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Abstract: In order to quickly approximate maximum likelihood estimators from
massive data, this study examines the optimal subsampling method under the
A-optimality criterion (OSMAC) for generalized linear models. The consistency
and asymptotic normality of the estimator from a general subsampling algo-
rithm are established, and optimal subsampling probabilities under the A- and
L-optimality criteria are derived. Furthermore, using Frobenius-norm matrix
concentration inequalities, the finite-sample properties of the subsample estima-
tor based on optimal subsampling probabilities are also derived. Because the
optimal subsampling probabilities depend on the full data estimate, an adaptive
two-step algorithm is developed. The asymptotic normality and optimality of the
estimator from this adaptive algorithm are established. The proposed methods
are illustrated and evaluated using numerical experiments on simulated and real

data sets.
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1. Introduction

Today, massive data sets are ubiquitous in many scientific fields and prac-
tices, including astronomy, economics, and industrial problems. Extracting
useful information from these large data sets is a core challenge in areas
such as computer science, machine learning, statistics, and, as a result, has
attracted much attention. However, computational limitations still exist,
owing to rapid growth in the volume of data. Subsampling is a popular
technique for extracting useful information from massive data. Therefore,
this study develops optimal subsampling strategies for generalized linear
models (GLMs). Typically, the maximum likelihood estimators (MLEs)
are found numerically by using the Newton—Raphson method. However,
fitting a GLM on massive data is not an easy task using the iterative
Newton—Raphson method, requiring O(p?n) time in each iteration of the
optimization procedure.

Subsampling provides an efficient way to solve this problem (e.g., see
Drineas et al., 2006) because it essentially reduces the volume of the data.

Drineas et al. (2011) proposed performing a randomized Hadamard trans-
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form on the data and then using the uniform subsampling to take random
subsamples to approximate the ordinary least squares estimators in linear
regression models. Ma et al. (2015) and Ma and Sun (2015) developed an
effective subsampling method for linear regression models that uses nor-
malized statistical leverage scores of the covariate matrix as nonuniform
subsampling probabilities. Jia et al. (2014) studied leverage sampling for
GLMs, based on generalized statistical leverage scores. Wang et al. (2018b)
and Yao and Wang (2019) developed an optimal subsampling procedure
to minimize the asymptotic mean squared error (MSE) of the resultant
subsample-estimator, given the full data, based on A- or L-optimality cri-
teria in the language of optimal design. Wang et al. (2019) proposed a new
algorithm, called the information-based optimal subdata selection method,
for linear regressions on big data. The basic idea is to select the most infor-
mative data points deterministically based on D-optimality, without relying
on random subsampling. A divide-and-conquer version of the algorithm is
presented in Wang (2019). Recent developments related to the big data
subsampling method can be found in Wang et al. (2016).

Methodological investigations on subsampling methods with statistical
guarantees for massive data regression are still limited when models are

complex. To the best of our knowledge, most existing results concern lin-
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ear regression models, as in Ma et al. (2015) and Wang et al. (2019). The
optimal subsampling methods in Wang et al. (2018b) and Yao and Wang
(2019) are designed specifically for logistic and multinomial regression mod-
els, respectively. However, using only linear and logistic regressions is not
sufficient, in practice (Czado and Munk, 2000). For example, we may need
a Poisson or a negative binomial distribution for count data, or need a
Gamma or an inverse Gaussian distribution for data with nonnegative re-
sponses. In addition, the aforementioned investigations do not consider the
finite-sample properties of the subsampled estimators. We attempt to fill
these gaps by deriving the optimal subsampling probabilities for GLMs, in-
cluding those with noncanonical link functions, thus allowing a wide range
of statistical models for a regression analysis. Furthermore, we derive the
finite-sample upper bounds for the approximation errors, which can be used
in practice to balance the subsample size and the prediction accuracy. Ow-
ing to the nonnatural link, our investigation is quite different from that
of Wang et al. (2018b). For example, the Hessian matrix in the models
considered in this study may be dependent on the responses.

The rest of this paper is organized as follows. Section 2 introduces the
model setup and derives the asymptotic properties for the general subsam-

pling estimator. Section 3 derives optimal subsampling strategies based on
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A- and L-optimality criteria for GLMs. The finite-sample error bounds are
also derived in this section. Section 4 designs a two-step algorithm to ap-
proximate the optimal subsampling procedure, and obtains the asymptotic
properties of the resultant estimator. Section 5 demonstrates the proposes

method using numerical simulations and real data.

2. Preliminaries

2.1 Models and Assumptions

Recall the definition of the one-parameter exponential family of distribu-
tions f(y|0) = h(y) exp(Oy — ¢ (0)), for € O, as in (5.50) of Efron and
Hastie (2016), where @ is called the canonical parameter, and © is called
the natural parameter space. Here f(:|6) is a probability density function
for the continuous case, or a probability mass function for the discrete case;
h(-) is a specific function that does not depend on #; and the parameter
space © is defined as © := {§ € R: [ h(z)exp(fz)u(dx) < oo}, with u
being the dominating measure. The exponential family includes most of
the commonly used distributions, such as the normal, gamma, Poisson, and
binomial distributions (see Efron and Hastie, 2016; Mccullagh and Nelder,
1989).

A key tactic for a generalized linear regression model is to express 6
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in the form of a linear function of regression coefficients. Let (x,y) be a
pair of random variables, where y € R and « € RP. The generalized linear
regression model assumes that the conditional distribution of y;, given «;,
is determined by 0; = u(B%x;). Specifically for the exponential family, it

assumes that the distribution of y|x is

FlB. ®) = h(y) exp(yu(B' ;) — d(u(B'x:)), with Bz €O. (2.1)

The problem of interest is to estimate the unknown @3 from the observed
data. As a special case, when u(t) = t, the corresponding models are the
so-called GLMs with canonical link functions. Typical examples include
the logistic regression for binary data, and the Poisson regression for count
data. A commonly used GLM with a noncanonical link function is the
negative binomial regression (NBR), which is often used as an alternative
to the Poisson regression when the data exhibit overdispersion. For this
model, u(t) = t — log(v + €') and ¥ (u(t)) = vilog(v + €'), for some size

parameter v.
2.2 General Subsampling Algorithm and its Asymptotic Prop-
erties

In this subsection, we present a general subsampling algorithm for GLMs

and obtain some asymptotic results.
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To facilitate the presentation, denote the full data matrix by F,, =
(X,y), where X = (xy,...,x,)" is the covariate matrix, and y = (y1, ..., yn)"
is the response vector. In this paper, we assume that (x;,y;)’s are generated
independently from a GLM. Let S be a set of subsamples with r data points,
and define the sampling distribution 7; for all data points ¢ = 1,2,...n, as

7. Then, we have the following general subsampling algorithm:

1. Assign a sampling distribution 7 such that, in each draw, the ith

element in the full data set F,, has the inclusion probability ;.

2. Sample with replacement r times to form the subsample set S :=
{(yf,zf,m}),i = 1,...,r}, where xf, y;, and 7} denote the covari-
ates, responses, and subsampling probabilities, respectively, in the

subsample.

3. Based on the subsample set S, calculate the weighted log-likelihood

estimator by maximizing the following function:

. 1 1., . «
LB == —[yru(B"a)) — P(u(B"a)))). (2.2)
An important feature of the above algorithm is that the subsample
estimator is essentially a weighted MLE, where the corresponding weights

are inverses of the subsampling probabilities. This is analogous to the
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Hansen—Hurwitz estimator (Hansen and Hurwitz, 1943) in classic sampling
techniques. For an overview see Sérndal et al. (1992). Although Ma et al.
(2015) showed that the unweighted subsample estimator is asymptotically
unbiased for B in leveraging sampling, an unweighted subsample estimator,
is in general, biased if the sampling distribution 7 depends on the responses.
The inverse-probability weighting scheme removes this bias; thus we restrict
our analysis to the weighted estimator.

Let () and 1(t) be the first and the second derivatives of ¢(t), re-
spectively. To characterize the asymptotic properties of the subsampled

estimators, we require the following regularity assumptions:

(H.1): Assume that 87z lies in the interior of a compact set K € ©

almost surely.

(H.2): The regression coefficient B is an inner point of the compact

domain A = {B € R? : ||B|| < B}, for some constant B.

(H.3): Central moments condition: n~'>"" |y, — ¥(u(BTx)))|* =

Op(1), for all B € Ap.

(H.4): As n — oo, the observed information matrix

Ix =

3=

S (Bl el [ (u(Blupe) — )
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goes to a positive-definite matrix in probability.

(H.5): Require that the full sample covariates have finite sixth-order

moments; that is, || ||®<co.
(H.6): Assume n 2" | |l&;||F/m = Op(1), for k = 2,4.

