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Abstract
Weuse the tangentmethod to compute the arctic curve of theTwenty-Vertex (20V)modelwith
particular domain wall boundary conditions for a wide set of integrable weights. To this end,
we extend to the finite geometry of domain wall boundary conditions the standard connection
between the bulk 20V and 6Vmodels via theKagome lattice icemodel. This allows to express
refined partition functions of the 20V model in terms of their 6V counterparts, leading to
explicit parametric expressions for the various portions of its arctic curve. The latter displays a
large variety of shapes depending on the weights and separates a central liquid phase from up
to six different frozen phases. A number of numerical simulations are also presented, which
highlight the arctic curve phenomenon and corroborate perfectly the analytic predictions of
the tangent method.We finally compute the arctic curve of the Quarter Turn symmetric Holey
Aztec Domino Tiling (QTHADT) model, a problem closely related to the 20V model and
whose asymptotics may be analyzed via a similar tangent method approach. Again results for
the QTHADT model are found to be in perfect agreement with our numerical simulations.
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1 Introduction

1.1 The 20VModel with DomainWall Boundary Conditions

The present paper deals with the so called Twenty-Vertex (20V) model [3,24], an alternative
denomination for the ice model on the regular triangular lattice. Recall that the ice model
is defined by assigning to each edge of the lattice an orientation satisfying the so-called “ice
rule” that each node is incident to as many ingoing as outgoing edges. In the case of the
triangular lattice, the ice rule gives rise to 20 possible environments around a given node,
displayed in Fig. 1, hence the alternative denomination of the model. For convenience, we
represent the triangular lattice as a square lattice supplemented with a second diagonal within
each face. Instead of using edge orientations, we may alternatively represent the ice model
configurations by “osculating paths” taking steps along the lattice edges. Paths are obtained
by drawing a path step whenever the underlying edge orientation runs fromNorth, Northwest
or West to East, Southeast or South. These steps are then uniquely concatenated at each node
into properly oriented non-crossing but possibly kissing or osculating paths, as shown in
Fig. 1, where the underlying orientation may be erased without loss of information. In all
generality, configurations of the 20Vmodel are enumeratedwith Boltzmannweights attached
to each node of the lattice, according to its local environment: the model therefore involves
a priori the data of 20 possible local weights for the 20 possible vertices.

So far, most of the results on the 20V model concern its bulk properties, corresponding to
local properties of the model defined on the infinite triangular lattice [3,24]. For instance, the
bulk phase diagram of themodel (with restricted values of the vertexweights) was established
in Ref. [24] while the bulk entropy of the model was obtained in [3]. Here, following [18],
we consider instead the 20V model defined on a finite domain of the triangular lattice, with
appropriate boundary conditions for which exact enumeration results may be obtained. At
large size and upon rescaling, a sensible limit can be reached, which describes the continuous
behavior of the model in finite geometry. Our study concerns more specifically 20V model
configurations with Domain Wall Boundary Conditions (DWBC), as defined in [18]. The
model is defined on an n × n square portion of the square lattice, with nodes at integer
coordinates (i, j) for i, j = 1, 2, . . . , n, and edges along all the elementary horizontal
segments (i, j) → (i + 1, j) (for 0 < i < n), all the elementary vertical segments (i, j) →

Fig. 1 Top rows: the 20 possible environments satisfying the ice rule at a node of the triangular lattice. Bottom
rows: the 20 equivalent osculating path configurations
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Fig. 2 Two allowed 20V model configurations with DWBC1 (top) or DWBC2 (bottom). In each case the left
picture uses the representation in terms of oriented edges and the right one the osculating path representation.
The arrows drawn in blue are fixed

(i, j+1) (for 0 < j < n), and all the elementary second diagonals (i, j+1) → (i+1, j) (for
0 < i, j < n). The internal edge set is completed by boundary edges with fixed orientations
according to either of the following two DWBC prescriptions (see Fig. 2):

• for DWBC1 (see Fig. 2-top), all the (horizontal or diagonal) edges of the left and right
boundaries except the (diagonal) lower right one are oriented towards the central square,
while all the (vertical or diagonal) edges of the top and bottom boundaries except the
(diagonal) upper left one are oriented away from the central square;

• for DWBC2 (see Fig. 2-bottom), all the (horizontal or diagonal) edges of the left and
right boundaries except the (diagonal) upper left one are oriented towards the central
square, while all the (vertical or diagonal) edges of the top and bottom boundaries except
the (diagonal) lower right one are oriented away from the central square.

Note that DWBC1 and 2 differ only by the orientations of the upper right and lower left
diagonal edges, which are opposite in the two settings. As a consequence, the configurations
of the 20V model with DWBC1 are in one-to-one correspondence with those of the 20V
model with DWBC2 by a simple 180◦ rotation. For instance, the configurations depicted in
Fig. 2-left are image of each other under this rotation. As a consequence, in the particular
case of vertex weights invariant under 180◦ rotation, the two models have the same partition
function. In the following, we will always be in such a situation.
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In the alternative osculating path language, our boundary conditions correspond to having
all the edges of the left and bottom boundaries occupied by a path step (with the upper left
and lower right included for DWBC1, excluded for DWBC2), and all the other boundary
edges unoccupied. Note that performing a 180◦ rotation on the edge orientations amounts in
the path language to performing both a 180◦ rotation and then a complementation in which
occupied and unoccupied edges are interchanged.

1.2 The Arctic Curve and the Tangent Method: Generalities

The 20V model with DWBC1 or 2 is the analog on the triangular lattice of the celebrated 6V
model with DWBC, defined on an n × n square portion of the square lattice. For appropriate
vertex weights, this latter model is known to exhibit the so-called arctic curve phenomenon
[7,21]: in the limit of large n (and after rescaling of the coordinates by 1/n), a typical
configuration presents a sharp phase separation between a number of “frozen” phases adjacent
to the square boundaries and in which the node environments are fixed, and a “liquid”
disordered phase in the center, with fluctuating node environments. We expect our 20V
model with DWBC1 or 2 to exhibit the same phenomenon: frozen phases where all nodes
have the same environment should exist in the vicinity of the boundaries, separated by a well-
defined arctic curve from a central liquid region. In the path language, the frozen regions
may be empty of all paths or, on the contrary, maximally filled with all the edges occupied,
or also regions with only vertical (resp. horizontal) occupied edges, etc.

The purpose of this paper is to get an explicit expression for the location of the arctic
curve of the 20V model with DWBC1 or 2, with possibly some non-trivial weights attached
to the twenty different vertices, and to identify the nature of the surrounding frozen phases.
A number of methods were developed to locate the arctic curve for non-intersecting or
osculating path problems, usually in the equivalent dimer or tiling language: these methods
include the asymptotic study of bulk expectation values via the technique of the Kasteleyn
operator [25,26,28], or the machinery of cluster integrable systems of dimers [20,27]. Here
we will instead recourse to so-called tangent method invented by Colomo and Sportiello [10]
whose implementation is as follows: one of the portion of the arctic curve consists in the
separation line between the liquid phase and the “empty” region, i.e. a region not visited by
any path. Clearly, at the microscopic level of the paths, this limit corresponds to the trajectory
of the uppermost path. To get themost likely location of this trajectory, the idea is to force this
uppermost path to exit the original n × n square domain at some “escape” point A along the
right boundary by sliding its original endpoint along the horizontal axis to some new distant
point B lying to the right of the original square domain (see Fig. 8 for an illustration in the
case of the 20V model). From A to B, the outermost path follows (in the continuous limit of
large n and after rescaling) a straight line since the visited region is empty of any other path.
For a fixed endpoint B, the most likely position of A is such that the line (AB) is tangent to
the original trajectory, hence to the arctic curve. Indeed the new trajectory of the uppermost
path is expected to first follow its original trajectory (due to its steric interactionwith the other
paths), hence to follow the arctic curve until B is in its line of sight, and from then on quit the
arctic curve tangentially1 in order to attain B via a straight line (since, from this point, the
trajectory takes place in a region empty of any other path) passing through the escape point
A. By changing the position of B and computing the corresponding most likely escape point
A, we get a family of tangent lines whose envelope is a portion of the arctic curve. Other

1 The tangency property was proved in [14] in the case of non-intersecting path models by a convexity
argument.
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portions of the curve are then obtained by the same technique upon using other equivalent
path representations of the model. Even though not fully proved at this stage except in a few
cases [1], the tangent method was tested successfully in various models [10,13,15–17,19]
and has led to a number of new predictions as it is quite easy to implement. Our main aim in
this paper is not to prove that the tangent method is rigorous but, assuming its applicability,
to derive its predictions for the arctic curve of the 20V model with DWBC1 or 2.

Wewill consider exclusively the case of attached vertexweights which are invariant under
180◦ rotation (in the oriented edge language) around any node. Then, since at the global level,
this transformation interchanges the DWBC1 and DWBC2 prescriptions, the arctic curve of
the 20V model with DWBC1 is the image under 180◦ rotation of the arctic curve of the 20V
model with DWBC2. Moreover, the two models differ only by the presence of one more path
for the DWBC1 prescription, starting at the upper left and ending at the lower right diagonal
edge. Even though this path is then precisely the outermost path which probes the location
of the arctic curve, we expect its trajectory to be undistinguishable from that of the path just
below in the continuous limit, itself undistinguishable from the trajectory of the outermost
path for the DWBC2 prescription. Otherwise stated, the boundary difference between the
two prescriptions is irrelevant in the continuous limit, so that both lead to the same arctic
curve.2 From the discussion above and for vertex weights invariant under 180◦ rotation, we
deduce that the arctic curve itself is symmetric under 180◦ rotation.

1.3 Plan of the Paper

The paper is organized as follows: Sect. 2 explains the connection between the 20Vmodel and
the 6Vmodel: first, following [3], we recall some correspondence between the 20Vmodel and
a triple of 6V models on sub-lattices of the Kagome lattice (Sect. 2.1) for some appropriate
choice of the vertex weights. In practice, this holds for a specific set of integrable vertex
weights parametrized by one quantum and three spectral parameters. For the particular case
of DWBC2, we then use the unraveling procedure of [18] to obtain a direct correspondence
between the 20V model and a single, properly weighted, 6V model with DWBC (Sect. 2.2,
Theorem 2.1).

This correspondence is refined in Sect. 3which deals with so-called “one-point functions”,
which are generating functions keeping track of the position of the point where the uppermost
path hits the right boundary (this point will become the escape point A in the tangent method
geometry). A relation between the one-point function of the 20VmodelwithDWBC2 and that
of the 6VmodelwithDWBC, generalizing that of [18], is given in Sect. 3.1 (Theorem3.1) and
proved in Appendix A. This relation is then used in Sect. 3.2 to obtain the large n asymptotics
of the 20V model one-point function, a crucial ingredient in the computation of the arctic
curve.

We then discuss in detail in Sect. 4 the implementation of the tangent method in a simple
case where the vertex weights depend on a single quantum parameter. A first portion of
arctic curve, called the “normal” portion, is obtained in Sect. 4.1 (Theorem 4.1) by a direct
application of the recipe described in Sect. 1.2 and illustrated in Fig. 8, i.e., after moving
the endpoint of the uppermost path to some distant positions B, (i) finding the most likely
position of A of the escape point, (ii) getting the equation of the tangent lines (AB) and
(iii) deducing the location of their envelope. This involves computing the partition function
of a single path (the escaping part of the uppermost path from A to B) with general 20V

2 This argument holds strictly speaking only for the portion of arctic curve delimiting the empty frozen region
but can be repeated for the other portions by use of the appropriate alternative path description.
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weights, using a general transfer matrix formalism detailed in Appendix B. To get a second
portion of arctic curve (Theorem 4.2), we recourse to an alternative set of paths describing
the 20V model configurations. Remarkably, as explained in Sect. 4.2, a shear transformation
maps these new path configurations into those of some “inverted” 20V model in a modified
geometry where the tangent method can still be applied and gives rise to a new “shear”
portion. The remaining portions of the arctic curve are deduced by symmetry arguments.

This approach is then extended in Sect. 5 to the general case where the weights depend
on all parameters, leading the main result of this paper in the form of Theorem 5.1, which
gives a complete description of the arctic curve, made of three portions and their symmetric
counterparts under 180◦ rotation. Sections 5.1 and 5.2 are devoted to the computation of
the analogue of the “normal” and “shear” portions in this more general weighting. Sect. 5.3
presents the computation of a new “final” portion obtained along the same lines as the “shear”
portion after exchanging the role of vertical and horizontal directions. Section 5.4 discusses
the nature of the various frozen phases and illustrates our results on the arctic curve by a
number of explicit plots.

Section 6 presents numerical simulations for large typical 20V model configurations.
Those are obtained by a Markov-chain process described in Sect. 6.1. The resulting pat-
terns are represented in Sect. 6.2 for various values of the parameters and display a perfect
agreement with the tangent method results.

In [18], it was shown that a correspondence exists between the 20Vmodel withDWBC1 or
2 and uniform weights, and a particular domino tiling problem: the Quarter Turn symmetric
Holey Aztec Domino Tiling (QTHADT).We analyze the arctic curve of this model in Sect. 7.
Its partition function is obtained in Sect. 7.1 and refined in Sect. 7.2. The latter is identified
with a suitably refined 6V partition function in Sect. 7.3, leading to an explicit arctic curve
via the tangent method (Sect. 7.4, Theorem 7.1). Again, these results are in perfect agreement
with numerical simulations presented in Sect. 7.5.

We gather a few concluding remarks in Sect. 8.

2 The 20V/6VModel Correspondence: Partition Functions

2.1 From the 20VModel to three 6VModels on the Kagome Lattice

As noticed in [3], for appropriate vertex weights, the 20V model may be reformulated as
an ice model on the Kagome lattice obtained by slightly shifting up each horizontal line.
Some of the triangles (Southwest pointing triangles with black surrounding edges in Fig. 3-
right) of the original lattice are preserved during this procedure. Their incident edges keep
their orientation. New triangles (Northeast pointing triangles with blue surrounding edges in
Fig. 3-right) appear, in correspondence with the nodes of the original triangular lattice. One
may then choose an orientation of their incident edges such that the ice rule is satisfied at each
node of the Kagome lattice. Moreover the maximum number of such orientations is two per
newly formed triangle.When two orientations are possible, the choice is independent for each
of the newly formed triangle. Each 20Vmodel configuration is thus in correspondence with a
number of icemodel configurations on theKagome lattice, withweightswhichmay be related
locally as follows: the Kagome lattice is naturally split into three sub-lattices numbered 1, 2
and 3 (see Fig. 3-right). The ice rule at each tetravalent node of the Kagome lattice leads to
six possible vertex environments, hence we are lead to three 6V models to which we assign
the weights of Fig. 4, where we imposed for convenience that the vertex weights be invariant
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Fig. 3 The transformation of a piece of triangular lattice into a piece of Kagome lattice. The Kagome lattice
is naturally divided into three sub-lattices 1, 2 and 3 as indicated

Fig. 4 The weights of the three 6V models on the three sub-lattices 1, 2 and 3 of the Kagome lattice

Fig. 5 A schematic picture of the
Yang-Baxter condition. The
equality must hold for any fixed
choice of orientation for the six
external edges and upon
summation over the three internal
edge orientations, subject to the
ice rule at each node

under a global reversing of the orientations. As a consequence, the weights of the equivalent
20V model, obtained by summing over the possible orientations around the newly formed
triangles, are also invariant under a global reversing of the orientations, leading to a list of ten
weights: a1a2a3, b1a2b3, b1a2c3, c1a2a3, b1c2a3, b1b2a3, a1b2c3+c1c2b3, a1b2b3+c1c2c3,
c1b2b3 + a1c2c3 and c1b2c3 + a1c2b3.

As a final and crucial restriction on the weights, we demand that the so-called Yang-Baxter
condition be satisfied, namely that the same weights are obtained for the 20Vmodel if, in our
equivalence, we shift the horizontal lines of the triangular lattice down instead of up. This
leads to the identity depicted in Fig. 5, and imposes the following extra conditions:

a1b2c3 + c1c2b3 = b1a2c3 , c1b2b3 + a1c2c3 = c1a2a3 , c1b2c3 + a1c2b3 = b1c2a3 .
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Fig. 6 Weight dictionary for the 20V configurations in the osculating path formulation. The weights are
invariant by complementation (exchange of empty and occupied edges) and by 180◦ rotation

These conditions are crucial as they will allow us to unravel the 20V model configurations
with DWBC1 or DWBC2 into configurations of a single 6V model with standard DWBC
(corresponding to the Kagome sub-lattice labelled by 1, see below). The set of the 20Vmodel
weights is then reduced to a list of seven values, with the dictionary depicted in Fig. 6:

ω0 = a1a2a3, ω1 = b1a2b3, ω2 = b1a2c3,

ω3 = a1b2b3 + c1c2c3, ω4 = c1a2a3, ω5 = b1c2a3, ω6 = b1b2a3 .
(2.1)

In this paper, we shall discuss exclusively the 20V model with weights of the form (2.1)
above (or specializations of these expressions). In particular, in the osculating path language,
these weights are manifestly invariant both under 180◦ rotation and under complementation
(exchange of occupied and un-occupied edge). As a consequence, the 20V models with
DWBC1 and 2 share the same partition function.

