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Open physical systems can be described by effective non-
Hermitian Hamiltonians that characterize the gain or loss of 
energy or particle numbers from the system. Experimental 
realization of optical1–7 and mechanical8–13 non-Hermitian 
systems has been reported, demonstrating functionalities 
such as lasing14–16, topological features7,17–19, optimal energy 
transfer20,21 and enhanced sensing22,23. Such realizations have 
been limited to classical (wave) systems in which only the 
amplitude information, not the phase, is measured. Thus, the 
effects of a systems’s proximity to an exceptional point—a 
degeneracy of such non-Hermitian Hamiltonians where the 
eigenvalues and corresponding eigenmodes coalesce24–29—on 
its quantum evolution remain unexplored. Here, we use post-
selection on a three-level superconducting transmon circuit 
to carry out quantum state tomography of a single dissipa-
tive qubit in the vicinity of its exceptional point. We observe 
the spacetime reflection symmetry-breaking transition30,31 at 
zero detuning, decoherence enhancement at finite detuning 
and a quantum signature of the exceptional point in the qubit 
relaxation state. Our experiments show phenomena associ-
ated with non-Hermitian physics such as non-orthogonality of 
eigenstates in a fully quantum regime, which could provide a 
route to the exploration and harnessing of exceptional point 
degeneracies for quantum information processing.

In introductory treatments of quantum mechanics, one typi-
cally assumes that a Hamiltonian describing a physical system 
is Hermitian, thus ensuring the reality of energy eigenvalues and 
a unitary time evolution. In recent years there has been growing 
interest in non-Hermitian systems, particularly those with space-
time reflection (parity–time; PT ) symmetry that exhibit transi-
tions from purely real to complex conjugate spectra. A canonical 
example of a PT -symmetric system is shown in Fig. 1a and con-
sists of a bipartite system with balanced gain (part A) and loss (part 
B). Such systems have been experimentally studied in the classical 
domain. The central feature of these systems is a transition from 
broken to unbroken PT  symmetry. When the coupling, given by 
rate J, between the two parts is larger than the gain–loss rate γ±, the 
system exhibits a real spectrum and simultaneous eigenmodes of 
both the Hamiltonian and the antilinear PT  operator; yet when the 
coupling is small, this PT  symmetry is broken by the emergence 
of complex conjugate eigenvalues. These two phases are joined by 
an exceptional point (EP). The EP degeneracy also occurs for a 
bipartite system with imbalanced losses. The schematic in Fig. 1b 
displays such a system in which parts A and B are coupled and part 
B exhibits loss. Here, we extend these studies to a fully quantum 
limit where these parts are realized as quantum energy levels—with 
no classical counterparts—in which the loss corresponds to transi-
tions outside that manifold of states. This two-level system in the 

presence of coupling produced by a drive with detuning Δ can be 
described by an effective non-Hermitian Hamiltonian (ħ = 1):

Δ γ= ∣ ∣ + ∣ ∣ + − ∕ ∣ ∣H J f e e f i e e( ) ( 2) (1)eeff

where |e〉 and |f〉 denote the first and second excited states of the 
quantum system and γe is the occupation-number loss rate to the 
ground state |g〉 (Fig. 1b). At zero detuning, the complex eigenval-
ues of Heff have different imaginary components at J < γe/4, and the 
system is in the PT -broken phase. At stronger coupling, past the EP 
at J = γe/4, the imaginary components for the two dissipative eigen-
modes coincide, and the system is in the PT -symmetric phase. 
When Δ ≠ 0, the two complex eigenvalues λ± of Heff (equation (1)) 
have different real and imaginary parts. Here, the qubit dynamics 
is governed by eigenmode energy differences Re(δλ(Δ, J)) (Fig. 1c) 
and Im(δλ(Δ, J)) (Fig. 1d), where Re and Im indicate real and imagi-
nary parts, respectively, and the eigenvalue difference δλ is given by 
λ λ λ Δ γδ = − = − − ∕+ − J i( ) 4 ( 2)e