(H.7): For v = 0 and some v > 0, assume

1
e

n i 37 2 (AT 2
n21+7 Z yi — Yi(u(Bywe®:)) "7 [ W(Bye®i) @i = Op(1).
i=1
Assumptions (H.1) and (H.2) are used in Clémencon et al. (2014). The
set in (H.2) is also called the admissible set, which, is the premise for con-
sistent estimators in GLMs with full data (see Fahrmeir and Kaufmann,
1985). These two assumptions ensure that E(y;|x;) < oo, for all i. As-
sumption (H.4) imposes a condition on the covariates to ensure that the
MLE based on the full data set is consistent. To obtain the Bahadur rep-
resentation of the subsampled estimator, (H.3) and (H.5) are needed. As-
sumptions (H.6) and (H.7) are moment conditions on the covariates and the
subsampling probabilities. Assumption (H.7) is required by the Lindeberg-
Feller central limit theorem. Specifically, for uniform subsampling with
1

m; = n~' or, more generally, when max;—; _,(nm)"t = Op(1), (H.7) is

implied by n™! Z?:l |y — %(U(Bl\T/{Lsz))|2+7||U(B{4LE331)931“2+7 = Op(1),
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which is guaranteed by the condition E|y|**?" = O(1) when (H.1) and
(H.5) are satisfied.
The theorem below presents the consistency of the estimator from the

subsampling algorithm to the full-data MLE.

Theorem 1. If Assumptions (H.1)-(H.6) hold, then as n — oo and r —

0o, B3 is consistent to BMLE i conditional probability, given F,. Moreover,

1/2

the rate of convergence is r—/2. That is, with probability approaching one,

for any e > 0, there exist finite A, and r., such that
P(||8 = Buel > rV2AF,) < (2.3)
for all r > r..

In addition to the consistency, we derive the asymptotic distribution of
the approximation error, thus proving that the approximation error, 8 —

BMLE, is asymptotically normal in conditional distribution.

Theorem 2. If Assumptions (H.1)-(H.7) hold, then as n — oo and r —

0o, conditional on F, in probability,
VY28 — Bure) — N(0,1) (2.4)

in distribution, where V = Jy'VoJx" = O,(r~1) and

Vo= LQ 2”: {y; — Qp(u(,éf/[LEﬂfz))}QUQ(BE/ILE%)%%T (2.5)
i=1

™ ;
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3. Optimal Subsampling Strategies

In this section, we specify the subsampling distribution = = {m;}, with

theoretical backup.

3.1 Optimal Subsampling Strategies Based on Optimal Design

Criteria

Based on the A-optimality criterion in the theory of experiment design (see
Pukelsheim, 2006), optimal subsampling selects subsampling probabilities
such that the asymptotic MSE of ,é is minimized. This idea was proposed
in Wang et al. (2018b). Here, we say the resulting subsampling strategy is

m V-optimal.

Theorem 3. A subsampling strategy is mV-optimal if the subsampling prob-

ability is chosen such that

o AT ) —1./AT N
7_[.;11\/ _ |y 1/’(U(BMLE%))|H»7X u( By pTi) Ti| i=192 n

> lys — Ou(Bipe))l| Tx i Biie)); |
(3.6)
The optimal subsampling probability 7™V has a meaningful interpreta-

tion from the viewpoint of the optimal design of experiments (Pukelsheim,

2006). Note that, under a mild condition, the “empirical information ma-

trix” Jg = 5 i lvi — ¢(U(IB{/ILE$Z))]ZUQ(B{/ILE:E’L):BZZB? and Jx converge
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to the same limit, namely, the Fisher information matrix of model (2.1).
This means that J¢ — Jx = op(1l). Thus, Jx can be replaced by J%
in 7™V, because Theorem 2 still holds if Jx is replaced by Jg in (2.5).
Let e, = [yi — (w(BL gw:))]%i2(8L gx:)x:xl be the contribution of
the ith observation to the empirical information matrix, and let J¢, , =
(1 —a)Jg + ang,, which can be interpreted as a movement of the informa-
tion matrix in a direction determined by the ith observation. The direc-
tional derivative of tr(Jg ') through the direction determined by the ith
observation is F; = limg_,o4 o~ {tr(J% ") — tr(J%s,o ')} This directional
derivative is used to measure the relative gain in estimation efficiency under
the A-optimality after adding the ith observations to the sample. Thus, the
optimal subsampling strategy prefers to select data points with large values
of directional derivatives, that is, data points that will result in a larger
gain under the A-optimality.

The optimal subsampling strategy derived from the mV-optimality cri-
terion requires that we calculate || Ty (8L g2, for i = 1,2,...n,
which takes O(np?) time. To reduce the computing time, Wang et al.
(2018b) proposed a modified optimality criterion to minimize tr(V.). This
criterion is essentially the L-optimality criterion in optimal experimental

design (see Pukelsheim, 2006), which aims to improve the estimation qual-
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ity of Jx3. It is casy to see that only O(np) time is needed to calculate the
optimal sampling probabilities. We say the resulting subsampling strategy

is mVe-optimal.

Theorem 4. A subsampling strategy is mVc-optimal if the subsampling

probability is chosen such that

] 3T . V(AT N
amVe _ i — Y(u(Byex:))||0(Byex:) i | i=1,2,...n. (3.7

' S0y — Y (u(Bhex) i Bhee;)z; ||

Note that in order to calculate || Jx ‘a8, pa:) 2|, for i = 1,2, ..., n, we
need O(np?) time, but we only need O(np) time to evaluate ||i(87 ;)2 ||.
Here, Jx and V, are nonnegative definite, and V' = J v T o L Simple ma-
trix algebra yields tr(V) = tr(ch);Q) < amaX(J)ZQ)tr(VC), where opax(A)
denotes the maximum singular value of matrix A. Because omax(Jx 2) does
not depend on 7r, minimizing tr(V,) minimizes an upper bound of tr(V').
In fact, for two given subsampling strategies w") and 7@, if V (#(M) <
V.(w®) in the sense of Loewner-ordering, then it follows that V(7)) <
V(7w®). Thus, the alternative optimality criterion greatly reduces the com-
puting time, without losing too much in terms of estimation accuracy.

The score function for the log-likelihood means that 7V¢ in Theorem
4 is proportional to ||{y; — ¥(BYpx:) (Bl px:)2;||, the norms of the

gradients of the log-likelihood at individual data points, evaluated at the
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full-data MLE. Here, we are trying to identify the subsample that best
approximates the full data score function at the full-data MLE.

We now illustrate Theorem 3 and Theorem 4 using some commonly
used GLMs. Note that u(-) is the identity function for GLMs with natural

link functions, such as the logistic and Poisson regressions. For the logistic

regression,
v _ i pil [T | ve ___ly =il ]
' Sty Ny — il | Tx | ' > i |y = pil 1zl

with p; = exp(Bhpe:)/{1 + exp(Blppzi)} and Jx = n 'S0 pr(1l —
pr)xrx) . These are the same as the results in Wang et al. (2018b). For the

Poisson regression,

v _ = Al [|T = ve _ v = Ail ]

Yy - Ml [T e ' 2 =1 i = Asl s |17
with \; = exp(BIpz:) and Jx = n~ ' 37, exp(BYpxr)zex. The NBR

does not have a canonical link function, and the conditional distribution of

the response is modeled by the two-parameter distribution

f(yifv>m)=r(y+yi)< ol )y( - )V, 1=1,2,...,n,

P! \v+w v+

where the size parameter v can be estimated as a nuisance parameter. The

optimal subsampling probabilities for NBR with size parameter v are

L —1 ve; N |
omV _ Ji—nal | Tx " o Ve _ lyi—nil | ooy
7 _1 v, ? 1 v )
I S

with p1; = exp(Blpx;) and Ty = n 2 30 {v(v + vt/ (v + )zl



3. OPTIMAL SUBSAMPLING STRATEGIES 15

3.2 Non-asymptotic Properties

Here, we derive some finite-sample properties of the subsample estimators
based on the optimal subsampling probabilities 7™V and 7w™V¢. The results
are presented in the form of the excess risk when approximating the mean
responses and they hold for fixed r» and n, without requiring any quantity
to go to infinity. These results may identify the factors that affect the
approximation accuracy.

Because ¢(u(z73)) is the conditional expectation of the response 1;,
given x;, we aim to characterize the quantity of 3 in the prediction by
examining ||¢(u(X7 Buwe)) — ¥(uw(XT3))||. This quantity is the distance
between the estimated conditional mean responses based on the full-data,
and that based on the subsamples. Intuitively, it measures the goodness of
fit when using a subsample estimator to predict the mean responses. Note
that we can always improve the accuracy of the estimator by increasing the
subsample size r. Here, we examine the effects of different quantities such
as the covariate matrix, data dimension, and the effect of subsample size r,
on approximation accuracy.

Let 0max(A) and opmin(A) be the maximum and minimum nonzero sin-
gular values, respectively, of matrix A, where k(A) = omax(A)/omin(A).

Denote ) (u(X73)), a vector with the ith element equals to ¢ (u(x!3)),
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and define 4(X78) := diag{u(xTB),--- ,u(xTB)}. For the estimator 3
obtained from the algorithm in Section 2 based on the subsampling proba-

bilities, 7™V and w™V¢, the following theorem holds.

