A. Pseudo-Hermitian representation of quantum mechanics.

Int. J. Geom. Methods M 7, 1191-1306 (2010).
Dalibard, J., Castin, Y. & Molmer, K. Wave-function approach to dissipative
processes in quantum optics. Phys. Rev. Lett. 68, 580-583 (1992).

1236

NATURE PHYSICS

33. Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches
in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

34. Partanen, M. et al. Optimized heat transfer at exceptional points in quantum
circuits. Preprint at https://arxiv.org/abs/1812.02683 (2018).

35. Wu, Y. et al. Observation of parity-time symmetry breaking in a single-spin
system. Science 364, 878-880 (2019).

Acknowledgements

We thank P. M. Harrington for preliminary contributions, D. Tan for sample fabrication
and K. Mglmer and C. Bender for discussions. K.W.M. acknowledges research support
from the NSF (grant nos. PHY-1607156 and PHY-1752844 (CAREER)), and Y.N.J.
acknowledges NSF grant no. DMR-1054020 (CAREER). This research used facilities at
the Institute of Materials Science and Engineering at Washington University.

Author contributions

K.W.M., M.N. and Y.N.J. conceived the project. K.W.M., M.A. and M.N. performed the
experiments and analysed the data. Y.N.J. provided theory support. K W.M., M.N. and
Y.N.J. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
$41567-019-0652-z.

Correspondence and requests for materials should be addressed to Y.N.J. or K W.M.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

NATURE PHYSICS | VOL 15 | DECEMBER 2019 | 1232-1236 | www.nature.com/naturephysics


https://arxiv.org/abs/1812.02683
https://doi.org/10.1038/s41567-019-0652-z
https://doi.org/10.1038/s41567-019-0652-z
http://www.nature.com/reprints
http://www.nature.com/naturephysics

NATURE PHYSICS

LETTERS

Methods

Here, we provide details of the experimental set-up and techniques used in

this work. We also provide an analysis of the system as described by a Lindblad
evolution in the three-state manifold, which is equivalent to the non-Hermitian
Hamiltonian evolution in the two-state manifold. We provide further discussion
regarding the interplay of Lindbladian dissipation and non-Hermitian dissipation
as well as prospects for enhanced sensing near the EP.

Experimental set-up. The transmon circuit**” was fabricated by conventional
double-angle evaporation and oxidation of aluminium on a silicon substrate.

With zero flux threading the SQUID loop, the transition frequencies are
@,,/2n=6.1 GHz and @, /2n=5.8 GHz. The transmon circuit is placed in a three-
dimensional copper cavity with frequency w.,,,./21=6.681 GHz and decay rate
k/2n=5MHz with an embedded coil for adjusting the d.c. magnetic flux through
the SQUID loop. The coupling rate between the transmon circuit and the cavity
fields is g/2m =65 MHz. Experiments are performed with a small flux threading the
SQUID loop, resulting in w,/2n~5.71 GHz and w, /21~ 5.42 GHz. These are given
by the charging energy E /h =270 MHz and the Josephson energy E;/h=16.6 GHz,
where the dressed cavity resonance frequency is @ /21 =6.684 GHz. The dispersive
coupling between the transmon and the cavity allows a high-fidelity, single-shot
readout of the transmon states’ and quantum state tomography”. The dispersive
cavity resonance shifts are given by y,/2n=-2MHz and y/2n=—11MHz.

To rapidly resolve the transmon states with high fidelity, we use a Josephson
parametric amplifier***' operating in phase-sensitive mode with a 20 dB gain and
an instantaneous bandwidth of 50 MHz. As shown in Supplementary Fig. 1, we are
able to resolve the three transmon states with high fidelity.