2.2 From the 20VModel with DWBC1 or 2 to One Copy of 6V with DWBC

A final restriction on the 20V model weights corresponds to choosing the weights of the
equivalent three Kagome 6V models among a set of integrable weights as done in [18].
Introducing the notations:

A(z, w) = z − w , B(z, w) = q−2 z − q2 w , C(z, w) = (q2 − q−2)
√
z w ,

we set

a1 = ν A(z, w) , b1 = ν B(z, w) , c1 = ν C(z, w) ,

a2 = ν A(q z, q−1 t) , b2 = ν B(q z, q−1 t) , c2 = ν C(q z, q−1 t) ,

a3 = ν A(q t, q−1 w) , b3 = ν B(q t, q−1 w) , c3 = ν C(q t, q−1 w) ,

(2.2)

with some arbitrary q ∈ C
∗, and arbitrary “spectral parameters” z, w and t , respectively

attached to the horizontal, vertical and diagonal direction. The global normalization ν does
not affect the statistics of the model and may be chosen arbitrarily: we take ν = 1/(2it1/3)
for future convenience.

The above homogeneousweights aremembers of amore general family of inhomogeneous
(i.e. node-dependent) integrable weights:

a1(i, j) = ν A(zi , w j ) , b1(i, j) = ν B(zi , w j ) , c1(i, j) = ν C(zi , w j ) ,

a2(i, k) = ν A(q zi , q−1 tk) , b2(i, k) = ν B(q zi , q−1 tk) , c2(i, k) = ν C(q zi , q−1 tk) ,

a3(k, j) = ν A(q tk, q−1 w j ) , b3(k, j) = ν B(q tk, q−1 w j ) , c3(k, j) = ν C(q tk, q−1 w j ) ,
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where a different spectral parameter zi , w j and tk is attached to each horizontal, vertical and
diagonal line respectively (the normalization ν is again arbitrary). Here the horizontal lines
are numbered by i = 1, . . . n from bottom to top, the vertical lines by j = 1, 2, . . . , n from
left to right, and the diagonal lines by k = 1, 2, . . . , 2n − 1 from the lower left to the upper
right corner. In this setting, the pair (i, j), (respectively (i, k) and ( j, k)) therefore refers to
the node of sub-lattice 1 (respectively 2 and 3) at the crossing of the i-th horizontal and j-th
vertical lines (respectively of the i-th horizontal/k-th diagonal and of the j-th vertical/k-th
diagonal lines). A crucial property of the above integrable weights is that they satisfy the
Yang-Baxter condition at each node for arbitrary spectral parameters zi , w j and tk . This
property is used in Appendix A.

Returning to the situation with homogeneous spectral parameters z, w and t , we finally
choose3

q = ei η , z = ei (η+λ) , w = e−i (η+λ) , t = eiμ , (η, λ, μ ∈ C).

With this parametrization, the 20V model weights of (2.1), with the choice (2.2), are even-
tually given by

ω0 = sin(λ + η) sin

(
λ + 3η + μ

2

)
sin

(
λ + 3η − μ

2

)

ω1 = sin(λ − η) sin

(
λ − η + μ

2

)
sin

(
λ + 3η − μ

2

)

ω2 = sin(2η) sin(λ − η) sin

(
λ + 3η − μ

2

)

ω3 = sin(2η)3 + sin(λ + η) sin

(
λ − η + μ

2

)
sin

(
λ − η − μ

2

)

ω4 = sin(2η) sin

(
λ + 3η + μ

2

)
sin

(
λ + 3η − μ

2

)

ω5 = sin(2η) sin(λ − η) sin

(
λ + 3η + μ

2

)

ω6 = sin(λ − η) sin

(
λ + 3η + μ

2

)
sin

(
λ − η − μ

2

)
, (2.3)

a parametrization equivalent4 to that of Kelland in [24]. We will finally restrict our choice to
real values of the angles η, λ and μ, which implies in particular that the three Kagome 6V
models are in the so-called disordered phase [3]. The range of these angles is taken so as to
ensure that all ω’s are positive, namely:

0 < η < λ < π − η, η − λ < μ < λ − η . (2.4)

Note as a consequence that η < π
2 and λ + 3η > μ.

As for the 6V model on the Kagome sub-lattice labelled 1, it has weights (a1, b1, c1) =
(a, b, c)/t1/3, where we recognize the standard 6V model weight parametrization in the
disordered phase:

a = sin(λ + η) , b = sin(λ − η) , c = sin(2η) . (2.5)

3 This choice corresponds to imposing z w = 1, which may be done without loss of generality since only the
ratios of weights matter for the statistics of the model.
4 With the notations of [24], the correspondence is λ = ζ + π − θ + (φ − π)/2, μ = φ − ζ − 3θ and
η = (π − φ)/2.
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Fig. 7 The unraveling of a 20V model configuration with DWBC2 (upper left) into a 6V model configuration
with DWBC on a square grid (lower right). Thanks to the Yang-Baxter relation, the diagonal lines may be
expelled out of the central square grid (upper right). This has the effect of isolating the vertices according
their type. The vertices of sub-lattice 1 stay in the central square region while the vertices of sub-lattice 2
and 3 are expelled, respectively to the left and the right, and to the top and the bottom. Due to the DWBC2
prescription and to the ice rule at each node, all the orientations of the expelled edges are fixed (lower left) so
that all the nodes of sub-lattice 2 (respectively 3) receive the weight a2 (respectively a3), leading to a global

multiplicative factor (a2a3)
n2 . The remaining central configuration is a 6V model configuration with DWBC

and weights (a1, b1, c1) or equivalently (a, b, c) of (2.5) up to a global factor (1/t1/3)n
2
. This leads to the

identity (2.6)

As explained in [18] and depicted in Fig. 7, the Yang-Baxter condition allows to unravel
the configurations of the 20V model with DWBC1 or 2 and with the integrable weights (2.2)
into configurations of a single 6V model on the Kagome sub-lattice 1. As a consequence, the
partition function for either DWBC1 or DWBC2 (denoted Z20V as the two are equal) with
the weights (2.3) and that for the 6V model with weights (a, b, c) of (2.5) above (denoted
Z6V
n [a, b, c]) are then directly proportional, namely:
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Theorem 2.1 See Ref. [18]

Z20V
n =

(
a2a3
t1/3

)n2

Z6V
n [a, b, c] =

(
sin

(
λ + 3η − μ

2

)
sin

(
λ + 3η + μ

2

))n2

Z6V
n [a, b, c] .

(2.6)

3 The 20V/6VModel Correspondence: One Point Functions

3.1 Refined Enumeration

The use of the tangentmethod requires a refined enumeration of the 20Vmodel configurations
where we keep track of the position where the uppermost path hits the right boundary, i.e.
the vertical line j = n. As explained in Appendix A, this enumeration may be obtained by
changing w → w θ for the spectral parameter of the last column ( j = n). Here, we will
concentrate on the DWBC2 prescription, which turns out to lead to simpler enumeration
formulas. Note that the uppermost path corresponds in this case to the path starting at the
horizontal edge (0, n) → (1, n) and ending at the vertical edge (n, 1) → (n, 0). The net
result is best expressed upon introducing the following refined partition function:

Z20VBC2
n (τ ) =

n∑
L=1

Z20VBC2
n;L τ L−1

where Z20VBC2
n;L denotes the partition function of the 20V model configurations with DWBC2

for which the uppermost path hits the vertical line j = n at position (n, L). Note that the step
just before the hitting point is either a horizontal or a diagonal step and we call Z20VBC2 –

n;L
and Z20VBC2 �

n;L the corresponding restricted refined partition functions, as well as:

Z20VBC2 −−
n (τ ) =

n∑
L=1

Z20VBC2 –
n;L τ L−1 , Z20VBC2 �

n (τ ) =
n∑

L=1

Z20VBC2 �

n;L τ L−1

with the obvious sum rule:

Z20VBC2
n (τ ) = Z20VBC2 –

n (τ ) + Z20VBC2 �

n (τ ) .

As for the 6V model with DWBC configurations, we consider a similar refinement as fol-
lows: as is well-known, configurations of the 6V model with DWBC are in bijection with
configurations of osculating paths. Those are obtained as for the 20V model by drawing
path steps along the edges oriented East or South and by connecting them uniquely into
non-crossing but possibly kissing well-oriented paths (going from the West boundary to the
South boundary of the square grid). We then denote by Z6V

n;L the partition function for those
configurations where the uppermost path (starting at the horizontal edge (0, n) → (1, n) and
ending at the vertical edge (n, 1) → (n, 0)) hits the line j = n at position (n, L). Note that
this hitting point is necessarily preceded by a horizontal step. We finally set

Z6V
n (σ ) =

n∑
L=1

Z6V
n;L σ L−1 .

From now on, it will be implicitly assumed that all the 6V model partition functions are
evaluated with the weights (a, b, c) of Eq. (2.5). With these notations, we may prove the
following identity, which generalizes (2.6) (see Appendix A for a detailed proof):
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Theorem 3.1 The refined partition functions Z20VBC2 –
n (τ ) and Z20VBC2�

n (τ ) of the 20Vmodel
with DWBC2 are related to the refined partition function Z6V

n (σ ) of the 6Vmodel with DWBC
via

Z20VBC2 –
n (τ ) + g(σ )Z20VBC2�

n (τ ) =
(a2a3
t1/3

)n2
Z6V
n (σ ) , (3.1)

where

τ = σ
σ sin(λ − η) sin

(
λ+3η−μ

2

)
− sin(λ + η) sin

(
λ−η−μ

2

)

σ sin(λ − η) sin
(

λ−η−μ
2

)
− sin(λ + η) sin

(
λ−5η−μ

2

) ×
sin

(
λ+3η+μ

2

)

sin
(

λ−η+μ
2

) ,

g(σ ) =
σ sin(2η) sin

(
λ+3η+μ

2

)

σ sin(λ − η) sin
(

λ−η−μ
2

)
− sin(λ + η) sin

(
λ−5η−μ

2

) .

(3.2)

Note that, for σ = 1, we have τ = 1 and g(σ ) = 1 as expected so as to recover (2.6).

Remark 3.2 If we insist on having a strict proportionality relation between Z20VBC2
n (τ ) and

Z6V
n (σ ), we have to demand that g(σ ) = 1 for all σ , with the easily checked property:

g(σ ) = 1 for all σ ⇔ μ = λ − 5η.

From the general expressions (2.3), this latter relation implies ω4 = ω2, ω5 = ω6 = ω3,
hence reduces in practice the number of weights to four values ω0, ω1, ω2, ω3. We then have
a strict proportionality relation:

Z20VBC2
n (τ ) =

μ=λ−5η
(sin(4η) sin(λ − η))n

2
Z6V
n (σ )

with τ and σ related via

τ = 2 cos(2η) sin(λ − η) σ − sin(λ + η)

sin(λ − 3η)
. (3.3)

Another useful refined enumeration of the 20V model configurations corresponds to
keeping track of the position where the uppermost path leaves the upper boundary, i.e. the
horizontal line i = n. This enumeration may be obtained by now changing z → z θ̃ for the
spectral parameter of the top line (i = n). We now introduce the refined partition function:

Z̃20VBC2
n (τ̃ ) =

n∑
L=1

Z̃20VBC2
n;L τ̃ L−1

where Z̃20VBC2
n;L denotes the partition function of the 20V model configurations with DWBC2

for which the uppermost path leaves the horizontal line i = n at position (L, n). The step just
after the leaving point is either vertical or a diagonal step and we call Z̃20VBC2 |

n;L and Z̃20VBC2 �

n;L
the corresponding restricted partition functions. With obvious notations, we now have the
sum rule:

Z̃20VBC2
n (τ̃ ) = Z̃20VBC2 |

n (τ̃ ) + Z̃20VBC2 �

n (τ̃ ) .

Without any further calculation, we note that, as clearly seen in the osculating path formu-
lation, the present refined enumeration is identical to the previous one up to a symmetry
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x ↔ y. As apparent in Fig. 6, this symmetry amounts to exchanging the weights ω2 ↔ ω5
andω1 ↔ ω6, leaving the otherweights unchanged. From their explicit expressions (2.3), this
amounts precisely to performing the transformation μ ↔ −μ, leaving η and λ unchanged.
We immediately deduce:

Theorem 3.3 The refined partition functions Z̃20VBC2 |
n (τ̃ ) and Z̃20VBC2�

n (τ̃ ) of the 20Vmodel
with DWBC2 are related to the refined partition function Z6V

n (σ ) of the 6Vmodel with DWBC
via

Z̃20VBC2 |
n (τ̃ ) + g̃(σ )Z̃20VBC2�

n (τ̃ ) =
(a2a3
t1/3

)n2
Z6V
n (σ ) (3.4)

with

τ̃ = σ
σ sin(λ − η) sin

(
λ+3η+μ

2

)
− sin(λ + η) sin

(
λ−η+μ

2

)

σ sin(λ − η) sin
(

λ−η+μ
2

)
− sin(λ + η) sin

(
λ−5η+μ

2

) ×
sin

(
λ+3η−μ

2

)

sin
(

λ−η−μ
2

) ,

g̃(σ ) =
σ sin(2η) sin

(
λ+3η−μ

2

)

σ sin(λ − η) sin
(

λ−η+μ
2

)
− sin(λ + η) sin

(
λ−5η+μ

2

) .

(3.5)

Remark 3.4 Again a strict proportionality relation between Z̃20VBC2
n (τ̃ ) and Z6V

n (σ ) is
obtained whenever g̃(σ ) = 1 for all σ , with

g̃(σ ) = 1 for all σ ⇒ μ = −λ + 5η

in which case

Z̃20VBC2
n (τ̃ ) =

μ=−λ+5η
(sin(4η) sin(λ − η))n

2
Z6V
n (σ )

with τ̃ and σ related via

τ̃ = 2 cos(2η) sin(λ − η) σ − sin(λ + η)

sin(λ − 3η)

as in (3.3).

In the particular case μ = 0, we have ω2 = ω5 and ω1 = ω6 and the 20V model with
DWBC1 or 2 is symmetric under x ↔ y. If moreover λ = 5η, we have the proportionality
relations

Z
20VBC2
n (τ ) =

μ=0, λ=5η
Z̃
20VBC2
n (τ ) =

μ=0, λ=5η
(sin(4η))2n

2
Z6V
n (σ ) , τ = 1 + 4 cos2(2η) (σ − 1).

This case corresponds to a situation in which ω1 = ω2 = ω3 = ω4 = ω5 = ω6 =
sin(2η) sin2(4η) while ω0 = sin(6η) sin2(4η) and will be studied in detail in Sect. 4.

3.2 Asymptotics of One-Point Functions

The refined one-point functions H20VBC2
n (τ ) and H6V

n (σ ) are simply defined as normalized
refined partition functions via:

H20VBC2
n (τ ) = Z20VBC2

n (τ )

Z20V
n

, H6V
n (σ ) = Z6V

n (σ )

Z6V
n

123



B. Debin et al.

(recall that all the 6V model partition functions are implicitly evaluated with the weights
(a, b, c) of Eq. (2.5)). We also introduce the restricted refined one point functions

H20VBC2 –
n (τ ) = Z20VBC2 –

n (τ )

Z20V
n

, H20VBC2�

n (τ ) = Z20VBC2�
n (τ )

Z20V
n

which satisfy

H20VBC2 –
n (τ ) + H20VBC2�

n (τ ) = H20VBC2
n (τ )

H20VBC2 –
n (τ ) + g(σ )H20VBC2�

n (τ ) = H6V
n (σ )

(3.6)

with τ and g(σ ) as in (3.2), as well as their tilde counterparts obtained via the change
μ → −μ.

In the limit of large n, the asymptotics for the one-point function H6V
n (σ ) of the 6Vmodel

with DWBC and the weights (a, b, c) of (2.5) above is characterized by the function

f (σ ) = lim
n→∞

1

n
Log

(
H6V
n (σ )

)

whose expression is known [8] and may be given in parametric form as:

f (σ (ξ)) = Log

(
sin(α(λ − η)) sin(ξ + λ − η) sin(αξ)

α sin(λ − η) sin(α(ξ + λ − η)) sin(ξ)

)

σ(ξ) = sin(λ + η) sin(ξ + λ − η)

sin(λ − η) sin(ξ + λ + η)

(3.7)

where

α = π

π − 2η
. (3.8)

Using the correspondence (3.2), the parametrizationσ(ξ) ofσ translates into the following
parametrization τ(ξ) of τ :

τ(ξ) =
sin(λ + η) sin

(
λ+3η+μ

2

)
sin(ξ + λ − η) sin

(
ξ + λ−η+μ

2

)

sin(λ − η) sin
(

λ−η+μ
2

)
sin(ξ + λ + η) sin

(
ξ + λ+3η+μ

2

) . (3.9)

Since g(σ ) is bounded independently of n, the relations (3.6) imply that

lim
n→∞

1

n
Log

(
H20VBC2
n (τ (ξ))

)
= f (σ (ξ)) .