Theorem 5. Let X denote the design matriz consisting of the subsample

covariates, with each sampled element rescaled by 1/+/rmf. Assume that

Omin(U(XTB)X) = 0500, (0(XTB)X), and both orax(W(X"B)X)/ /1

and omin(W(XTB)X)//n are bounded. For any given e € (0,1/3), with

probability at least 1 — €, we have

I(u(XT Bure)) — ¥ (u(XTB))]
day/log(1/€)
Jr

where a = k(Jx ') for ™V, a =1 for ™V, and Cy = sup |u(r)].
reKCo

<2031+ WoR* (X" B)X)Ily — & (w(X Bure))lll, (3.8)

Theorem 5 indicates that the accuracy increases with the subsample
size r, which agrees with the results in Theorem 1. In addition, it enables
us to examine the effects of various quantities such as the covariate matrix,
data dimension, and the effect of subsample size r, on the approximation
accuracy. Heuristically, the condition number of %(X7”3)X measures the
collinearity of the covariates in the full-data covariate matrix, p shows the
curse of dimensionality, and ||y — ¢ (u(X 7 Bywr))|| measures the goodness

of fit of the underlying model on the full data.
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The result in (3.8) also indicates that we should choose r o p to control
the error bound; hence, it seems reasonable to choose the subsample size as
r = cp. This agrees with the recommendation by Chapman et al. (1994) and
Loeppky et al. (2009) of choosing a sample size as large as 10 times number
of covariates for designed experiments. However, in such designed experi-
ments, the covariate matrices are often orthogonal, or close to orthogonal,
in which case, x(a(X7B)X) is equal or close to one. Here, we consider
that the full data may not be obtained from well-designed experiments, in
which case, 4(X”3)X may vary substantially. Thus, x(u(X73)X) should
also be considered when determining the required subsample size for a given
level of prediction accuracy.

The constant 0.5 in Theorem 5’s condition 2, ((X73)X) > 0.502,, (0(X7B)X)
can be replaced by any constant between 0 and 1. Here, we follow the setting
of Drineas et al. (2011), and choose 0.5 for convenience. This condition
indicates that the rank of w(X73)X is the same as that of u(X73)X.
Further details and interpretations about this condition can be found in
Mahoney (2012).

Using a similar argument to that in the proof of Theorem 5, we prove

that this condition holds with high probability.

Theorem 6. Let u(XTB)X denote the design matriz consisting of sub-
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samples, with each sampled element rescaled by 1/\/rm}. Assume that |y; —

D(uBipe))lla(Bliez)a:]| = yl@ill, for alli, and that o (W(X"8)X)/v/n,
and omin(W(XTB)X)/\/n are bounded. For any given ¢ € (0,1/3), let

ca < 1 be a constant depending on W(XTB)X, Cy = sup |u(r)|, and
reKCo

r > 64c2C2log(1/€)al, (X)p?/ (0?0t (W(XTB)X)), where § is some

min

constant depending on vy, and ||y — w(u(XTBMLE))H Then, with probabil-

ity at least 1 — e:

o2 (W(XTB)X) > 0502, ((XTB)X),

min min

where a = k(T ') for #™V and a =1 for w=Ve.

4. Practical Consideration and Implementation

For practical implementation, the optimal subsampling probabilities {7V :
i=1,...,n} and {7™V¢ : 4 = 1,...,n} cannot be used directly, because
they depend on the unknown full-data MLE, BMLE. As suggested in Wang

mVce

et al. (2018Db), in order to calculate 7™V or w™V¢, a pilot estimator of ﬁMLE

has to be used. Let Bo be a pilot estimator based on a subsample of size

Voor V¢, which then can be

ro. This can be used in place of By in ©™
used to derive more informative subsamples.

From the expression of @™V or #™V¢, the approximated optimal sub-

sampling probabilities are both proportional to |y; — w(u(ég x;))|. Thus,
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a data point with y; ~ ¢ (u(BTx;)) has a very small probability of being
selected, and the data point with y; = ¥ (u(8I;)) will never be included
in a subsample. On the other hand, if these data points are included in
the subsample, they may dominate the weighted log-likelihood function in
(2.2). As a result, the subsample estimator may be sensitive to these data
points. Ma et al. (2015) also noticed that some extremely small subsam-
pling probabilities may inflate the variance of the subsampling estimator in
the context of leveraging sampling.

To protect the weighted log-likelihood function from being inflated
by these data points in practice, we propose setting a threshold, say 9,
for |y; — ¥(u(BTx,))|; that is, use max{|y; — ¢¥(u(BLx,))|,d} in place of
lyi — (u(BFx;))|. Here, § is a small positive number, say 1076, Setting
a threshold ¢ in the subsampling probabilities truncates the weights of the
subsample weighted log-likelihood. Truncating the weight function is com-
monly used in practice to ensure a robust estimation. Note that, in practice,
an intercept should always be included in the model, so it is typical that
|a(BL i )| and || T a(BLy e;)a;|| are bounded away from zero, and

do not need a threshold. Let V be the version of V with BMLE substituted
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by Bo. It can be shown that

- - - 02 <1 ~ .
(V) < (V) < 0r(V) + = > || il Bl

i=1 "

Thus, minimizing tr(f/‘s) is close to minimizing tr(V) if ¢ is sufficiently
small. The threshold § makes our subsampling estimator more robust,
without compromising too much on estimation efficiency. Here, we can
also approximate Jx using the pilot sample. Specifically, the Jx in mV is
approximated by Jx = (ro) ™' 32012, {i(87a}) @i 2" [ (u(B 2,")) — yi*] +
O(u(BTx;*))i2(BTx*)x;*xT]}, based on the first-stage subsamples {(z*, y*) :
i=1,...,10}.

For transparent presentation, we combine the aforementioned practical

considerations in the following two-step algorithm:

UNIF

1. Run the general subsampling algorithm with w = =& and r = rg

to obtain the pilot subsample set gro and a pilot estimator BO.

2. Use 3, to calculate the approximated subsampling probabilities 7#°P* =
{FEVIn_or Pt = {FmVeln | where 7V is proportional to max(|y; —

Y(u(BFx:))|, )| T (BT a;)x;||s and 7™V¢ is proportional to max(|y; —

V(B )], 8)lla(B ).

3. Sample with replacement r times based on 7" to obtain the sub-

sample set S, := S, U {(yF, @, 75),i=1,...,7}.
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4. Maximize the following weighted log-likelihood function to obtain the

estimator B:

D)= —— 3 () — vz (49

Tt To (€S,
The following theorems describe the asymptotic properties of B

Theorem 7. Under Assumptions (H.1)-(H.5), if ror™' — 0 as ry —
00, — 00, and n — oo, then for the estimator ,é obtained from the two-

step algorithm, with probability approaching one, for any € > 0, there exist

finite A, and r., such that
P(HB - BMLE” Z r_1/2A6|‘FTL) < €,
for allr > r..

The asymptotic normality is presented in the following theorem.

Theorem 8. Under assumptions (H.1)-(H.5), if ror=' — 0, then for the
estimator obtained from the two-step algorithm, as ro — oo, r — 0o, and

n — oo, conditional on F,,
Voot (B — Briee) — N(0, 1), (4.10)

-1 -1,
where ‘/;pt = jX ‘/c,opth ’

Viop = 11 zn: {y: — (Bl px:) }2i? (Bl g Tiw] (4.11)

S max(ly — G(u(Bhppm)], 8)||a(Bhy s )|
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. Zmax lvi — (IBMLEm1>>| 6>”u(ﬂMLEmz>wz||

when subsampling probabilities based on 7™V°, and
1 1 {yi — (U<IBMLE$2))}2 2(BMLEwZ)m !

chopt
= max(|y; —¢(U(BMLE$i))|,5)||jX (BMLEml)mZH

X —Zmax |y — (ﬁMLEmzm 5)||jx (BAT/[LE%)%H

when subsampling probabilities based on 7™V .

In order to obtain the standard error of the corresponding estimator,

we estimate the variance-covariance matrix of 8 by V = Jy . T fn 1, where

{ = i(BT eyl [ (u(BTay)) — yi] + d(u(B w)) i (B) )i @]

*
i=1 0

BTz il [V (u(B ) — y]+w< <BTw:)>u2<BTw:>wst}
) 120287z} ) (x))T

2

. i — d(u(FTa;)
Ve = g, +r>2{; (72)
L3 D) :‘)w:(z*)T})

(77)?

7% is the subsampling probability used in the first stage, and 7} = #V* or

~mVck A
Ve fori=1,...,7.
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5. Numerical Studies

5.1 Simulation Studies

In this section, we use simulations to evaluate the finite-sample performance
of the proposed method for a Poisson regression and a NBR. Computations
are performed in R (R Core Team, 2018). The performance of a sampling
strategy 7 is evaluated using the empirical mean squared error (eMSE) of
the resultant estimator: eMSE = K ! Zszl I B — BuLel|, where BY is
the estimator from the kth subsample with subsampling probability 7r, and
BMLE is the MLE calculated from the whole data set. We set K = 1000
throughout this section.

Poisson regression. Full data of size n = 10,000 are generated from
model y|z ~ P(exp(BTx)), where the true value of 3 is a 7 x 1 vector
of 0.5. We consider the following four cases to generate the covariates

xr;, = (xl-l, vy I‘W)T.

Case 1: The seven covariates are independent and identically distributed
(i.i.d) from the standard uniform distribution, namely, x;; U, 1)),
fory=1,...,7.

Case 2: The first two covariates are highly correlated. Specifically, x;; S

U([0,1]), for all j except that x5 = ;1 + &;, with g; i U([0,0.1]).
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For this setup, the correlation coefficient between the first two co-

variates is about 0.8.