2 2

Our experiment comprises a transmon circuit formed by a pair 
of Josephson junctions in a superconducting quantum interference 
device (SQUID) geometry shunted by a capacitor (Fig. 1e). The 
transmon circuit exhibits several quantum energy levels that can be 
individually addressed with narrow-bandwidth microwave pulses. 
By applying a magnetic flux through the SQUID loop, we can tune 
the spacing between energy levels. The coupling Hamiltonian  
Jσx = ∣ ∣ + ∣ ∣J f e e f( )  is realized by a coherent resonant drive of 
variable amplitude and detuning.

The transmon circuit is embedded in a three-dimensional wave-
guide cavity. The dispersive interaction between the transmon cir-
cuit and fundamental electromagnetic mode of the cavity results in 
a state-dependent shift in the cavity frequency. This frequency shift 
is detected by probing the cavity with a weak microwave tone; the 
resulting state-dependent phase shift is detected with homodyne 
measurement using a Josephson parametric amplifier. The low-
est energy level |g〉 is the stable ground state, and we use it as an 
effective continuum—an environment that is ‘outside’ of the sub-
manifold of states |e〉 and |f〉 that form the qubit system under 
investigation. To implement Heff, we require the respective energy 
decay rates γ γ≫e f . The presence of a finite decay rate γf shifts the 
EP to J = γ/4 = (γe − γf)/4. We achieve this hierarchy of decay rates  
by inserting an impedance mismatching element between the  
cavity and parametric amplifier. This causes an interference in the 
cavity field that alternately suppresses and enhances the density of 
states in the transmission line, resulting in a frequency dependence 
of the Purcell decay rate. Thus, by tuning the transition frequency 
between the |g〉 and |e〉 states to regions where the density of states 
is enhanced, we enhance the decay rate of the |e〉 state.
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We first investigate the PT  symmetry-breaking transition, which 
occurs when Δ = 0. We tune the transmon such that γe = 6.7 μs−1 
and γf = 0.25 μs−1. We then initialize the system in the state |f〉 with 

J = 0, and at time t = 0, we switch J to a finite value for a variable 
period of time. The experimental sequence is concluded with a 
projective measurement of the transmon energy. Evolution under 
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Fig. 1 | Experimental overview. a, A system with balanced gain and loss exhibits PT  symmetry. b, Systems with mode-selective losses where one mode 
exhibits loss manifest the same topological features as PT -symmetric systems with balanced gain and loss. We realize these features in the quantum 
regime by using a sub-manifold of quantum states; transitions out of this sub-manifold are described by Heff. c,d, The real (c) and imaginary (d) parts of δλ 
show an EP at J = γe/4 along the J axis (zero detuning). The yellow shading depicts the region explored in this experiment, with Δ = ωd − ωq, where ωd is the 
drive frequency and ωq is the transition frequency between the |e〉 and |f〉 levels. e, The experiment uses the three lowest levels of a transmon circuit. The 
circuit is embedded in a three-dimensional cavity, and an impedance mismatch element (IME) is used to shape the density of states that drive the decay 
of the transmon states through spontaneous emission. A Josephson parametric amplifier (JPA) is used for high-fidelity readout of the transmon state. As 
shown in the inset, different decay rates can be obtained by threading a d.c. magnetic flux Φ, with Φ0 the magnetic flux quantum, through the SQUID loop, 
which tunes the frequency of the transmon energy levels. The highlighted region indicates the bias condition used for the experiment.
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Fig. 2 | PT  symmetry-breaking transition in a single dissipative qubit. a, Colour map of Pf
n versus t for various values of J. b, Detail of Pf

n for small values  
of J, highlighting the transition from the PT -broken to the PT -unbroken phase. c, The Pf