Let us now introduce for future use the function

r(τ ) = τ
d

dτ

(
lim
n→∞

1

n
Log

(
H20VBC2
n (τ )

))
. (3.10)

The function r(τ ) is given in parametric form by the above parametrization (3.9) of τ and
the following parametrization for r(τ ):

r(τ (ξ)) = τ(ξ)

∂ξ τ (ξ)
∂ξ f (σ (ξ))

= (cot(ξ + λ − η) − cot(ξ) + α cot(α ξ) − α cot(α(ξ + λ − η)))

×
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

)

sin(2η)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

))
(3.11)
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with α as in (3.8).

Remark 3.5 In the particular case μ = λ − 5η, using the correspondence (3.3), the
parametrization τ(ξ) of τ simplifies into:

τ(ξ) =
μ=λ−5η

sin(λ + η) sin(ξ + λ − 3η)

sin(λ − 3η) sin(ξ + λ + η)
(3.12)

and that of r(τ ) into:

r(τ (ξ)) =
μ=λ−5η

(cot(ξ + λ − η) − cot(ξ) + α cot(α ξ)

−α cot(α(ξ + λ − η)))
sin(ξ + λ + η) sin(ξ + λ − 3η)

sin(4η)
. (3.13)

4 The Case � = � − 5� = 0

We now turn to the explicit computation of the arctic curve of the 20V model with DWBC1
or 2. As a warmup, we start with the simple case

μ = 0, λ = 5η

where the weights thus depend on a single “angle” η. From their general expression (2.3),
it is easily checked that, up to a global normalization factor sin(2η) sin2(4η), the weights
for the various vertex environments are all equal to 1 except for the empty/full vertex with
weight5

�0 = sin(6η)

sin(2η)
= 1 + 2 cos(4η) .

In particular, the weights are invariant under the transformation6 x ↔ y, which implies that
the arctic curve is symmetric under this transformation. In the particular case η = π/8, all
the weights are equal to 1.

4.1 The Tangent Method in Its Simplest Flavor

We again consider the slightly simpler DWBC2 prescription. The main result of this section
is the identification of a first portion of the arctic curve:

Theorem 4.1 The portion of arctic curve for the 20V model with DWBC2 at μ = 0 and
λ = 5η, as predicted by the direct application of the tangent method,7 has the following
parametric equation:

x(ξ) = 1 + ∂ξ R0(ξ)

∂ξ S0(ξ)
, y(ξ) = R0(ξ) − S0(ξ)

∂ξ R0(ξ)

∂ξ S0(ξ)
, ξ ∈ [0, π − 6η],

5 We use the notation �0 to recall that a global normalization factor sin(2η) sin2(4η) has been factored out
in all the weights, i.e. ω0 = sin(2η) sin2(4η) × �0 while ωi = sin(2η) sin2(4η) × 1 for i = 1 to 6.
6 Here we consider the x ↔ y symmetry in the path language for which the boundary conditions also have
this symmetry.
7 As already stressed in the introduction, here we assume the validity of the tangent method and, under this
assumption, derive rigorously the corresponding portion of arctic curve. The same remark holds for subsequent
Theorems 4.2, 5.1, 7.1 and 8.1.
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Fig. 8 A sample configuration of the 20V model with DWBC2 in which the uppermost path, starting at the
horizontal edge (0, n) → (1, n), exits the domain 1 < X , Y < n (in light blue) at the escape point A with
position (n, L) = (n, n�) and reaches a shifted endpoint B at position (n + M, 0) = (n(1+m), 0) via a final
vertical edge

where

R0(ξ) = (cot(ξ + 4η) − cot(ξ) + α cot(α ξ) − α cot(α(ξ + 4η)))
sin(ξ + 6η) sin(ξ + 2η)

sin(4η)
,

S0(ξ) = sin(ξ + 6η) sin(ξ + 2η)

sin(ξ) sin(ξ + 4η)
,

and α = π/(π − 2η).

To get the above result, we use the direct tangent method setting, with a geometry where the
uppermost path, starting at the horizontal edge (0, n) → (1, n) and originally ending at the
vertical edge (n, 1) → (n, 0), now exits the square domain 1 < X , Y < n (in the original
coordinate system (X , Y ) of the square lattice) and reaches a shifted endpoint at position
(n + M, 0) = (n(1 + m), 0) (i.e. ends with a vertical edge (n + M, 1) → (n + M, 0)) for
some positive M (see Fig. 8 for an illustration). We define by convention the escape point
as the point, with position (n, L) = (n, n�), where the uppermost path hits the right vertical
boundary for the first time, even if the pathmakes a number of vertical step before it eventually
leaves the originally accessible domain 1 ≤ X , Y ≤ n. Note that our choice of escape point
rather than the slightly more natural choice of the point where the path eventually leaves this
originally accessible domain, i.e. has X > n for the first time, makes in practice no difference
in the scaling limit of large n and turns out to be simpler for explicit computations. In rescaled
coordinates (x, y) = (X/n, Y/n), the escape point and endpoint have respective positions
(1, �) and (1 + m, 0).

The most likely escape point position � for a given m is obtained by maximizing with
respect to � the partition function of those configurations having a fixed value of �, namely
the quantity8

H20VBC2
n (τ )|τ n�Y 20V

(n,n�)→(n(1+m),0) � n�−1
0 ,

8 Here and throughout the paper, the notation F(x)|x p refers to the coefficient of x p in the series expansion
of F(x) in the variable x .
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where Y 20V
(n,n�)→(n(1+m),0) denotes the partition function for a single path from (n, n�) to

(n(1+m), 0) (starting possibly with a number of vertical steps as just discussed) with, at each
node along the path, the same weight as that of the corresponding 20V configuration. More
precisely, as discussed in Appendix B, each node in the empty space around the escaping path
also receives a weight �0 per empty vertex. Factoring those weights, the remaining effective
weight for the nodes visited by the path is 1/�0. Paths in Y 20V

(n,n�)→(n(1+m),0) are therefore
enumerated with a weight 1/�0 per visited node. To be fully consistent, the contribution 1
to H20VBC2

n (τ )|τ n� of the part of the uppermost path going from (n, n�) to (n, 0) must first
be replaced by that of a background segment of empty vertices, since this portion of path is
no longer present and replaced by a portion of path enumerated by Y 20V

(n,n�)→(n(1+m),0). This

background segment is made of n� − 1 empty vertices, hence the final factor � n�−1
0 in the

above quantity to be maximized.
Introducing the large n asymptotics

Y 20V
(n,n�)→(n(1+m),0) ∼

n→∞ en S(�,m)

and writing H20VBC2
n (τ )|τ n� = 1

2iπ

∮
dτH20VBC2

n (τ )/τ n�+1 so as to evaluate this latter quan-
tity by a saddle point method, the extremization conditions over τ (saddle point condition)
and � (most likely escape point condition) read respectively:

d

dτ
(−�Log τ + f (σ (τ ))) = 0

d

d�
(−�Log τ + S(�,m) + �Log�0) = 0

or equivalently, using the function r(τ ) introduced in (3.10):

� = r(τ ), τ = �0 e
d
d�

S(�,m) .

The corresponding tangent line passing trough (1, �) and (1+m, 0) has equation y+ �
m (x −

1) − � = 0, hence for the most likely escape point:

y + s(τ )(x − 1) − r(τ ) = 0 (4.1)

where the “slope” s(τ ) is given by

s(τ ) = r(τ )

m
with m := m(τ ) solution of τ = �0 e

d
d�

S(�,m) at � = r(τ ) . (4.2)

Note that, from (4.1), the actual slope of the tangent line in the (x, y) plane is −s(τ ), which,
from the underlying geometry, must run from 0 (horizontal line y = 1) to −∞ (vertical line
x = 1). The quantity s(τ ) must therefore span the interval [0,+∞]. In the simple case at
hand with μ = λ − 5η = 0, we have from (3.9) (or from the simpler expression (3.12)):

τ(ξ) = sin(6η) sin(ξ + 2η)

sin(2η) sin(ξ + 6η)

r(τ (ξ)) = (cot(ξ + 4η) − cot(ξ) + α cot(α ξ) − α cot(α(ξ + 4η)))
sin(ξ + 6η) sin(ξ + 2η)

sin(4η)
.

As for S(�,m), it may be obtained via a transfer matrix approach9 upon following the step by
step evolution of the escape path, as described in Appendix B. For our simple case where all

9 Here the use of the transfer matrix approach is not fully necessary but we use it as it will cover all the more
involved cases encountered in this paper.
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vertex weights are equal to 1 except for�0, the values of β in this Appendix are to be chosen
as β1 = β2 = β3 = 1, while the values of α are α1 = α2 = α3 = 1

�0
, α4 = α5 = α6 = 0.

This leads to10

S(�,m) = S(�,m, p3) := (� + m − p3)Log(� + m − p3) − (� − p3)Log(� − p3)

− (m − p3)Log(m − p3) − p3 Log p3 + (� + m − p3)Log

(
1

�0

)

taken at the value of p3 which maximizes S(�,m, p3) at fixed � and m. Writing the new
extremization condition ∂p3 S(�,m, p3) = 0 and solving (4.2) yields

s(τ ) = τ(1 + �0)

(τ − 1)(τ + �0)
= 4τ cos2(2η)

(τ − 1)(τ + 1 + 2 cos(4η))
.

Using the parametrization (3.12) for τ , we get immediately

s(τ (ξ)) = sin(ξ + 6η) sin(ξ + 2η)

sin(ξ) sin(ξ + 4η)

so that we end up with a family of tangent lines parametrized by ξ with equations:

0 = F(x, y; ξ) := y + s(τ (ξ))(x − 1) − r(τ (ξ))

= y + sin(ξ + 6η) sin(ξ + 2η)

sin(ξ) sin(ξ + 4η)
(x − 1)

− (cot(ξ + 4η) − cot(ξ) + α cot(α ξ)

−α cot(α(ξ + 4η)))
sin(ξ + 6η) sin(ξ + 2η)

sin(4η)
.

Here ξ runs over the range [0, π − 6η] to guarantee that s(τ (ξ)) spans the interval [0,+∞],
as dictated by the tangent method in the present geometry.

The corresponding portion of arctic curve (hereafter called the “normal” portion) is
obtained by solving the system of equations F(x, y; ξ) = ∂ξ F(x, y; ξ) = 0, which is linear
in the variables x and y, hence straightforwardly yields a parametric expression (x(ξ), y(ξ)):

x(ξ) = 1 + ∂ξr(τ (ξ))

∂ξ s(τ (ξ))
, y(ξ) = r(τ (ξ)) − s(τ (ξ))

∂ξr(τ (ξ))

∂ξ s(τ (ξ))
, ξ ∈ [0, π − 6η] .

This completes the proof ofTheorem4.1with the identification R0(ξ) = r(τ (ξ)) and S0(ξ) =
s(τ (ξ)). We do not give more explicit expressions here as the formulas are quite involved
and not particularly illuminating. A plot of this portion of arctic curve is depicted in Fig. 9.

Strictly speaking, the above expressions hold for the 20V model with DWBC2 only. As
explained in Sect. 1.2, we expect however that the very same portion is found for DWBC1
since the two boundary conditions differ only by the presence of one extra path, a difference
which is irrelevant in the continuous limit. From the DWBC1/2 symmetry under rotation
by 180◦, this implies that the portion (x(ξ), y(ξ))ξ∈[0,π−6η] has a symmetric portion (1 −
x(ξ), 1 − y(ξ))ξ∈[0,π−6η].

Note that each portion of curve is invariant under x ↔ y, in agreement with the fact that,
for μ = λ − 5η = 0, the model has this symmetry. In the above parametric formulation, this
symmetry is a consequence of the easily checked property:

F(x, y; ξ) = sin(ξ + 6η) sin(ξ + 2η)

sin(ξ) sin(ξ + 4η)
F(y, x;π − 6η − ξ) .

10 Here the quantity np3 may be simply interpreted as the number of diagonal steps in the path.
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Fig. 9 The arctic curve for μ = λ − 5η = 0, here at η = π/8. It is formed of a “normal” portion (solid curve
tangent to the x = 1 line) and its symmetric portion under 180◦ rotation, and by a “shear” portion (dashed
curve tangent to the x = 1 line) and its symmetric portions under 180◦ rotation and x ↔ y symmetry

4.2 The Tangent Method with the Shear Trick

The main result of this section is the identification of a second portion of the arctic curve via
what we shall call the “shear trick”:

Theorem 4.2 The portion of arctic curve for the 20V model with DWBC2 at μ = 0 and
λ = 5η, as predicted by applying the tangent method7 to a different set of paths and using
the “shear trick” has the following parametric equation:

x(ξ) = 1 + ∂ξ R̄0(ξ)

∂ξ S̄0(ξ)
, y(ξ) = R̄0(ξ) − S̄0(ξ)

∂ξ R̄0(ξ)

∂ξ S̄0(ξ)
, ξ ∈ [−2η, 0],

where

R̄0(ξ) = (cot(ξ + 4η) − cot(ξ) + α cot(α ξ) − α cot(α(ξ + 4η)))
sin(ξ + 6η) sin(ξ + 2η)

sin(4η)
,

S̄0(ξ) =
(
sin(ξ + 6η) sin(ξ + 2η)

sin(ξ) sin(ξ + 4η)
− sin(ξ + 6η) sin(ξ + 2η)

sin(ξ − 2η) sin(ξ + 2η)

)
,

and α = π/(π − 2η).

To compute the missing portions of the arctic curve, we recourse to a different family of
osculating paths, obtained as follows: starting from a given configuration of osculating paths
as in Fig. 2 for DWBC2, the new osculating path configuration is obtained by (i) exchanging
the occupied and non-occupied vertical edges and (ii) performing a global shear of the lattice
so as to recover the same vertices as those of the original 20V model but with diagonals now
in the other direction (see Fig. 10). For a given set of occupied edges after transformations (i)

123



B. Debin et al.

(a)

(b)

(c)

Fig. 10 Starting from a configuration of the 20Vmodel with DWBC2 (a), we first interchange the occupied and
non-occupied vertical edges (b) and then perform a global shear of the lattice (c) so as to transform the original
square domain into a rhombus. The re-connection of the occupied steps into osculating paths performed in (b)
is such that in (c), all the paths are oriented from lower left to upper right at each node

and (ii), the elementary steps are re-connected at each node in the unique way which creates
osculating paths all oriented from South, Southwest or West to East, Northeast or North.
As depicted in Fig. 11, the transformations (i) and (ii), together with the above connection
prescription, creates node environments which form some “inverted” 20V model, with a set
of vertices identical to those of the original 20V model, up to a left-right symmetry. Note
that this symmetry of vertex configurations holds globally but that a given vertex is not
transformed into its left-right symmetric vertex: for instance, the empty vertex is mapped
onto the vertex with exactly two occupied vertical edges and conversely.

Note the following important changes for our new inverted 20V model with respect to the
original DWBC2 setting:
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Fig. 11 At the level of a node, the transformation of Fig. 10 maps the vertices of the 20V model (top set) to
vertices of some inverted 20V model (bottom set) where the paths are now oriented from South, Southwest or
West to East, Northeast or North. We have also indicated the intermediate set of vertices (middle set) before
shear

• The inverted 20Vmodel hasmodifiedweights inherited from its pre-image: the non trivial
�0 = 1+2 cos(4η)weight is now attached to the vertex with two occupied vertical edges
or its complementary vertex (left column of Fig. 11).

• The domain spanned by the paths is no longer a square but a rhombus (see Fig. 10-(c)).
• The DWBC2 prescription is replaced by the following boundary conditions: ordering

the paths from bottom to top according to their starting (diagonal or horizontal) edge on
the left boundary, the (n − 1) first paths (i.e. the lower “half” of the paths) now have
their final step at the first n − 1 successive horizontal edges along the lower (diagonal)
boundary of the rhombus while the n last paths (i.e. the upper half of the paths) have their
final step at the successive vertical edges along on the upper (diagonal) boundary of the
rhombus (see Fig. 10-(c)).