Case 3: This case is the same as the second, except that &; ' U([0,1]). For

this case, the correlation between the first two covariates is close

to 0.5.

Case 4: This case is the same as the third, except that x;; S U([-1,1)),
for j = 6,7. For this case, the bounds for each covariates are not

all the same.

We consider both 7"V and 7V¢, and choose § = 107%. For com-
parison, we also consider uniform subsampling with m; = 1/n for all i,
and the leverage subsampling strategy in Ma et al. (2015), in which m; =
hi/ Z?zl h; = h;/p, with h; = x;(XT X ) tx;. Here h; is the leverage score
for the linear regression. For GLMs, the leverage scores are defined by

using the adjusted covariate matrix, namely, h; = &;(X7X)"'@;, where

X = (&1,..,%,)", & = \/—E{32 log f(y;|0:)/062}x;, and 0; = BT x;, with
an initial estimate B (see Lee, 1987). In this example, simple algebra

yields ¢; = \/exp(Bg x;)x;. For the leverage score subsampling, we consid-

ered both h; and izl We compare the following methods: UNIF, uniform

subsample; mV, m; = #V; mVc, m; = 7"V Lev, leverage sampling based
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on h;; and Lev-A, adjusted leverage sampling based on h;.

We first consider the case in which the first step sample size is fixed.
We let rq = 200, and the second step sample size r be 300, 500, 700, 1000,
1200, and 1400. When subsampling probabilities that do not depend on
unknown parameters, these are implemented with a subsample size r + 7y,
for fair comparisons.

Figure 1 shows the eMSEs. For all four data sets, the subsampling
methods based on 7™V and 7™V¢ always result in a smaller eMSE than
that of the uniform subsampling, which agrees with the theoretical result
that they aim to minimize the asymptotic eMSEs of the resultant estimator.

mVe oxhibit similar

If the components of & are independent, @™V and 7
performance. However, they may perform differently if some covariates are
highly correlated because w™V¢ reduces the impact of the data correlation
structure, because we replaced || Jx a@;||? in 7™V with ||z, in 7™=Ve.

For Cases 1, 3, and 4, the eMSEs are small. This is because the condi-
tion number of X is quite small (= 5), and a small subsample size r = 100
produces satisfactory results. However, for Case 2, the condition number
is large (& 40); therefore, a larger subsample size is needed to approximate

BMLE accurately. This agrees with the conclusion in Theorem 5.

Theorem 8 also enables inferences on 3. Note that in the subsampling
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(a) Case 1 (independent covariates) (b) Case 2 (highly correlated covariates)

method method
@ UNIF 0021 @ UNIF
A mv % A mv
4 mve % 4 mve
+F Lov 0.01- e
4 Lev-A B Lev-A
0,000 0.00-
250 500 750 1000 1250 250 500 750 1000 1250

r r

(c) Case 3 (weakly correlated covari- (d) Case 4 (unequal bounds of covari-

ates) ates)

Figure 1: The eMSEs for a Poisson regression with different second step
subsample size r and a fixed first step subsample size oy = 200. The distri-

butions of the covariates are listed at the beginning of Section 5.
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setting,  is much smaller than the full data size n. If r = o(n), then BuLe
in Theorem 8 can be replaced by the true parameter. As an example, we
take By as a parameter of interest and construct 95% confidence intervals
for it. Here the estimator given by V= j);lffcjgl is used to estimate the
variance-covariance matrices based on selected subsamples. For compari-
son, the uniform subsampling method is also implemented.

Table 1 reports the empirical coverage probabilities and average lengths
for the Poisson regression model over the four synthetic data sets, with
the first step subsample size fixed at 7o = 200. It is clear that 7™V and
7MV¢ exhibit similar performance and are uniformly better than the uniform
subsampling method. As r increases, the lengths of the confidence intervals
decrease uniformly, which echoes the results of Theorem 8. The confidence
intervals in Case 2 are longer than those in other cases with the same
subsample sizes. This is because the condition number of X, in Case 2 is
bigger than that of X, in other cases. This indicates that we should select
a larger subsample when the condition number of the full data set is bigger,
which echoes the results discussed in Section 3.2.

Negative Binomial Regression. Next, we perform a simulation for
the negative binomial regression with n = 100, 000; the results are summa-

rized in Figure 2. Here, we assume y;|z; ~ NB(u;, v), where p; = exp(8Tx;)
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Table 1: Empirical coverage probabilities and average lengths of confidence

intervals for 5. The first step subsample size is fixed at ry = 200.

method mV mVe UNIF

r Coverage Length Coverage Length Coverage Length

300 0.954 0.2037  0.955 0.2066 0.952  0.2275

case 1 900 0.954 0.1684 0.945 0.1713 0.942 0.1924
1000 0.946  0.1254 0.938 0.1281  0.953 0.1471

300 0.961 1.9067 0.946 2.0776  0.950  2.2549

case 2 900 0.958  1.5470 0.948 1.7263 0.947  1.9082
1000 0.954 1.1379 0.948 1.2919 0.945 1.4559

300 0.959  0.1770  0.953  0.1816  0.939  0.2000

case 3 900 0.942 0.1451 0.949 0.1507 0.942  0.1693
1000 0.954 0.1082 0.954 0.1132  0.939 0.1291

300 0.955 0.2097 0.951  0.2179 0.953  0.2402

case 4 900 0.951  0.1721  0.956  0.1803  0.942  0.2033
1000 0.957  0.1276  0.960 0.1347 0.943  0.1552




5. NUMERICAL STUDIES 29

and v = 2. The other simulation settings are the same as the Poisson regres-
sion example. Note that, compared with the Poison regression, the eMSEs
are lager for the NBR when r is the same. This agrees with Theorem 5,
because Cy > 1 for NBR. The result for the 95% confidence intervals of /3,
are reported in Table 2.

Now, we investigate the effect of different sample size allocations be-
tween the two steps. Because the Poisson regression and the NBR exhibit
similar performance, we report the results for the Poisson regression only,
for brevity. Here, we calculate the eMSEs for various proportions of the
first step subsamples, with fixed total subsample sizes. The results are
given in Figure 3, with total subsample size rq + r = 800 and 1200. Be-
cause the results are similar in all cases, we present the results for Case 4
only. Note that the two-step method outperforms the uniform subsampling
method in all four cases, for both the Poisson regression and the NBR,
when 7o/r € [0.1,0.9]. This indicates that the two-step approach is more
efficient than the uniform subsampling. The two-step approach works best
when 7o /r is around 0.2.

To explore the influence of § in 7V and 7V¢, we calculate the eMSEs
for various §, ranging from 107% to 1, with fixed total subsample sizes.

Because the results for the Poisson regression and the NBR are similar,
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(a) Case 1 (independent covariates) (b) Case 2 (highly correlated covariates)
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0.00 0.00
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(c) Case 3 (weakly correlated covari- (d) Case 4 (unequal bounds of covari-

ates) ates)

Figure 2: The eMSEs for the NBR with different second step subsample
size r and a fixed first step subsample size ry = 200. The distributions of

the covariates are listed at the beginning of Section 5.
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Table 2: Empirical coverage probabilities and average lengths of the confi-
dence intervals for 85 in the NBR with v = 2. The first step subsample size

is fixed at ry = 200.

method mV mVe UNIF

r Coverage Length Coverage Length Coverage Length

300 0.952 02122 0.955 02147 0947  0.2354
casel 500 0952  0.1758 0.954 0.1776  0.946  0.1991
1000 0951 01305 0933 01331  0.940  0.1520
300 0.947 2.0228 0.963 22160 0.943  2.3913
case2 500 0953  1.6468 0.952  1.8423  0.946  2.0225
1000 0.957  1.2065 0.947 1.3849  0.942  1.5439
300 0.950 0.1878  0.950  0.1925 0.942  0.2110
case3 500 0949  0.1546 0954  0.1595 0.944  0.1786
1000 0.953 01150  0.957 0.1197 0.943  0.1361
300 0956 02288 0953 02366 0.953  0.2573
cased 500 0968  0.1876  0.963 0.1956  0.936  0.2176

1000 0.950  0.1396  0.952  0.1469 0.940  0.1662
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eMSE

0.016 ﬁ/‘ method AY method
«A,_/‘/k‘ S gl =
(a) Case 4 (ro+r = 800) (b) Case 4 (1o +r = 1200)

Figure 3: The eMSEs vs. the proportions of the first step subsample, with

fixed total subsample sizes r + 7, in the Poisson regression.

we report the results for the Poisson regression only. Figure 4 presents
the results for Case 4, with a total subsample size ro +r = 800 and 1200.
JFigure 4 shows that the eMSE is not sensitive to the choice of § when 4 is
not large, say 6 = 1.

To evaluate the computational efficiency of the subsampling strategies,

V. mmVe leverage score

we record the computing time of each (uniform, 7™
and adjusted leverage score), using the Sys.time() function in R to record
the start and end times. Each subsampling strategy is evaluated 50 times.
All methods are implemented in the R programming language. Computa-

tions are performed on a desktop computer running Windows 10, with an

Intel I7 processor and 32 GB memory. Table 3 shows the results for Case 4
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(a) Case 4 (rg +r = 800) (b) Case 4 (ro + r = 1200)

Figure 4: The eMSEs vs ¢ ranging from 107% to 1 with fixed total subsam-
ple sizes r + rg in Poisson regression. Logarithm is taken on § for better

presentation.

with different r and a fixed rqg = 400. The computing time for the full data
set is also given for comparison.