n versus time plot for two values of J (J = 1, red circles; J = 3,  
blue circles) from b show oscillatory to steady-state behaviour. The solid lines are curve fits. d, The extracted Ω for different values of J. The solid line 
indicates a fit to the analytical result Ω = Re(δλ). e, Evolution of the quantum state in the Bloch sphere for parameters in the PT -broken region (orange) 
for t = [0, 2] μs, and in the PT -symmetric region (blue) for t = [0, 0.4] μs. Both time intervals correspond to the same scaled time 2Jt. f, By tuning the 
transition frequencies of the transmon, different decay rates γe can be obtained (inset). The PT  symmetry-breaking threshold is obtained as in d for four 
different values of the decay rate (blue circles), showing good agreement with J0 = γ/4. The error bars indicate the estimated error of the fit.
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Heff leads to exponential decay of the norm of a given initial state. 
Experimentally, we focus on the evolution in the {|e〉, |f〉} qubit man-
ifold, which results in normalized populations = ∕ +P P P P( )f f f e

n  and 
= ∕ + = −P P P P P( ) 1e e f e f

n n. This is achieved through post-selection; 
experimental sequences conclude with a projective measurement of 
the transmon in the energy basis, and only experiments in which 
the transmon remains in the qubit manifold are included in the 
analysis. Thus, for longer experimental durations, the success rate 
decreases exponentially.

We now characterize the PT  symmetry-breaking transition 
using the observed experimental signatures in the populations and 
the coherences in the {|e〉, |f〉} qubit manifold. In Fig. 2a we show Pf

n 
versus time for different coupling rates J. For a large J we observe 
oscillatory dynamics in Pf

n. These Rabi oscillations occur because 
the initial state |f〉 can be expressed as a superposition of eigen-
modes of Heff with corresponding time evolution λ− ±e i t; the equal 
imaginary parts of λ± for J > γ/4 result in the oscillatory evolution 
at angular frequency Ω for the post-selected occupation probabili-
ties. This region is referred to as the PT -unbroken region. The time 
evolution of Pf

n shows a striking transition at the finite coupling  
rate, as detailed in Fig. 2b. Here, we observe that when J < γ/4, 
the oscillations cease due to the vanishing real parts of λ±. This is 
referred to as the PT -broken region. Figure 2c displays time-trace 
cuts from Fig. 2b in the broken and unbroken regions with decay-
ing and oscillatory behaviour, respectively. Although Fig. 2 displays 
only data for which the transmon did not leave the {|e〉, |f〉} qubit 
manifold, the post-selection on the qubit manifold leads to mea-
surement back-action favouring the |f〉 state, leaving a clear signa-
ture of the decay in the temporal evolution within this manifold.

The PT  symmetry-breaking transition can be quantified by 
looking at the Rabi frequency Ω as a function of the coupling rate.  
This Ω is obtained from a simple, exponentially damped sinusoidal  
fit to P t( )f

n  (Fig. 2c). In Fig. 2d we plot the observed Ω versus J, 
which displays a square-root singularity that is associated with  
increased sensitivity near the EP22,23. The solid curve displays a fit to  

λδ = −J JRe 2Re 2
0
2 , where J0 is the sole free parameter. From the 

fit we find J0 = 1.71 ± 0.07 μs−1, which is in agreement with the 
expected value based on the independently measured decay rates 
(γe − γf)/4 = γ/4 = 1.61 μs−1.

Next, we characterize the evolution of the qubit in the broken 
and unbroken regimes using quantum state tomography. Figure 2e  
displays y ≡ 〈σy〉 and z ≡ 〈σz〉 (the initial state and Hamiltonian 
confine the evolution to the Y–Z plane of the Bloch sphere)  
versus time for two different experimental conditions. While  
evolution in the PT -symmetric phase shows oscillatory behav-
iour, in the PT -broken phase the state approaches a fixed point in  
the Y–Z plane. Both state trajectories are plotted for the same  
scaled time interval, 0 ≤ 2Jt ≤ 5.24 rad, highlighting the difference  
in quantum evolution in the symmetric and broken phases.