The transformation (i) above was designed to create, in the new geometry, a region empty
of paths in the vicinity of the lower-right corner of the rhombus. The desired new portion of
arctic curve is obtained in the scaling limit as the frontier between this empty region and that
occupied by the paths reaching the upper boundary of the rhombus. To obtain this frontier
by the tangent method, we again use a geometry where the outermost of these paths, namely
the path ending at the rightmost vertical edge of the upper boundary of the rhombus (i.e.
the n-th path, whose endpoint is originally at position (n, 2n)) exits the originally accessible
domain (with a rhombus shape) on the vertical right boundary at some position11 (n, n +
L − 1) = (n, n(1 + �) − 1) in the original coordinate system (X , Y ) and reaches its shifted

11 The escape point is defined with the same convention as before as the position where the escape path hits
the right boundary of the original rhombic domain for the first time.
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Fig. 12 A sample configuration of the inverted 20V model in which the n-th path (counted from the bottom)
exits the domain 1 < X , (1 + Y − X) < n (in light blue) at position (n, n + L − 1) = (n, n(1 + �) − 1) and
reaches a shifted endpoint at position (n + M, 2n) = (n(1 + m), 2n) via a final vertical edge

endpoint at position (n + M, 2n) = (n(1 + m), 2n) (see Fig. 12). In rescaled coordinates
(x, y) = (X/n, Y/n), this corresponds respectively to position (1, 1+�) for the escape point
and (1 + m, 2) for the endpoint.

As before, the most likely escape point position � for a givenm is obtained by maximizing
the appropriate quantity, namely:

H20VBC2
n (τ )|τ n�

Ȳ 20V
(n,n+n�−1)→(n(1+m),2n)

� n−n�
0

with respect to �. The first term H20VBC2
n (τ )|τ n� corresponds to the contribution of the new

osculating paths inside the rhombus. Here we implicitly use the one-to-one correspondence
between our two families of osculating paths, which clearly has the following property: the
position of the hitting point of the outermost path of the second family is (n, n + L − 1) =
(n, n(1 + �) − 1) if and only if the position of the hitting point of the uppermost path of the
first family for the corresponding DWBC2 path configuration is (n, n�). The second term
Ȳ 20V

(n,n+n�−1)→(n(1+m),2n) denotes the partition function for a single path from (n, n + n�− 1)
to (n(1 + m), 2n) (starting possibly with a number of vertical steps) in the inverted 20V
model settingwith, at each node along the path, the same weight as that of the corresponding
inverted 20V configuration. As before, we view this path as embedded in a background of
empty vertices, which now receive the weight 1 in the inverted 20V model setting. To be
fully consistent, we must finally replace in H20VBC2

n (τ )|τ n� the part of path going (in the
inverted setting) from (n, n + n� − 1) to (n, 2n) by a set of n − n� empty vertices since

123



Arctic Curves of the Twenty-Vertex Model with Domain Wall Boundaries

this portion of path is no longer present and replaced by a portion of path enumerated by
Ȳ 20V

(n,n+n�−1)→(n(1+m),2n). This replacement of n − � vertices originally with two adjacent

vertical edges (each enumerated with an inverted 20V weight �0 in H20VBC2
n (τ )|τ n� ) by

n − n� empty vertices (new inverted 20V weight 1) leads to the denominator � n−n�
0 .

To compute the large n asymptotics of Ȳ 20V
(n,n+n�−1)→(n(1+m),2n), namely

Ȳ 20V
(n,n+n�−1)→(n(1+m),2n) ∼

n→∞ en S̄(�,m) ,

we recourse as before to the transfer matrix approach of Appendix B in a version adapted to
the present “shear” geometry: this corresponds to setting α1 = �0, α2 = 1, α3 = 2 − �0,
α4 = 1 − �0 and α5 = α6 = 0 and, as explained in Appendix B, performing the change
� → 1 − � as the height difference for the path beyond the escape point is now measured
from the top, hence equal to 1 − � instead of �. We therefore have

S̄(�,m) = S̄(�,m, p3, p4)

:= ((1 − �) + m − p3 − 2p4)Log((1 − �) + m − p3 − 2p4)

− p3 Log p3 − p4 Log p4

− ((1 − �) − p3 − 2p4)Log((1 − �) − p3 − 2p4)

− (m − p3 − p4)Log(m − p3 − p4)

+ ((1 − �) − p3 − 2p4)Log�0 + p3Log(2 − �0) + p4Log(1 − �0)

taken at the values of p3 and p4 which maximize S̄(�,m, p3, p4) at fixed � and m.
The extremization conditions over τ and � now read

d

dτ
(−�Log τ + f (σ (τ ))) = 0

d

d�

(−�Log τ + S̄(�,m) − (1 − �)Log�0
) = 0

or equivalently

� = r(τ ), τ = �0 e
d
d�

S̄(�,m) .

In the new geometry of Fig. 12, the corresponding tangent line passing trough (1, 1+ �) and
(1+m, 2) has equation y+ �−1

m (x −1)− �−1 = 0. Therefore, after performing the inverse
shear transformation y → y − x to bring back the path in the original geometry of a square
domain, the equation of the tangent line reads: y + (

1 − 1−�
m

)
(x − 1) − � = 0. For the most

likely escape point, this yields the tangent line equation:

y + s̄(τ )(x − 1) − r(τ ) = 0 (4.3)

where the slope s̄(τ ) is now given by

s̄(τ ) = 1 − 1 − r(τ )

m
with m := m(τ ) solution of τ = �0 e

d
d�

S̄(�,m) at � = r(τ ) . (4.4)

Writing the extremization conditions ∂p3 S̄(�,m, p3, p4) = ∂p4 S̄(�,m, p3, p4) = 0 and
solving (4.4) yields now

s̄(τ ) = τ(1 + �0)

(τ − 1)(τ + �0)
+ �0

τ(1 − �0) + �0

⇒ s̄(τ (ξ)) = sin(ξ + 6η) sin(ξ + 2η)

sin(ξ) sin(ξ + 4η)
− sin(ξ + 6η) sin(ξ + 2η)

sin(ξ − 2η) sin(ξ + 2η)
.
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We end up with a new family of tangent lines parametrized by ξ via

0 = F̄(x, y; ξ) := y + s̄(τ (ξ))(x − 1) − r(τ (ξ))

= y +
(
sin(ξ + 6η) sin(ξ + 2η)

sin(ξ) sin(ξ + 4η)
− sin(ξ + 6η) sin(ξ + 2η)

sin(ξ − 2η) sin(ξ + 2η)

)
(x − 1)

− (cot(ξ + 4η) − cot(ξ) + α cot(α ξ)

−α cot(α(ξ + 4η)))
sin(ξ + 6η) sin(ξ + 2η)

sin(4η)
.

The parameter ξ now spans the range [−2η, 0]. The range [−2η,−η] corresponds to s̄(τ (ξ))

decreasing from 1 to 0, while the range [−η, 0] corresponds to s̄(τ (ξ)) decreasing from 0 to
−∞, as dictated by the tangent method in the present geometry.

The corresponding new portion of arctic curve, hereafter referred to as the “shear” portion,
is obtained by solving the linear system F̄(x, y, ξ) = ∂ξ F̄(x, y, ξ) = 0 which yields again
a parametric expression (x(ξ), y(ξ))

x(ξ) = 1 + ∂ξr(τ (ξ))

∂ξ s̄(τ (ξ))
, y(ξ) = r(τ (ξ)) − s̄(τ (ξ))

∂ξr(τ (ξ))

∂ξ s̄(τ (ξ))
, ξ ∈ [−2η, 0] .

This completes the proof of Theorem 4.2 with the identifications R̄0(ξ) = r(τ (ξ)) and
S̄0(ξ) = s̄(τ (ξ)). This branch of the arctic curve is the same for DWBC2 andDWBC1 and the
symmetry DWBC1/2 under rotation by 180◦ implies that the portion (x(ξ), y(ξ))ξ∈[−2η,0]
has a symmetric portion (1 − x(ξ), 1 − y(ξ))ξ∈[−2η,0]. Finally, the x ↔ y symmetry of the
problem (since the 20V weights have this symmetry) implies the existence of two symmetric
portions (y(ξ), x(ξ))ξ∈[−2η,0] and (1− y(ξ), 1− x(ξ))ξ∈[−2η,0]. This leads to a total of four
portions which, together with the two previously computed portions, span the entire arctic
curve (see Fig. 9 for an illustration).

To conclude this section, let us discuss the “uniform” case where all the weights are equal
to 1, as easily obtained by setting η = π/8 in the above expressions. In this case the relation
between τ and σ is simply

τ = 2σ − 1 .

The solution for the “normal” portion of the arctic curve in given explicitly by (x(ξ), y(ξ)) =
(xπ/8(ξ), yπ/8(ξ)) with

xπ/8(ξ) = 1

18

(
3

(
5 cos

(
2ξ

3

)
+ cos

(
10ξ

3

))
− √

3

(
5 sin

(
2ξ

3

)
− sin

(
10ξ

3

)))

yπ/8(ξ) = 1

18

(√
3

(
5 cos

(
2ξ

3

)
− cos

(
10ξ

3

))
+ 3

(
5 sin

(
2ξ

3

)
+ sin

(
10ξ

3

)))

with ξ ∈ [0, π/4] (see Fig. 9). This describes a portion of some algebraic curvewith equation

311(x2 + y2)5 + 39 10(x2 + y2)4 − 36 5(x2 + y2)3

+ 62 20(73(x2 + y2)2 − 54x2y2) − 28 15(x2 + y2) − 212 = 0 .
(4.5)

As for the “shear” portion, it is given by

(x(ξ), y(ξ)) = (xπ/8(ξ), yπ/8(ξ) − xπ/8(ξ) + 1)

with ξ ∈ [−π/4, 0]. Otherwise stated, in the uniform case, the “shear” portion is obtained
from the analytic continuation of the “normal” portion by a simple shear transformation
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sending the y = 0 line onto the line x + y = 1. We will comment further on this in Sect. 8.2.
Note finally that, as explained in [18], configuration of the 20V model with DWBC1 or 2
are in bijection with so-called Alternating Phase Matrices (APM). The above arctic curve is
therefore also the limit shape of large APM’s.

5 The General Case

Let us now extend the previous study and derive the arctic curve for the general case of
weights given by (2.3). The results of this section are summarized in the following:

Theorem 5.1 The arctic curve for the 20Vmodel with DWBC2 at arbitrary admissible values
of the parameters η, λ and μ, as predicted by the tangent method 7, is made generically of
three portions, denoted “normal”, “shear” and “final” together with their images under
180◦ rotation. The three branches have respectively parametric equations:

Normal: xn(ξ) = 1 + ∂ξ Rn (ξ)

∂ξ Sn (ξ)
, yn(ξ) = Rn(ξ) − Sn(ξ)

∂ξ Rn (ξ)

∂ξ Sn (ξ)
, ξ ∈ [0, π − λ − η]

Shear: xs (ξ) = 1 + ∂ξ Rs (ξ)

∂ξ Ss (ξ)
, ys (ξ) = Rs (ξ) − Ss (ξ)

∂ξ Rs (ξ)

∂ξ Ss (ξ)
, ξ ∈

[
− λ−η+μ

2 , 0
]

Final: x f (ξ) = R f (ξ) − S f (ξ)
∂ξ R f (ξ)

∂ξ S f (ξ)
, y f (ξ) = 1 + ∂ξ R f (ξ)

∂ξ S f (ξ)
, ξ ∈

[
− λ−η−μ

2 , 0
]

where

Rn(ξ) = Rs(ξ) = (cot(ξ + λ − η) − cot(ξ) + α cot(α ξ) − α cot(α(ξ + λ − η)))

×
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

)

sin(2η)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

)) ,

R f (ξ) = (cot(ξ + λ − η) − cot(ξ) + α cot(α ξ) − α cot(α(ξ + λ − η)))

×
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

)

sin(2η)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

)) ,

Sn(ξ) =
sin(ξ + λ + η) sin(ξ + λ − η)

(
sin(ξ) sin(ξ + 2η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

))

sin(ξ) sin(ξ + 2η)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

)) ,

Ss(ξ) =
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
2ξ + λ−η+μ

2

)
sin

(
λ+3η+μ

2

)

sin(2η − ξ) sin(ξ)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

)) ,

S f (ξ) =
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
2ξ + λ−η−μ

2

)
sin

(
λ+3η−μ

2

)

sin(2η − ξ) sin(ξ)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

)) ,

and α = π/(π − 2η).

The three following sub-sections are devoted to the derivation of these three sets of parametric
expressions.
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5.1 The“Normal” Portion of the Arctic Curve and Its Symmetric Portion

The first branch of the arctic curve is obtained exactly as before as the envelope of the tangent
lines with equation (4.1) with r(τ ) as is (3.10) and s(τ ) now given by

s(τ ) = r(τ )

m
with m := m(τ ) solution of τ = ω0

ω1
e

d
d�

S(�,m) at � = r(τ ) (5.1)

since the quantity to maximize with respect to � is now

H20VBC2
n (τ )|τ n�Y 20V

(n,n�)→(n(1+m),0)

(
ω0

ω1

)n�−1

with the last factor corresponding, as before, to the replacement of n� − 1 vertices traversed
by a vertical line (weight ω1) by n� − 1 empty vertices (weight ω0).

In the presence of the seven weights ω0, . . . , ω6, the more involved value of S(�,m) is
again obtained by the transfer matrix approach of Appendix B. Its expression may be written
as

S(�,m) = S(�,m, p3, p4, p5, p6)

:= (� + m − p3 − 2p4 − 2p5 − 3p6)Log(� + m − p3 − 2p4 − 2p5 − 3p6)

− p3 Log p3 − p4 Log p4 − p5 Log p5 − p6 Log p6
− (� − p3 − 2p4 − p5 − 2p6)Log(� − p3 − 2p4 − p5 − 2p6)

− (m − p3 − p4 − 2p5 − 2p6)Log(m − p3 − p4 − 2p5 − 2p6)

+ (� − p3 − 2p4 − p5 − 2p6)Log

(
ω1

ω0

)
+ (m − p3 − p4 − 2p5 − 2p6)Log

(
ω6

ω0

)

+ p3Log

(
ω0ω3 + ω2

4 − ω1ω6

ω2
0

)
+ p4Log

(
ω2
2 − ω1ω3

ω2
0

)
+ p5Log

(
ω2
5 − ω6ω3

ω2
0

)

+ p6Log

(
2ω2ω4ω5 + ω1ω6ω3 − ω3ω

2
4 − ω1ω

2
5 − ω6ω

2
2

ω3
0

)

taken at the values of p3, . . . , p6 which maximize S(�,m, p3, p4, p5, p6) at fixed � and m.
Writing ∂pi S(�,m, p3, p4, p5, p6) = 0 for i = 3, . . . , 6 and solving (5.1) yields now the
parametric expression for s(τ ):

s(τ (ξ)) =
sin(ξ + λ + η) sin(ξ + λ − η)

(
sin(ξ) sin(ξ + 2η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

))

sin(ξ) sin(ξ + 2η)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

))

with τ = τ(ξ) as in (3.9). We end up with the parametric equation for the tangent lines

0 = F(x, y; ξ) := y + s(τ (ξ))(x − 1) − r(τ (ξ))

with s(τ (ξ)) as above and with the general expression r(τ (ξ)) of (3.11), while ξ now runs
over [0, π − λ − η]. As before, the corresponding portion of arctic curve has the parametric
expression (x(ξ), y(ξ)) with

x(ξ) = 1 + ∂ξr(τ (ξ))

∂ξ s(τ (ξ))
, y(ξ) = r(τ (ξ)) − s(τ (ξ))

∂ξr(τ (ξ))

∂ξ s(τ (ξ))
, ξ ∈ [0, π − λ − η] .

This completes the proof of the first branch of arctic curve in Theorem 5.1 with the iden-
tifications (xn(ξ), yn(ξ)) = (x(ξ), y(ξ)), Rn(ξ) = r(τ (ξ)) and Sn(ξ) = s(τ (ξ)). From
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Fig. 13 The weights of the twenty vertex configurations of the inverted 20V model as inherited from their
counterparts in the original 20V model ωi , i = 1, . . . , 6. For convenience, we may denote the new weights
by ω̄i , i = 1, . . . , 6 where the indexing is chosen so as to mimic the original model after an up-down reversal

the symmetry DWBC1/2 under rotation by 180◦, this “normal” portion of arctic curve
(x(ξ), y(ξ))ξ∈[0,π−λ−η] has a symmetric portion (1 − x(ξ), 1 − y(ξ))ξ∈[0,π−λ−η].

5.2 The“Shear” Portion of the Arctic Curve and Its Symmetric Portion

The second branch of the arctic curve is obtained as in Sect. 4.2 thanks to the shear trick. The
equation of tangent lines is again given by (4.3) with r(τ ) as is (3.10) and s̄(τ ) now given by

s̄(τ ) = 1 − 1 − r(τ )

m
with m := m(τ ) solution of τ = ω0

ω1
e

d
d�

S̄(�,m) at � = r(τ )

since the quantity to maximize is now

H20VBC2
n (τ )|τ n� Ȳ 20V

(n,n+n�−1)→(n(1+m),2n)

(
ω1

ω0

)n−n�

.