It is not surprising to observe that the uniform subsampling algorithm
requires the least computing time, because it does not require an additional

step to calculate the subsampling probability. The algorithm based on 7™V

requires a longer computing time than that of the algorithm based on 7w™V¢,
which agrees with the theoretical analysis in Section 4. The leverage score
sampling takes nearly as long as the mV method, because the leverage scores
are computed directly, by definition. Note that p = 7 is not sufficiently large

to use the fast computing method of Drineas et al. (2011). For fairness, we

also consider the case with p = 80, and n = 100, 000, for which it is suitable
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to use the fast computing method for the Lev and Lev-A methods. The
first seven variables are generated as in Case 4, and the rest are generated
independently from U([0,1]). Here, ry is also selected as 400, and the
corresponding results are reported in Table 5. In order to see the estimation
effects, we also present the eMSEs in Tables 4 and 6.

From Table 5, it is clear that the subsampling algorithms all take sig-
nificantly less computing time than the full data approach does. The Lev
and Lev-A methods are faster than the mV method because the fast al-
gorithm runs in O(pnlogn) time to obtain the subsampling probabilities,
as opposed to the O(p*n) time required by the mV method. However, the
mVec method is faster than the Lev and Lev-A methods, because the time
complexity is just O(pn) when computing the subsampling probabilities.

mVce

As the dimension increases, the computational advantage of & becomes

even more significant.

5.2 Real Data Studies

In the following, we demonstrate the methods described in Section 4 by ap-
plying them to a data set from musicology. This data set contains 1,019,318
unique users’ music play counts in the Echo Nest, which is available at

http://labrosa.ce.columbia.edu/millionsong/tasteprofile. One of the chal-
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Table 3: Computing time (in seconds) for the Poisson regression in Case 4,

with different r and fixed ry = 400.

r FULL  UNIF mV mVc Lev Lev-A
1000 0.187 0.003  0.020 0.016  0.024 0.031
1500 0.195 0.005  0.022  0.017  0.022 0.033
2000 0.193 0.007  0.021  0.018  0.026 0.036
2500 0.194 0.004  0.027  0.022  0.024 0.036

Table 4: Empirical MSE for the Poisson regression in Table 3.

in parentheses are standard errors.

The numbers

UNIF

MV

MVe

Lev

Lev-A

1000

1500

2000

2500

0.0091 (0.0065)
0.0071 (0.0054)
0.0056 (0.0043)

0.0045 (0.0032)

0.0064 (0.0041)
0.0047 (0.0034)
0.0037 (0.0026)

0.0030 (0.0021)

0.0088 (0.0051)
0.0049 (0.0038)
0.0040 (0.0031)

0.0033 (0.0025)

0.0088 (0.0065)
0.0067 (0.0049)
0.0054 (0.0041)

0.0044 (0.0034)

0.0095 (0.0068)
0.0070 (0.0051)
0.0054 (0.0040)

0.0047 (0.0036)
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Table 5: Computing time (in seconds) for the Poisson regression with n =

100, 000, dimension p = 80, different values of r, and a fixed rq = 400.

r FULL  UNIF mV mVc Lev Lev-A
1000  11.738  0.129  0.638  0.218  0.475 0.557
1500  11.659  0.163  0.689  0.253  0.514 0.595
2000  11.698  0.203  0.725 0.296  0.552 0.637
2500  12.005  0.240  0.777  0.339  0.602 0.681

Table 6: Empirical MSE for the Poisson regression in Table 5. The numbers

in parentheses are standard errors.

r UNIF MV MVe Lev Lev-A
1000 0.1003 (0.0174) 0.0786 (0.0135) 0.0782 (0.0136) 0.1011 (0.0172)  0.1021 (0.0192)
1500 0.0729 (0.0121) 0.0582 (0.0100) 0.0579 (0.0101) 0.0722 (0.0125) 0.0732 (0.0127)
2000  0.0562 (0.0095)  0.0472 (0.0085) 0.0470 (0.0085)  0.0565 (0.0094)  0.0577 (0.0099)
2500 0.0466 (0.0079)  0.0392 (0.0070)  0.0395 (0.0067)  0.0463 (0.0078)  0.0471 (0.0078)
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lenges with this data set is to build a music recommendation system. As a
basic step, it is interesting to predict the play counts using the song infor-
mation collected in the Million Song Dataset (Bertin-Mahieux et al., 2011).
Because the major mode and minor mode usually express different feelings,
the play counts may perform differently under the two modes. Thus, we
only focus on the major mode in this example. In addition to the mode
of the music, the following six features are selected to describe the song
characteristics: 1, the duration of the track; x,, the overall loudness of
the song; z3, tempo in BPM; x4, artist hotnesss; x5, song hotnesss; x¢, the
hotness of the album, which is selected as the maximum value of the song
hotnesss in the album. Here, x1, x9, and x3 are features of a specified song,
and x4, r5, and xg are features of the artist, audience, and album, respec-
tively. The last three features are subjective assessments by The Echo Nest,
and all are expressed on a scale between zero and one. Because the first
three variables in the data set are on different scales, we normalize them
first. In addition, we drop the NA values in the data set. After cleaning the
data, we have n = 205,032 data points. As a first attempt to capture the
relationship between the play counts and all regressors described above, we
fit the basic Poisson regression model, and the results are shown in Figure

Ha.
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Another way of modeling count data is to use a NBR. For comparison,
we also report the results from a NBR in Figure 5b, with the size parameter
set as # = 1.4, which indicates overdispersion of the data.

Similarlly to the synthetic data sets, we compare our method with the
uniform subsampling and leverage score subsampling methods, and report
the results for r varying from 600 to 2800. The empirical MSEs are reported
in Figure 5. It is clear that as r increases, the eMSE decreases quickly for

all methods. Moreover, 7™V and 7w™V¢

perform similarly, and are uniformly
better than the uniform subsampling and leverage score subsampling meth-
ods for larger values of . Note that the eMSE in the NBR is less than the
Poisson regression. This may because the ratio of the squared Winsorized
mean to the Winsorized variance of y is around 1.4, which implies the data

is overdispersed. This echoes the results in Theorem 5, which advise us to

include additional subsamples to improve the goodness of fit.

Supplementary Material

All technical proofs and additional simulation results are included in the

online Supplementary Material.
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Figure 5: Empirical MSEs for different second step subsample size r with

the first step subsample size being fixed at ry = 400.
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Supplementary Material

S1 Proofs

To prove Theorem 1, we begin with the following remark and lemma.

Remark 1. By the fact that A\(0) : =exp(¢(0)) is analytic in the interior
of © (see Theorem 2.7 in Brown (1986)), Cauchy’s integral formula tells
us that all its higher derivatives exist and are continuous. Therefore, the
derivatives 1(t), 1(t), ¥ (t) are continuous in ¢, and 4 (¢),1)(¢) are bounded

on the compact set, which follows by a well-known property that every

real-valued continuous function on a compact set is necessarily bounded.



2

Lemma 1. If Assumptions (H.1)-(H.4) and (H.6) hold, then as r — oo

and n — oo, conditionally on F, in probability,

Ix — Jx = Op|, (7’_1/2), (SL.1)
%L*(ﬂ) - %L(ﬁ) = Opiz, (%), (81.2)
%%;LE) = Opiz (r™'1%), (S1.3)

where

. 1 82L*(BMLE) 1 : w(u(/BTw*z))u(/BTm*z)wr[u(ﬁgﬂLij)w:]T
T 98087 nr Z
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T

X7 n 08087
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nr 4 T}
Proof. By the definition of conditional expectation and towering property

of flirtations, it yields that
E(Jx|Fn) = Jx.
For any component j)];m of Jx where 1 < jy,js < p,
E (jjm — Jin|F, )2 (S1.4)

IBMLE‘L‘z)) ‘Q(BE/ILEwi)xijlxijz
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nw;
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nm;
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where the last inequality stems form (H.1) and the last equality holds by
assumptions (H.3) and (H.6). From Chebyshev’s inequality, it is proved
that Equation (S1.1) holds.

To prove Equation (S1.3), let ;(8) = y;u(B7x;) — Y(u(BTx;), t1(8) =

yiu(BTzr) — Y(u(B7x})), then
L*(B) = %Z ﬂ and L(B) = Zti(ﬁ)'

- T,
=1

Under the conditional distribution of the subsample given F,,,

(B2 R ()

=1

Combining the facts that the parameter space is compact and w(t) is con-
tinuous function, by assumption (H.1) we have that u(3” x;) are uniformly

bounded. Then, it can be shown that by Remark 1 that
t:(B)] < lyiu(BTai) — d(u(B i) u(BT@:)| + [ (u(BT2:))u(B 2:) — v (u(B2)))|
< lyi = D (u(BT @) u(B )| + [$(u(B @) u(B 2| + [ (u(B ),



Therefore, we have

(%ZM@) < ZOP )yi — (ﬁTwJ)I)

Lot

> I = (8 @) + O (1)

From Assumptions (H.1), we have supn='>""  #;(8) < co. Thus,

n n

E{L*(IB) L(/B) ]_—n}Q — OPlfn(r_l/Q)' (815)

Now the desired result (S1.2) follows from Chebyshev’s Inequality.

