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Abstract
The Tangent Method of Colomo and Sportiello is applied to the study of the asymptotics
of domino tilings of large Aztec rectangles, with some fixed distribution of defects along a
boundary. The associated non-intersecting lattice path configurations are made of Schröder
paths whose weights involve two parameters γ and q keeping track respectively of one
particular type of step and of the area below the paths. We predict the arctic curve for an
arbitrary distribution of defects, and illustrate our result with a number of examples involving
different classes of boundary defects.

Keywords Non-intersecting lattice paths · Continuum limit · Arctic curve · Domino tilings ·
Aztec diamond

1 Introduction

Two-dimensional tiling problems of large scaled domains of the plane are known to exhibit
an arctic curve phenomenon, namely the existence of a sharply defined separation between
frozen phases with regular lattice-like tiling configurations and liquid phases with disorder.
There is an abundant literature on derivation of such arctic curves, starting with the celebrated
arctic circle of References [3,15] in the case of the domino tiling of a large Aztec diamond
(see also References [17–19] for systematic studies of dimer models using the technology of
the Kasteleyn matrix).

Recently a novel approach to determining the arctic curve was devised by Colomo and
Sportiello [6]. It is based on the reformulation of the tiling problems in terms of Non-
intersecting lattice paths (NILP). Indeed, tiling configurations can be bijectively described as
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configurations of paths with fixed ends, taking their steps on a regular lattice, and such that no
two paths share a common vertex. Themethod, called the TangentMethod, consists in slightly
modifying the path configuration to use one path as a probe of the domain occupied by the
others. By solving a simple extremization problem, the method constructs a family of curves
(the “escape trajectories” of the probe) that are tangent to the arctic curve. The latter is then
recovered as the envelope of the former. Despite the fact that it is non rigorous, thismethod has
already provided new insights, first by reproducing known results (see References [6,8–10]
for many examples), and moreover by allowing for new conjectures such as the applicability
to interacting NILP like those involved in the 6 Vertex model, for which an arctic curve was
proposed [4–7,10], and recently proved [1] in the case of the ice model.

Our aim in this paper is to extend the former results of References [8–10] by applying
the Tangent Method to the case of Aztec rectangles with an arbitrary distribution of defects
along one boundary. This involves NILP configurations in which paths can take three types of
steps. We consider here a weighting of the configurations with two parameters q and γ , that,
in the NILP language, keep track respectively of the area below each path and of the number
of steps of one particular type. In the tiling language, the weight γ singularizes one type of
tile, while the weight q measures the 3D−volume below a landscape of which the paths are
the contour lines, thus generalizing a well-known interpretation of simpler NILP associated
with rhombus tilings (with only two types of path steps) in terms of plane partitions. The
results of this paper reduce to those of our previous work [9] in the case γ = 0. Even at
q = 1, the introduction of a non-zero parameter γ modifies the shape of the arctic curve and
introduces new features such as extra cuspidal points.

An important effect of the weight q is to bend the most likely trajectory of a free path with
fixed ends, and we shall study the precise structure of these bent geodesics in our setting.
The escape trajectory of the probe used in the Tangent Method will be made of such a bent
geodesic, thus leading to a family of geodesic curves tangent to the arctic curve. Note that
these geodesics become straight lines only in the limit q → 1.

The tiled domain that we consider is an Aztec rectangle of size n × m, with a number
of boundary defects characterized, in the NILP language, by a fixed set of path starting
points, with positions 0 = a0 < a1 < · · · < an = m along the lower boundary the Aztec
rectangle. In the scaling limit, we assume that ai ∼ nα(i/n) for some continuous, piecewise
differentiable function α(σ), σ ∈ [0, 1]. Given such a distribution, the Tangent Method
produces parametric equations for the arctic curve in the limit of large n, which are functions
of α(σ), of the rescaled variable q = q1/n and of γ (see Theorem 5.4).

Our aim in this paper is not to prove that the Tangent Method is rigorous, but (1) to add
more evidence to its effectiveness by recovering known proven results and (2) to provide new
predictions.

The paper is organized as follows: in Sect. 2, we define the domino tiling problem
of Aztec rectangles with defects, and its weighted NILP version. The paths involved are
Schröder paths, which are further studied in Sect. 3, where we first derive a summa-
tion formula for the partition function of a single weighted path with fixed ends, and
then use its asymptotics to derive geodesics in large size (see Theorem 3.4). Using the
Lindström-Gessel-Viennot formula, we compute in Sect. 4 the partition function of the
weighted NILP problem, and in preparation for the Tangent Method we also compute the
“one-point function” corresponding to one escaping path (the probe). Both computations
use the explicit LU decomposition of the Gessel-Viennot matrix and result in Theorems
4.2 (partition function) and 4.3 (one-point function). We also derive the large size scal-
ing asymptotics of these formulas and show in particular how to relate the position of
the most likely “exit point” where the probe leaves the Aztec rectangle to the position of
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The Arctic Curve for Aztec Rectangles with Defects 641

its assigned target (Theorem 4.6). In Sect. 5, we complete the application of the Tangent
Method and derive the family of tangent geodesics (Theorem 5.1) and finally derive the
corresponding predicted arctic curve (Theorem 5.4). We also discuss the effect of various
types of boundaries according to properties of the distribution α(σ). Section 6 is devoted
to a number of examples, each illustrating a particular type of boundary, which we clas-
sify between generic, freezing and fully frozen. We gather a few concluding remarks in
Sect. 7.

2 Weighted Domino Tilings of an Aztec Rectangle with Boundary
Defects

2.1 Definition of the Model

Our starting point is a particular domain drawn on the tilted (by 45◦) square lattice with
vertex set L = {

(s, t) ∈ Z
2 | s + t = 0 mod 2

}
, and which we may describe as

an Aztec rectangle of size (n + 1) × (m + 1) (with m ≥ n) with defects along its
lower boundary. More precisely, we consider the domain whose zig-zag shaped bound-
ary (passing through points of L) is made of the following four parts, denoted S, N , W ,
E respectively, where the S boundary displays a sequence of defects at positions 2b j + 1,
j = 1, 2, ...,m − n where {b j }1≤ j≤m−n is a strictly increasing sequence of integers in
[1,m − 1]:

• S:
[{

(s, t) ∈ L | s ∈ [0, 2m+2], t ∈ {0, 1}}}\
({

(0, 0), (2m+2, 0)
}∪{(2b j +1, 1), 1 ≤

j ≤ m − n
})] ∪ {(2b j + 1,−1), 1 ≤ j ≤ m − n

}
;

• N:
{
(s, t) ∈ L | s ∈ [0, 2m+2], t ∈ {2n+1, 2n+2}}\{(0, 2n+2), (2m+2, 2n+2)

}
;

• W:
{
(s, t) ∈ L | s ∈ {0, 1}, t ∈ [0, 2n + 2]} \ {(0, 0), (0, 2n + 2)

}
;

• E:
{
(s, t) ∈ L | s ∈ {2m+1, 2m+2}, t ∈ [0, 2n+2]}\{(2m+2, 0), (2m+2, 2n+2)

}
.

Otherwise stated, the introduction of defects consists in adding to the lower boundary of the
regular n ×m Aztec rectangle a number n −m of elementary squares at positions (2bi + 1),
as illustrated in the top of Fig. 1 in the particular case n = 7, m = 12 and b1 = 2, b2 = 3,
b3 = 6, b4 = 9, b5 = 11.

Given the domain above, we now consider tiling configurations of this domain by means
of 2 × 1 rectangular dominos (tilted by 45◦) covering two adjacent squares. Such a domino
tiling configuration is depicted in the bottom of Fig. 1.

2.2 Lattice Path Formulation

Using the natural bi-coloration of the lattice L, each domino gets bi-colored with one
white and one black square. This gives rise to four kinds of domino tiles, accord-
ing to their orientation and coloring. A standard bijection then maps the domino tiling
configurations to configurations of families of non-intersecting lattice paths (NILP):
this is realized by the following correspondence between dominos and elementary path
steps:
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N
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2b2 b3 b4+1 2 +1 2 +1 2b5+12b1+1

Fig. 1 Top: a typical Aztec rectangle of size (n + 1) × (m + 1) with n = 7, m = 12, and m − n = 5 defects
along the S boundary with positions (2bi + 1), i = 1, . . . , 5 with {bi }1≤i≤5 = {2, 3, 6, 9, 11}. We have
represented the natural black/white checkerboard structure of the underlying square lattice. Bottom: a sample
domino tiling of this Aztec rectangle with defects by means of 2 × 1 dominos covering two adjacent squares

(1)
The paths created by this correspondence live on another (non-tilted) square lattice whose

vertices are naturally labelled by integer coordinates (i, j) and connect the S to the W
boundary. When oriented from S to W, they use three kinds of steps: up steps (0, 1), left
steps (−1, 0), and diagonal steps (−1, 1). Equivalently, the paths visit the edges of a directed
latticeNmade of west oriented horizontal lines, north-oriented vertical lines, and north-west
oriented diagonal lines through the vertices of the regular square lattice (the lattice N is
topologically equivalent to an oriented triangular lattice). The particular boundary shape of
the Aztec rectangle with defects on the S boundary implies that the paths of the corresponding
family start at points (ai , 0), i = 0, 1, 2, ..., n and end at points (0, j), j = 0, 1, 2, ..., n,
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The Arctic Curve for Aztec Rectangles with Defects 643

a1a0 a2 a3 a4 a5 a6 a7

Fig. 2 Top: the four types of domino tiles of the Aztec rectangle tiling in the bottom of Fig. 1 are colored
purple, yellow, pink, blue according to the order of the dictionary of Eq. (1) and give rise to the system of red
NILP (non-intersecting family of Schröder paths). Bottom: we emphasize the starting points of the n + 1 = 8
red NILP on a new underlying square lattice Z × Z. These take the positions complementing the bi ’s on the
real axis, namely {ai }0≤i≤n = {0, 1, 4, 5, 7, 8, 10, 12} (Color figure online)

where ai are the complements of the positions b j on the segment [0,m], namely {ai }0≤i≤n ∪
{b j }1≤ j≤m−n = [0,m]. Note that, for technical reasons, we incorporated in the path family a
trivial path from (a0, 0) to (0, 0) starting and ending at the origin. Note also that an = m by
construction. For illustration, the tiling of the bottom of Fig. 1 is mapped onto the red NILP
configuration of Fig. 2, with a0 = 0, a1 = 1, a2 = 4, a3 = 5, a4 = 7, a5 = 8, a6 = 10,
a7 = 12.

Two special restrictions of the paths considered here give rise to the so-called “large” or
“small” “Schröder paths”. By lack of a better name, we shall refer to our paths as Schröder
paths.

2.3 Weights

In the following we will use the NILP formulation to enumerate the tiling configurations.
We consider in fact the more general case of weighted NILP with weights as follows: first
we attach a multiplicative real weight γ (with γ ≥ 0) to each diagonal step, corresponding
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(i, 0)

(a, b)
γ

q

(0, b)

(0, 0)

Fig. 3 The weight of a Schröder path p (bold red) starting at (i, 0) and ending at (a, b) is γ k(p) qA(p) where
k(p) denotes the number of diagonal steps of p and A(p) counts the number of triangles to the left of p
(domain in light blue). Otherwise stated, a weight γ is attached to each diagonal step of p and a weight q to
each triangle to the left of p (Color figure online)

in turn to a domino of the first kind in Eq. (1) (see Fig. 3). For any Schröder path p, if k(p)
denotes the number of diagonal steps of p, the corresponding path weight therefore reads
γ k(p).

Next we introduce another weight keeping track of the area “to the left” of the path. More
precisely, let p = (p0, p1, ..., pr ) be a Schröder path starting at p0 = (i, 0) and ending at
pr = (a, b) (with ps+1 − ps ∈ {(0, 1), (−1, 0), (−1, 1)} by definition). Further denoting by
ps = (xs, ys) the labelling of the successive points, we define the areaA(p) to the left of the
path p as:

A(p):=
r−1∑

s=0

(xs + xs+1)(ys+1 − ys) .

Splitting each square of the underlying square lattice into two triangles along the diagonal
(−1, 1) (or equivalently visualizing the paths on the oriented triangular lattice N), A(p)
counts the number of triangles to the left of the path p, namely in the domain of the first
quadrant {(i, j), i, j ≥ 0} delimited by p itself and by the horizontal segment joining (a, b)
to (0, b) (see Fig. 3). In many of the applications below, the endpoint will be at a = 0. In this
case, the area to the left of the path may also be interpreted as the area below the path. Given
a path p, we decide to attach a real weight q to each triangle (with q > 0) to the left of p, so
p receives eventually a total weight γ k(p) qA(p). The weight of a NILP configuration is then
defined as the product of its path weights.

The particular case γ = 0, corresponding to paths made of vertical (up) and horizontal
(left) elementary steps only was already studied in detail in Reference [9], (with the slight
modification q2 → q). In terms of tilings, setting γ = 0 suppresses one of the four possible
domino tiles. As explained in Reference [8], the associated NILP configurations may then
be put in correspondence with some particular rhombus tiling problem with three types of
elementary rhomboidal tiles.