The value of S̄(�,m) is obtained by the transfer matrix approach of Appendix B in the
“shear” geometry. For the escape path, this geometry is simply obtained from the “normal”
geometry by a simple up-down symmetry (since the path nowgoes up), togetherwith a change
of the original 20V model weights ωi into inverted 20V weights ω̄i . As apparent in Fig. 13,
using for the weights ω̄i the appropriate labelling consistent with the up-down symmetry, we
have ω̄0 = ω1, ω̄1 = ω0, ω̄2 = ω4, ω̄3 = ω3, ω̄4 = ω2, ω̄5 = ω5 and ω̄6 = ω6. In practice,
we must therefore simply perform in the expressions for the “normal” geometry the changes
ω0 ↔ ω1 and ω2 ↔ ω4, together with the substitution � → 1 − �. To summarize, S̄(�,m)

may be written as

S̄(�,m) = S̄(�,m, p3, p4, p5, p6)

:= ((1 − �) + m − p3 − 2p4 − 2p5 − 3p6)Log((1 − �)

+ m − p3 − 2p4 − 2p5 − 3p6)

− p3 Log p3 − p4 Log p4 − p5 Log p5 − p6 Log p6

− ((1 − �) − p3 − 2p4 − p5 − 2p6)Log((1 − �) − p3 − 2p4 − p5 − 2p6)
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− (m − p3 − p4 − 2p5 − 2p6)Log(m − p3 − p4 − 2p5 − 2p6)

+ ((1 − �) − p3 − 2p4 − p5 − 2p6)Log

(
ω0

ω1

)

+ (m − p3 − p4 − 2p5 − 2p6)Log

(
ω6

ω1

)

+ p3Log

(
ω1ω3 + ω2

2 − ω0ω6

ω2
1

)

+ p4Log

(
ω2
4 − ω0ω3

ω2
1

)
+ p5Log

(
ω2
5 − ω6ω3

ω2
1

)

+ p6Log

(
2ω4ω2ω5 + ω0ω6ω3 − ω3ω

2
2 − ω0ω

2
5 − ω6ω

2
4

ω3
1

)

taken at the values of p3, . . . , p6 which maximize S̄(�,m, p3, p4, p5, p6) at fixed � and m.
The extremization conditions now lead to

s̄(τ (ξ)) =
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
2ξ + λ−η+μ

2

)
sin

(
λ+3η+μ

2

)

sin(2η − ξ) sin(ξ)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

))

with τ(ξ) as in (3.9). We end up with the parametric equation for the tangent lines

0 = F̄(x, y; ξ) := y + s̄(τ (ξ))(x − 1) − r(τ (ξ))

with s̄(τ (ξ)) as above and with the same general expression (3.11) for r(τ (ξ)) as for the

“normal” portion, while ξ now runs over
[
− λ−η+μ

2 , 0
]
. The corresponding portion of arctic

curve has the parametric expression (x̄(ξ), ȳ(ξ)) with

x(ξ) = 1 + ∂ξ r(τ (ξ))

∂ξ s̄(τ (ξ))
, y(ξ) = r(τ (ξ)) − s̄(τ (ξ))

∂ξ r(τ (ξ))

∂ξ s̄(τ (ξ))
, ξ ∈

[
−λ − η + μ

2
, 0

]
.

This completes the proof of the second branch of arctic curve in Theorem 5.1 with the
identifications (xs(ξ), ys(ξ)) = (x(ξ), y(ξ)), Rs(ξ) = r(τ (ξ)) and Ss(ξ) = s̄(τ (ξ)).
From the symmetry DWBC1/2 under rotation by 180◦, this “shear” portion of arctic curve
(x(ξ), y(ξ))

ξ∈
[
− λ−η+μ

2 ,0
] has a symmetric portion (1 − x(ξ), 1 − y(ξ))

ξ∈
[
− λ−η+μ

2 ,0
]. As

opposed to Sect. 4, the arctic curve does not have the symmetry x ↔ y since the weights
explicitly break this symmetry in general. Still, as discussed just below, the last portions of
arctic curve may easily be obtained via some symmetry arguments.

5.3 The“Final” Portion of the Arctic Curve and Its Symmetric Portion

To complete the arctic curve, we resort to geometries similar to that of previous sub-sections
for the “normal” and “shear” portions, but where the role of the x and y directions have been
exchanged. As already discussed, the vertex weights are not invariant under this symmetry
but their modified values are simply obtained by changing μ into −μ in (2.3). As a conse-
quence, new portions of arctic curve are immediately obtained from the known ones upon
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the simultaneous changes x ↔ y and μ ↔ −μ. If we start from the “normal” portion, we
get tangent line parametric equations

0 = F̃(x, y; ξ) := x + s̃(τ̃ (ξ))(y − 1) − r̃(τ̃ (ξ))

with τ̃ (ξ ), r̃(τ̃ (ξ)) and s̃(τ̃ (ξ)) given by

τ̃ (ξ) =
sin(λ + η) sin

(
λ+3η−μ

2

)
sin(ξ + λ − η) sin

(
ξ + λ−η−μ

2

)

sin(λ − η) sin
(

λ−η−μ
2

)
sin(ξ + λ + η) sin

(
ξ + λ+3η−μ

2

)

r̃(τ̃ (ξ)) = (cot(ξ + λ − η) − cot(ξ) + α cot(α ξ) − α cot(α(ξ + λ − η)))

×
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

)

sin(2η)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

))
(5.2)

and

s̃(τ̃ (ξ)) =
sin(ξ + λ + η) sin(ξ + λ − η)

(
sin(ξ) sin(ξ + 2η) + sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

))

sin(ξ) sin(ξ + 2η)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

)) .

Here ξ runs again over [0, π − λ − η]. These tangent lines form the same family as those
leading to the “normal” portion, due to the identity

F̃(x, y; π − λ − η − ξ)

=
sin(ξ) sin(ξ + 2η)

(
sin(ξ + λ − η) sin(ξ + λ + η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

))

sin(ξ + λ − η) sin(ξ + λ + η)
(
sin(ξ) sin(ξ + 2η) + sin

(
ξ + λ−η+μ

2

)
sin

(
ξ + λ+3η+μ

2

)) F(x, y; ξ) .

We therefore recover the same “normal” portion of the arctic curve. This could be expected
since this portion has tangents intersecting the positive x and y axes, and therefore may be
attained by the tangent method using escape paths with displaced endpoints on the positive
x axis or displaced starting points on the positive y axis.

More interestingly, if we start instead from the “shear” portion, we get a new portion
of arctic curve, hereafter called the “final” portion. The corresponding tangent lines have
parametric equation

0 = ˜̄F(x, y; ξ) := x + ˜̄s(τ̃ (ξ))(y − 1) − r̃(τ̃ (ξ))

with τ̃ (ξ ) and r̃(τ̃ (ξ)) given by (5.2) and

˜̄s(τ̃ (ξ)) =
sin(ξ + λ + η) sin(ξ + λ − η) sin

(
2ξ + λ−η−μ

2

)
sin

(
λ+3η−μ

2

)

sin(2η − ξ) sin(ξ)
(
sin(ξ + λ + η) sin(ξ + λ − η) + sin

(
ξ + λ−η−μ

2

)
sin

(
ξ + λ+3η−μ

2

)) .

Here ξ now runs over
[
− λ−η−μ

2 , 0
]
. The corresponding portion of arctic curve has the

parametric expression (x(ξ), y(ξ)) with

x(ξ) = r̃(τ̃ (ξ)) − ˜̄s(τ̃ (ξ))
∂ξ r̃(τ̃ (ξ))

∂ξ
˜̄s(τ̃ (ξ))

, y(ξ) = 1 + ∂ξ r̃(τ̃ (ξ))

∂ξ
˜̄s(τ̃ (ξ))

, ξ ∈
[
−λ − η − μ

2
, 0

]
.

This completes the proof of the third branch of arctic curve in Theorem 5.1 with the identi-
fications (x f (ξ), y f (ξ)) = (x(ξ), y(ξ)), R f (ξ) = r̃(τ̃ (ξ)) and Ss(ξ) = ˜̄s(τ̃ (ξ)). From the
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Fig. 14 The arctic curve for η = π/12, λ = 10π/12 and μ = 5π/12. It is formed of a “normal” portion
(solid curve tangent to the x = 1 and y = 1 lines), a “shear” portion (dotted curve tangent to the x = 1 line)
and a “final” portion (dashed curve tangent to the y = 1 line) and their three symmetric portions under 180◦
rotation

symmetry DWBC1/2 under rotation by 180◦, we deduce again that this “final” portion of arc-
tic curve (x(ξ), y(ξ))

ξ∈
[
− λ−η−μ

2 ,0
] has a symmetric portion (1−x(ξ), 1− y(ξ))

ξ∈
[
− λ−η−μ

2 ,0
].

The six portions of arctic curve computed so far, namely the “normal”, the “shear” and the
“final” portions together with their symmetric portions by 180◦ rotation, constitute the entire
arctic curve. An example of such arctic curve is displayed in Fig. 14.

A last remark is in order: the junction between the “shear” and “final” portions takes place
at a pointwhere the common tangent coincideswith the second diagonal x+y = 1. It is indeed

easily checked that s̄
(
τ

(
− λ−η+μ

2

))
= ˜̄s

(
τ̃

(
− λ−η−μ

2

))
= 1, while r

(
τ

(
− λ−η+μ

2

))
=

r̃
(
τ̃

(
− λ−η−μ

2

))
= 0.

5.4 Phases and Plots

The arctic curve is the limit between a liquid phase (inside the curve) and a number of frozen
phases (outside of the curve). Let us describe these frozen phases in the case of generic
values of η, λ and μ. As displayed in Fig. 15, there are six different frozen regions around
the arctic curve, each made of a single type of vertex. The phase denoted by E is made of
empty vertices only (top row of Fig. 6 with weight ω0) while the symmetric region under
180◦ rotation, denoted by HDV corresponds to a phase with fully occupied vertices (bottom
row of Fig. 6 with weightω0). Similarly, the phase denoted by H (resp. V ) is made of vertices
crossed by a single horizontal (resp. vertical) path (top row of Fig. 6 with weightω6, resp.ω1)
while the symmetric region under 180◦ rotation, denoted by DV (resp. HD) corresponds to
a phase with the complementary vertex (bottom row of Fig. 6 with weight ω6, resp. ω1).

Let us now present a number of plots to illustrate the evolution of the arctic curve with
varying η, λ and μ. The arctic curves are all invariant under rotation by 180◦. As we already
saw, the parameter μ (which varies in the range ] − λ + η, λ − η[) controls the asymmetry
of the arctic curve under the x ↔ y transformation. Figures 16 and 17 display arctic curves
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Fig. 15 Generic phases of the integrable 20V model with DWBC1 or 2. The six frozen phases are labelled
by their occupied edges, with H , D and V standing for horizontal, diagonal and vertical, while E stands for
“empty”. The two dashed segments are portions of the second diagonal separating different types of frozen
phases while the red curve is the arctic curve encompassing the liquid phase

Fig. 16 The arctic curve for η = π/8, μ = 0 and λ = (5, 7, 9, 11, 13) × π/16

for μ = 0, hence symmetric under x ↔ y. The first figure is for η = π/8 with a varying λ in
the range ]π/8, 7π/8[, while the second figure is for a value of η → 0 (in practice η = 0.01)
with a varying λ in the range ]0, π [. In both cases, the limiting curve λ → η degenerates
into the second diagonal x + y = 1, as easily understood from the values ω2,3,5,6 = 0
which imply that only one configuration survives, with all edges occupied below the second
diagonal and none above. Similarly, in the limit λ → π −η, the arctic curve degenerates into
the first diagonal y = x , as easily understood from the value ω0 = 0 which forces a unique
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Fig. 17 The arctic curve for η → 0 (here η = 0.01), μ = 0 and λ = (1, 4, 7, 10, 13) × π/14

Fig. 18 The arctic curve for η = π/8, λ = 5π/8 and μ = (0, 15, 25, 31) × π/64

configuration in which the occupied edges are: all horizontal edges above the first diagonal,
all vertical edges below the first diagonal, and all diagonal edges below the second diagonal.

Figure 18 shows the increasing asymmetry of the arctic curve under x ↔ y for increasing
μ in the range ]0, π/2[ for fixed values η = π/8 and λ = 5π/8. When the parameterμ tends
to its maximal value λ−η (here equal toπ/2), the arctic curve displays two outgrowths which
become narrower and narrower and eventually degenerate into two segments so that the arctic
curve is formed of a single convex curve (see Fig. 19-left). The two limiting segments are
tangent to this curve and have a slope −1/2 independently of λ and η. This phenomenon
has a simple explanation: for μ = λ − η, we have ω6 = 0 so that the H and DV frozen
phases cannot exist anymore. A direct transition then takes place between the frozen phases
HD and E (resp. between HDV and V ) and the slope −1/2 of the transition line is directly
dictated by the path geometry, as illustrated in Fig. 19-left). The evolution of the μ = λ − η

convex arctic curve with fixed η = π/16 and varying λ is represented in Fig. 19-right (with
λ ∈]π/16, 15π/16[). A similar phenomenon occurs when μ = η − λ (ω1 = 0), creating
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Fig. 19 The arctic curve for η = π/16, μ = λ−η and λ = (10, 16, 22, 26, 29)×π/32 (right). At μ = λ−η,
a direct transition takes place between HD and E (resp. between HDV and V ) along a segment of slope
−1/2 dictated by the local path geometry, as shown (left), here for λ = 22π/32

Fig. 20 The arctic curve for η → 0 (here η = 0.01), λ+η → π (here λ = π −0.03) andμ = (0, 25, 28, 30)×
π/32 (right) and μ = 31π/32 (left)

arctic curve configurations which are symmetric to those just described under the exchange
x ↔ y.

Figure 20 displays the evolution with μ of the arctic curve for a very small η and a value
of λ close to π (recall the λ < π − η, here we took η = 0.01 and λ = π − 0.03). For large
value of μ (recall that μ < λ−η, hence μ < π − 0.04), for instance μ = 31π/32, the arctic
curve is formed of two symmetric convex pieces connected by a narrow isthmus.

More precisely, a well-defined limit can be reached by setting

η = ε �1 , λ = π − ε(�1 + �2) , μ = π − ε(2�1 + �2 + �3) (5.3)

and sending ε → 0, with fixed �1,2,3 > 0 so that the parameters remain in the admissible
range (2.4). Up to an overall ε3, all the weightsωi remain finite and are positive homogeneous
polynomials of degree 3 in the �i ’s. In this limit, the arctic curve of Theorem 5.1 tends to
an algebraic curve made of two symmetric pieces: the first piece lies in the upper half of the
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Fig. 21 The arctic curve for λ = π −η−ε �2 andμ = π −η−ε(�2 +�3)with ε → 0 and some arbitrarily
fixed η (here for �3/�2 = 2). The limiting shape is independent of η and formed of two symmetric ellipses
tangent to the y = 1/2 line. Note that the “shear” portion in Theorem 5.1 gives rise to two portions in this
limit, one in each ellipse. The black dashed segment is the locus of the transition between the HD and V
frozen regions

rescaled square domain and is tangent to the lines y = 1, x = 1 and y = 1/2. The second
piece is its image under 180◦ and lies in the lower half of the square. As for the isthmus
observed in Fig. 20, it degenerates into a horizontal segment joining the two tangency points
along the y = 1/2 line. This segment corresponds to a new, direct transition between the
HD and V frozen regions and its horizontality is dictated by the path geometry.

It is interesting to follow more precisely the limit (5.3) of each of the six portions of
arctic curve. To get the limit of the “normal” portion, we must simultaneously set ξ = εϒ

so that ϒ varies in the range [0,�2]. Similarly, the limit of the “final” portion is obtained

by setting ξ = εϒ with ϒ varying in the range
[
−�3

2 , 0
]
. These two portions then lead to

two adjacent connected portions of the first piece of the algebraic curve (see Fig, 21 for an
illustration) while their symmetric portions contribute to the second piece. The case of the

“shear” portion is more subtle as the original range
[
− λ−η+μ

2 , 0
]
gives rise by rescaling to

two limiting intervals for the variable ξ : the vicinity of ξ = 0 is probed by setting ξ = εϒ

withϒ in the range ]−∞, 0]while the vicinity of− λ−η+μ
2 is probed by setting ξ = −π+εϒ

withϒ in the range [2�1+�2+ �3
2 ,+∞[. This eventually gives rise to two separate portions

of arctic curve, one contributing to the upper piece and the other of the lower one (see Fig. 21).
Since the “shear” portion was originally connected, the two separate limiting portions are in
fact connected by the horizontal segment encountered above, at the transition between the
HD and V regions. This segment however is no longer part of the arctic curve as it is not
incident to the liquid phase. The symmetric of the “shear” portion finally builds the missing
parts of the upper and lower pieces.