Similarly, we can show that

Var (%%ﬁ) = Op(r ).

Thus (S1.3) is true. O

S1.1 Proof of Theorem 1

Proof. As v — oo, by (S1.5), we have that n='L*(8) — n"'L(8) — 0 in
conditional probability given F,,. Note that the parameter space is compact
and BMLE is the unique global maximum of the continuous convex function
L(B). Thus, from Theorem 5.9 and its remark of van der Vaart (1998), by

(S1.3) we have

18 — BuLel = op|r,(1). (51.6)



as n — 00,7 — o0, conditionally on JF,, in probability.
Using Taylor’s theorem for random variables (see Ferguson, 1996, Chap-
ter 4),

L;(B) _Li(g 101 .
0 — Jiﬂ) _ ](iMLE)"'n éggMLE)(IB Bune) + R], 1)

where Lj(ﬁ) is the partial derivative of L*(8) with respect to f;, and the

remainder

= 1(6 —ﬁMLE)T /1 /1 82L;{BMLE +uv([§ _ BMLE)}

8,68ﬁT vdudv (,6. — BMLE)

By calculus, we get

0*L; (B Z JEBT Dy —b(u(BT))] (A )BT ) (u(B )
5/65‘,3T N Ty T*
_ W(BTe))ilf e ey) (BT (BTRY) ) e T

7
ij r;T; .
s L

From (H.1) and Remark 1, we have

O*L;(B)
0B0B"

Ly (aw%mgum%:» | WuBT))i(BTa;)
nril < m; ;
w(lb(,@Tmi;)U(ﬂTw: ) (IBT *)xmw;kw;kT .

L|IN- (8 %))y — d(u(B"2)))]
+E ; T 5

)

S

ly; — du(B 2)]agl .
Z I, T

[t
i=1 7TZ

Cos- Ll O
—rn i rn

for all B € Ag, where C3 and Cy are some constants according to Remark 1.




As 7 — oo, assumption (H.5) gives,

1 ] ||fI3 ||
Pl — E " > E FE
(m’ — T - nrr

Also note that as 7 — 00,

[y: — V(u(B )|z za]

*
T

) Z llzi]|* 5 o.
nrt

ZTE)
S

[yi — ¥ (u(B"x:))|wy|xm!

*
;

<L Zn: HH?/Z’ — ) (u(B ;) )wiy|aa]

nt i1
1 & .
<= = DB 2| < [l |
=1
1 . 1 — 2
<- Zm w(BT))2 -\ | = i s
=1
Lo %o
= p(1) =0,

where the last equality is due to (H.3) and (H.5) by noting that

n

1 * *T
1Y legeiarT < :
i=1
9 n
§5 Z lai]|* ||z || < o Z li]|°.
i=1 i=1
Thus we have
O*L;(B)
- = Opy7,(1).
From (H.1)- ) and Remark 1, it is known that
V0L Bk + wo(B — ,BMLE)}UdudU

0BoBT



aQL;{BMLE +uv(B — Bure)}
0B03T

vdudv = Opz,(1).

Combining the above equations with the Taylor’s expansion (S1.7), we

have
B — Bue = —Jx " {@‘FOP}%(HB_BMLEHQ)}. (S1.8)

From Lemma 1 and Assumption (H.4), it is obvious that J¢' = Opjz, (1).

Therefore,

B — B = 0P|fn(7“_1/2) + 0P|Fn<||B - BMLEH))

which implies that B — BMLE = Op‘]:n (T_1/2). ]

S1.2 Proof of Theorem 2

Proof. Note that

/BMLE _ Z {yr — Y (u(Bs; 3)}U<B{4LE:B:>@ = lim (51.9)

n}
It can be seen that given F,,, 1y, ..., n, are i.i.d random variables with mean

0 and variance

T

Z{?Jz %( (ﬁMLEm%))} u (BMLEwZ) ;T . (S1.10)

T

var(n|Fn)

Then from (H.7) with v = 0, we know that var(n;|F,) = Op(1) as n — oo.



Meanwhile, for some v > 0 and every € > 0,

B Pl 1wl > r2e)l Fa)
i=1
1 - 24 1/2
SWZE{HHZH TI([lnill > r7e) | Fa}
(SL.11)

Z E([lmil*|Fn)

711+7/25“/

Z [y — Wi (u(Blae®)) > || BT )i |+
T’Y/Q g’Y n2+7 7T’1+’Y ’
i

From (H.7) for some 7 > 0, we obtain

- B 1 1
ZE{HT R PI(me|| > v Pe)| Fa} < — o VOP() Op(1) = op(1),

This shows that the Lindeberg-Feller conditions are satisfied in probability.
From (S1.9) and (S1.10), by the Lindeberg-Feller central limit theorem

(Proposition 2.27 of van der Vaart, 1998), conditionally on F,,

1 —1/2 7%/ _12 :
~VTPL (Bus) = 1/2{Var(m|f /2 n; — N(0, 1),

=1

in distribution. From Lemma 1, (S1.8) and Theorem 1, we have
8- BMLE = —%jglL* (BMLE) + Opy7, (rh). (51.12)
From (S1.1) in Lemma 1, it follows that
Ix' =I5 = =I5 (Ix = T)Ix" = Opiz, (712). (S1.13)
Based on Assumption (H.4) and (S1.10), it can be proved that

1
V= Tx'WVeTx" = 25" (rVe) It = Op(r™),



Thus,

V—l/Q(B o BMLE) _ _V_l/zn_lj)zlL*(BMLE> + Op|]:n(’l“_1/2)
V_I/ZJ)Zln_lL*(,BMLE) -V- 1/2(7 — Jx'n~ L*(,@MLE) + Opy7,(r —/2)

- V71/2j§1%1/2‘/571/2n711;*(BMLE) + OP\]:n (7,71/2).

So the result in (2.4) of Theorem 2 follows by applying Slutsky’s Theorem

(Theorem 6, Section 6 of Ferguson, 1996) and the fact that

V71/2j§1‘/61/2(V71/2\7);1‘/01/2)T _ V71/2j§1%1/2‘/61/2\7);1‘/71/2 — T

S1.3 Proof of Theorem 3

Proof. Note that

tr(V) = tr(Jy VeIx )

n2 Ztr[ {yi — (5MLE332))} jX (B1\T/1LE931)33Z[U(B{KZLE%)%]TJ);I}

_ L { {0 VB PITE Bl

nQr :

= Zmz[ My — (Bl IR W8 @)

=1

Z|?/z w( (/BMLE$1))|||jX (BEALEmZ)wll|] )
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where the last inequality follows from the Cauchy-Schwarz inequality, and

the equality in it holds if and only if

mi o |y — Y(u(Bip@))| T @il I{]y: — & (u(Blse)) || Tx "2l > 0}

Here we define 0/0 = 0, and this is equivalent to removing data points with

lyi — U(u(BLpx:))| = 0 in the expression of V. O

S1.4 Proof of Theorems 5 and 6

Let |Allp == (307, Y7, A%)Y? denote the Frobenius norm. For a given
m X n matrix A and an n X p matrix B, we want to get an approximation
to the product AB. In the following fast Monte Carlo algorithm in Drineas
et al. (2006), we do r independent trials. In each trial we randomly sample
an element of {1,2,---,n} with given discrete distribution P =: {p;} .
Then we extract an m X r matrix C from the columns of A, and extract
an r X n matrix R from the corresponding rows of B. If the P is chosen
appropriately in the sense that C'R is a nice approximation to AB, then
the F-norm matrix concentration inequality in Lemma 2 holds with high

probability.

Lemma 2. (Theorem 2.1 in Drineas et al. (2006)) Let A% be the i-th
row of A € R™" as row vector and B; be the j-th column of B € R"™*?

as column vector. Suppose sampling probabilities {p;}?_1, (> pi = 1) are
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such that
49 |y
>y A [|Bg |

for some B € (0,1]. Construct C' and R with Algorithm 1 in Drineas et al.

pi >

(2006), and assume that € € (0,1/3). Then, with probability at least 1 — ¢,

we have

44/log(1/e)
Bye

Now we prove Theorems 5 and 6 by applying the above Lemma 2.