Data analysis and experimental error. In Fig. 3 we extract the locations of the
eigenstates in the broken and unbroken regions. This is achieved through a
two-point measurement technique. In the unbroken region, the eigenstates are
simply found by comparing the change in P} over 500 ns of evolution. States that
are stationary exhibit no change, whereas non-eigenstates exhibit oscillatory
behaviour. In the broken regime, although the eigenvalues are strictly imaginary,
the stationary states are still visible as regions where P is stationary. The data
displayed in Fig. 3a have been scaled to account for the small y; decay over 500 ns.
The preparation angles for the eigenstates were found from the zero crossing of the
8P} plots, determined from min(abs(5P})); the error bars indicate the distance to
the next-nearest minima. For this dataset, y,=5.25ps™" and y;=0.25ps™".

Lindblad evolution of the three-state system. In the main text, we focused solely
on the dynamics in a qubit subsystem that is governed by H, (equation (1)).
Instead, one can look at the dynamics for the entire three-level system, which can
be described by a Lindblad master equation (7=1) (refs. *>*):

p=—ilH.pl+ ) [LkﬂL;f _%{L;Ll@p} )

k=ef

where p(t) is a 3x 3 density matrix, p is the time derivative, and H.=J(|e){f| + |f)
(e]) = A72(|/){fl — |e){e]) is a coupling Hamiltonian with A in the rotating frame.
The Lindblad dissipation operators L, = Jr g)(eland Ly = [7|e)(f|account for the
energy decay from level |e) to |g) and from |f) to |e), respectively, and the dagger
represents the Hermitian conjugate. Equation (2) leads to the following closed set
of equations for the dynamics of the qubit levels:

Pp==lpy =)~ 1,0

Pe= 0 =P ) =1 1P

Ay ==y =p,) = (r,+7,+2i)/2p,
Pp=+iloy—p,) = (v, +7v,-2id)/2p,

©)

Since the drive only acts on the manifold of two excited states, the dynamics

of the ground state are decoupled from the upper manifold. For a given initial
condition, one can solve equation (3) to obtain the evolution of any observable. As
in the experiment where the system is initialized in the state |f) and in the limit of
7.y, and where A =0, the evolutions for the populations of each level in the PT°
-symmetric phase are given by

2
P=p,= e_%t[l] sin’(at) (4)
a

b= =51 cosi(at0) ®)
y=pp=e 2|7 | cos’la

where = [J*~(y /4)2 and @ =arcsin(y,/4]).
e
In the main text, all analysis is performed in a model-independent manner; the
evolution of the post-selected occupation number P}(t) is fit to an exponentially
decaying sine function to determine the coherence-decay rate and the Rabi

NATURE PHYSICS | www.nature.com/naturephysics

oscillation frequency. With access to the exact evolution in the three-state system, we
can determine the actual form for the oscillation in the sub-manifold (for example
Fig. 2¢). From equations (4) and (5) we can obtain the normalized population

Pf _ cos*(at—0)
+P,  sin¥(at) + cos*(at—0)

f P
f

In the limit of J>>y >y , equation (6) reduces to cos’(Jt), which means that deep
in the P’T—symmeti‘ic region far from the EP, the population oscillates with a
frequency of 2J. The observed oscillation frequency at J>>y was used to calibrate
the values of ] for weaker drives. These results are consistent with the direct
theoretical approach for the evolution of the qubit wave function under H..

Quantum state tomography in the vicinity of the EP. Figure 4c displays quantum
state tomography for a fixed evolution time t=4 s as a function of A and J. At
t=4ps, the number of successful post-selections can be quite low, especially at

A =0, where the evolution takes the qubit through the lossy |e) state.

Supplementary Fig. 2 displays comparisons of the tomography data with
simulations that use equation (3) for the same evolution time t=4 ps. Oscillations
for A=0 have not completely damped out for this evolution time. We attribute the
faster damping in the experimental data to additional dephasing, characterized by
I';, which was not included in the simulation. We otherwise see good qualitative
agreement between the simulation and the experimental data.

We also measured I, for a different flux bias of the transmon where
7.=7,=0.14ps™" and found I';=0.46 pus™* for J=6.9rad ps™', which is in fairly
close agreement with what was observed in Fig. 4. From this we conclude that the
additional dephasing is probably due to flux or charge noise in the transmon and
not a feature of the effective non-Hermitian evolution.