The same phenomenon of splitting of the arctic curve is in fact observed by keeping a finite
value ofηwheneverλ andμ tend to theirmaximal admissible values, namelyλ = π−η−ε �2

and μ = π − 2η − ε(�2 +�3) with ε → 0, �2,3 finite and positive. This leads to a limiting
arctic curve depending on �2,3 but independent of η (assuming that η itself is kept fixed
and does not scale with ε) corresponding to limiting weights ω0,4,5,6 → 0 and (projectively)
ω1,2,3 → 1. This η-independent limit may be reached in the above setting (5.3) by sending
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�1 → ∞. Remarkably, the corresponding limiting arctic curve is made of two ellipses
(exchanged by 180◦ rotation) with respective equations

(
�3(x − y) + 2�2(x + 2y − 2)

)2 + 8�2�3(1 − y)(1 − 2y) = 0 ,(
�3(x − y) + 2�2(x + 2y − 1)

)2 − 8�2�3y(1 − 2y) = 0 .

In particular, these curves depend on the ratio �3/�2, hence on the precise way in which the
weights ωi reach their limiting values 0 or 1. The corresponding arctic curve for �3/�2 = 2
is displayed in Fig. 21.

6 Simulations

6.1 Method

Numerical studies of the arctic curve phenomenon in the 6Vmodel with DWBC (or “domain-
wall-like” boundary conditions) are numerous [2,12,23,30–32]. In this section we will adapt
a Markov-chain Monte Carlo method due to Allison and Reshetikhin discussed in [2,30,31].
This algorithm exploits the bijection with osculating paths to design a local-move Markov-
chain whose stationary distribution is that associated with the weights (2.3). For the sake
of definiteness we will consider the 20V model with DWBC1, but the discussion is easily
extended to other fixed boundary conditions, including DWBC2.

Let us first consider the model with uniform distribution, i.e. with all the ωi ’s equal
(η = π/8, λ = 5η and μ = 0). The Markov-chain starts from an allowed configura-
tion (for example, the “diagonal” configuration displayed in Fig. 22-(b)) and preserves the
non-crossing property at each step. At any given iteration, either the configuration remains
unchanged or some elementary move is performed on a plaquette. The algorihm goes as
follows: start by selecting a plaquette at random, and, if the plaquette has at least a section
of path connecting its Northwest to its Southeast corner, randomly choose which section of
path to update ( , or ). The four possible moves are → , → , → and

→ , if allowed by the local environment. If no move is possible for this selected section
of path, remain in the same configuration for this iteration of the chain. Otherwise, perform a
move according to the rules Ri , i = 1, 2, · · · , 7 presented in Fig. 22-(a). Repeat the process
until the number of iterations is “sufficient” (see the discussion below).

Since every configuration of the model can be obtained from any other configuration by
finitely many elementary moves, the Markov-chain is ergodic. One can also verify that the
transition probability p(C → C′) from a configuration C to a configuration C′ is symmetric:
p(C′ → C) = p(C → C′). In particular, the two possibilities for the output in rules R5 and
R7 are precisely designed so as to ensure this property. Hence the detailed balance condition
is satisfied for the uniform distribution, which implies that the stationary distribution of this
Markov-chain is uniform, as required.

The uniform version of the algorithm is therefore such that, at every iteration, we either
stay in the same configuration C (the move is rejected) or we perform a move and obtain a
new configurationC′. Generalizing the algorithm to the non-uniform case of arbitraryweights
(2.3) can then be achieved by further rejecting some of the moves in a way that depends on
the weight of the putative new configuration C′. Assume that the move is attempted on a
plaquette whose center is located at (i, j) and call Wi, j (C

′) the product of the weights of
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(a) (b)

Fig. 22 (a) The rules R1− 7 used to perform the elementary moves of our Markov-chain. Plain lines indicate
occupied edges, dashed lines empty edges while at least one of the dotted line is occupied. When two outputs
are drawn, one is chosen with probability 1/2. (b) The “diagonal” configuration used as initial state of our
Markov-chain. It is made of a triangular HDV region and a triangular E region

Fig. 23 The observed frequencies of the 23 possible configurations of the 20V model with DWBC1 at n = 3,
compared with the corresponding theoretical probabilities, here for η = π/12, λ = 10π/12 and μ = λ − 5η.
The frequencies were measured from 23000 generated configurations

the four nodes around this plaquette in the configuration C′. The move is then accepted (in a
similar manner as in [2,30,31]) with a probability equal to:

P = Wi, j (C
′)

W0
, (6.1)

where the normalisation W0 =
(

max
k=0,...,6

ωk

)4

ensures that P ≤ 1. This Markov-chain is

ergodic and satisfies the detailed balance condition for the probability distribution induced
by the relative weights ωi . The ability of this algorithm to generate configurations with the
correct frequency was tested for a small size (n = 3, hence 23 configurations) and for several
choices of η, λ and μ (see Fig. 23 for an example).

The Markov-chain converges to the desired distribution in the limit of an infinite number
of iterations. In practice, we need a criterion to decide when to stop the simulation: the main
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criterion we used, also invoked in [30,31], is the stabilization of the arctic curve, namely that
no qualitative change in this curve is observed. In the cases where the convergence is slow,
our estimation is checked against that obtained by running another Markov-chain starting
from a completely different configuration, as is done in [2], and we make sure that the results
are comparable.

Notice that instead of (6.1), theMetropolis probability P = min
(
1,

Wi, j (C
′)

Wi, j (C)

)
can be used

alternatively.
For generic ω′

i s, this choice lowers the rejection of moves and hence increases the ther-
malization speed. Unless stated otherwise we used (6.1).

6.2 Results

Figure 24 displays a configuration with a stabilized arctic curve generated by our algorithm
for the uniform distribution, both in the path formulation (left) and vertex formulation (right).
Rather than displaying the precise 20V environments of each node, we choose to use as order
parameter the local density of diagonal steps. Indeed this average density is 1 in the frozen
phases HD, DV and HDV of Fig. 15, and 0 in H , E and V , while it varies continuously
in the liquid region. Figure 25 displays the value of this order parameter in the uniform case
η = π/8, λ = 5π/8 and μ = 0 and shows that it is indeed a good indicator for the position
of the arctic curve. The evolution of the arctic curve with varying parameters is shown in
Figures 26, 27 and 28. In all cases we also indicate the theoretical prediction (dashed curve):
the agreement is quite good, despite what looks like an “attraction” of the finite-size arctic
curve towards the liquid region. These finite size effects are estimated in Fig. 29 by evaluating
the average outermost path for different sizes, here in the uniform case. Similar finite size
effects were analyzed [22] in the case of the uniform domino tiling of the Aztec diamond,
and found to be governed by a scaling exponent α = −2/3. Our results are compatible with
a scaling exponent α = −2/3 as well.

Fig. 24 A typical configuration of the 20V model with DWB1 for n = 100 and with uniform distribution
in the osculating path representation (left) and in a colored vertex coding (right). Here vertices are colored
according to their label running from 1 to 20 in the order of Fig. 1
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Fig. 25 Local density of diagonal steps for the 20V model with DWBC1 with n = 200. The dashed curve is
plotted from the analytical expression of the arctic curve (with a scale factor of n)

Fig. 26 The local density of diagonal steps of the 20V model with DWBC1 for λ = 5η, μ = 0 and n = 100,
for several values of η ∈]π/6, π/12]. The order parameter is averaged over 1000 configurations. The dashed
curve is the analytic prediction for the arctic curve

Fig. 27 The local density of diagonal steps of the 20V model with DWBC1 for η = π
12 , μ = λ − 5η and

n = 100, for several values of λ ∈ [4η, 10η]. The order parameter is averaged over 1000 configurations. The
dashed curve is the analytic prediction for the arctic curve
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Fig. 28 The local density of diagonal steps of the 20Vmodel with DWBC1 for n = 100 in the caseμ �= λ−5η.
On the left η = π/6, λ = 9π/12 and μ = −π/2. On the right η = 1/200, λ = π − 3η and μ = λ − 5η. The
metropolis version of the algorithm was used

Fig. 29 Outermost path position averaged over 500 configurations of the twenty-vertex model with DWBC1
for n = 25, 50, 75, 100, drawn in the rescaled domain. We estimate the curve reached asymptotically when
n → ∞, in the coordinates u = (y+ x)/2 and v = (y− x)/2. For a fixed v let us call un(v) the corresponding
u on the average path n. We assume the scaling un(v) = u(v) − n−2/3corr(v), and extract an estimation
of the arctic curve u(v). As a consistency check we alternatively estimate the scaling exponent α defined by
u(v)−un(v) = nαcorr(v) by using for u(v) the theoretical prediction. It is found that on average α = −0.627
with a standard deviation of σ = 0.103
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7 The Arctic Curve for the Quarter Turn Symmetric Holey Aztec Domino
TilingModel

In [18], it was shown that the set of configurations of the 20Vmodel with DWBC1 or 2 on an
n×n square is equinumerous to that of domino tilings of a quasi-square domain of Aztec-like
shape of size 2n×2n with a cross-shaped hole in the middle that are invariant under a quarter
turn rotation (i.e. a rotation by 90◦) around the center of the cross (see [18] for a detailed
definition). We shall refer to this model as the Quarter Turn symmetric Holey Aztec Domino
Tiling (QTHADT)model, see Fig. 30. A natural question is then that of the shape of the arctic
curve of this domino tiling problem. Here we give the answer to this question based again on
the tangent method. For simplicity, we limit ourselves to the derivation of a single portion of
arctic curve (analogous to the “normal” portion in the 20V problem). The remainder of the
arctic curve is then obtained by analytic continuation (see discussion below). As it turns out,
our results are validated by numerical simulations, with a perfect agreement.

By symmetry, any configuration of the QTHADT model is entirely determined by its
intersection with the fundamental domain, say the upper right quadrant. As shown in [18],
configurations in the fundamental domain may be reformulated in terms of non-intersecting
Schröder paths, with horizontal, diagonal and vertical steps, with symmetric starting and
ending points along the boundary and subject to particular restrictions (see Fig. 30 for an
illustration). The number of paths is not fixed and may vary between 0 and n, and all path
steps receive the same weight 1. Here we slightly generalize the model by introducing an
extra weight γ per diagonal step. This amounts in the tiling language to assign a weight γ to
a particular type of tile.

Fig. 30 A sample configuration of the QTHADTmodel together with the associated non-intersecting Schröder
path configuration. The path configuration of the fundamental domain (upper right quadrant) is repeated by
symmetry in the whole domain
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7.1 Partition Function

As discussed in [18] for γ = 1, and straightforwardly generalized to an arbitrary γ , the
partition function of the QTHADT problem is given by det(A), where

Ai, j = FA(u, v)|uiv j (i, j = 0, 1, . . . , n − 1) ,

FA(u, v) = 1

1 − uv
+ (1 + γ )u

(1 − u)(1 − u − v − γ uv)
.

The latter function corresponds to a matrix A = I + M , where Mi, j enumerates Schröder
path configurations from to (0, j + 1) to (i, 0) which are “restricted” so that their first step
cannot be a down step. The generating function FM (u, v) = ∑

i, j≥0 Mi, j uiv j is obtained
as follows: by combining at least one first horizontal step (an arbitrary k ≥ 1 number of
them, generated by u

1−u ) followed by a vertical step (generated by v), or an arbitrary number

k ≥ 0 of horizontal steps (generated by 1
1−u ) followed by a diagonal step (generated by

γ uv), both followed by a Schröder path with γ weight on diagonal steps (generated by
1/(1 − u − v − γ uv)), we build all the desired restricted paths. The result is

FM (u, v) = 1

v

(
u

1 − u
v + 1

1 − u
γ uv

)
1

1 − u − v − γ uv
,

hence the second term in the equation above (as in [18], the prefactor 1/v accounts for the
fact that the height of the starting point is j + 1, not j).

7.2 Refined Partition Function

The path enumeration may be refined as follows: we introduce an extra multiplicative weight
τ per horizontal step along the row of maximal height n. For paths that start at position
(0, n) this changes the weight as follows: paths are obtained either by combining at least one
first horizontal step (an arbitrary k ≥ 1 number of them, generated by τu

1−τu ) followed by
a vertical step (generated by v), or by combining an arbitrary number k ≥ 0 of horizontal
steps (generated by 1

1−τu ) followed by a diagonal step (generated by γ uv), both followed by
a Schröder path starting at height n − 1 (generated by 1/(1− u − v − γ uv)). The net result
is a change A → A(τ ) = I + M(τ ) where M(τ ) differs from M in its n-th column only,
now generated by

∞∑
i=0

Mi,n−1(τ )ui = 1

v

(
τu

1 − τu
v + 1

1 − τu
γ uv

)
1

1 − u − v − γ uv

∣∣∣∣
vn−1

= (τ + γ )u

(1 − τu)(1 − u − v − γ uv)

∣∣∣∣
vn−1

so that the complete generating function for A(τ ) is therefore

FA(τ )(u, v) = 1

1 − uv
+ (1 + γ )u

(1 − u)(1 − u − v − γ uv)
+

{
τ + γ

1 − τu
− 1 + γ

1 − u

}
(1 + γ u)n−1

(1 − u)n
u vn−1

= 1

1 − uv
+ (1 + γ )u

(1 − u)(1 − u − v − γ uv)
+ (τ − 1)u

(1 − u)(1 − τu)

(
1 + γ u

1 − u

)n

vn−1.
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7.3 Comparison with the 6VModel Refined Partition Function

The refined partition function for the 6Vmodel with DWBC,with weights a, b, c and an extra
weight σ per horizontal step in the top row (in the osculating path formulation) is det(B(σ )),
where the matrix B(σ ) = (Bi, j (σ ))0≤i, j≤n−1 is generated by [4]

FB(σ )(u, v) = 1

1 − uv
+ xu

(1 − u)(1−yu−v−(x−y)uv)

+ (σ − 1)xu

(1 − u)(1 − (y + x(σ − 1))u)

(
1 + (x − y)u

1 − yu

)n

vn−1

with

x =
(
b

a

)2

, y =
( c

a

)2
.

Comparing with the expression found in the previous section, we are led to identify y = 1
and x = 1+γ . In the usual parametrization a = sin(λ+η), b = sin(λ−η) and c = sin(2η),
this corresponds to taking λ = π − 3η, so that a = c and b/a = 2 cos(2η), leading to

γ = 1 + 2 cos(4η) .

The generating functions FA(τ )(u, v) and FB(σ )(u, v) are therefore identified upon taking

τ = y + x(σ − 1) = 1 + (1 + γ )(σ − 1) = 1 + 4 cos2(2η)(σ − 1).

7.4 Tangent Method for the QTHADTwithWeight �

The use of the tangent method to determine the arctic curve of the QTHADT is similar to
that for the 20V model in the geometry of Sect. 5.3 used for the alternative derivation of the
“normal” portion. A subtle difference arises in the definition of the position L of the escape
point: if there exists a path with original starting point (0, n), this starting point is moved
to (0, n + M) as usual, leading to a non-trivial value of L , while if it does not exist, we set
L = 0 by convention independently of M (we add in this case a trivial vertical segment with
weight 1 from (0, n) to (0, n + M)). The subsequent extremization with respect to L shows
that the most likely value of L is non-zero, hence the configurations with no path starting
at (0, n) are negligible and the arctic curve is therefore well probed in our approach. Using
(3.7) for the present value λ = π − 3η, we get

σ = σ(ξ) = 2 cos(2η)
sin(4η − ξ)

sin(2η − ξ)

f (ξ) = Log

(
sin(2αη) sin(αξ) sin(4η − ξ)

α sin(4η) sin(ξ) sin(α(2η − ξ))

)

with α = π/(π − 2η), leading to

τ(ξ) = sin(2η + ξ)

sin(2η − ξ)
.

This defines implicitly f as a function of τ .
Setting M = nm and L = n� and using renormalized coordinates (divided by n), the

equation of the line through the endpoint (0, 1 + m) and the escape point (�, 1) is �
m (y −

1) + x − � = 0.
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As in the case of the 20V model, we may get the most likely value of � for fixed m by
extremizing the appropriate action S0(�, τ ) + S(�,m, φ), over �, τ, φ, where

S0(�, τ ) = f (ξ(τ )) − �Log(τ )

S1(�,m, φ) = (� + m − φ)Log(� + m − φ) − (� − φ)Log(� − φ)

−(m − φ)Log(m − φ) − φ Log(φ) + φ Log(γ ) .

Here, the interpretation of φ is that nφ is the total number of diagonal steps. This gives

� = τ
d f

dτ
= τ(ξ)

τ ′(ξ)
f ′(ξ) =: ρ(ξ), γ

(� − φ)(m − φ)

φ (� + m − φ)
= 1,

� + m − φ

� − φ
= τ

and finally

�

m
= (1 + γ )τ(ξ)

(τ (ξ) − 1)(τ (ξ) + γ )
=: β(ξ)

so that the equation for the family of tangent lines reads β(ξ)(y − 1) + x − ρ(x) = 0. We
end up with the following parametrization of the arctic curve:

Theorem 7.1 The portion of arctic curve of the QTHADT model in its fundamental domain,
as predicted by the tangent method 7, is given by

x(ξ) = ρ(ξ) − β(ξ)
ρ′(ξ)

β ′(ξ)
, y(ξ) = 1 + ρ′(ξ)

β ′(ξ)
, ξ ∈ [0, 2η], (7.1)

where

ρ(ξ) =
(

α
(
cot(αξ) + cot(α(2η − ξ))

) − cot(ξ) − cot(4η − ξ)

)
sin(ξ + 2η) sin(2η − ξ)

sin(4η)
,

β(ξ) = sin(2η + ξ) sin(2η − ξ)

sin(ξ) sin(4η − ξ)
.