2.4 Partition Function

The partition function of the weighted tiling model for our Aztec rectangle with defects is
defined in terms of NILP as the sum Z:=Z(γ, q, {ai }0≤i≤n) over all the corresponding NILP

123



The Arctic Curve for Aztec Rectangles with Defects 645

configurations of the product of the associated path weights. It may be computed by use of
the celebrated Lindström Gessel-Viennot formula [13,20] as follows:

Definition 2.1 Let Z(i,0)→(0, j):=Z(i,0)→(0, j)(γ, q) denote the partition function of single
weighted Schröder paths starting at (i, 0) and ending at (0, j), namely

Z(i,0)→(0, j):=
∑

Schröder paths p
from (i,0) to (0, j)

γ k(p) qA(p) . (2)

Let us form the n + 1 × n + 1 matrix A with entries:

Ai, j :=Z(ai ,0)→(0, j) i, j = 0, 1, ..., n . (3)

Then the partition function for families of n + 1 NILP from the points {(ai , 0)}0≤i≤n to the
points {(0, j)}0≤ j≤n reads:

Z = det(A) = det
(
(Z(ai ,0)→(0, j))0≤i, j≤n

)
. (4)

as a direct application of the LindströmGessel-Viennot formula, which wemay use since our
NILP fulfill the following two required conditions: (i) the NILP weights may be described
locally by transforming the area and diagonal path weights into local weights attached to the
visited edges of the oriented lattice N, namely a weight q2x for a vertical edge (x, y) →
(x, y + 1), q2x−1γ for a diagonal edge (x, y) → (x − 1, y + 1) and 1 for a horizontal
edge; (ii) the oriented lattice N and the choice of starting and endpoints satisfy the required
“crossing condition” that any pair of paths with starting and endpoints in opposite order (i.e.
(ai , 0) → (0, j) and (ak, 0) → (0, �) with i < k and j > �) must share a vertex.

3 Properties of a SingleWeighted Schröder Path

This section deals with properties of a single Schröder path and its statistics dictated by the
weights γ and q .

3.1 A Summation Formula

We start our analysis by deriving a simple formula for the partition function Z(i,0)→(0, j)
of (2). As a first remark, let us mention the following recursion relation (over i + j) for
Z(i,0)→(0, j): decomposing along the first (left, diagonal or up) step from (i, 0), we immedi-
ately deduce the recursive identity:

Z(i,0)→(0, j) = Z(i−1,0)→(0, j) + γ q2i−1 Z(i−1,0)→(0, j−1) + q2i Z(i,0)→(0, j−1)

where the last two terms implicitly involve a downwards vertical shift by 1. Together with
Z(i,0)→(0,0) = Z(0,0)→(0, j) = 1, this recursion determines Z(i,0)→(0, j) completely. Rather
than solving this recursion, let us show directly by combinatorial arguments the following:

Theorem 3.1 The partition function Z(i,0)→(0, j) of (2) for weighted Schröder paths admits
the following simple summation formula:
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(i, 0)

(0, j) C C C

C
B

B

B

B

A

Fig. 4 A Schröder path connecting the point (i, 0) to the point (0, j) and its associated word CCCBCBABB
obtained by associating the letter A (respectively B andC) to each vertical (respectively diagonal and horizon-
tal) step. Each unit square below the path is characterized by a pair (C, A), (C, B), (B, A) or (B, B) appearing
in this order the word, hence to an inversion within the word, or to a (B, B) pair. Here we emphasized for
illustration a unit square associated with a (C, A) pair (in blue) and one associated with a (B, B) pair (in
magenta). The sample word has 21 inversions and 6 (B, B) pairs, corresponding to a total of 27 unit squares
below the path. The total area below the path also involves the triangles (in yellow) immediately below the
diagonal steps (hence the letters B) (Color figure online)

Z(i,0)→(0, j) =
Min(i, j)∑

k=0

γ k qk
2
[

i + j − k

j − k, k, i − k

]

q2
, (5)

where we introduced the q2-trinomial:1

[
a + b + c

a, b, c

]

q2
:=

a+b+c∏

s=1
(q2s − 1)

a∏

s=1
(q2s − 1)

b∏

s=1
(q2s − 1)

c∏

s=1
(q2s − 1)

for a, b, c ≥ 0 . (6)

Proof Recall first the classical combinatorial interpretation of the q2-trinomial appearing in
(6) as the sum over all words w in the alphabet {A, B,C}, of total length (a + b + c) with
a occurrences of the letter A, b occurrences of the letter B and c occurrences of the letter
C , weighted by (q2)I (w) where I (w) denotes the number of inversions in the word w. By an
inversion in w we mean a pair of letters {B, A} in w (respectively {C, A} or {C, B}) where
the letter B appears before (i.e. to the left of) the letter A in w (respectively C before A or C
before B). Otherwise stated, I (w) is the minimal number of permutations of pairs of adjacent
letters needed to bring the word to the ordered form AAA . . . BBB . . .CCC .2

Consider now a Schröder path p connecting the point (i, 0) to the point (0, j) and with a
total of k(p) diagonal steps. This path may be coded bijectively by a word w(p) of length
i+ j −k(p) obtained by listing the sequence of paths steps read downwards from left to right
with a letter A for each vertical step, a letter B for each diagonal step and a letter C for each
horizontal step (see Fig. 4). The numbers a, b, c of letters A, B, C , namely the numbers of
vertical, diagonal and horizontal path steps respectively, satisfy a+ b = j and c+ b = i and
b = k(p), hence (a, b, c) = ( j − k(p), k(p), i − k(p)). We have in particular the necessary

1 The appearance of q2-trinomials rather than q-trinomials is due to our definition of the area A(p) enumer-
ating triangles, so that the “unit” square [0, 1] × [0, 1] has area 2.
2 For instance the word ABBACCBCA with a = b = c = 3 has 10 inversions.
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condition 0 ≤ k(p) ≤ Min(i, j). As appears clearly in Fig. 4, each unit square below the
path p is determined by the data of the horizontal or diagonal path step above it and of the
diagonal or vertical path step to its right, hence by a pair made of a letter C or B, and a letter
B or A appearing later in w(p). Each unit square (with contribution 2 to A(p)) below the
path is thus associated to an inversion {C, A}, {B, A} or {C, B} or to a pair {B, B} with two
distinct occurrences of the letter B. Since there are b occurrences of the letter B, the total
number of unit squares below the path is thus I (w(p)) + b(b − 1)/2. To get the total area,
we also need to add a contribution b from the remaining single triangles (each contributing
1 to A(p)) adjacent (and below) each of the b diagonal steps. To summarize, the total area
below the path p is

A(p) = 2 (I (w(p)) + b(b − 1)/2) + b = 2I (w(p)) + b2

with b = k(p) and we therefore get a total path weight γ k(p) qk(p)
2
(q2)I (w(p)). Summing

over all Schröder paths p from (i, 0) to (0, j)with a fixed k(p) = k boils down to enumerating
all inversion-weighted words with (a, b, c) = ( j − k, k, i − k), and the formula (5) follows
by summing over the allowed values of k. This completes the proof of the theorem. 	


Weconclude this sectionwith a useful polynomiality property of the path partition function
Z(i,0)→(0, j).

Theorem 3.2 The partition function for weighted Schröder paths Z(i,0)→(0, j) may be written
as a polynomial z j (t) of degree j in the variable t = q2i , where:

z j (t):=
j∑

k=0

γ k qk
2

j∏

s=1
(t q2(s−k) − 1)

j−k∏

s=1
(q2s − 1)

k∏

s=1
(q2s − 1)

=
j∑

k=0

γ k qk
2
[
j

k

]

q2

j∏

s=1

t q2(s−k) − 1

q2s − 1

(7)
in terms of the q2-binomial coefficient

[ j
k

]
q2 :=

[ j
k, j−k,0

]
q2
.

Proof From the q2-trinomial expression, we may write

[
i + j − k

j − k, k, i − k

]

q2
=

i+ j−k∏

s=1
(q2s − 1)

j−k∏

s=1
(q2s − 1)

k∏

s=1
(q2s − 1)

i−k∏

s=1
(q2s − 1)

=

j∏

s=1
(q2(s+i−k) − 1)

j−k∏

s=1
(q2s − 1)

k∏

s=1
(q2s − 1)

,

so that

Z(i,0)→(0, j) =
Min(i, j)∑

k=0

γ k qk
2

j∏

s=1
(q2(s−k+i) − 1)

j−k∏

s=1
(q2s − 1)

k∏

s=1
(q2s − 1)

.

Let us now show that we may replace the upper bound Min(i, j) in the summation by j .
This is straightforward if j ≤ i since Min(i, j) = j in this case. As for the situation where
j > i , we may extend the sum over k from Min(i, j) + 1 = i + 1 to j since the product
in the numerator vanishes identically for all these extra added terms due to the contribution
(q0 − 1) = 0 arising from the term s = k − i (which lies in the integer interval [1, j] since
k ∈ [i + 1, j] ⊂ [i + 1, i + j]). This allows to rewrite Z(i,0)→(0, j) = z j (q2i ), with z j (t) as
in (7), which displays z j (t) as an explicit polynomial of degree j in t . 	
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3.2 Scaling Limit

Our NILP problem involves a collection of (n + 1) non-intersecting Schröder paths with
endpoints (0, j) for j = 0, . . . , n. Since we will eventually consider the limit of large n,
the positions of the starting and endpoints of our paths may eventually become large, of the
order of n. A natural question is then to estimate the partition function Z(i,0)→(0, j) of a single
Schröder path from (i, 0) to the point (0, j) in the limit where i and j become large and scale
as n. A sensible large n limit is reached by keeping γ fixed but letting q scale exponentially
with 1/n. In other words, we consider the scaling

i = u n , j = v n , q = q
1
n

with large n and finite u, v ≥ 0 and q > 0.
With this scaling, Z(i,0)→(0, j) grows exponentially with n as follows:

Theorem 3.3 The scaled partition function for weighted Schröder paths behaves for large n
as

Z(un,0)→(0,vn) ∼
n→∞ en S0(u,v) (8)

where S0(u, v) = S0(u, v, φ(u, v)) and

S0(u, v, φ) = φLog γ + φ2 Log q +
∫ u+v−φ

0
dσ Log(q2σ − 1) −

∫ v−φ

0
dσ Log(q2σ − 1)

−
∫ φ

0
dσ Log(q2σ − 1) −

∫ u−φ

0
dσ Log(q2σ − 1) (9)

while φ(u, v) is the unique solution to ∂S0(u,v,φ)
∂φ

= 0 satisfying 0 ≤ φ ≤ Min(u, v), namely:

γ q2φ
(q2(u−φ) − 1)(q2(v−φ) − 1)

(q2φ − 1)(q2(u+v−φ) − 1)
= 1 (0 ≤ φ ≤ Min(u, v)). (10)

Proof Using the q2-trinomial expression of Theorem 3.1, and substituting i = un, j =
vn, k = φn, we may express the leading exponential behavior of Z(un,0)→(0,vn) as the
integral:

Z(un,0)→(0,vn) ∼
n→∞

∫ Min(u,v)

0
dφenS0(u,v,φ)

with S0 as in (9). This integral is dominated by the saddle-point φ = φ(u, v) that maximizes
S0, hence satisfies (10). The existence and uniqueness of this point is best seen upon setting

F = q2φ , U = q2u , V = q2v ,

so that the Eq. (10) for φ reads

F2 −
(
U + V + (U − 1)(V − 1)

1 + γ

)
F +U V = 0.

Assuming q > 1 and, say u ≤ v, we have 1 ≤ U ≤ V . In particular, the roots F1 and

F2 of this equation satisfy F1F2 = UV and F1 + F2 =
(
U + V + (U−1)(V−1)

1+γ

)
so that

F1+ F2 ≥ 2 and (F1−1)(F2−1) = γ (U −1)(V −1)/(1+γ ) ≥ 0, which implies that both
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(x, y(x))

(x−dx, y(x)−y (x)dx)v

u0

dx

−y (x)dx

(q2)(−y (x)dx)n ·xn

Z(dxn,0)→(0,−y (x)dxn)

Fig. 5 A schematic picture, here in rescaled coordinates, of a path (xn, y(x)n) from (un, 0) to (0, vn),
characterized by its shape y(x), 0 ≤ x ≤ u with y(0) = v, y(u) = 0 and y′(x) ≤ 0. The contribution to the
partition function of an infinitesimal portion of path from (x, y(x)) to ((x − dx), (y(x) − y′(x)dx)) is the
product of Z(dx n,0)→(0,−y′(x)dx n) (accounting for the contribution in the circle) times (q2)(−y′(x)dx)n · x n =
(q2)−n x y′(x)dx (accounting for the area weight of the shaded region)

F1 and F2 are larger than or equal to 1. Finally, from
(
U + V + (U−1)(V−1)

1+γ

)
≥ U + V , F1

and F2 also satisfy the inequality

0 ≤ F2 − (U + V ) F +U V = (F −U )(F − V ) .