IAB — CR||f < Al Bl -

Proof. Note the fact that the maximum likelihood estimate BMLE of the

parameter vector 3 satisfy the following estimation equation
X"y - d(uw(X"B))]a(X"B) = 0, (S1.14)

where 1) (u(X7T3)) denotes the n x n diagonal matrix whose i-th element
in its diagonal is ¥ (u(x? B)).
Without of loss of generality, we only show the case with probability

mV

7™V since the proof for w™Ve

is quite similar. Let S be an n X r matrix

whose i-th column is 1/4/rmV

ej,, where e;, € R" denotes the all-zeros
vector except that its j;-th entry is set to one. Here j; denotes the j;-

th data point chosen from the ¢-th independent random subsampling with

probabilities 7™V, Then B satisfies the following equation

XTS5 [y — d(u(XTB))u(XTB) = 0. (S1.15)
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Let || - || denote the Frobenius norm, we have

Oin X7 SSTi( X7 B))|[(u( X7 B)) = (u(X Brn))|
< [ XTSSTa( X B (u(X" )~ d(u(X Byl
< | XTSSTa( X B (u(X"B)) — yllle
+1IXTSSTA(XTB)y — v (u(XT Bywe) )¢
— IX7SS"a(X By ~ Y(u(X" Bus)) s [by (51.15)]
< I XT(XTB)y — (X" Bue))l
+ || XTUXTB) Iy — D (X7 Bue))] - XSS X B)ly — (X" Buwn))]|

< | X"u(XTB)[y — d(w(X" Bure))]l r
N 4R<J§1>ﬁlog<1/e)
< Omax (X) /DI X T B) [y — ¢ (u(X " Bure)) |

N Ak(Ty )\/FIOg(l/E)amaX(X)\/]_OHY'L(XTBM?J — h(u(X T Brwe))]|

4k(Tx )\/Flog(l/e)]amax(X)\/ﬁ”U(XTB)[y — (X T Byl

4k (Jx ")/ log(1/€)
Jr

where the fourth last inequality follows from Lemma 2 by putting A =

11 el (X B) [y — o (w(X T Baaee)]|

<[1+

< Cull + Jomax (X)VD[y — ¥ (w(X" Brs))]|

XTu(X"B), B = (X" B)ly—d(w( X" Bwwp))],C = XS, R = STi( X" B)(y—
Yu(XTBuwr))) and 8 = 1/k(Jx"), and last equality stems from (H.1) and

Remark 1 with Cy = sup |u(r)].
re KCo
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Hence,

1(u(X 7 Bure)) — ¥ (u(XTB))]

4r(T 5 /log(1/€)
[1+ = : ]\/ﬁamaX(X)

VT . .
=Ci amin(u(XTB)XTSST) Iy — (u(X" Buwr))]l|.  (S1.16)

Then by following the facts that
Omin(1( X7 B) XSS X (X" B)) < Ommax (i X7 B) X )orin (0 X" B) XS ST)
and 02, (4(XTB)XT) = 0 (W(XTB) XTSSTXW(XTB)) > 0.502,,(X),
it holds that
Ounin(03(XTB)XTSST) 2 0.507:, (4(XTB)X) /omax (0(XTB)X). (S1.17)
Combing the result (S1.17) with (S1.16), the desired result holds

I (u(XT Buee)) — 9 (u(XTB))l|

< 20,1 4 2evioall/g) Vlji“/e’wﬁ(w%)xmy X Bue)ll. (SLIS)

Now, we turn to prove Theorem 6.

Note that

min |y; — ¢( (Blsz)|laBlusz) Nl _ ol

%Z s — DAL ) Pl Bl ) o Nl s ]

with some 0 < ¢ :=

ay
\/Z |yj ﬂMLE‘L‘])” |u2(,6MLE:B])|
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According to the Weyl inequality, we have

|Oin (0 XTB) X T4(XTB)X) — owin(W(XTB) XSS X0(XTB))]
<[[a(XTB8) XTuXTB)X — u(XTB)XTSSTXu(XTP)|s
<[[a(XTB)lIslI(XTX — XTSSTX)||s|la(XTB)|s

<O (XTX — XTSSTX)||
4+/log(1/€)C? 5

max

SCdél\/logg\(/lf/e)(ﬁ’g 2 (x),

Using the above inequality, if we set
r > 64c3C; log(1/6)0;‘;3}{(X)pQ/(fSZUﬁlin(u(XTB)X))7
it holds that
Cuin (@ XTB)XTSST Xit(XTB)) = 0in (a(XTB) X7 Xi( X" B)
<0.50mim(0(XTB)XT X 0u(XT3)).
Thus the following equation holds with probability at least 1 — e:

Omin (W XTB)XTSSTX0u(XTB)) > 0.502, ((XTB)X).

min
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S1.5 Proof of Theorem 7

For the average weighted log-likelihood in Step 2 of two-step algorithm, we

have
470 * ) * T+7Q *
- LR LS

ﬂ-;k(ﬂo) r+To i gy i=rg+1 T (ﬁ())

0 * r+ro *
:T_o_iz; ti(B) + r % Z t:(B)

= 7 (Bo) T T A= T (Bo)
where 7*(8,) in the first item stands for the initial subsampling strategy
which satisfies (H.5).

For the sake of brevity, we begin with the case with probability 7™V.

Denote the log-likelihood in the first and second steps by

70 T

. 1 <~ t(B) . 1~ t(8)
L~0 = — ~— d L7 = SENE)
) ro;wﬂﬁw wnd 150 T;w:wo)

respectively, where m;(8) = 7" in Ly (B), and it has been calculated in
the two-step algorithm in Section 4.

To proof of Theorem 7, we begin with the following Lemma 3.

Lemma 3. If Assumptions (H.1)-(H.4) holds, then as n — oo, condition-

ally on F,, in probability,

T — Ty = Opir, (r112), (S1.19)

1 aL*Bo (BMLE)

" 0B = Opi7, (r %), (S1.20)
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where

gio_ 1005 Bue) Er:@E(U(B%*i))u(ﬁ%*i)w;"[u(BﬂLEw;")wﬂT

X T aﬁaﬁT T *(Bo)
+n7“ ZZI Uy (BO) .

Proof. Using the same arguments in Lemma 1, we have

E (j)ﬁ?o,hjz . j)j(l]é

22 OP(l){ 0 (B ) (i, i)
‘Fn’ S ~
B) <= ; (o)
{U BMLEwZ Tiji Lijy W( (B;{/{LE%)) - yi]}Z]
" Z n2m;(Bo) '

(S1.21)

Now we substitute expression of Wi(,éo) in the two-step algorithm: 7™V
and 7™Ve. Here we only give the proof of the case ™V, and the proof of

the case #™V° is analogous thus we omit it. For the first terms in (S1.21),

note that opay(Jx ), omin(Jx ) are bounded from Lemma 1 and (H.4), it
implies

zn: OQ(BEALE%)(}?@&UZ)Q

i=1 n?mi(Bo)

o |8, (lys = (B @), 0) | Tx il B o)z
< .
n?max(\yj—wu(ﬁowj )10) |5 (Bl @,
o ||| S max(ly, — b (B2, O)omee (T ) [ i2(BE )2
<

i

1 n 50‘min(s7)z HUQ /ngz)mz

jX Z || % ( IBMLEmZ )| {Z ly; — 50 x;)) || (:30 x;)z;||

n
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S 6||u2<ﬁ§wi>wjn}

- n
Jj=1

o Z I B N

I bl 6%%)%”}
j=1

Z lyi —

J=1

((6 )P | = (B )|
0 szl on

2]

(T D

S Op(l)li

Op(1).

R

— 0|
D
j=1

where the last equality is from (H.3) and (H.5).

For the second terms in (S1.21), we have

n

(iLQ (BIC\F/ILEwi)xijl Lijo [¢(U<B{4Lsz)) -
>

2

yi))

i—1 7127&‘(,30)
~ 20 . ~ 2
- z": W (BieTi)Ti ¢(1j(ﬂl\T/lLsz)) — Yi
i=1 n?d || Ty u(B ;)
3 (s — (B 2)l+0) |75 (B )
7j=1
n \2( 3T . . i 3T ) — .2
< “(jxl)Z[ W (Byrp®:)T: HE;L(BMLE:CZ)) Yi
=1
> (1 = (B z)l+9) || B ),
~ . ~ 2
o || [ B - v
— #(T") Or(1)

no
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A 2 N 4
_ n [ 2( AT . . n T
ot | [ e | e -l
=1 i=1
= Op(1)

where the second last and last equality is from (H.3) and (H.5).

Direct calculation yields
LA . 2 v . - \2
E(j)?odljz . j)j(1]2|fn> _ EBOE<:7£0731J2 . jj](lj2|‘Fn7IBO) _ OP(T_l)

where E5 means that the expectation is taken with respect to the distri-
bution of Bo given F,.
On the other hand, following the same arguments in Lemma 1, we can

have

. { L;,(B)  L(B)

n

2
fnaBO} = OP(Til)‘

2
Then E {n—ng (8) - n‘lL(ﬁ)]}"n} = Op(rY).

0
Similarly, we can see that Var(n_laLgo (Buie)/0B) = Op(r~'). Thus,

the desired result holds. O

Now we prove Theorem 7.
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Proof. Using the same arguments in Lemma 3 , we have

. { 5 B L(B) fn}z o g {LE2<ﬂ>_L<ﬁ>‘fn}2

n n n n

T+ T n n

+2<L>2E{LEO([3) - L(ﬂ)‘fn} — Op(rY).