We repeat the experiment for different values of γ by tuning  
the flux threading the transmon SQUID loop and thereby chang-
ing the SQUID inductance, placing the transmon levels in contact  
with different parts of the engineered bath, as depicted by arrows  
in Fig. 2f (inset). Figure 2f shows the results from four different 
experiments. The PT  transition determined from fits of Ω for  
different values of J (as in Fig. 2d) is in close agreement with the 
analytical result J0 = γ/4.

In Fig. 3 we study the locations of the eigenstates of Heff on 
the Bloch sphere as the system traverses the PT  transition at the 
second-order EP. We prepare different states of the qubit given 
by polar (θ) and azimuthal (ϕ) angles on the Bloch sphere. In the 
broken region (Fig. 3a) the eigenstates appear as places where 
δ = = − =P P t P t( 0) ( 500ns)f f f

n n n  is zero for different initial prepara-
tions in the Y–Z plane. For the unbroken region (Fig. 3b), these 
stationary states appear on the X–Y plane. The expected stationary 
states, which are based on the diagonalization of Heff, are represented 

by dashed lines. The non-orthogonality of the eigenstates across  
the PT  transition, including in the vicinity of the EP, is charac-
terized in terms of the overlap |〈+|−〉| of the two eigenstates, dis-
played in Fig. 3c. The dashed line indicates the theoretical value 
|〈+|−〉| = min(x, 1/x), where x = 4J/γ.

With access to the quantum coherent dynamics in the vicinity 
of the EP, it is natural to investigate the role of decoherence in this 
regime. As shown in Fig. 1c,d, the eigenvalue difference δλ of Heff 
exhibits rich dependence on J and Δ, which in turn determine the 
time evolution of the dissipative qubit. Figure 4a depicts the time 
evolution of the qubit state given by Bloch coordinates x(t), y(t) 
and z(t), which were measured with quantum state tomography for  
different values of the detuning. In the PT -symmetric phase, we  
fit the oscillations to determine both Ω and the Rabi oscillation  
damping rate ΓR for different detunings, yielding, respectively, the 
real and imaginary parts of δλ (Fig. 4b). At Δ = 0, the eigenmode 
decay rates are equal, and we observe only a residual, small coher-
ence damping in the qubit manifold, characterized by Γ0 = 0.6 μs−1; 
this damping is larger than expected from the small γf and is pri-
marily due to charge and flux noise. As |Δ| increases, the difference  
in the eigenmode decay rates leads to faster coherence damping. 
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The observed Ω and ΓR are in good agreement with the analytical 
predictions offset by Γ0.

Quantum state tomography also allows us to study the steady 
states of the qubit system evolving under Heff in the vicinity of the 
EP. Figure 4c displays the steady-state results of quantum state 
tomography after 4 μs of time evolution. Along the PT -symmetric 
phase line (Δ = 0 and J > γ/4), the qubit reaches a maximally mixed 
state. When |Δ| > 0, the qubit reaches a mixed steady state in the  
X–Z plane, that is, y ≈ 0. In close proximity of the EP, when γf approa
ches 0, the qubit reaches a steady state given by ∣ + ∣ ∕e i f( ) 2 ,  
that is, the single eigenmode of Heff at the EP (see Methods). In 
our experiment this appears as a peak in the y component in the 
tomography in Fig. 4c along with a vanishing x component and a  
z component that is suppressed in magnitude. These results indicate 
that the dissipation of the system stabilizes the qubit to non-trivial 
steady states for different drive and detuning parameters.