This implies that F1 and F2 lie outside of the segment ]U , V [ and, since their product isU V ,
one of the roots lies below U and the other above V . There is therefore a unique solution F
with 1 ≤ F ≤ U , that is 0 ≤ φ ≤ u = Min(u, v). A similar argument can be worked out for
u > v or q < 1. 	


3.3 Equation for Geodesics

Besides the actual exponential growth of Z(un,0)→(0,vn), an interesting question is that of
finding the geodesic path from (un, 0) to (0, vn), i.e. the path whose contribution is maximal
in the partition function Z(un,0)→(0,vn). Having an explicit expression for geodesics will
be instrumental for applying the Tangent Method in Sect. 5. A rescaled path from (un, 0)
to (0, vn) may be characterized by its shape y(x), 0 ≤ x ≤ u (see Fig. 5) which gives
the sequence of its positions (xn, y(x)n). This function satisfies y(0) = v, y(u) = 0 and
y′(x) ≤ 0 along the whole path. Reading the path from right to left, its contribution to
Z(u n,0)→(0,v n) is obtained by multiplying the contribution of all the infinitesimal portions
of path from (xn, y(x)n) to ((x − dx)n, (y(x) − y′(x)dx)n), which involves computing the
infinitesimal partition function Z(xn,y(x)n)→((x−dx)n,(y(x)−y′(x)dx)n). By a simple shift of the
origin to position ((x − dx)n, y(x)n), we may write

Z(xn,y(x)n)→((x−dx)n,(y(x)−y′(x)dx)n) = (q2)−n x y′(x)dx Z(dx n,0)→(0,−y′(x)dx n)
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where the factor (q2)−n x y′(x)dx incorporates the area weight to the left3 of the curve between
heights y(x) n and (y(x) − y′(x)dx)n. The quantity Z(dx n,0)→(0,−y′(x)dx ,n) may then be
evaluated from the general expression (8)–(9) of Theorem 3.3 for Z(un,0)→(0,vn) by perform-
ing the substitutions u → dx , v → −y′(x)dx , φ → μdx (with 0 ≤ μ ≤ Min(1,−y′(x))).
We immediately obtain:

Z(dx n,0)→(0,−y′(x)dx n) = enL({y′(x)}dx

with L({y′(x)}):=L({y′(x)}, μ({y′(x)})), where
L({y′(x)}, μ) = μ Log γ + (1 − y′(x) − μ)Log(1 − y′(x) − μ) − (1 − μ)Log(1 − μ)

− μ Log(μ) − (−y′(x) − μ)Log(−y′(x) − μ)

(recall that y′(x) ≤ 0). As before, the above expression must be taken at the value
μ = μ({y′(x)}) in [0,Min(1,−y′(x))] such that ∂L({y′(x)},μ)

∂μ
= 0, namely the following

infinitesimal version of (10):

γ
(1 − μ)(−y′(x) − μ)

μ (1 − y′(x) − μ)
= 1 . (11)

This allows to write formally Z(un,0)→(0,vn) as a functional integral

Z(un,0)→(0,vn) =
∫

y(0)=v
y(u)=0

Dy(x)en
∫ u
0

(−Log(q2)x y′(x) + L({y′(x)}) dx

and to deduce by a variational principle the equation of geodesics:

−
(

δ

δy′(x)
(
−Log(q2)x y′(x) + L({y′(x)})

))′
= 0 ⇔ Log(q2) =

(
δL({y′(x)})

δy′(x)

)′

with boundary conditions y(0) = v and y(u) = 0. Using

δL({y′(x)})
δy′(x)

= ∂L({y′(x)}, μ)

∂ y′(x)
+ ∂L({y′(x)}, μ)

∂μ

δμ

δy′(x)
= ∂L({y′(x)}, μ)

∂ y′(x)

= Log

( −μ − y′(x)
1 − μ − y′(x)

)

and, from (11),
δμ

δy′(x)
= μ (1 − μ)

y′(x) (1 − 2μ − y′(x))
,

we deduce
(

δL({y′(x)}
δy′(x)

)′
= y′′(x)

(
∂

∂ y′(x)
Log

( −μ − y′(x)
1 − μ − y′(x)

)

+ ∂

∂μ
Log

( −μ − y′(x)
1 − μ − y′(x)

)
× δμ

δy′(x)

)

= y′′(x)
y′(x) (1 − 2μ − y′(x))

3 Here we use the area to the left of the path, in accordance with our general convention, but we could as well
use the area below the path as the two are equivalent for a path that ends on the vertical axis. Using the area
below the path would produce instead a term (q2)n y(x)dx , leading to an overall identical contribution since∫ u
0 dx y(x) = ∫ u

0 dx(−x y′(x)).
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so that the equation for geodesics finally reads

Log(q2) = y′′(x)
y′(x) (1 − 2μ − y′(x))

with μ = μ({y′(x)}) as in (11).
To solve this equation, we set

X = q2x , Y (X) = q2y(x) , M(X) = μ(x) ,

and introduce the function

W (X):=y′(x) = X Y ′(X)

Y (X)

so that y′′(x) = Log(q2) X W ′(X). The equation for geodesics then simplifies into

X W ′(X) = W (X)(1 − 2M(X) − W (X)) , γ
(1 − M(X))(−W (X) − M(X))

M(X) (1 − W (X) − M(X))
= 1 ,

which, upon eliminating M(X), yields

X W ′(X) = W (X)

√
γ (1 + W (X))2 + (1 − W (X))2

1 + γ
.

Here the choice of the correct branch when solving the quadratic equation for M(X) is
dictated by the fact that 0 ≤ M(X) ≤ 1 (choosing the other branch would introduce a global
minus sign in the right hand side of the equation above). Equivalently, this choice ensures
that XW ′(X) < 0 (recall that W (X) = y′(x) < 0) and, since y′′(x) = Log(q2) X W ′(X),
that y′′(x) < 0 for q > 1 and y′′(x) > 0 for q < 1, as expected on physical grounds: for
q > 1 (respectively q < 1), the geodesic path tends to be concave (respectively convex) to
increase (respectively decrease) the area below. The above equation is easily integrated into

W (X) = − (1 + γ )2

2γ

X X0(
X0 + X 1+γ

2

) (
X0 − X 1+γ

2γ

)

where the integration constant X0, to be determined later,must satisfy4 X0 >
1+γ
2γ max(1,U ).

From W (X) = X Y ′(X)
Y (X)

, we then deduce by integration

Y (X) = Y0
X (1 + γ ) − 2X0 γ

X (1 + γ ) + 2X0

with Y0 yet to be determined. Introducing as before the quantitiesU = q2u and V = q2v , the
constants X0 and Y0 are determined by imposing Y (1) = V (i.e. y(0) = v) and Y (U ) = 1
(i.e. y(u) = 0). This latter condition fixes Y0 so that

Y (X) = X (1 + γ ) − 2X0 γ

X (1 + γ ) + 2X0
· U (1 + γ ) + 2X0

U (1 + γ ) − 2X0 γ
. (12)

4 The given expression for W (X) is indeed solution of the differential equation only if(
X0 + X 1+γ

2

) (
X0 − X 1+γ

2γ

)
> 0, i.e. for the allowed range of X (i.e. [1,U ] for q > 1 or [U , 1] for

q < 1) only if X0 < − 1+γ
2 max(1,U ) or X0 >

1+γ
2γ max(1,U ). The first range of X0 is ruled out by the

fact that W (X) must be negative.
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As for the first condition, it yields a quadratic equation for X0 with solution5

X0 = 1 + γ

4γ (V − 1)
{UV − 1 + γ (U − V ) + ε δ(U , V )}

with δ(U , V ) =
√

(UV − 1)2 + 2γ ((U + V )(UV + 1) − 4UV ) + γ 2(U − V )2

(13)

where the choice of sign ε = ±1 fixing the correct branch of solution may be fixed by the
condition X0 >

1+γ
2γ max(1,U ). For q > 1, we have U > 1 and V > 1 and we have to

impose X0 >
1+γ
2γ U , with

X0 − 1 + γ

2γ
U = 1 + γ

4γ (V − 1)
{α(U , V ) + ε δ(U , V )}

α(U , V ) = 2U −UV − 1 + γ (U − V ) .

Noting that δ2(U , V ) − α2(U , V ) = 4(1 + γ )U (U − 1)(V − 1) > 0, we deduce that only
ε = +1 fulfills the desired requirement. Assume now q < 1, in which caseU < 1 and V < 1
and we have to impose X0 >

1+γ
2γ , with

X0 − 1 + γ

2γ
= − 1 + γ

4γ (1 − V )
{β(U , V ) + ε δ(U , V )}

β(U , V ) = UV + 1 − 2V + γ (U − V ) .

Noting that δ2(U , V ) − β2(U , V ) = 4(1 + γ )V (1 − U )(1 − V ) > 0, we deduce that only
ε = −1 fulfills the desired requirement. We finally plug (13) into (12) to get the following:

Theorem 3.4 The geodesic (x, y(x)) joining (u, 0) to (0, v) for the scaling limit of weighted
Schröder paths is given by:

Y (X) =
(
UV−1−2(V−1)X+γ (U−V )+ε(q)δ(U , V )

)(
UV−1+γ (2UV−U−V )+ε(q)δ(U , V )

)

(
2U−UV−1+γ (U−V )+ε(q)δ(U , V )

)(
UV−1+γ (U−V+2(V−1)X)+ε(q)δ(U , V )

)

= 1+ (V−1)(U−X)
(
(X−1)(V−1)(U+γ )+(U−1)(X+1)(1+γ )+(X−1)ε(q)δ(U , V )

)

2(U−1)
(
(U−X)(1+γ X)+V (U+γ X)(X−1)

)

where Y (X) = q2y(x) , X = q2x , U = q2u , V = q2v , (14)

with δ(U , V ) as in (13), ε(q) = sgn(Log(q)) and x ∈ [0, u].
Let us conclude with a few remarks. First, solving the last equation above for ε(q)δ(U , V )

and thenwriting (ε(q)δ(U , V ))2 = (UV−1)2+2γ ((U+V )(1+UV )−4UV )+γ 2(U−V )2

yields the following algebraic equation for the geodesic Y = Y (X):

Gγ (X , Y ;U , V ):=(U − 1)(V − 1)
(
γ
(
UV + X2Y 2)− (

V X2 +UY 2)
)

−XY

(
(U + 1)(V + 1)

(
1 +UV + γ (U + V )

)− 8(1 + γ )UV

)

+(V − 1)
(
X2 +U

)
Y
(
UV − 1 + γ (V −U )

)

+(U − 1)
(
Y 2 + V

)
X
(
UV − 1 + γ (U − V )

) = 0 . (15)

5 Note that, for U , V > 0, (
√
UV − 1)2 ≥ 0 implies (UV + 1) ≥ 2

√
UV and (U + V ) ≥ 2

√
UV ≥

4UV /(UV + 1). The quantity appearing in the square root in δ(U , V ) is thus clearly non negative for γ ≥ 0.
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This curve contains the two branches corresponding to q > 1 and q < 1 respectively. We
note the symmetry of this curve under the flip w.r.t. the first diagonal under which u ↔ v

and x ↔ y, namely under the simultaneous interchange U ↔ V and X ↔ Y :

Gγ (Y , X; V ,U ) = Gγ (X , Y ;U , V ).

This is due to the fact that the two definitions of the area (i) to the left of the curve or (ii)
under the curve are equivalent. Another manifest symmetry of the curve (15) is obtained by
reinterpreting geodesic paths under complement in the rectangle n u × n v. Indeed, any path
p = {(n x, n y)} from (n u, 0) to (0, n v) can be viewed, by performing a half-turn rotation
by 180◦ and reversing the travel direction, as a path p̃ = {(n (u−x), n (v− y))} from (n u, 0)
to (0, n v). The total area of the rectangle n u × n v is equal to 2n2 u v = A(p) + A( p̃), as
the area to the left of p̃ is nothing but the area to the right of p within the rectangle. This
immediately implies the symmetry:

Gγ

(
X

U
,
Y

V
; 1

U
,
1

V

)
= 1

U 3V 3 Gγ (X , Y ;U , V ).

From this interpretation, the map (X , Y ,U , V ) �→ (U/X , V /Y , 1/U , 1/V ) clearly inter-
changes the two geodesic branches q > 1 and q < 1.

Next, for γ = 0, the formula for Y (X) simplifies drastically since in this case
ε(q)δ(U , V ) = (UV − 1) so that (14) becomes

Y (X) = 1 + (V − 1)(U − X)

U − 1
(γ = 0)

and the algebraic equation reduces to (V − 1)X + (U − 1)Y = UV − 1. We recover here
the geodesic equation found in Reference [9].

Finally, for q → 1, using X ∼ 1 + 2x(q − 1), Y (X) ∼ 1 + 2y(x)(q − 1), U ∼
1 + 2u(q − 1), V ∼ 1 + 2v(q − 1) (which yields in particular ε(q)δ(U , V ) ∼ 2(q −
1)
√

(1 + γ )
(
(u + v)2 + γ (u − v)2

)
), Eq. (14) becomes independent of γ at leading order

in q − 1 and yields

y(x) = v(u − x)

u
(q → 1)

which, as expected, is nothing but the equation of the straight line passing trough (u, 0) and
(0, v), irrespectively of γ .