Interplay between L, and L,. The combination of non-Hermitian evolution and
dissipation is shown to produce a steady state of the qubit along the +7 axis by
quantum state tomography (Fig. 4c). We examine this feature through simulations
of the Lindblad master equation for the three-state system where both L, and L,

are present with comparable magnitudes. In Supplementary Fig. 3a we display the
steady state of the Bloch coordinate y as a function of A for /= (7, —y)/4, which
corresponds to the EP for A =0. We observe that while y,is necessary for the
formation of a steady state, the steady-state coherence is maximal for extremal
ratios of y,/y Supplementary Fig. 3b displays a similar calculation, but for different
values of y. We observe that at y,=y,/2, the steady-state Bloch coordinate y changes
sign, approaching that expected for a normal dissipative qubit where the balance
of drive and decay can result in a steady-state coherence* with a negative y. This
transition occurs when the Lindbladian dissipation overtakes the non-Hermitian
dissipation, which occurs at y;=y,/2.

Quantum sensing in the vicinity of the EP. Recent work with classical systems
has indicated that EP degeneracies may yield measurement advantages**>*“. These
studies have motivated further investigation into whether these advantages persist
in the fully quantum regime where quantum noise dominates the measurement
process. Theoretical work on semiclassical optical systems™*” has found that
enhanced sensitivities near the EP are counteracted by enhanced fluctuations,
curtailing measurement advantages. How these studies extend to the fully quantum
regime explored here remains an open question. In this section, we briefly discuss
how the Lindblad evolution of the three-state system can be used to characterize
enhanced measurement sensitivities in terms of the quantum Fisher information
(QFI) and how the post-selection process may hamper these advantages.

In quantum metrology, the Cramér-Rao bound* gives a universal limit for the
mean squared deviation in the estimate of a parameter:

24 1
(8 g)ZW (7)
g

where v is a measure of the amount of data, ¢ is an unbiased estimator of the
parameter g formed from measurement data and IéQ) is the QFI, which can be

expressed in terms of the Bures distance, ds? (ref. ), ds?=2(1 = [(w|w,.q,)|)» where
[,) the state after evolution under parameter g, and [y,,,) the state after evolution
under parameter g+dg, IéQ) =4ds?/dg>

One approach to metrology near the EP is based on Rabi interferometry. For
this, we consider preparing the qubit in state |f) and allowing evolution under Hq
for certain durations of time. Supplementary Fig. 4a displays the evolution of P}
for parameter regimes that are near the EP calculated using equation (3) for the
three-state system. The evolution near the EP is not purely sinusoidal; there are
points where the f-state population varies rapidly with time. When J is changed by
a small amount, we observe a large change in the f-state population compared with
the case of a normal Hermitian qubit with no EP for the same evolution time. The
fractional change in the f-state population with a fractional change in J is closely
related to the QFL.

To determine the QFI, we simply vary ] by a small amount to
determine the slope dP{/dJ. For small changes near P} =0.5, we have
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PJ‘?—;— =cos(d0/2)sin(d0/2) ~ d0 /2, where d6 is a small change in the polar angle
near the equator of the Bloch sphere. Thus, near the equator of the Bloch sphere,
the QFI about the coupling rate J is simply given by I ](Q) = (dP}‘ /)
Supplementary Fig. 4b displays the QFI for this measurement scheme near
the EP using the parameters in Supplementary Fig. 4a. The QFI diverges near the
EP, as has been observed for the classical Fisher information in classical systems.
This improved QFI comes at a cost, however, due to the post-selection that is used
to realize the effective non-Hermitian dynamics; near the EP, the post-selection
efficiency is low, which ultimately decreases the amount of data available. The
enhanced sensitivity near the EP bears similarities to weak value amplification,
where low post-selection efficiency is at odds with amplified signals. Even in
this case, there are advantages to post-selection when signals are dominated by
technical noise™.

Data availability
The data that support the plots within this paper and other findings of this study
are available from K.W.M. on reasonable request.
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