While the dynamics of the three-level transmon are described by 
a Lindblad equation with two dissipators that characterize sponta-
neous emission from levels |f〉 and |e〉, the non-Hermitian evolution 
and EP effects only manifest when quantum jumps to the |e〉 state 
are eliminated by post-selection32. This approach, combined with 
the toolbox of circuit quantum electrodynamics, serves as a versatile 
platform to explore fundamental questions in the quantum mechan-
ics of open systems. Recent work identifying enhanced sensitivities 
in the vicinity of the EP has spurred interest in the role of quantum 
noise in EP-based sensors33. Our system forms an ideal platform for 
characterizing quantum sensing applications using non-Hermitian 
systems, including the role of noise introduced by dissipation (see 
Methods). Real-time control of parameters in Heff will enable studies 
of the topological features associated with adiabatic perturbations 
that encircle the EP and of higher-order exceptional surfaces that 
arise in time-periodic (Floquet) non-Hermitian dynamics11. Finally, 
in concert with very recent work on superconducting circuits34 and 
nitrogen–vacancy centres35, our study provides the opportunity for 
non-Hermitian physics to play a leading role in a range of quantum 
information-processing applications.

Online content
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Methods
Here, we provide details of the experimental set-up and techniques used in 
this work. We also provide an analysis of the system as described by a Lindblad 
evolution in the three-state manifold, which is equivalent to the non-Hermitian 
Hamiltonian evolution in the two-state manifold. We provide further discussion 
regarding the interplay of Lindbladian dissipation and non-Hermitian dissipation 
as well as prospects for enhanced sensing near the EP.

Experimental set-up. The transmon circuit36,37 was fabricated by conventional 
double-angle evaporation and oxidation of aluminium on a silicon substrate. 
With zero flux threading the SQUID loop, the transition frequencies are 
ωg,e/2π = 6.1 GHz and ωe,f/2π = 5.8 GHz. The transmon circuit is placed in a three-
dimensional copper cavity with frequency ωc,bare/2π = 6.681 GHz and decay rate 
κ/2π = 5 MHz with an embedded coil for adjusting the d.c. magnetic flux through 
the SQUID loop. The coupling rate between the transmon circuit and the cavity 
fields is g/2π = 65 MHz. Experiments are performed with a small flux threading the 
SQUID loop, resulting in ωg,e/2π ≈ 5.71 GHz and ωe,f/2π ≈ 5.42 GHz. These are given 
by the charging energy Ec/h = 270 MHz and the Josephson energy EJ/h = 16.6 GHz, 
where the dressed cavity resonance frequency is ωc/2π = 6.684 GHz. The dispersive 
coupling between the transmon and the cavity allows a high-fidelity, single-shot 
readout of the transmon states38 and quantum state tomography39. The dispersive 
cavity resonance shifts are given by χe/2π = −2 MHz and χf/2π = −11 MHz. 
To rapidly resolve the transmon states with high fidelity, we use a Josephson 
parametric amplifier40,41 operating in phase-sensitive mode with a 20 dB gain and 
an instantaneous bandwidth of 50 MHz. As shown in Supplementary Fig. 1, we are 
able to resolve the three transmon states with high fidelity.

Data analysis and experimental error. In Fig. 3 we extract the locations of the 
eigenstates in the broken and unbroken regions. This is achieved through a 
two-point measurement technique. In the unbroken region, the eigenstates are 
simply found by comparing the change in Pf

n over 500 ns of evolution. States that 
are stationary exhibit no change, whereas non-eigenstates exhibit oscillatory 
behaviour. In the broken regime, although the eigenvalues are strictly imaginary, 
the stationary states are still visible as regions where Pf

n is stationary. The data 
displayed in Fig. 3a have been scaled to account for the small γf decay over 500 ns. 
The preparation angles for the eigenstates were found from the zero crossing of the 
δPf

n plots, determined from δPmin(abs( ))f
n ; the error bars indicate the distance to 

the next-nearest minima. For this dataset, γe = 5.25 μs−1 and γf = 0.25 μs−1.