4 Tangent Method and Arctic Curve I

4.1 Model Partition Function, One-Point Function and Single Free Path Partition
Function

The aim of this section is to set the stage for applying the so-called Tangent Method [6]
to predicting the arctic curve of our tiling model of the Aztec rectangle with defects. This
involves evaluating a modified partition function Z̃ obtained from Z by slightly modifying its
path setting, namely by moving the endpoint of the outermost path from its original position
(0, n) to a further position along the y-axis, say to a point (0, n + r), r > 0 (see Fig. 6).
The general idea of the Method is that this outermost path will follow asymptotically the
arctic curve (induced by the interaction with the other paths in the non-intersecting family)
before escaping tangentially along a geodesic until it reaches the new endpoint. Indeed, once

123



654 P. Di Francesco, E. Guitter

a1 · · ·a0 an

( )
(0, n)

(0, n + r)

Fig. 6 A NILP configuration with a modified endpoint (0, n + r) for the outermost path. This path must exit
the originally allowed domain (materialized by the square grid) at some exit point (�, n) by a diagonal or
vertical step. The partition function of such a modified NILP with a fixed � is the product of the partition
function Z(�) of the NILP where the outmost path ends at the exit point (�, n), times the partition function
Y�,r of a single (non interacting) Schröder path from the exit point (�, n) to the endpoint (0, n + r)

it escapes, the path is no longer sensitive to the presence of the other paths of the NILP, and
its trajectory follows a free geodesic. By a variational principle at large n, we shall determine
the most likely exit point (�, n) from the original Aztec rectangle as a function of the vertical
shift r , and the “tangent” geodesic will be determined as the unique geodesic through this
most likely exit point and the modified endpoint. By moving the modified endpoint along
the y-axis, we generate a parametric family of geodesics: the Tangent Method states that the
arctic curve is their envelope.

To carry out this program, we need to split the new partition function Z̃ into a sum:

Z̃ =
m∑

�=0

Z(�) Y�,r

according to the position of the exit point (�, n) of the modified outermost path from the
original Aztec rectangle. Here we introduce two new partition functions: the first one,Z(�), is
the partition function of weighted NILP configurations of (n + 1) paths with starting points
(ai , 0), i = 0, 1, ..., n and with endpoints (0, j), j = 0, 1, ..., n − 1 for the first n paths,
while the outermost path stops at the exit point (�, n). Note that, in Z(�), the contribution of
the outermost path is computed using the area to its left and not that below it (which is in
general smaller). For simplicity, it turns out to be easier to consider the so called “boundary
one-point function”H(�) = Z(�)/Z. This function will be computed in the next section.

The second partition Y�,r entering the above decomposition of Z̃ is the partition function
for the last part of the outermost path from the exit point (�, n) to the endpoint (0, n+ r). As
this portion involves a (free) single weighted Schröder path, it is easily computed as follows.
First notice that as the path must exit from the original rectangle, it must start with either a
vertical or a diagonal step, which makes it start in practice at either position (�, n + 1) or
(� − 1, n + 1) after this first step (assuming � ≥ 1 for convenience). In terms of single path
partition functions such as in (2), this gives (with obvious notations):
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Y�,r = q2� Z(�,n+1)→(0,n+r) + γ q2�−1 Z(�−1,n+1)→(0,n+r)

where the q-dependent prefactors restore the correct area weights by taking into account the
area of the strip of height 1 on the left of the first step. Finally, by moving the origin to the
point (0, n + 1), we may write equivalently:

Y�,r=q2� Z(�,0)→(0,r−1)+γ q2�−1 Z(�−1,0)→(0,r−1) = q2� zr−1(q
2�) + γ q2�−1 zr−1(q

2�−2)

(16)
solely in terms of the partition functions (2) and (7).

4.2 LU Decomposition and Integral Formulas

Similarly toZ, the partition functionZ(�) is expressed through the LindströmGessel-Viennot
formula:

Z(�) = det(A(�)), A(�)
i, j =

{
Ai, j for j < n

Z(ai ,0)→(n,�) for j = n

where A is as in (3). Note that A(�) differs from A only in its last column. We shall now use
the LU decomposition method [8–10] to compute Z(�): assume we have written A = LU
as the product of a lower uni-triangular matrix L and an upper triangular matrix U , then of
course det(A) = ∏n

i=0Ui,i . SinceU = L−1A is upper triangular and A and A(�) differ only
in their last column, the matrix U (�):=L−1A(�) is upper triangular as well. Finally, in terms
of U and U (�), the one-point functionH(�) reads simply

H(�) = det(A(�))

det(A)
= U (�)

n,n

Un,n
, (17)

so that only the elements of U and U (�) with highest indices are in practice required.
We have the following:

Lemma 4.1 The unitriangular (n + 1) × (n + 1) matrix L−1 with entries

(L−1)i, j :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i−1∏

s=0
q2ai − q2as

i∏

s=0
s �= j

q2a j − q2as
i ≥ j

0 otherwise

is such that U := L−1A is upper triangular.

Proof We compute:

Ui, j =
n∑

k=0

(L−1)i,k Ak, j =
i∑

k=0

i−1∏

s=0
q2ai − q2as

i∏

s=0
s �=k

q2ak − q2as
Z(ak ,0)→(0, j)

=
∮

C(a0,...,ai )

dt

2iπ

i−1∏

s=0
q2ai − q2as

i∏

s=0
t − q2as

z j (t) , (18)
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where we realized the sum over k as a sum of residues at t = q2ak for the corresponding
contour integral along a contour C(a0, ..., ai ) of the complex plane encircling all the points
q2as , s = 0, 1, ..., i . Finally we have identified the last term in the integrand in terms of the
polynomial z j defined in (7). Let us now show that U is upper triangular.

Assume i > j . Note that since C(a0, ..., ai ) encircles all the finite poles of the integrand,
the residue integral may be expressed as minus the contribution of the pole at infinity. Using
Theorem 3.2 which states that z j (t) is a polynomial of degree j in t , we get the large t
asymptotics:

i−1∏

s=0
q2ai − q2as

i∏

s=0
t − q2as

z j (t) ∝ t j−i−1 (19)

and as i > j , there is no residue at t = ∞. We conclude that Ui, j = 0 when i > j and the
Lemma follows. 	


Theorem 4.2 The partition function Z (4) for the domino tiling of the Aztec rectangle with
defects reads:

Z = q
n(n+1)(2n+1)

6

n−1∏

s=0

(γ + q2s+1)n−s �(q2a0 , q2a1 , ..., q2an )

�(q0, q2, ..., q2n)

where �(x0, x1, ..., xn) stands for the Vandermonde determinant �(x0, x1, ..., xn) =∏
i> j (xi − x j ).

Proof Recall that Z = det(A) = ∏n
i=0Ui,i with U as in Lemma 4.1. The result of the

Theorem follows from the fact that:

Ui,i =
i−1∏

s=0

q2s+1(γ + q2s+1)
q2ai − q2as

q2i − q2s
. (20)

To show this, let us use the contour integral formula (18) for j = i , and express the result in
terms of the residue at t = ∞. The latter has a non-vanishing contribution, as readily seen
from (19) for j = i . More precisely, using the explicit formula (7) for z j (t) we find:

Ui,i = −Rest→∞
zi (t)

t i+1

i−1∏

s=0

(q2ai −q2as )=
i∑

k=0

γ k qk
2

i−1∏

s=0
q2ai − q2as

i−k∏

s=1
(q2s − 1)

k∏

s=1
(q2s − 1)

i∏

s=1

q2(s−k)

=
i−1∏

s=0

q2s
q2ai − q2as

q2i − q2s

i∑

k=0

γ k qk
2
[
i

k

]

q2

i∏

s=1

q2(s−k)

=
i−1∏

s=0

q2s
q2ai − q2as

q2i − q2s

i∑

k=0

γ i−k qi+k2
[
i

k

]

q2

=
i−1∏

s=0

q2s+1(γ + q2s+1)
q2ai − q2as

q2i − q2s
,
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wherewe have first reexpressed the summand in terms of the q2-binomial
[i
k

]
q2 = [ i

k,i−k,0

]
q2
,

and then performed a change of summation k → i − k. Finally, we have used the product
formula:6

i∑

k=0

γ i−k qk
2
[
i

k

]

q2
=

i−1∏

s=0

(γ + q2s+1) .

	

Using the relation (17), we now get an explicit formula for H(�).

Theorem 4.3 The boundary one-point function H(�) for the NILP with an outermost path
exiting at point (�, n) reads:

H(�) = qn(2�−n)
n−1∏

s=0

q2n − q2s

γ + q2s+1

∮

C�(a0,a1,...,an)

dt

2iπ

zn(tq−2�)
n∏

s=0
t − q2as

(21)

where the contour of integration C�(a0, a1, ..., an) encircles only the points q2as such that
as ≥ �.

Proof Similarly to the computation of Ui,i , we obtain:

U (�)
n,n =

n∑

k=0

(L−1)n,k A
(�)
k,n =

n∑

k=0

n−1∏

s=0
q2an − q2as

n∏

s=0
s �=k

q2ak − q2as
q2n� ×

{
zn(q2ak−2�) if ak ≥ �

0 otherwise

= q2n�
n−1∏

s=0

(q2an − q2as )
∮

C�(a1,a2,...,an)

dt

2iπ

zn(tq−2�)
n∏

s=0
t − q2as

.

Here we have first rewritten A(�)
k,n = Z(ak ,0)→(�,n) = q2n�Z(ak−�,0)→(0,n) by moving the

origin to the position (�, 0) and correcting the area factor by q2n�, and then used our general
expression Z(ak−�,0)→(0,n) = zn(q2ak−2�) in terms of the polynomial zn(t) of Eq. (7). This
identity is valid only for ak ≥ � while Z(ak−�,0)→(0,n) = 0 for ak < � (since a Schröder path
cannot move toward east). This condition ak ≥ � is automatically fulfilled in the contour
integral by the choice of integration contour C�(a0, a1, ..., an), encircling only those points
q2as such that as ≥ �. The Theorem follows by dividing the above expression by that for
Un,n from (20) for i = n. 	


4.3 Scaling Limit

We may now proceed with the second step of the Tangent Method, by deriving asymptotic
estimates for the quantitiesY�,r andH(�). Following the same principle as inReferences [8,9],
we consider a scaling limit of large n, in which the positions {ak}0≤k≤n of starting points of
the paths in the NILP are asymptotically distributed according to a piecewise differentiable
function α(σ) via

ak =
⌊
n α

(
k

n

)⌋
.

6 This relation is easily proved by recursion from the identity
[i
k
]
q2 = [i−1

k
]
q2 + [i−1

k−1
]
q2
q2(i−k).
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The function σ �→ α(σ), 0 ≤ σ ≤ 1 is strictly increasing and such that α′(σ ) ≥ 1 whenever
defined (to ensure ak+1−ak ≥ 1). Note also that α(0) = 0 and α(1) = limn→∞ an/n = μ if
we let m = n μ for some finite μ in the scaling limit. Moreover, we introduce the following
scaling variables for the various integers entering the formulas for Y�,r andH(�):

� = n ξ, r = n ρ, q = q
1
n .

Using the expression (16) for Y�,r and the explicit asymptotic formula (8) for Z(i,0)→(0, j)
with j = r − 1 ∼ n ρ and i = �, � − 1 ∼ n ξ , we get immediately:

Lemma 4.4 In the scaling limit n → ∞, the quantity Y�,r has the leading exponential
behavior

Ynξ,nρ ∼
n→∞ enS0(ξ,ρ)

where S0(ξ, ρ) = S0(ξ, ρ, φ(ξ, ρ)) and

S0(ξ, ρ, φ) = φLog γ + φ2 Log q +
∫ ξ+ρ−φ

0
dσ Log(q2σ − 1) −

∫ ρ−φ

0
dσ Log(q2σ − 1)

−
∫ φ

0
dσ Log(q2σ − 1) −

∫ ξ−φ

0
dσ Log(q2σ − 1)

while φ(ξ, ρ) is the unique solution to ∂S0(ξ,ρ,φ)
∂φ

= 0 satisfying 0 ≤ φ ≤ Min(ξ, ρ), namely:

γ q2φ
(q2(ξ−φ) − 1)(q2(ρ−φ) − 1)

(q2φ − 1)(q2(ξ+ρ−φ) − 1)
= 1 (0 ≤ φ ≤ Min(ξ, ρ)).