It is easily checked that x(ξ) = y(2η − ξ) hence the arctic curve is symmetric under x ↔ y,
as expected. The range ξ ∈ [0, 2η] for the current geometry leads only to a portion of the
arctic curve from (z, 1) to (1, z)with z = x(0) = y(2η). We expect that the above expression
extends to the range ξ ∈ [max(−2η, 2η − π/2),min(4η, π/2)], leading to two additional
portions from (0, z′) to (z, 1) and from (1, z) to (z′, 0), with z′ = x(min(4η, π/2)) =
y(max(−2η, 2η−π/2)). This completes the description of the arctic curve in the fundamental
domain. The full arctic curve is obtained by iterated 90◦ rotation copies of the latter. Note
that, for γ �= 1, these new copies differ in general from the analytic continuation of the
fundamental domain copy. This analytic continuation corresponds in principle to a different
tiling problem where the weighting of tiles does not depend on the underlying quadrant.

7.5 Simulations

Like in Sect. 6, typical random tilings are generated by a Markov process starting from
a specific configuration and applying ergodic moves. The algorithm used to generate con-
figurations of the QTHADT model with the desired distribution consists of three kinds of
elementary moves involving pairs of connected dominoes in the fundamental domain (say
the first quadrant). Let us first describe the algorithm that generates tilings with the uniform
distribution (γ = 1). In the bulk, as well as on the periodic boundaries of the fundamental
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Fig. 31 The “cross-move” performed on the unique configuration of the � = 0 sector (left) for n = 3.
Dominoes are shifted along the central cycle around the cross, thus creating a path and sending us to the � = 1
sector (right). The created path is drawn in the fundamental domain

domain, the elementary moves come in two flavors: → and → . An addi-
tional move is required to ensure ergodicity. Indeed, the two moves above can only deform
the paths or change the position of the starting and ending points, but they cannot create
or annihilate a path. Hence, by performing these moves only, we conserve the number � of
paths so that we stay in a given “sector” of the possible tilings with fixed �. For example,
the � = 0 sector consists of a single configuration with all dominoes in the fundamental
domain oriented from Northwest to Southeast (see Fig. 31-left). The third move, referred to
as the “cross-move”, which enables ergodicity, is best described in the complete domain as
it involves the cross-shaped hole in its middle. If a tiling contains a cycle of eight dominoes
around the hole, the cross-move consists in shifting all dominoes around the cycle by one
square (see Fig. 31-right). This has the effect of creating or annihilating a pair of starting and
ending points. Note that, in the QTHADT geometry, the eight dominoes reduce, modulo the
quarter turn rotation, to a pair of connected dominoes in the fundamental domain, hence the
cross-move is also a flip analogous to the two others. Every step of the Markov-chain goes
as follows: select at random a position (i, j) in the fundamental domain.12 If the diamond
whose upper vertex (•) is at (i, j) is entirely in the bulk, or on the periodic boundary, then

perform a regular move
•

↔
•

if possible. If (i, j) is adjacent to the cross, perform a
cross move if possible. Repeat until the arctic curve has stabilized.

Again the probability p(C → C′) to go from a configuration C to a configuration C′
is symmetric. Hence detailed balance condition and ergodicity ensure that the stationary
distribution is uniform.

As in Sect. 6, generalizing this Markov-chain to reach a non-uniform probability distribu-
tion π(C) associated with a weight γ �= 1 can be done via a Metropolis algorithm: we accept

a move from C to C′ with probability p(C → C′) = min
(
1, π(C′)

π(C)

)
. Ergodicity and detailed

balance are again satisfied and the stationary distribution is π(C). We checked the validity
of our implementation for n = 3 and γ = 1/2, see Fig. 32. Figures 33 and 34 display some
tilings obtained by this algorithm for various values of η as well as the corresponding arctic
curve as given by (7.1) .

12 We choose the (i, j)′ s on the square lattice on which the corners of the dominoes are.
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Fig. 32 The observed frequencies of the 23 possible configurations of the QTHADT model for n = 3 and
γ = 1/2, compared with the corresponding theoretical probabilities. The frequencies are measured from the
data of 230000 configurations

Fig. 33 Typical configurations of the QTHADT for n = 100 for several values of γ = 1 + 2 cos(4η). We
show only the fundamental domain

Fig. 34 Typical configurations of the QTHADT for n = 100 in the limit γ → 0. In this limit, some elementary
moves become extremely unlikely, and the convergence may be prohibitively long. To prevent this, one can γ

can be gradually decreased during the simulation until a small enough γ is reached. The fundamental domain
is represented on the left together with the predicted arctic curve. The corresponding symmetric configuration
on the whole quasi-square shape domain is displayed in the center. For γ = 0, the domino configurations are
in bijection with another tiling problem, namely the cyclically symmetric tiling with rhombic tiles of a Holey
hexagon of size n. The 3-fold symmetric image of the 4-fold symmetric domino tiling in the center under this
bijection is represented on the right. We note that, with the appropriate color scheme, the two pictures look in
practice very similar and quite indistinguishable in their fundamental domains (upper right square)
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8 Discussion/Conclusion

8.1 The Arctic Curve of the 6VModel from that of the 20VModel

The 6V model with DWBC may be realized as a particular instance of the 20V model with
DWBC1 (resp. DWBC2) by setting ω2 = ω5 = 0. Indeed, the condition ω2 = ω5 = 0
forces the diagonal steps to be transmitted through each node so as to arrange into n (resp.
n − 1) complete diagonal lines below the second diagonal. These lines may be removed
and the remaining paths, made of horizontal and vertical steps only, form configurations of
a 6V model with DWBC. The condition ω2 = ω5 = 0 may be reached from the general
parametrization (2.3) by renormalizing the weights ωi by an overall factor into projectively
equivalent weights ω′

i = 4eiμωi and taking the limit μ → +i∞.13 This limit corresponds to
sending the spectral parameter t → 0. This results in renormalized 20V weights satisfying
ω′
2 = ω′

5 = 0, as desired, and

ω′
0 = ω′

3 = sin(λ + η) , ω′
1 = sin(λ − η)e2iη , ω′

6 = sin(λ − η)e−2iη , ω′
4 = sin(2η) .

Here we recognize the parametrization a = sin(λ+η), b = sin(λ−η) and c = sin(2η) of the
usual 6V model, apart from a phase factor in ω′

1 and ω′
6. After removing the diagonals of the

20V configurations, which are all fixed by the boundary condition, all the nodes originally
weighted by ω0 or ω3 lead to a-type vertices of the 6V model and receive the correct weight
a. Similarly, all the nodes originally weighted by ω4 lead to c-type vertices of the 6V model
and receive the correct weight c. The situation for nodes weighted by ω1 or ω6 is slightly
more subtle: those under the second diagonal (included for DWBC1, excluded for DWBC2)
receiving aweightω1 (resp.ω6) lead to 6V nodes of type bwith two adjacent horizontal (resp.
vertical) edges, while those above the second diagonal receiving a weight ω1 (resp. ω6) lead
to 6V nodes of type b with two adjacent vertical (resp. horizontal) edges. These nodes receive
a weight ω′

1 = e2iηb (resp. ω′
6 = e−2iηb). Fortunately, in all 6V DWBC configurations, we

have the conservation law that the number of b-type nodes with horizontal, resp. vertical
edges above any diagonal line parallel to the second diagonal are identical.14 This allows to
replace ω′

1 and ω′
6 by κω′

1 and κ−1ω′
6 for any non-zero κ , hence, by choosing κ = e−2iη, to

assign the correct weight b to all these nodes.
As for the arctic curve of the 6V model with DWBC, it is obtained directly from that of

the 20V by applying the same μ → +i∞ limit in the explicit expression of Theorem 5.1.
In practice, only the “normal” and “shear” portions (and their 180◦ rotation images) are
necessary, while the “final” portion becomes redundant. More precisely, we get

Theorem 8.1 The arctic curve for the 6V model with DWBC at arbitrary admissible values
of the parameters η and λ (0 < η < λ < π − η), as predicted by the tangent method 7, is
made generically of two portions, denoted “normal” and “shear” with their images under
180◦ rotation. The two branches have respectively parametric equations:

13 Strictly speaking, this value of μ exits the allowed domain (2.4) for positive weights but this is corrected
by the renormalization ωi → ω′

i .
14 This can be seen for instance in the dual language of integer height variables [6] at the center of the
plaquettes: the height along diagonals varies only at the crossing of a b-type vertex and increases/decreases
by 2 according to its vertical/horizontal nature. For DWBC, the difference of height between the two ends
of each diagonal line is zero, hence the two types of b-type vertices are equinumerous along each diagonal,
hence also above each diagonal.
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Normal: xn(ξ) = 1 + ∂ξ Rn(ξ)

∂ξ Sn(ξ)
, yn(ξ) = Rn(ξ) − Sn(ξ)

∂ξ Rn(ξ)

∂ξ Sn(ξ)
, ξ ∈ [0, π − λ − η]

Shear: xs(ξ) = 1 + ∂ξ Rs (ξ)

∂ξ Ss (ξ)
, ys(ξ) = Rs(ξ) − Ss(ξ)

∂ξ Rs (ξ)

∂ξ Ss (ξ)
, ξ ∈ [−(λ − η), 0]

where

Rn(ξ) = Rs(ξ) = (cot(ξ+λ−η)−cot(ξ)+α cot(α ξ)

−α cot(α(ξ+λ−η)))
sin(ξ+λ+η) sin(ξ+λ−η)

sin(2η)
,

Sn(ξ) = sin(ξ + λ + η) sin(ξ + λ − η)

sin(ξ) sin(ξ + 2η)
, Ss(ξ) = sin(ξ + λ + η) sin(ξ + λ − η)

sin(2η − ξ) sin(ξ)
,

and α = π/(π − 2η).

This matches the known expressions of [8] for the 6V model with DWBC in its disordered
phase.

8.2 Uniform 20V vs QTHADT and the ASM-DPP Correspondence

Let us discuss a few remarks and open questions. The first remark concerns the relation
between the arctic curve of the 20Vmodel with uniformweights (i.e. η = π/8, λ = 5π/8 and
μ = 0 so that all theωi for i = 0, . . . , 6 are equal) and that of theQTHADTmodelwith γ = 1
(i.e. η = π/8). Figure 35 displays the two corresponding arctic curves, as obtained from our
expressions above. First, we note that the two curves share a common portion, corresponding
towhatwe called the “normal” portion in the 20Vmodel. This property is a direct consequence
of the refined bijection proved in [18] (see Theorem 5.2) between the uniform 20V model
configurations having, in the path language, their uppermost path hitting the right boundary
at height � (or equivalently, via the x ↔ y symmetry, the configurations whose uppermost
path leaves the upper boundary after � steps) and the QTHADT configurations having, in the
Schröder path language, a path starting at position (0, n) and leaving the upper boundary of
the fundamental domain after � steps. We then note that, for the QTHADT problem at γ = 1,
the entire arctic curve is the analytic continuation of the “normal” portion, i.e. it is obtained
by extending the original range of the parameter ξ in (7.1) from [0, π/4] (“normal” portion)
to [−π/4, π/2] (arctic curve in the fundamental domain), then to [−11π/8, 13π/8], leading
to the desired full fourfold symmetric algebraic curve (4.5) with its four cusps. Finally, as
already discussed in Sect. 4.2, the “shear” portion of the arctic curve of the 20V model is
related to this analytic continuation by a simple shear transformation sending the y = 0 line
onto the line x + y = 1. More precisely, the “shear” portion of the arctic curve of the 20V
model is itself the image under the shear transformation y → 1 − x + y of the portion of
arctic curve of the QTHADT problem between the tangency point on the right boundary
x = 1 and the cusp at y = 0 in the fundamental domain (ξ ∈ [π/4, π/2]). All the other
portions of the 20V model arctic curve are obtained by symmetry arguments.

Remarkably, we find exactly the same pattern of correspondences if we compare the
arctic curve for cyclically symmetric rhombus tilings of a Holey Hexagon, in bijection with
descending plane partitions (DPP) [29] to that of the uniform 6V model (with weights a =
b = c) with DWBC, in bijection with Alternating Sign Matrices (ASM). The ASM-DPP
correspondencewas provedwith its highest level of refinement in [4,5]. In theHoleyHexagon
model, the tiled domain is now formed of a fundamental domain with a rhombic shape drawn
on the triangular lattice, and two extra copies of this domain obtained by two 120◦ rotations
around a central triangular hole of size 2 × 2 × 2 so as to form a quasi-regular hexagon of
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Fig. 35 The arctic curve of the uniform 20V model with DWBC (in purple) and that of the QTHADT (Holey
Aztec) model with γ = 1 (in red) share a common portion (in violet). For the QTHADTmodel, the remaining
part is the analytic continuation of this shared portion, namely the algebraic curve (4.5). When applied to the
correct portion (that joining the tangency point on the right boundary to the cusp), the image (dashed) of this
analytic continuation by the shear transformation y → 1− x + y reproduces the “shear” portion of the arctic
curve of the 20V model

shape n × (n + 2) × n × (n + 2) × n × (n + 2). The tiles are elementary rhombi covering
two adjacent triangles and we demand that the tiling configurations be symmetric under
120◦ rotation. If we redress the fundamental domain into a square, the tiling problem has a
Schröder path formulation which corresponds precisely to our setting but with paths without
diagonal steps, i.e. to the case γ = 0 (η = π/6). In this redressed geometry, the arctic
curve of the cyclically symmetric Holey Hexagon rhombus tiling is thus obtained via (7.1)
with η = π/6, upon taking ξ in the range ξ ∈ [0, π/3] (“normal” portion), extended to
ξ ∈ [−π/6, π/2] (arctic curve in the fundamental domain), then to ξ ∈ [−5π/6, 7π/6],
leading to the complete ellipse x2 + y2 − xy = 3/4 [9] (see Fig. 36). As for the arctic curve
of the uniform 6Vmodel, it is made of the very same “normal” portion,15 together with three
symmetric portions obtained by successive 90◦ rotations around the center of the fundamental
domain. Again, as displayed in Fig. 36, the first of these extra portions (that following the
“normal” portion clockwise) is the image by the shear transformation y → 1− x + y of the
proper portion of arctic curve of theHoleyHexagon problem, that between the tangency point
(1, 1/2) on the right boundary and the tangency point (1/2,−1/2) on the lower diagonal
boundary (ξ ∈ [π/3, 2π/3]). All these correspondences follow the same global scheme as
that of Fig. 35 for the 20V/QTHADT relation. These may be occurrences of a more general

15 The fact that the arctic curve of the Holey Hexagon model and that of the uniform 6V model share a
common portion is a direct consequence of the refined ASM-DPP correspondence shown in [4].
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Fig. 36 The arctic curve of the uniform 6V model with DWBC (in purple) and that of the Holey Hexagon
rhombus tiling (in red) share a commonportion (in violet). For theHoleyHexagon rhombus tiling, the remaining
part is the analytic continuation of this shared portion, forming an ellipse. When applied to the correct portion
(that joining the tangency point (1, 1/2) on the right vertical boundary to the tangency point (1/2, −1/2) on
the lower diagonal boundary), the image (dashed) of this analytic continuation by the shear transformation
y → 1 − x + y reproduces a portion of the arctic curve of the 6V model. This pattern of correspondences is
in all ways identical to that of Fig. 35

phenomenon for correspondences between osculating and non-intersecting path problems,
yet to be investigated.

8.3 Extension to More GeneralWeights

Clearly the parametrization (2.3) for the weights of the 20Vmodel covers only a small subset
of the allowed values. In particular, the restriction to real values of η confines the associated
6V model into its so-called disordered phase. The result (3.7) of [8] for the asymptotics of
the one-point function H6V

n (σ ) was generalized in [11] for the 6V model with DWBC in its
antiferroelectric regime. It should therefore be possible to extend our results to this regime,
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namely, in the parametrization (2.3), to the case of imaginary values of η, λ and μ. The
expressions of [11] involve elliptic functions and this extension might in practice lead to
quite involved calculations.