Lindblad evolution of the three-state system. In the main text, we focused solely 
on the dynamics in a qubit subsystem that is governed by Heff (equation (1)). 
Instead, one can look at the dynamics for the entire three-level system, which can 
be described by a Lindblad master equation (ħ = 1) (refs. 42,43):










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∑ρ ρ ρ ρ̇ = − + −
=
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2
{ , } (2)c

k e f
k k k k

,

where ρ(t) is a 3 × 3 density matrix, ρ ̇is the time derivative, and Hc = J(|e〉〈f| + |f〉
〈e|) − Δ/2(|f〉〈f| − |e〉〈e|) is a coupling Hamiltonian with Δ in the rotating frame. 
The Lindblad dissipation operators γ= ∣ 〉〈 ∣L g ee e

 and γ= ∣ 〉〈 ∣L e ff f
 account for the 

energy decay from level |e〉 to |g〉 and from |f〉 to |e〉, respectively, and the dagger 
represents the Hermitian conjugate. Equation (2) leads to the following closed set 
of equations for the dynamics of the qubit levels:
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Since the drive only acts on the manifold of two excited states, the dynamics 
of the ground state are decoupled from the upper manifold. For a given initial 
condition, one can solve equation (3) to obtain the evolution of any observable. As 
in the experiment where the system is initialized in the state |f〉 and in the limit of 
γ γ≪f e

 and where Δ = 0, the evolutions for the populations of each level in the PT
-symmetric phase are given by
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where α γ= − ∕J ( 4)e
2 2  and θ = arcsin(γe/4J).

In the main text, all analysis is performed in a model-independent manner; the 
evolution of the post-selected occupation number P t( )f

n  is fit to an exponentially 
decaying sine function to determine the coherence-decay rate and the Rabi 

oscillation frequency. With access to the exact evolution in the three-state system, we 
can determine the actual form for the oscillation in the sub-manifold (for example 
Fig. 2c). From equations (4) and (5) we can obtain the normalized population

α θ
α α θ
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+

= −
+ −
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P
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2
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In the limit of γ γ≫ ≫J e f
, equation (6) reduces to Jtcos ( )2 , which means that deep 

in the PT -symmetric region far from the EP, the population oscillates with a 
frequency of 2J. The observed oscillation frequency at γ≫J e

 was used to calibrate 
the values of J for weaker drives. These results are consistent with the direct 
theoretical approach for the evolution of the qubit wave function under Heff.

Quantum state tomography in the vicinity of the EP. Figure 4c displays quantum 
state tomography for a fixed evolution time t = 4 μs as a function of Δ and J. At 
t = 4 μs, the number of successful post-selections can be quite low, especially at 
Δ = 0, where the evolution takes the qubit through the lossy |e〉 state.

Supplementary Fig. 2 displays comparisons of the tomography data with 
simulations that use equation (3) for the same evolution time t = 4 μs. Oscillations 
for Δ = 0 have not completely damped out for this evolution time. We attribute the 
faster damping in the experimental data to additional dephasing, characterized by 
Γ0, which was not included in the simulation. We otherwise see good qualitative 
agreement between the simulation and the experimental data.

We also measured Γ0 for a different flux bias of the transmon where 
γe = γf = 0.14 μs−1 and found Γ0 = 0.46 μs−1 for J = 6.9 rad μs–1, which is in fairly 
close agreement with what was observed in Fig. 4. From this we conclude that the 
additional dephasing is probably due to flux or charge noise in the transmon and 
not a feature of the effective non-Hermitian evolution.