Similarly, using the expressions (21) forH(�) and (7) for z j (t), with k ∼ n κ , we obtain:

Lemma 4.5 In the scaling limit n → ∞, the quantity H(�) has the leading exponential
behavior

H(nξ) ∼
n→∞

∫

Cξ

dt

2iπ
enS1(t,ξ)

where S1(t, ξ) = S1(t, ξ, κ(t, ξ)) and

S1(t, ξ, κ) := 2ξ Log q + κ Log γ + κ2 Log q +
∫ 1

0
dσLog(tq2(σ−κ−ξ) − 1)

−
∫ 1−κ

0
dσLog(q2σ − 1) −

∫ κ

0
dσLog(q2σ − 1)

−
∫ 1

0
dσLog(t − q2α(σ)) + C

with C some unimportant q,γ -dependent constant, while κ(t, ξ) is the unique solution to
∂S1(t,ξ,κ)

∂κ
= 0 satisfying 0 ≤ κ ≤ 1, namely:

γ q2κ
(q2(1−κ) − 1)(q2(κ+ξ) − t)

(q2κ − 1)(q2(κ+ξ) − q2 t)
= 1 .

The contour Cξ is the scaling limit of the contour C�(a0, a1, ..., an) and therefore encircles
only the values q2α with α ∈ [ξ, α(1)]. In particular, since α(1) = μ, the contour may be
chosen so as to cross the real axis at q2ξ and anywhere above q2μ if q > 1 (respectively
anywhere below q2μ if q < 1).
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4.4 Most Likely Exit Point

We are now ready for the third stage of the Tangent Method: find the scaling limit of the most
likely exit point of the outermost path in our NILP. This is determined by finding the value
of � that maximizes the contribution to the sum:

Z̃

Z
=

m∑

�=0

H(�) Y�,r .

In the scaling limit, this gives to leading exponential order in n:

Z̃

Z
∼

n→∞

∫ μ

0
dξ

∮

Cξ

dt

2iπ
en(S0(ξ,ρ)+S1(t,ξ)) . (22)

Theorem 4.6 The most likely exit point of the outermost path in our NILP is given in the
scaling limit by (nξ, n) where (ξ, κ, φ, t) is the unique solution satisfying ξ ∈ [0, μ], φ ∈
[0,Min(ξ, ρ)], κ ∈ [0, 1] and t ≥ q2μ if q > 1 (respectively t ≤ q2μ if q < 1) to the system:

γ q2φ
(q2(ξ−φ) − 1)(q2(ρ−φ) − 1)

(q2φ − 1)(q2(ξ+ρ−φ) − 1)
= 1 (23)

γ q2κ
(q2(1−κ) − 1)(q2(κ+ξ) − t)

(q2κ − 1)(q2(κ+ξ) − q2 t)
= 1 (24)

q2(κ+ξ) − q2 t

q2(κ+ξ) − t
x(t) = 1 (25)

q2
(q2(ξ+ρ−φ) − 1)(q2(κ+ξ) − t)

(q2(ξ−φ) − 1)(q2(κ+ξ) − q2 t)
= 1 (26)

where x(t) is the q-exponential moment-generating function for the distribution α:

x(t):=q
−2t
∫ 1
0

dσ

t−q2α(σ)
. (27)

Proof The leading contribution to the integral formula (22)maximizes S(t, ξ, ρ):=S0(ξ, ρ)+
S1(t, ξ) and must satisfy ∂S

∂t = ∂S
∂ξ

= 0. Using ∂S
∂t = ∂S1(t,ξ)

∂t = ∂S1(t,ξ,κ)
∂t at κ = κ(t, ξ)

(since at this point ∂S1(t,ξ,κ)
∂κ

= 0), and similarly ∂S
∂ξ

= ∂S0(ξ,ρ,φ)
∂ξ

+ ∂S1(t,ξ,κ)
∂ξ

at φ = φ(ξ, ρ)

and κ = κ(t, ξ), the above two extremization conditions lead directly to (25) and (26)
respectively, while (23) and (24) determine φ = φ(ξ, ρ) and κ = κ(t, ξ) as in Lemmas 4.4
and 4.5. To investigate the existence and uniqueness of the solution, let us use variables:

F = q2φ, K = q2κ , R = q2ρ, L = q2ξ

and rewrite the above system as:

γ (L − F)(R − F) = (F − 1)(LR − F), γ (q2 − K )(K L − t) = (K − 1)(K L − q2 t)

(K L − q2 t) x(t) = (K L − t), q2 (LR − F)(K L − t) = (L − F)(K L − q2 t)

whose solution may be written as

K = K (t) = 1 + γ q2x(t)
1 + γ x(t)

,

F = F(t) = (1 + γ )t
(
1 + γ x(t)

)

(
1 + γ q2x(t)

)(
t
(
1 + γ x(t)

)+ γ
(
1 − x(t)

)) ,
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L = L(t) = t
(
1 − q2x(t)

)(
1 + γ x(t)

)

(
1 − x(t)

)(
1 + γ q2x(t)

) ,

R = R(t) = t
(
1 + γ x(t)

)− (
1 − x(t)

)

q2x(t)
(
t
(
1 + γ x(t)

)+ γ
(
1 − x(t)

)) , (28)

which yields the most likely value of ξ as a function of ρ, or equivalently the most likely
value of L as a function of R in the parametric form L = L(t), R = R(t) with a varying t .
The value of t must be real (for K , F, L, R to be real) and must lie on the contour Cξ , which
implies7 t ≥ q2μ if q > 1 (respectively t ≤ q2μ if q < 1). All the values of t in this range
are valid and lead to values of L , R, K , and F in their respective allowed range. Assuming
for instance q > 1, we must have 1 ≤ K ≤ q2, 1 ≤ F ≤ min(L, R), 1 ≤ L ≤ q2μ and
R ≥ 1. The inequalities for K follow from the fact that x(t) increases from 0 to q−2 when t
increases from q2μ to +∞. As for the other inequalities, it is easily checked from the above
expressions that R − 1, L − F , R − F and F − 1 all have the same sign as L − 1. Indeed
we have the ratios

F − 1

R − F
= q2γ x(t),

F − 1

L − F
= γ

(
1 − x(t)

)

t
(
1 + γ x(t)

) ,
R − 1

F − 1
= 1 + 1

γ q2 x(t)
,

L − 1

F − 1
= 1 + t

(
1 + γ x(t)

)

γ
(
1 − x(t)

) , (29)

all manifestly positive since t ≥ q2μ ≥ 1 and 0 ≤ x(t) ≤ q−2 < 1. It is thus sufficient to
prove 1 ≤ L ≤ q2μ. From the definition of x(t) and the fact that α(σ) ≥ σ , we deduce that
the value of x(t) for any acceptable distribution α(σ) is bounded from above by its value for
α(σ) = σ , namely x(t) ≤ (t q−2 − 1)/(t − 1), henceforth

1 − q2x(t) ≥ q2 − 1

t − 1
⇒ t

(
1 − q2x(t)

) ≥ q2
(
1 − x(t)

)

⇒ t
(
1 − q2x(t)

)(
1 + γ x(t)

) ≥ (
1 − x(t)

)(
q2 + γ q2 x(t)

) ≥ (
1 − x(t)

)(
1 + γ q2 x(t)

)

which implies L ≥ 1, as wanted. Similarly, from the fact that α(1) − α(σ) ≥ 1 − σ , hence
α(σ) ≤ μ+1−σ , we deduce that the value of x(t) for any acceptable α(σ) is bounded from
below by its value for α(σ) = μ + 1− σ , namely x(t) ≥ (t − q2μ)/(t q2 − q2μ), henceforth

1 − q2x(t) ≤ q2μ
1 − q−2

t − q2μ−2 ⇒ t
(
1 − q2x(t)

) ≤ q2μ
(
1 − x(t)

)

⇒ t
(
1−q2x(t)

)(
1+γ x(t)

)≤q2μ
(
1 − x(t)

)(
1 + γ x(t)

)≤q2μ
(
1 − x(t)

)(
1 + γ q2 x(t)

)

which implies L ≤ q2μ. A similar argument holds for q < 1 and t ≤ q2μ, implying now
q2 ≤ K ≤ 1, max(L, R) ≤ F ≤ 1, q2μ ≤ L ≤ 1 and R ≤ 1. For q < 1, we have t ≤ q2μ

and we must distinguish the case where t ≥ 0 (in which case 0 ≤ x(t) ≤ 1 as x(t) increases
from 0 to 1 when t decreases from q2μ to 0) and the case t < 0 (in which case x(t) > 1
as x(t) increases from 1 to q−2 with increasing |t |). In particular, the quantity t/(1 − x(t))
appearing in some of the ratios (29) above, and the combination (1− q2 x(t)) appearing in L

7 The equation for L = L(t) forbids t = q2ξ = L unless x(t) = 0, which corresponds to the degenerate
situation where t = q2μ and ξ = μ.
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are always positive. This again proves that κ , φ, ξ and ρ are in the announced range, provided
now t ≤ q2μ. 	


5 Tangent Method and Arctic Curve II

5.1 The Family of Tangent Curves

The arctic curve predicted by the Tangent Method for our NILP is tangent to the family
of geodesics passing through the modified endpoints (0, n(1 + ρ)) and the associated most
likely exit points (nξ, n) for a varying ρ. Theorem 4.6 gives the relation between ρ and ξ in
a parametric form with parameter t , leading to a family of tangent geodesics parametrized
by t . We have the following:

Theorem 5.1 The family of geodesics through the points (0, n(1+ρ(t))) (modified endpoint)
and (nξ(t), n) (most likely exit point from the Aztec rectangle) reads, in cartesian coordinates
(x, yt (x)) in the scaling limit:

Yt (X) = 1

x(t)

t
(
1 + γ x(t)

)− (
1 − x(t)

)
X

t
(
1 + γ x(t)

)+ γ
(
1 − x(t)

)
X

where Yt (X) = q2yt (x) , and X = q2x (30)

for x(t) as in (27). We get the same expression for the tangent geodesics, whether q > 1 or
q < 1: only the range of t differs, with t ∈ [q2μ,∞[ for q > 1 and t ∈]−∞, q2μ] for q < 1.

Proof The Theorems 3.4 and 4.6 are all we need to construct our family of tangent curves.
Let us move the origin to position (0, n). The geodesic passing through (0, n(1 + ρ)) and
(nξ, n) is obtained by taking the expression (14) of Theorem 3.4 with X → q2x = X ,
Y → q2(y−1) = Yq−2,U → q2ξ = L and V → q2(1+ρ−1) = q2ρ = R, where L and R must
be expressed as in (28), as derived in the proof of Theorem 4.6. Plugging these expressions
into (14), we must use the value of δ(U = L, V = R) of (13), which satisfies:

δ2(L, R) = (L − 1)2
(
t
(
1 + γ q2x(t)

)(
1 + γ x(t)

)+ γ
(
1 − x(t)

)(
1 − q2x(t)

)

q2 x(t)
(
t
(
1 + γ x(t)

)+ γ
(
1 − x(t)

))

)2

where the term in the second square is always positive (since in particular, as we have already
seen, t/(1−x(t)) and (1−q2 x(t)) are positive). Since (L−1) has the sign ε(q) (i.e is positive
iff q > 1), we deduce

ε(q) δ(L, R) = (L − 1)
t
(
1 + γ q2x(t)

)(
1 + γ x(t)

)+ γ
(
1 − x(t)

)(
1 − q2x(t)

)

q2 x(t)
(
t
(
1 + γ x(t)

)+ γ
(
1 − x(t)

))

and (30) follows from substituting this into (14), whereas the ranges of t follow from the
discussion in the proof of Theorem 4.6. 	


Remark 5.2 Let us consider the limit q → 1 of the result of Theorem 5.1. Setting t = q2τ

and expanding the above equation at first order in q − 1 yields the parametric family:
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yτ (x) =
(
1 − x(τ )

)(
1 + γ x(τ )

)

x(τ )(1 + γ )
(τ − x)

x(τ ) := e
− ∫ 1

0 dσ 1
τ−α(σ)

with τ ∈ [μ,+∞[, and with a slight abuse of notation x(τ ) and yτ (x) for the q → 1 limits
as well. We see that the tangent curves are straight lines in this limit.

Remark 5.3 In the limit γ → 0, the result of Theorem 5.1 reduces to:

Yt (X) = t − (
1 − x(t)

)
X

t x(t)

with x(t) as in (27). This matches the result of [9] (Sect. 5.1).

5.2 The Arctic Curve and Its Properties

The family of curves (30) may alternatively be characterized by their equation in the (X , Y )

plane:

Ft (X , Y ) := x(t)
(
t
(
1+γ x(t)

)+γ
(
1−x(t)

)
X
)
Y −t

(
1+γ x(t)

)+(1−x(t)
)
X =0 . (31)

The core of the Tangent Method is stating that the arctic curve is precisely the envelope of
this family of curves, hence it may be obtained as the solution of

Ft (X , Y ) = ∂

∂t
Ft (X , Y ) = 0. (32)

Solving these equations in X and Y yields the arctic curve in parametric form (X(t), Y (t)):

Theorem 5.4 The arctic curve predicted 8 by the Tangent Method for the domino tiling of the
Aztec rectangle with defects reads in parametric form:

X(t) = q2x(t) = t−
(1+γ )

(
x(t)

(
1−x(t)

) (
1+γ x(t)

)+t x′(t)
(
1+γ x(t)2

))−ε(q) ω(t)

2γ
(
1 − x(t)

)2x′(t)

Y (t) = q2y(t) = ε(q) ω(t)−(1−γ ) x(t)
(
1−x(t)

)(
1+γ x(t)

)−(1+γ ) t x′(t)
(
1−γ x(t)2

)

2γ x(t)2
((

1−x(t)
)(
1+γ x(t)

)+(1+γ ) t x′(t)
)

ω(t) =
({

(1 + γ ) x(t)
(
1 − x(t)

)(
1 + γ x(t)

)+ t x′(t)
((
1 + γ x(t)

)2 − γ
(
1 − x(t)

)2)
}2

+ 4γ

{
t x′(t)

(
1 + γ x(t)

)(
1 − x(t)

)}2)1/2

for x(t) as in (27) and, as before, with ε(q) = 1 if q > 1 and ε(q) = −1 if q < 1.