Another question concerns the symmetry of the weights under reversal of the edge orien-
tations. This symmetry was imposed for convenience throughout the paper and guarantees
that the arctic curve of the 20V model is symmetric under 180◦ rotation. In the case of the
6V model with DWBC, it is easily shown that there are enough sum rules for the numbers of
the different types of vertices to ensure that the symmetry of weights under edge orientation
reversal can be assumed without loss of generality (see for instance [10]). This is no longer
the case for the 20V model and non symmetric weights may lead to more general arctic
curves without the 180◦ rotation symmetry, a situation yet to be explored.

Another direction of exploration concerns other boundary conditions. In [18], another
type of boundary conditions for the 20V model, called DWBC3, was introduced and shown
to display nice combinatorics. These boundary conditions are expected to give rise to a
potentially simpler arctic phenomenonwith an arctic curvemadeof a single portion separating
the liquid phase from the empty region. To derive such a curve, it would be desirable to have
more explicit expressions for the model partition function in terms of spectral parameters,
giving access to boundary one-point functions.

Finally, a number of non-intersecting path problems were solved in a more general “Q-
deformed” framework, which consists in introducing an extra path weight QA involving the
area A below the path. In particular, the tangent method was applied successfully to some
of these models to obtain the corresponding Q-deformed arctic curve and we may wonder
whether this generalization can be carried out in our present setting for the QTHADTmodel.
Such a Q-deformation was carried out for DPP but not for ASM, hence the “Q-deformed”
version of the 20V model with DWBC1 or 2 remains a challenge like that of the 6V model
with DWBC.
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Appendix A: The Relation Between the 6V and 20V Refined Partition
Functions in All Generality

The aim of this Appendix is to prove the general relations (3.1)–(3.2) and (3.4)–(3.5) relating
the restricted refined partition functions

Z20VBC2 –
n (τ ) =

n∑
L=1

Z20VBC2 –
n;L τ L−1 , Z20VBC2 �

n (τ ) =
n∑

L=1

Z20VBC2 �

n;L τ L−1

or their tilde counterparts to the refined partition function

Z6V
n (σ ) =

n∑
L=1

Z6V
n;L σ L−1 .

The relation (3.1) may be obtained by attaching a different spectral parameterwθ (instead
of w) to the last column j = n. By unravelling the configurations of the 20V model with
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Fig. 37 The unraveling of Fig. 7 in the presence of a spectral parameterwθ in the last column that modifies the
weights for the nodes within the red boxes. In practice, only the weights of sub-lattices 1 and 3 are modified
(since those of sub-lattice 2 do not involve the modified spectral parameter). We thus have a modified weight

a3[θ ] = a3 × a3[θ]
a3[1] for the n nodes in the upper red box labelled 3, unmodified weight a2[θ ] = a2 for the

nodes in the red box labelled 2, and after the same renormalization as in Fig. 7 to go from (a1, b1, c1) to

(a, b, c), modified weights (a× a1[θ]
a1[1] , b× b1[θ]

b1[1] , c× c1[θ]
c1[1] ) in the red box labelled 1. This leads to the relation

(A.1)

DWBC2 to a configuration of the 6Vmodel on the sub-lattice 1, we have the relation, depicted
in Fig. 37:

Z20VBC2
n [θ ] =

(a2a3
t1/3

)n2 (
a3[θ ]
a3[1]

)n

Z6V
n [θ ] . (A.1)

Here we shall use a different notation with brackets (as in Z6V
n [θ ]) to indicate that we deal

with a model where the last column has a modified spectral parameter wθ . It should not be
confused with the notation with parentheses (as in Z6V

n (σ )) where all the column spectral
parameters are left equal to w but where we deal with the refined partition function defined
above keeping track of the position where the uppermost path hits the right boundary. The

123



B. Debin et al.

notation ai [θ ] (respectively bi [θ ] and ci [θ ]), i = 1, 2, 3, also refers to the weights16 obtained
via the general formula (2.2) with w → wθ . Let us now discuss precisely the connection
between the two objects Z6V

n [θ ] and Z6V
n (σ ): by decomposing Z6V

n [θ ] according to the
position L where the uppermost path hits the right boundary, we have

Z6V
n [θ ] =

n∑
L=1

Z6V
n;L

(
b1[θ ]
b1[1]

)L−1 c1[θ ]
c1[1]

(
a1[θ ]
a1[1]

)n−L

=
(
a1[θ ]
a1[1]

)n c1[θ ]a1[1]
c1[1]a1[θ ]

n∑
L=1

Z6V
n;L (σ [θ ])L−1

︸ ︷︷ ︸
=Z6V

n (σ [θ ])

with

σ [θ ] = b1[θ ]a1[1]
b1[1]a1[θ ] .

Similarly, decomposing Z20VBC2
n [θ ] according to the position L where the uppermost path

hits the right boundary and to whether the step before the hitting point was horizontal or
diagonal, we have

Z20VBC2
n [θ ] =

n∑
L=1

Z20VBC2 –
n;L

(
ω1[θ ]
ω1[1]

)L−1
ω4[θ ]
ω4[1]

(
ω0[θ ]
ω0[1]

)n−L

+
n∑

L=1

Z20VBC2 �

n;L
(

ω1[θ ]
ω1[1]

)L−1
ω2[θ ]
ω2[1]

(
ω0[θ ]
ω0[1]

)n−L

=
(

ω0[θ ]
ω0[1]

)n (
ω4[θ ]ω0[1]
ω4[1]ω0[θ ]

n∑
L=1

Z20VBC2 –
n;L (τ [θ ])L−1

︸ ︷︷ ︸
=Z

20VBC2 –
n (τ [θ ])

+ ω2[θ ]ω0[1]
ω2[1]ω0[θ ]

n∑
L=1

Z20VBC2 �

n;L (τ [θ ])L−1

︸ ︷︷ ︸
=Z

20VBC2�
n (τ [θ ])

)

with

τ [θ ] = ω1[θ ]ω0[1]
ω1[1]ω0[θ ] = (b1[θ ]a2[θ ]b3[θ ])(a1[1]a2[1]a3[1])

(b1[1]a2[1]b3[1])(a1[θ ]a2[θ ]a3[θ ]) = b1[θ ]b3[θ ]a1[1]a3[1]
b1[1]b3[1]a1[θ ]a3[θ ] .

Using

ω0[θ ]
ω0[1] = a1[θ ]a2[θ ]a3[θ ]

a1[1]a2[1]a3[1] = a1[θ ]a3[θ ]
a1[1]a3[1]

since a2 is not changed by the replacement w → wθ , we obtain from (A.1)

(a2a3
t1/3

)n2
Z6V
n (σ [θ ]) = Z20VBC2 –

n (τ [θ ]) + g(σ [θ ])Z20VBC2�

n (τ [θ ]) (A.2)

16 As before, when dealing with the 6V model, we use vertex weights normalized to (a, b, c) as in (2.5). The

change w → wθ then affects the vertex weights in the last column, equal to (a× a1[θ]
a1[1] , b× b1[θ]

b1[1] , c× c1[θ]
c1[1] ).
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with

g(σ [θ ]) = c1[1]a1[θ ]
c1[θ ]a1[1]

ω2[θ ]ω0[1]
ω2[1]ω0[θ ] = c1[1]a1[θ ]

c1[θ ]a1[1]
(b1[θ ]a2[θ ]c3[θ ])(a1[1]a2[1]a3[1])
(b1[1]a2[1]c3[1])(a1[θ ]a2[θ ]a3[θ ])

= c1[1]b1[θ ]c3[θ ]a3[1]
c1[θ ]b1[1]c3[1]a3[θ ] .

Note the absence of prefactor in front of Z20VBC2 –
n (τ [θ ]) in (A.2), due to the identity

c1[1]a1[θ ]
c1[θ ]a1[1]

ω4[θ ]ω0[1]
ω4[1]ω0[θ ] = c1[1]a1[θ ]

c1[θ ]a1[1]
(c1[θ ]a2[θ ]a3[θ ])(a1[1]a2[1]a3[1])
(c1[1]a2[1]a3[1])(a1[θ ]a2[θ ]a3[θ ]) = 1 .

In particular, if wewish to impose a strict proportionality relation between Z20VBC2
n (τ [θ ]) and

Z6V
n (σ [θ ]), i.e. impose g(σ [θ ]) = 1, wemust impose ω2[θ ]

ω2[1] = ω4[θ ]
ω4[1] for all θ , i.e.μ = λ−5η.

The relation between τ and σ and that between g and σ are obtained by eliminating θ .
We obtain

τ = σ
σ sin(λ − η) sin

(
λ+3η−μ

2

)
− sin(λ + η) sin

(
λ−η−μ

2

)

σ sin(λ − η) sin
(

λ−η−μ
2

)
− sin(λ + η) sin

(
λ−5η−μ

2

) ×
sin

(
λ+3η+μ

2

)

sin
(

λ−η+μ
2

)

g(σ ) =
σ sin(2η) sin

(
λ+3η+μ

2

)

σ sin(λ − η) sin
(

λ−η−μ
2

)
− sin(λ + η) sin

(
λ−5η−μ

2

)
(A.3)

which, with (A.2), is nothing but (3.1)–(3.2).
Using the original parametrization

σ(ξ) = sin(λ + η) sin(λ − η + ξ)

sin(λ − η) sin(λ + η + ξ)
,

we get

τ(ξ) =
sin(λ + η) sin

(
λ+3η+μ

2

)
sin(ξ + λ − η) sin

(
ξ + λ−η+μ

2

)

sin(λ − η) sin
(

λ−η+μ
2

)
sin(ξ + λ + η) sin

(
ξ + λ+3η+μ

2

)

g(σ (ξ)) =
sin(ξ + λ − η) sin

(
λ+3η+μ

2

)

sin(λ − η) sin
(
ξ + λ+3η+μ

2

) .

(A.4)

By attaching a different spectral parameter zθ̃ (instead of z) to the top line, we get by a
similar argument the relation

(a2a3
t1/3

)n2
Z6V
n (σ̃ [θ̃ ]) = Z̃20VBC2 |

n (τ̃ [θ̃ ]) + g̃(σ̃ [θ̃ ])Z̃20VBC2�

n (τ̃ [θ̃ ])
where

σ̃ [θ̃] = b1[θ̃]a1[1]
b1[1]a1[θ̃ ] , τ̃ [θ̃] = b1[θ̃]b2[θ̃]a1[1]a2[1]

b1[1]b2[1]a1[θ̃]a2[θ̃] , g̃(σ̃ [θ̃]) = c1[1]b1[θ̃]c2[θ̃]a2[1]
c1[θ̃]b1[1]c2[1]a2[θ̃ ]

i.e. expressions where the sub-lattices 2 and 3 have been exchanged. By eliminating θ̃ , we
obtain for τ̃ and g̃ the same relation (A.3) as above up to a simple substitutionμ → −μ. This
is nothing but the desired relations (3.4)–(3.5). As a consequence of the above symmetry,
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taking for σ̃ the same parametrization as that for σ above, this leads for τ̃ and g̃ to expressions
identical to (A.4) with μ → −μ. Note that the overall prefactor

(a2a3
t1/3

)n2 =
(
sin

(
λ + 3η − μ

2

)
sin

(
λ + 3η + μ

2

))n2

is itself invariant under μ → −μ.

Appendix B: Enumeration of Weighted Schröder Paths by Transfer
Matrix

Wewish to compute the partition function Y 20V
(n,L)→(n+M,0) = Y 20V

(n,L)→(n+M,0)(β1, β2, β3) for
the escaping path, namely a weighted Schröder path from (n, L) to (n+M, 0)with (horizon-
tal, diagonal and vertical) steps (1, 0), (1,−1) and (0,−1) and weights corresponding to the
20V model at each vertex visited by the path. The parameters β1, β2 and β3 denote suitably
chosen weights for the first node of the path (the escape point), to be determined according to
direction of the last step before the escape point. Note that the empty space around the path
also receives a weight ω0 per empty vertex. Factoring those weights, the remaining weight is
ωi/ω0 per vertex visited by the path, for which the local configuration corresponds to a vertex
with weight ωi in Fig. 6. To compute Y 20V

(n,L)→(n+M,0), we use a transfer matrix technique.
We introduce the 3 × 3 matrix T with the following entries:

Multiplication by T on the left amounts to adding one extra step to paths, with the suitable
20V model normalized weights ωi/ω0 and some extra weights u, uv, v per horizontal, diag-
onal and vertical step respectively so as to keep track of the global vertical and horizontal
shifts. Then the generating function for the partition functions Y 20V

(n,L)→(n+M,0) reads:

Y(u, v) =
∑

L,M≥0

uLvMY 20V
(n,L)→(n+M,0) = 1 + (1, 0, 0) (I − T )−1

⎛
⎝ β1u

β2uv

β3v

⎞
⎠ .

The final state (1, 0, 0) corresponds to a vertical final step, as in the geometry of Fig. 8.
As for the initial state (β1u, β2uv, β3v)t , it includes the special β weights for the escape
point depending on its local environment in the geometry at hand (in practice, the value of
these weights is irrelevant as they do not affect the large n asymptotics, as shown below).
The quantity Y(u, v) is a rational fraction Y(u, v) = g(u, v)/�(u, v) where g(u, v) is a
polynomial which implicitly depends on the β weights and

�(u, v) = det(I − T ) = 1 − α1u − α2v − α3uv − α4u
2v − α5uv2 − α6u

2v2

with

α1 = ω1

ω0
, α2 = ω6

ω0
, α3 = ω0ω3 + ω2

4 − ω1ω6

ω2
0

α4 = ω2
2 − ω1ω3

ω2
0

, α5 = ω2
5 − ω6ω3

ω2
0

, α6 = 2ω2ω4ω5 + ω1ω6ω3 − ω3ω
2
4 − ω1ω

2
5 − ω6ω

2
2

ω3
0

.

(B.1)
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The large n, L = � n, M = m n asymptotics of Y 20V
(n,L)→(n+M,0) are governed by �(u, v)

only. Indeed, for large L, M ∝ n:

Y 20V
(n,L)→(n+M,0) =

∮
du

2iπuL+1

dv

2iπvM+1 Y(u, v)

∝
∮

du

2iπuL+1

dv

2iπvM+1 g(u, v)
∑
p≥0

(α1u + α2v + α3uv + α4u
2v + α5uv2 + α6u

2v2)p

=
∮

du

2iπuL+1

dv

2iπvM+1 g(u, v)

∑
L ′,M ′

uL
′
vM ′ ∑

P1,P2,...,P6≥0
P1+P3+2P4+P5+2P6=L ′
P2+P3+P4+2P5+2P6=M ′

(
P1 + P2 + P3 + P4 + P5 + P6

P1, P2, P3, P4, P5, P6

) 6∏
i=1

α
Pi
i .

For large n, the integral selects values of L ′ and M ′ that differ from L and M by finite
amounts bounded by the degree of the polynomial g(u, v). Taking L ′ = � n + O(1) and
M ′ = m n + O(1), we obtain the leading behavior for large Pi = npi :

Y 20V
(n,n�)→(n(1+m),0) ∝

∫ 1

0
dp3dp4dp5dp6e

n S(�,m,p3,p4,p5,p6)

where

S(�,m, p3, p4, p5, p6) = (� + m − p3 − 2p4 − 2p5 − 3p6)Log(� + m − p3 − 2p4 − 2p5 − 3p6)

− (� − p3 − 2p4 − p5 − 2p6)Log

(
� − p3 − 2p4 − p5 − 2p6

α1

)

− (m − p3 − p4 − 2p5 − 2p6)Log

(
m − p3 − p4 − 2p5 − 2p6

α2

)

−
6∑

i=3

piLog

(
pi
αi

)
.

(B.2)

A saddle point estimate then allows to write

Y 20V
(n,n�)→(n(1+m),0) ∝ en S(�,m)

where S(�,m) is equal to S(�,m, p3, p4, p5, p6) taken at the value of p3, p4, p5 and p6
which maximizes this latter quantity.

The above expression can be adapted to a situation where the αi for i ∈ I ⊂ {3, . . . , 6}
vanish. In this case, the recipe consists in simply dropping all the terms with indices i ∈ I .

Finally, the expression (B.2) can also be used to compute the asymptotics of the escape
path partition function in the “shear” geometry, i.e. the function S̄(�,m) defined via

Ȳ 20V
(n,n+L−1)→(n+M,2n) ∝ en S̄(�,m) .

Indeed, the change of geometry, which corresponds to an up-down symmetry together with a
change of weights from the original values ωi to the inverted 20V model values ω̄i of Fig. 13
is entirely accounted for by changing in the above expression for S(�,m, p3, p4, p5, p6)
both � into 1 − � and αi into ᾱi , where the αi ’s are obtained via (B.1) with ωi changed
into ω̄i . From the equivalence Fig. 13 , the ᾱi ’s are alternatively obtained from the αi ’s by
exchanging the role of ω0 and ω1, and simultaneously that of ω2 and ω4, keeping ω3, ω5 and
ω6 unchanged. In terms of angular parameters, this change corresponds to the involution
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(η, λ, μ) ↔
(

η, π − λ + η + μ

2
, π − 3λ + η − μ

2

)
.
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