Interplay between Le and Lf. The combination of non-Hermitian evolution and 
dissipation is shown to produce a steady state of the qubit along the ŷ+  axis by 
quantum state tomography (Fig. 4c). We examine this feature through simulations 
of the Lindblad master equation for the three-state system where both Le and Lf 
are present with comparable magnitudes. In Supplementary Fig. 3a we display the 
steady state of the Bloch coordinate y as a function of Δ for J = (γe − γf)/4, which 
corresponds to the EP for Δ = 0. We observe that while γf is necessary for the 
formation of a steady state, the steady-state coherence is maximal for extremal 
ratios of γe/γf. Supplementary Fig. 3b displays a similar calculation, but for different 
values of γf. We observe that at γf = γe/2, the steady-state Bloch coordinate y changes 
sign, approaching that expected for a normal dissipative qubit where the balance 
of drive and decay can result in a steady-state coherence44 with a negative y. This 
transition occurs when the Lindbladian dissipation overtakes the non-Hermitian 
dissipation, which occurs at γf = γe/2.

Quantum sensing in the vicinity of the EP. Recent work with classical systems 
has indicated that EP degeneracies may yield measurement advantages22,45,46. These 
studies have motivated further investigation into whether these advantages persist 
in the fully quantum regime where quantum noise dominates the measurement 
process. Theoretical work on semiclassical optical systems33,47 has found that 
enhanced sensitivities near the EP are counteracted by enhanced fluctuations, 
curtailing measurement advantages. How these studies extend to the fully quantum 
regime explored here remains an open question. In this section, we briefly discuss 
how the Lindblad evolution of the three-state system can be used to characterize 
enhanced measurement sensitivities in terms of the quantum Fisher information 
(QFI) and how the post-selection process may hamper these advantages.

In quantum metrology, the Cramér–Rao bound48 gives a universal limit for the 
mean squared deviation in the estimate of a parameter:

ĝ〈δ 〉≥
vI
1

(7)
g
Q

2
( )

where v is a measure of the amount of data, ĝ is an unbiased estimator of the 
parameter g formed from measurement data and Ig

Q( ) is the QFI, which can be 
expressed in terms of the Bures distance, ds2 (ref. 49), ds2 = 2(1 − |〈ψg|ψg+dg〉|), where 
|ψg〉 the state after evolution under parameter g, and |ψg+dg〉 the state after evolution 
under parameter g+dg, = ∕I s g4d dg

Q( ) 2 2.
One approach to metrology near the EP is based on Rabi interferometry. For 

this, we consider preparing the qubit in state |f〉 and allowing evolution under Heff 
for certain durations of time. Supplementary Fig. 4a displays the evolution of Pf

n 
for parameter regimes that are near the EP calculated using equation (3) for the 
three-state system. The evolution near the EP is not purely sinusoidal; there are 
points where the f-state population varies rapidly with time. When J is changed by 
a small amount, we observe a large change in the f-state population compared with 
the case of a normal Hermitian qubit with no EP for the same evolution time. The 
fractional change in the f-state population with a fractional change in J is closely 
related to the QFI.

To determine the QFI, we simply vary J by a small amount to 
determine the slope ∕P Jd df

n . For small changes near = .P 0 5f
n , we have 
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θ θ θ− = ∕ ∕ ≈ ∕P cos(d 2)sin(d 2) d 2f
n 1

2
, where dθ is a small change in the polar angle 

near the equator of the Bloch sphere. Thus, near the equator of the Bloch sphere, 
the QFI about the coupling rate J is simply given by = ∕I P J(d d )J

Q
f

( ) n 2.
Supplementary Fig. 4b displays the QFI for this measurement scheme near 

the EP using the parameters in Supplementary Fig. 4a. The QFI diverges near the 
EP, as has been observed for the classical Fisher information in classical systems. 
This improved QFI comes at a cost, however, due to the post-selection that is used 
to realize the effective non-Hermitian dynamics; near the EP, the post-selection 
efficiency is low, which ultimately decreases the amount of data available. The 
enhanced sensitivity near the EP bears similarities to weak value amplification, 
where low post-selection efficiency is at odds with amplified signals. Even in 
this case, there are advantages to post-selection when signals are dominated by 
technical noise50.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from K.W.M. on reasonable request.
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