8 Note that this theorem gives the arctic curve predicted by the Tangent Method, but by no means proves the
validity of the method itself.
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Proof Eliminating Y between the two equations of (32), we obtain the quadratic equation:

t2
(
1 + γ x(t)

)2x′(t) − X

(
(1 + γ ) x(t)

(
1 − x(t)

)(
1 + γ x(t)

)

+t x′(t)
((
1 + γ x(t)

)2 − γ
(
1 − x(t)

)2)
)

−X2γ
(
1 − x(t)

)2 x′(t) = 0 .

Note that the constant and X2 coefficients have opposite signs, hencewemust pick the unique
solution with X > 0. The corresponding manifestly positive discriminant reads:

ω(t)2 =
{
(1 + γ ) x(t)

(
1 − x(t)

)(
1 + γ x(t)

)+ t x′(t)
((
1 + γ x(t)

)2 − γ
(
1 − x(t)

)2)
}2

+4γ

{
t
(
1 + γ x(t)

)(
1 − x(t)

)
x′(t)

}2
.

To get a positive X , we must take in front of ω(t) the sign ε(q) = +1 if q > 1 and ε(q) = −1
if q < 1 to ensure that the global prefactor ε(q)/(2γ (1 − x(t))2x′(t)) of ω(t) in X(t) is

positive, where x′(t) = Log(q2) x(t)
∫ 1
0 dσ

qα(σ)

(t−qα(σ))2
has the sign of Log(q). 	


Remark 5.5 Let us consider the limit q → 1 of the result of Theorem 5.4. Setting as before
t = q2τ and expanding the above equation at first order in q−1 yields the following parametric
equation of the arctic curve:

x(τ ) = τ − x(τ )
(
1 − x(τ )

)(
1 + γ x(τ )

)

(
1 + γ x(τ )2

)
x′(τ )

y(τ ) =
(
1 − x(τ )

)2(1 + γ x(τ )
)2

(1 + γ )
(
1 + γ x(τ )2

)
x′(τ )

(33)

with x(τ ) as in Remark 5.2. This result is in agreement with the expression found in [2] (see
Eq. (5.3)) in some particular case (see Sect. 7.1 for a detailed discussion).

Remark 5.6 In the limit γ → 0, the result of Theorem 5.4 reduces to:

X(t) = t2 x′(t)
x(t)

(
1 − x(t)

)+ t x′(t)

Y (t) =
(
1 − x(t)

)+ t x′(t)
x(t)

(
1 − x(t)

)+ t x′(t)

with x(t) as in (27). This matches the result of Reference [9] (Theorem 1.1).

In Theorem 5.4, it was, so far, implicitly assumed that t runs over the range [q2μ,+∞[
for q > 1 and over the range ] − ∞, q2μ] for q < 1, with μ = α(1). This is indeed the
domain in which the Tangent Method approach that we described is valid. As explained
in References [8] and [9], this limited range of t gives only one portion of the arctic
curve. To get all the portions, we may consider other families of NILP which are (bijec-
tively) equivalent to the original tiling problem and let the Tangent Method machinery
act on these new NILP. For instance, the set of NILP described in Fig. 7 provides an
equivalent description of the tiling problem amenable to the Tangent Method approach.
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Fig. 7 A alternative description of the tiling configuration of Fig. 2 by a non-intersecting lattice path config-
uration. The correspondence between elementary path steps and dominos is obtained from that of (1) by a
left-right symmetry (Color figure online)

As discussed in details in References [8] and [9], using this new set of NILP allows
to extend the range of validity of Theorem 5.4 by allowing t to now span the larger
domain ] − ∞, 1] ∪ [q2μ,+∞[ if q > 1 or ] − ∞, q2μ] ∪ [1,+∞[ if q < 1. More
generally, the result of the previous studies in References [8], [9] and [11] is that the
range of t for which Theorem 5.4 is valid is that for which for which x(t) is real. Let-
ting t vary in this range produces the entire arctic curve which is in general made of
several, possibly disconnected, portions (corresponding to disconnected allowed intervals
for t). Recall that the asymptotic distribution α(σ) of path starting points is a strictly
increasing function from α(0) = 0 to α(1) = μ (with moreover α′(σ ) ≥ 1 when
defined). For a generic such distribution, the ranges of t for which x(t) is real is simply
] − ∞, q2α(0)] ∪ [q2α(1),+∞[ for q > 1 and ] − ∞, q2α(1)] ∪ [q2α(0),+∞[ for q < 1,
corresponding to the extended range just discussed. The corresponding arctic curve is thus
made of two portions which meet at some limiting point, tangentially to the N-boundary and
corresponding to t → ±∞. Indeed, for t → ±∞, x(t) → q−2 and x′(t) ∼ B q−2/t2 with
B = 2Log(q)

∫ 1
0 q2α(σ)dσ , and the expressions in Theorem 5.4 lead to Y → q2 (i.e. y → 1)

while X → B q2(γ+q2)
(q2−1)(1+γ )

, and it is easily checked that the tangent curve has slope 0 at this
point.
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5.3 Freezing Boundaries

As discussed in detail in References [8], [9] and [11], extra domains where x(t) is real
may appear for particular distributions α(σ) corresponding to the following two situations,
referred to as “freezing boundaries” since the new created portions of arctic curve delimitate
frozen domains which are adjacent to the S boundary:

• The function α(σ) presents some “gaps” i.e. has discontinuities at some values σ =
σp ∈ [0, 1] (i.e. α(σ+

p ) − α(σ−
p ) = δp > 0, corresponding to a region of the S boundary

of linear size n δp free of starting points, i.e. filled with defects). Then the function x(t),

as given by (27), remains well defined and real positive for t ∈ [q2α(σ−
p ), q2α(σ+

p )] if q > 1
(respectively t ∈ [q2α(σ+

p ), q2α(σ−
p )] if q < 1). This may be seen by writing

x(t) = q
−2t
∫ σ−

p
0

dσ

t−q2α(σ)
q
−2t
∫ 1
σ+
p

dσ

t−q2α(σ) (34)

with, assuming say q > 1, a first and second factor well defined and real positive9

respectively for t ∈]−∞, 1]∪ [q2α(σ−
p ),+∞[ and for t ∈]−∞, qα(σ+

p )]∪ [q2α(1),+∞[
so that x(t) is well defined and real positive for t ∈] − ∞, 1] ∪ [q2α(σ−

p ), q2α(σ+
p )] ∪

[q2α(1),+∞[. The new (middle) interval of t then creates a new portion of arctic curve
via the parametric expression of Theorem 5.4.

• The function α(σ) presents some “minimal slope” intervals, i.e. satisfies α′(σ ) = 1
for σ ∈ [τp, τp+1] for some τp’s in [0, 1] (corresponding to a linear portion of the S
boundary of length n(τp+1 − τp) without defect). Then the function x(t) remains well
defined (by analytic continuation) and is now real negative for t ∈ [q2α(τp), q2α(τp+1)] if
q > 1 (respectively t ∈ [q2α(τp+1), q2α(τp)] if q < 1). This may be seen by writing

x(t) = q
−2t
∫ τp
0

dσ

t−q2α(σ)
q
−2t
∫ τp+1
τp

dσ

t−q2(α(τp )+σ−τp )
q
−2t
∫ 1
τp+1

dσ

t−q2α(σ)

= q
−2t
∫ τp
0

dσ

t−q2α(σ)
q2α(τp)

(
t − q2α(τp+1)

)

q2α(τp+1)
(
t − q2α(τp)

) q
−2t
∫ 1
τp+1

dσ

t−q2α(σ) (35)

(where we used α(τp+1) − α(τp) = τp+1 − τp). Assuming say q > 1, the left and right
factors are well defined and real positive respectively for t ∈] − ∞, 1] ∪ [q2α(τp),+∞[
and for t ∈] − ∞, qα(τp+1)] ∪ [q2α(1),+∞[ and the middle factor is well defined for all
values10 of t so that x(t) is well defined and real for t ∈]−∞, 1] ∪ [q2α(τp), q2α(τp+1)] ∪
[q2α(1),+∞[. The new (middle) interval of t then creates a new portion of arctic curve via
the expression of Theorem 5.4. Note that x(t) is positive for t ∈]−∞, 1]∪ [q2α(1),+∞[
but negative for t ∈ [q2α(τp), q2α(τp+1)].

At this stage, let us make the following remark: from the expression (31) for the family of
tangent curves, we deduce at Y = 1 the identity

Ft (X , 1) = (
X − t

)(
1 − x(t)

)(
1 + γ x(t)

)
.

Therefore, if we may find a finite (and strictly positive) value of t such that either x(t) = 1
or x(t) = −1/γ , then, upon differentiating Ft (X , 1) with respect to t , we deduce that both
Ft (X , 1) and ∂Ft

∂t (X , 1) vanish at X = t , hence the point
(
Log(t)/Log(q2), 0

)
lies on the

9 Here we allow for convenience the limiting possibility x(t) → +∞.
10 Again we allow for convenience the limiting possibility x(t) → ±∞.
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t

x(t)

1

Fig. 8 Variations of the function x(t) for a generic distribution α(σ), here for q > 1

arctic curve. Moreover, since ∂Ft
∂X (X , 1) also vanishes, the tangent curve, hence the arctic

curve itself, has a slope 0 at this point. In other words, we have the following property:

Proposition 5.7 The arctic curve is tangent to the horizontal axis at the point(
Log(t)/Log(q2), 0

)
for any finite (and strictly positive) value of t such that either x(t) = 1

or x(t) = −1/γ .

Note that such a situation never occurs for a generic distribution α(σ) for which, as
illustrated in Fig. 8, x(t) remains positive (therefore cannot be equal to −1/γ ) and is such
that x(t) = 1 only for t = 0. Indeed, for q > 1, x(t) increases from q−2 < 1 to 1 when t
increases from −∞ to 0, then increases from 1 to +∞ when t increases from 0 to 1, and
finally increases from 0 to q−2 < 1 when t increases from q2α(1) to +∞ (recall that x(t) is
generically not defined for t ∈]1, q2α(1)[). As for q < 1, x(t) decreases from q−2 > 1 to 1
when t increases from−∞ to 0, then decreases from 1 to 0 when t increases from 0 to q2α(1),
and finally decreases from +∞ to q−2 > 1 when t increases from 1 to +∞ (recall that x(t)
is generically not defined for t ∈]q2α(1), 1[).

The possibility of finding a finite t for which x(t) = 1 is however encountered in the
above-described case of a distribution α(σ) presenting a gap: indeed, as illustrated in Fig. 9
for q > 1, since the first contribution to x(t) in (34) increases from 0 to q−2 for t increasing
from q2α(σ−

p ) to +∞ (assuming for simplicity a single gap) while the second contribution
to x(t) increases from q−2 to +∞ for t increasing from −∞ to q2α(σ+

p ), then x(t) increases
continuously from 0 to +∞ when t increases from q2α(σ−

p ) to q2α(σ+
p ), hence passes through

the value x(t) = 1 for some finite t ∈ [q2α(σ−
p ), q2α(σ+

p )], leading to a tangency point with
x ∈ [α(σ−

p ), α(σ+
p )]. A similar scenario holds for q < 1.

The case x(t) = −1/γ occurs for a distribution α(σ) presenting now a minimal slope
interval, as illustrated in Fig. 10 for q > 1. Looking now at the expression (35) for x(t), the
left contribution increases from 0 to q−2 for t increasing from q2α(τp) to +∞ (assuming for
simplicity a single minimal slope interval) while the right contribution to x(t) increases from
q−2 to +∞ for t increasing from −∞ to q2α(τp+1), so that their product increases from 0 to
+∞ when t increases from q2α(τp) to q2α(τp+1). A closer look at the integrals shows that the
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t

x(t)

Fig. 9 Variations of the function x(t) of (34) for a distribution α(σ) presenting a single gap, and for q > 1.

The first contribution to x(t) (in blue) increases from 0 to q−2 for t increasing from q2α(σ−
p ) to +∞. The

second contribution (in orange) increases from q−2 to+∞ for t increasing from−∞ to q2α(σ+
p ). The function

x(t)) (in bold red) therefore increases continuously from 0 to +∞ when t increases from q2α(σ−
p ) to q2α(σ+

p ),

hence passes through the value x(t) = 1 for some finite t ∈ [q2α(σ−
p )

, q2α(σ+
p )] (Color figure online)

t

x(t)

−1
γ

Fig. 10 Variations of the function x(t) of (35) for a distribution α(σ) presenting a single minimal slope
interval, and for q > 1. The function x(t) (in bold red) is the product of a first (in blue), a second (in green)
and third (in orange) contributions and runs from −∞ to 0 for t ∈ [q2α(τp), q2α(τp+1)], hence passes through
the value x(t) = −1/γ for some finite t in this interval (Color figure online)

approach to 0 for t → q2α(τp) is of the form (t − q2α(τp))1/α
′(τ+

p ) and the approach to +∞
for t → q2α(τp+1) is of the form (q2α(τp+1) − t)−1/α′(τ−

p+1). This product must be multiplied
by the middle contribution in (35) which is negative and runs from −∞ to 0 in this interval,
with a divergence of the form −(t − q2α(τp))−1 and a vanishing of the form −(q2α(τp+1) − t).
Since α(τ+

p ) > 1 and α(τ−
p+1) > 1 (we assume that the minimal slope interval does not
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extend outside the interval [q2α(τp), q2α(τp+1)]), the function x(t) runs from −∞ to 0 in this
interval, hence passes through the value x(t) = −1/γ for some finite t ∈ [q2α(τp), q2α(τp+1)],
leading to a tangency point with x ∈ [α(τp), α(τp+1)].
Remark 5.8 We have the following q = 1 equivalent of Proposition 5.7 (obtained by setting
t = q2τ and letting q → 1):

the arctic curve for q = 1 is tangent to the horizontal axis at the point (τ, 0) for any finite
(and strictly positive) value of τ such that either x(τ ) = 1 or x(τ ) = −1/γ , with x(τ )

as in Remark 5.2.

The above discussion extends straightforwardly and allows to follow the variation of the
function x(τ ) in a generic case or in the presence of a gap or a minimal slope interval in
the distribution α(σ). Similarly, the situation with x(τ ) = 1 (τ > 0) is encountered in the
presence of a gap while that with x(τ ) = −1/γ is encountered in the presence of a minimal
slope interval.

6 Examples

This section is devoted to the exposition of a number of examples of arctic curves for various
boundary conditions encoded in the distribution α(σ) of path starting points. We display in
particular the deformation of the arctic curve for varying values of q and γ and its limiting
shape for q and γ getting small or large. As already mentioned, the arctic curve decomposes
into various portions corresponding to various domains of the variable t . We will distinguish
three categories of starting point distributions:

• Ageneric case, with α(σ) continuous and α′(σ ) > 1. The variable t then spans two semi-
infinite intervals and the arctic curve is made of two portions meeting at some limiting
point with tangent y = 1 (corresponding to t → ±∞).

• Acasewith freezing boundaries, i.e.with eitherminimal slope intervals onwhichα′(σ ) =
1 (intervals of the S-boundary with no defect) or with gaps i.e. discontinuities of α(σ)

(intervals of the S-boundary filled with defects) interspersed with generic portions with
α′(σ ) > 1. The variable t then spans some extra finite intervals, thus adding new portions
to the arctic curve corresponding to the creation of frozen domains adjacent to the S-
boundary.

• A case of fully frozen boundarieswith an alternation of freezing boundaries of both types
(minimal slope intervals and gaps) with no generic interval in-between. This includes in
particular the case of an S-boundary with no defect, corresponding to the original Aztec
Diamond tiling problem.

6.1 Generic Case

For illustration, we discuss here the simplest case of a generic distribution of starting points
by choosing α(σ) = 2σ corresponding for instance to a regular pattern of defects, with a
defect at every second point of the S-boundary. We have in this case

x(t) = 1

q2

√
t − q4

t − 1
.

Figure 11 displays the variation of the arctic curve for γ = 1 and a value of q ranging from
0 to +∞. For q = 0, the arctic curve degenerates into a broken line made of a vertical line
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y

= 0

x

= ∞

Fig. 11 The variation of the arctic curve for α(σ) = 2σ at fixed γ = 1 as a function of q ∈ [0, +∞[. The
curve for a given q is displayed in the vertical plane of depth q/(1 + q)

y

γ
1+γ

γ = ∞

γ = 0

x

Fig. 12 The variation of the arctic curve for α(σ) = 2σ at fixed q = 1 as a function of γ ∈ [0, +∞[. The
curve for a given γ is displayed in the vertical plane of depth γ /(1 + γ )

segment from (0, 0) to (0, 1) and a line segment with slope −1/2 from (0, 1) to (2, 0). This
corresponds to the unique NILP configuration with minimal area, where each path alternates
between horizontal and diagonal steps. The above segment with slope−1/2 is the limit of the
region occupied by these paths. Similarly, for q → +∞, the arctic curve is made of a vertical
line segment from (2, 0) to (2, 1) and a segment with slope 1/2 from (0, 0) to (2, 1). This
now corresponds to the unique NILP configuration with maximal area, where the i-th path
(from the bottom) is made of i vertical steps followed by 2i horizontal steps. The segment
with slope 1/2 is the locus of the change from vertical to horizontal. The manifest symmetry
relating small and large q is a consequence of a more general left-right symmetry discussed
in Sect. 7.2.

Figure 12 displays the variation of the arctic curve for q = 1 and a varying γ in the range
[0,+∞[. Again we have a manifest symmetry relating small and large γ . The arctic curve
for γ = 0 or +∞ is not degenerate. As already mentioned, the case γ = 0 corresponds to
that studied in Reference [8] in connection with rhombus tilings with defects and the arctic
curve for α(σ) = 2σ is a portion of parabola, as first obtained in Reference [10]. The arctic
curve for γ = +∞ is the reflected piece of parabola under x → 2 − x . Note also that the
arctic curve for γ = 1 is the semi-circle x2 + y2 − 2x = 0 of radius 1 centered in (1, 0). For

generic γ , the curve has a maximum at (x, y) =
(

3+γ
2(1+γ )

, 1
)
with a horizontal tangent.
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γ

1

0
x

γ

1

0

x

y

Fig. 13 The variation of the arctic curve for q = 1 as a function of γ ∈ [0, 1] in two situations with a freezing
boundary. Left: the case of a single minimal slope interval between two generic domains (see text for the value
of α(σ)). Right: the case of a gap between two generic domains. In both cases, a new portion of arctic curve
appears with two cusps and a tangency point at x = τ such that x(τ ) = −1/γ (left) or x(τ ) = 1 (right). We
have indicated the loci of tangency points by thick red/purple curves (Color figure online)

6.2 Freezing Boundaries

We now address the case of a freezing boundary and start with a distribution α(σ) presenting
a unique minimal slope interval for σ ∈ [1/3, 2/3]. For illustration, we choose a distribution
α(σ) = 2σ for σ ∈ [0, 1/3], α(σ) = σ + 1/3 for σ ∈ [1/3, 2/3] and α(σ) = 2σ − 1/3 for
σ ∈ [2/3, 1]. This leads to

x(t) = 1

q2

√
t − q4/3

t − 1

t − q2

t − q4/3

√
t − q10/3

t − q2
.

For q → 1, the corresponding function x(τ ) reads

x(τ ) =
√

τ − 2/3

τ

τ − 1

τ − 2/3

√
τ − 5/3

τ − 1

which is real negative in the new interval τ ∈ [2/3, 1]. As displayed in Fig. 13 (left), this
creates a new portion of arctic curve with two cusps and a tangency point at x = τ such that
x(τ ) = −1/γ , in agreement with Remark 5.8.

We display similarly in Fig. 13 (right) the arctic curves for a freezing boundary corre-
sponding now to a gap in α(σ). The corresponding function x(τ ) reads

x(τ ) =
√

(τ − 1)(τ − 3)

τ (τ − 2)

which is real positive in the new interval τ ∈ [1, 2]. This now creates a new portion of arctic
curve with two cusps and a tangency point at x = τ such that x(τ ) = 1, in agreement with
Remark 5.8. Note that, as opposed to the previous case, the x-coordinate of the tangency
point (here τ = 3/2) is independent of γ .

Finally, we present a slightly more involved example of freezing boundaries with two
minimal slope intervals separated by a generic portion, namely α(σ) = σ for σ ∈ [0, 2/5],
α(σ) = 2σ−2/5 forσ ∈ [2/5, 3/5] andα(σ) = σ+1/5 forσ ∈ [3/5, 1]. The corresponding
function x(τ ) reads

x(τ ) = τ − 2/5

τ

√
τ − 4/5

τ − 2/5

τ − 6/5

τ − 4/5
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x
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1

0.00

Fig. 14 The variation of the arctic curve for q = 1 as a function of γ ∈ [0, 1] in the case of a freezing
boundary with two minimal slope intervals separated by a generic domain (see text for the value of α(σ)).
Two extra portions of arctic curve are created, each with a cusp and tangent to the x-axis at x = τ solution of
x(τ ) = −1/γ . The locus of the two solutions of this equation is indicated by the two thick red curves. The
left figure shows the variation for γ ∈ [0.1, 1] and the right one for γ ∈ [0, 0.1] in order to emphasize the
approach to the γ = 0 degenerate limit indicated in magenta (Color figure online)

which is real negative in the intervals [0, 2/5] and [4/5, 6/5]. This creates two portions of
arctic curve, each with a cusp, which are tangent to the x-axis at x = τ for the two solutions
of x(τ ) = −1/γ , one in each of the above intervals (see Fig. 14). For γ → 0, the left cusp
increases while the right one disappears. Simultaneously, the left tangency point reaches the
value x = 0 while the right one reaches x = 4/5. At γ = 0, the arctic curve degenerates into
an algebraic curve of degree 6 and a line segment y = x for x ∈ [0, 3√2/5] tangent to the
algebraic curve at their contact point (3

√
2/5, 3

√
2/5). This is due to the fact that, at γ = 0,

the first maximal slope interval induces a macroscopic domain where all the paths have only
vertical steps. The boundary of this “vertically frozen phase” appears as a line segment with
slope 1 tangent to the algebraic curve.

6.3 Fully Frozen Boundaries

We now address the case of a fully frozen boundary made of two minimal slope intervals
separated by a gap. For illustration, we choose the distribution of starting points such that
α(σ) = σ for σ ∈ [0, 1/2] and α(σ) = σ +1/2 for σ ∈ [1/2, 1]. For q = 1, this corresponds
to

x(τ ) = (τ − 1/2)(τ − 3/2)

τ (τ − 1)
.

This function is defined for all values of τ as the three extra intervals [0, 1/2] ∪ [1/2, 1] ∪
[1, 3/2] = [0, 3/2] cover the range between 0 and α(1) = 3/2. These intervals are responsi-
ble for three extra portions of arctic curve which altogether form the lower part of the arctic
curve. The latter has three tangency points separated by two cusps (see Fig. 15). The left
and right tangency points are at x = τ , where τ are the two solutions of x(τ ) = −1/γ in
[0, 1/2] and [1, 3/2] respectively. The middle tangency point has x = τ where x(τ ) = 1 in
[1/2, 1], namely x = 3/4. For γ = 0, our solution is a particular instance of that discussed
in Sect. 7.4 of Reference [9] and describes the rhombus tiling of a hexagonal domain. It is
well known that the limiting arctic curve is an ellipse, as shown in magenta in Fig. 15. In the
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Fig. 15 The variation of the arctic curve for q = 1 as a function of γ ∈ [0, 1] in the case of a fully frozen
boundary with two minimal slope intervals separated by a gap (see text for the value of α(σ)). Three extra
portions of arctic curve are created, which form the lower part of the arctic curve with three tangency points
alternating with two cusps. The left and right tangency points have x = τ solution of x(τ ) = −1/γ (thick red
curve), while the middle tangency point has x = τ solution of x(τ ) = 1 (thick purple line). The left figure
shows the variation for γ ∈ [0.1, 1] and the right one for γ ∈ [0, 0.1] in order to emphasize the approach to
the γ = 0 degenerate limit indicated in magenta (Color figure online)

present NILP setting, the hexagonal domain is extended into a rectangle but the paths outside
of the hexagon are all frozen into vertical or horizontal segments. This is due to the fact that,
at γ = 0, the maximal slope intervals induce macroscopic domains where all the paths have
only vertical steps (see Ref. [8], Fig. 22). The boundaries of these “vertically frozen phases”
appear as two line segments with slope 1 tangent to the ellipse. It is interesting to visualize
in Fig. 15 how these two segments arise as γ goes to 0 from the closing of two outgrowths
obtained by the merging of the two cusps with the external part of the arctic curve.

A final example of fully frozen boundaries is given by the tiling of the Aztec Diamond,
corresponding to a situation with no defect, hence m = n and ai = i , i = 0, . . . , n. The
starting point distribution is simply α(σ) = σ for σ ∈ [0, 1], hence corresponds to a minimal
slope interval of maximal size 1. The function x(t) is simply

x(t) = 1

q2
t − q2

t − 1
,

defined for all t and negative between 1 and q2.
For q = 1 and γ = 1, the arctic curve is the celebrated arctic circle of Ref. [15]. Figure 16

shows the evolution of this curve for varying q at γ = 1. The curve is tangent to the x-axis
at position x = Log(t)/Log(q2) with t such that x(t) = −1/γ = −1, namely

t = 2q2

1 + q2
.

For q → 0, the arctic curve degenerates into the line segment joining (0, 1) to (1, 0), corre-
sponding to the unique dominant NILP configuration with minimal area where all the paths
have only diagonal steps. The segment is then simply the limit of the domain covered by the
paths. Similarly, for q → +∞, the arctic curve degenerates into the line segment joining
(0, 0) to (1, 1), corresponding to the unique dominant NILP configuration with maximal area
where the i-th path is made of i vertical steps followed by i horizontal ones. The segment is
then simply the locus of the changes of slope of the paths.

For q = 1, the arctic curve is obtained from the function x(τ ) = 1 − 1/τ . Its variation
with γ is displayed in Fig .17: it is tangent to the x-axis at position x = τ solution of
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Fig. 16 The variation of the arctic curve for α(σ) = σ (Aztec Diamond) at fixed γ = 1 as a function of
q ∈ [1,+∞[ (left) and q ∈ [0, 1] (right). The curve for a given q is displayed in the vertical plane of depth
q/(1 + q). At q = 1, we recover the celebrated arctic circle of Ref. [15]. The curve is tangent to the x-axis at
x = τ such that x(τ ) = −1/γ = −1, as indicated by the thick red curve (Color figure online)
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Fig. 17 The variation of the arctic curve for α(σ) = σ (Aztec Diamond) at fixed q = 1 as a function of
γ ∈ [1,+∞[ (left) and γ ∈ [0, 1] (right). The curve for a given γ is displayed in the vertical plane of depth
γ /(1 + γ ). At γ = 1, we recover the arctic circle. The curve is tangent to the x-axis at x = τ such that
x(τ ) = −1/γ , i.e. x = γ /(1 + γ ) as indicated by the thick red line (Color figure online)

x(τ ) = −1/γ , namely x = γ /(1+ γ ). For γ → 0, the arctic curve degenerates into the line
segment joining (0, 0) to (1, 1), corresponding to the unique dominant NILP configuration
with no diagonal step, hence where the i-th path is made of i vertical steps followed by i
horizontal ones. For γ → +∞, the arctic curve degenerates into the line segment joining
(0, 1) to (1, 0), corresponding again to the unique dominant NILP configuration where all
the paths have only diagonal steps.

7 Discussion and Conclusion

7.1 Summary and Comparison to Known Results

In this paper, we have extended previous results about the arctic curve phenomenon in NILP
configurations with arbitrary starting points to a wider class of models involving weighted
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Schröder lattice paths. These are in bijection with domino tilings of Aztec rectangles with
defects along one boundary. The weights incorporate two parameters q and γ keeping track
respectively of the area below the paths and of the number of steps of one particular type.
The case γ = 0 recovers the weighted Rhombus tiling problem addressed in Reference [9].
The changes in the asymptotic behavior of the configurations and in the shape of the arctic
curve induced by the introduction of a non-zero value of γ are most drastic in the presence of
freezing boundaries. In particular, the arctic curve develops new outgrowths associated with
new tangency points (see Figs. 14, 15).

Like in References [8–10], the results of the present paper are obtained by applying the
TangentMethod of Reference [6]. Thismethod is not fully rigorous, and our aimwas twofold:
on one hand, add evidence to the validity of the method by considering new examples for
which the method reproduces known results; on the other hand use the method to derive new
results.

The domino tiling of Aztec rectangles was considered in Reference [2], but with a dif-
ferent definition of defects along the S-boundary: as opposed to our case, where each of the
m − n defects is created by adding an extra unit square along the S-boundary, this paper
considers m − n defects created by removing unit squares from the S-boundary. The result-
ing NILP are different, as in the latter case the first step of each path can only be vertical
or diagonal, whereas in our case it can also be horizontal. However, we expect this subtle
difference to be irrelevant in the large size asymptotics. Indeed, as noted in Remark 5.5,
the q = 1 version of our main Theorem 5.4 agrees with a result of Reference [2] in the
case of fully frozen boundaries. In this case, the function x(τ ) of Remark 5.2 takes the form
of a rational fraction with equal number of single zeros and poles, and can be identified at
γ = 1 with the function �s(θ) (see Reference [2], Theorem 5.1), namely �s(θ) = x(τ )−1,
while θ = τ . The parametric equation for the arctic curve (33) then matches Eq. (5.3) of
[2] (modulo a misprint L�s → L�′

s = �′
s/�s). For γ �= 1, our result in the case of

fully frozen boundaries matches that of [2], Appendix A, Theorem 8.2, with the correspon-
dence q = 1/γ . Let us stress that the methods employed in Reference [2] are completely
different and use asymptotic representation theory. This agreement is therefore highly non-
trivial.

Finally, our result extends beyond the particular case of fully frozen boundaries and to
arbitrary q �= 1 as well.

7.2 Symmetry of the Arctic Curve

Comparing Figs. 2 and 7, which describe the same distribution of defects characterized in the
scaling limit by the distribution α(σ), we immediately see an obvious left-right symmetry in
the path configuration design, under which ai → ãi :=m − an−i = an − an−i . Performing
this symmetry on the paths of Fig. 7 creates paths similar to those of Fig. 2 but this symmetry
induces the following changes:

• Thenewdefect distribution after symmetry is characterized by the function α̃(σ ):=α(1)−
α(1 − σ).

• The weights are changed into γ̃ = 1/γ and q̃ = 1/q (or equivalently q̃ = 1/q before
rescaling).
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This is easily seen by comparing the tile-to-path dictionary for red and blue path steps:

(36)
We note that the total area to the left of all red paths, which may be decomposed into
horizontal strips to the left of each vertical and diagonal step (see (36) for an illustration),
plus the total area to the right of all blue paths similarly decomposed into horizontal strips
to the right of the dual diagonal and vertical steps, sum up to (2m + 1) × n(n + 1)/2
(= 2m + 1 per vertical/diagonal step, with i such contributions for the i-th path from the
bottom, i = 0, 1, ..., n). Similarly the diagonal red steps correspond to vertical blue ones,
while the total of vertical plus diagonal blue steps is equal to the total of vertical plus diagonal
red ones, i.e. n(n + 1)/2. As a consequence, we get

Z({ai }, γ, q) = q(2m+1)n(n+1)/2 γ n(n+1)/2 Z({ãi }, γ̃ , q̃).

In the continuum limit, expressing the exponential moment-generating function (27) as

x(q2α(1) t) = q
−2t
∫ 1
0

dσ

t−q2α(σ)−2α(1) = q̃
2t
∫ 1
0

dσ

t−q̃2α̃(σ ) = 1

x̃(t)

allows to rewrite (31) as:

Ft (X , Y ) = −q2α(1) γ Y x(t)2 F̃t̃ (X̃ , Ỹ ) = 0 , t̃ = tq−2α(1), X̃ = Xq−2α(1), Ỹ = Y−1 .

where F̃t̃ (X̃ , Ỹ ) = 0 is the equation for the tangent family with weights γ̃ and q̃ andmoment-
generating function x̃(t̃), andwhere we identify the arguments X̃ = q̃2x̃ and Ỹ = q̃2 ỹ , namely
x̃ = α(1) − x and ỹ = y in terms of the new (reflected) coordinates (x̃, ỹ). The symmetry
of the family of tangent curves is obviously shared by its envelope, in summary:

Proposition 7.1 The arctic curve of Theorem 5.4 is “left-right symmetric” under the simul-
taneous change (x, y, t, γ, q) �→ (x̃, ỹ, t̃, γ̃ , q̃) of coordinates and parameters, with

x̃ = α(1) − x, ỹ = y, t̃ = t q−2α(1), γ̃ = γ −1, q̃ = q−1 .

It is worth mentioning another kind of “left-right” symmetry obeyed by the geodesics
of Sect. 3.3. We note indeed that the algebraic equation Gγ (X , Y ;U , V ) = 0 (15) for the
geodesics obeys the relation:

Gγ −1(X−1, Y ;U−1, V ) = 1

U 2X2γ
Gγ (X , Y ;U , V ).

This relation is unphysical, in the sense that only when X , Y ,U , V > 1 or X , Y ,U , V < 1
can the Schröder paths bewell-defined, and this symmetry violates these conditions. However
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M

P

M∗

Q

O

P∗

Q∗

x(τ)

x = (1−y)(1+γ y)
1+γ

T (M)

Fig. 18 The tangent line T (M) (in blue) associated with the point M :=(τ, x(τ )) lying on the plot of the
function x(τ ) (in red) is the perpendicular to the line (OQ) joining the origin O to the horizontal projection

Q of M on the parabola x = (1−y)(1+γ y)
1+γ

(in green) passing trough the vertical projection P of M on the
horizontal axis. Letting M vary along the whole plot of the function x(τ ) produces a family of tangent lines
whose envelope is the entire arctic curve (curve in blue). Here we have chosen γ = 2 and a function x(τ )

corresponding to a distribution α(σ) with a minimal slope interval. Note that, since the parabola hits the
vertical axis at the point Q∗ (in gray) with y = −1/γ , the point M∗ such that x(τ ) = −1/γ leads by the
above construction to a line T (M∗) precisely equal to the horizontal axis, hence the arctic curve is tangent to
this axis at the associated point P∗, in agreement with Remark. 5.8 (Color figure online)

we believe it is of a very different (non-combinatorial) nature, having to do rather with
properties of analytic continuation of q-binomials and trinomials. This can be traced back
to a symmetry property of the partition function for a single Schröder path, as expressed via
Theorem 3.2, Eq. (7) which expresses the partition function for a weighted path from (i, 0)
to (0, j) as a polynomial z j (t) ≡ z j (t; γ ) evaluated at t = q2i . Performing the change of
summation variable k → j − k and s → j +1− s in the numerator of the product, we easily
get the symmetry relation:

z j (t; γ ) = (−γ q t) j z j (q
−2t−1; γ −1),

which allows to analytically continue Z(i,0)→(0, j) = z j (t = q2i ; γ ) to negative values of i ,
at the expense of changing γ → γ −1. The map (X , Y ,U , V , γ ) �→ (X−1, Y ,U−1, V , γ −1)

does not interchange the two branches corresponding to the q < 1 and q > 1 geodesics.

7.3 A Geometric Construction of the Arctic Curve for q = 1

In the particular case q = 1, the family of tangent curves may be obtained via a simple
geometric construction as in Reference [8]. Using (31) with t = q2τ in the limit q → 1, the
tangent curves form a family of straight lines with equation (with the same slight abuse of
notations as before)

Fτ (x, y):=(1 + γ ) x(τ ) y + (
1 − x(τ )

)(
1 + γ x(τ )

)
(x − τ) = 0 ,

where x(τ ) is as in Remark 5.2. In particular, the line Fτ (x, y) = 0 is the line passing

though the point P:=(τ, 0) and orthogonal to the vector
−−→
OQ joining the origin O to the
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point Q:=
(

(1−x(τ ))(1+γ x(τ ))
1+γ

, x(τ )
)
. To obtain the family of tangent curves, in the (O, x, y)

plane, we may first represent the plot of the function x(τ ) in this plane (see Fig. 18), pick
a point M :=(τ, x(τ )) on this plot, denote by P its vertical projection on the horizontal axis
and by Q its horizontal projection on the parabola x = (1−y)(1+γ y)

1+γ
. The tangent line T (M)

with equation Fτ (x, y) = 0 is the perpendicular to the line (OQ) passing through P . Letting
M vary along the whole plot of x(τ ) builds the entire family of tangent curves.

Interestingly enough, the reverse construction allows, from the knowledge of the arctic
curve at any fixed γ , to easily recover the function x(τ ), hence all the moments of the
distribution of starting points.

7.4 Possible Generalizations

For γ = 0, our model is identified as a 5-vertex model on the square lattice [9]. More
generally, our weighted Schröder path model for arbitrary γ can be reformulated as a 10-
vertex model on the triangular lattice as follows: recall that the oriented latticeN in which our
paths are embedded is topologically equivalent to a regular triangular lattice. After rotation
by 45◦, paths give rise to the following 10 possible vertex environments:

Thismodel is a particular case of amore general 20-vertexmodel studied inReference [16].
In terms of paths, the extra 10 vertices correspond to allowing for “kissing points”, with the
following new environments:

As shown in Reference [16], the model is solvable by Bethe Ansatz techniques along a
particular integrable variety of Boltzmann weights.

The kissing path formulation of the 20-vertex model is the natural generalization of the
osculating path formulation of the 6-vertex model used in References [6,7] to obtain in
particular the arctic curve for the limit shape of large alternating signmatrices via the Tangent
Method. In this respect, it is tempting to postulate the existence of a limiting shape for the
20-vertex model with appropriate boundary conditions. We also expect the Tangent Method
to be applicable to this model to derive its arctic curve, whose shape should depend on the
new interaction weights between paths at the kissing points.

In a different direction, the path formulation of the refined topological vertex of Refer-
ence [14] involves elementary area weights alternating between two values q and t within
strips depending on the boundary conditions, giving rise to interesting arctic curves (see
Reference [12] for a treatment using matrix models). It would be interesting to apply the
Tangent Method to this situation.
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