Therefore E{n~ 1Ltwo P(B)—n" L(B)|Fu}? — 0asrg/r — 0,7 — oo and
*1Lg;° *P(B) — n~'L(B) — 0 in conditional probability given F,. Also
note that the parameter space is compact and BMLE is the unique global

maximum of the continuous convex function L(83). Thus, from Theorem

5.9 and its remark of van der Vaart (1998), we have

18 — Buiiel = opiz, (1)

Using Taylor’s theorem,

two step / 2 3 o 2
0— [30] P(Ig) To ,BOJ(ﬂ) X T LBo,j(/B)

n r—i—ro n r+ 170 n

L% (BMLE) 1 oL (BMLE) o A 1
. r Bo, Bo,
= { ! - + - (‘;ﬂT (B — Bure) + ﬁRﬁo,j

To IBOJ(B)

) n

T+ 719

)

where L%O j(ﬁ) is the partial derivative of L;}O j(,B) with respect to 3;.
By similar argument in the Proof of Theorem 1, the Lagrange remainder

have the rate

vdudv (B — BMLE)

1 . Ul 920 Bure + wv(B — Bure)}
= *(ﬁ - IgMLE)T/ / ! aﬂﬁﬂT
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= Opi7, (|8 — Brrsl?).

Note that the subsampling probabilities in the first stage satisfies the con-
dition (H.1)-(H.7), thus from Theorem 2, it holds that

L2 (B) LY (Bue) 10LY (Buwe) . . 54
Bo.j Bo.j L2 Bod B — Burr) + Opiz (|18 — Burel?)-

n n n opT

Therefore

1 3[/;% B 1 8L:§% (Buiie) 1 QZLE% (Byre) . . o 2
n 08 n 0B T 0papT B — Bure) + Op7, (1B — Burel”)-

From Lemma 1, it is clear to see that

1 3% (Buiie) _
nap = Onnl)

for the first step, since 7} is prespecified and satisfied (H.6), and

ro 1 6L§3)(BMLE) B TOO ( 1
r+ron 0B P "o

/2) = Op|F, (r=1/2),

since ro/r — 0. This step holds due to the fact that @Opprn(l) =

\/\/TE p|]:n<].)0p|]:n(7"_1/2) = 0(].)Op|]:n(7"_1/2). Let

v r 182L;”0(;6MLE> o 182L§3J(BMLE)

X = o T 0BT v tron 03087

Combine Lemmas 1 and 3, we have

2710 (]
o T - 3o To 1 d L,gO (/BMLE)
Ix = Tx == (78 - av) o (ﬁ sogT
— —1/2 "o —1/2y _ ~1/2
T+T00P|fn(7“ )+ T+TOOP|fn(7“o ) = Opz, (1'%,
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since ro/r — 0.

Hence,

B~ Pup = (Jx)" {%LEO (Bue) + Opi, (18 = Burell”) + oy, W?)} 7

=0pi7,(r"*) + opi7, (|18 — Bzl

as ro/r — 0, by noting (Jx) ! = Op|r, (1) from (H.5). Therefore, the

desired result follows by noting

B — B = Opiz, (r™/?).

S1.6 Proof of Theorem 8

Proof. For the sake of brevity, we begin with the case with probability 7w™Ve.

Denote

BMLE MEET])) By pT;)
Z {yz 5 ))} (,3 Z”

ni; (60)
(S1.22)

It can be shown that given F, and Bo, n? o .. ,77?0 are i.i.d random variables

with zero mean and variance

Var(nl | F, Bo) = C~ = Z {yz ( (/BMLEw')()B}:)uZ(/B{/[LEw;)wiw?.
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Meanwhile, for every € > 0,

S~ Bl PR IPI (0| > v )| Fu, Bo}
=1

1 — . - B
STS/QE Z E{ln IPI(Inf* | > r'/%¢)| F, Bo}

< 3/25 ZE I 17, Bo)

3 3
1/2 ~ Z {yi — IBMLEm:)(gz) ||u(ﬁMLsz)wz||

i ﬂ 2 BT N
7’1/2 Z {lyi — MLEL: ?l} [6( BTy i ) |

( Zmax [y — W (u(B )], )|l e’Bg)fBgll)

¢1/2 Z {ly: — ﬂMLEwZ?H HU(IBMLE%>%H

X (i > Iy = (u (,Bgil?]))|+5)||u(ﬂ0m])m]||>

7=1

From (H.1), (H.3) and (H.5),

i IBMLEwl U ﬁMLsz L
Z{\y 25)\} [ a( )i

1/2 "
( Z{lyl IBMLEwl))‘} ) (% Z HU(BEALE%)C’?JP)

=0p(1),

1/2

by Holder’s inequality.
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Similarly, it can be shown

- Z ly; — 50 w;))| + 5)““(50 x;)x;|| = Op(1),

from (H.1), (H.3) and (H.5).

Hence

S Bl PR PI(n® | > r2e) | F, Bot = opis (1).

This shows that the Lindeberg-Feller conditions are satisfied in probability.
By the Lindeberg-Feller central limit theorem (Proposition 2.27 of van der
Vaart, 1998), conditionally on F,, and ,éo,

l(‘/céo)_l/zL*(BMLE) = %/Q{Var(m\]:nﬁo)}_l/g iﬁi — N(0,1),

n r —
in distribution.

The distance between Vc'éo and V, is

Ve = V|
1 1 1 {yi — ( (BMLsz))}2 2(/BMLEwZ)||wZ”2
<- R
T ; mpVe Wi(ﬁo) n
1 " {yi — ( (ﬁMLEmi))}Z Q(BMLE%)”%”
— 1—
r ; 7Tz(50) nmpVe
<1 3 1— i lyi — P (u(BliLe®))| [ Bheei)ai |
T Wz(ﬁ@) n
n /
<1 <1§; - ”f(“;) ) (Z {1 = DBl we)) i (Bl o)l ) i
A" i (Bo n

= OP‘]:n (T71)7
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where the last equation follows from the facts that

mVe |2 mVe _ (A 2
-] < T e

and

i {y: — ¥ (u(Bhie®:)) 202 (Blee) |2l = Op(1).

n

Here the first equality in the fact above holds for the continues mapping the-
orem and the second equality holds from (H.1), (H.3), (H.5) and Cauchy’s
inequality.

Utilizing the facts
(j)[?o)—l - j)zl - —jil(j)?o - jX + jX - jX)(j)éo)_l - ()p‘]:n(’f‘_lm)7

we have (jf?ﬂ)—l — (Jx)™" = Opyz, (r~/?) from Lemma 3 and Theorem 7.

Thus
B~ Bae=— —(T) ' L5 (Bre) + Opiz, () (5123
Based on Equation (S1.19), we further have
(T = Tx' = =TI~ T = Oz, (7).
Therefore

V_1/2 (B - BMLE)

1 s .
- V_1/2ﬁ(jxo)_1L*(BMLE) + Opiz, (™)
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1. . » 1. .
= - V_l/Qj)?lﬁL*(ﬁMLE) —VIR{gE T - ng}gL*(ﬂMLE) + Opiz, (r™'7?)

. . 1. .
== VRIS VYRV L (Bue) + Opir, (r77).
n
It can be shown that

V71/2‘7);1(‘/Cﬁo)l/Q(Vfl/Qj);l(V'cﬁo)l/2)T
:V_l/QJ)Zl(VCBO)J)ZIV_l/Q
:V—I/QJ)ZI(‘/C)j)Elv—I/Q 4 Opl}_n(r—l/Q)

:[ + 0p|_7:n(7"71/2).

The desired result follows by Slutsky’s theorem.
As for the case m;(By) = 7™V in L (8), 7MY has the same expression

as ™V except that BMLE, is replaced by Bo- Also note that 7Ti<,éo> >

)

k(JTx )" 17mVe. The rest of the proof is the same as that of #™V¢ with minor

modifications. ]

S2 Additional Simulation Results

In terms of the allocation between rq and 7, it is clear to see that the two-
step approach works the best when r/r is around 0.2 from the simulation
result in Figure 3 of the main text. To well demonstrate our methods, we

compare different ro + r with fixed ro/r = 0.2.
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In each of the settings described in Section 5.1 of the article, we reeval-
uated the performance of 7™V and 7#V¢ when ry/r is fixed at 0.2. For
comparison, the uniform subsampling, leverage subsampling and adjusted
leverage subsampling methods are also considered. Inline with the setting
in the main text, the sample size ry + 7 is selected as 500, 700, 900, 1200,
1400, and 1600. We report the results for the Poisson regression and the

negative binomial regression in Figures S1 and S2, respectively.

0025 WL
0.020 method method
@ UNIF @ UNIF
Y0015 A mv u A mv
2 0ot -, mve H &/ mve
—+ Lev —+ Lev
0.005 5 Lev-A 5 Lev-A
0.000
800 1200 1600
ro*r
(a) Case 1
0020
method method
0.015 @ UNIF @ UNIF
w A mv W A mv
3 0010 o 3 - mve
—+ Lev —+ Lev
0.005 5 Lev-A - Lev-A
0.000 0.00
800 1200 1600 800 1200 1600
fo*r rotr
(c) Case 3 (d) Case 4

Figure S1: The eMSEs for the Poisson regression with different subsample size rg + 7
and fixed ro/r = 0.2. The distributions of the covariates are listed at the beginning of

Section 5.
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0.100-
method
00754 -0 UNIF
% A mv
3 00507 & mve
—+ Lev
0.025+ B Lev-h
0.000+
800 1200 1600
rotr
(a) Case 1
0.09- method
“® UNIF
w
2 006 A mv
© - mve
L
0.03- T+l
- Lev-A
0.00+
800 1200 1600
ro+r
(c) Case 3

0.09

800 1200 1600

ro*r

(b) Case 2

800 1200 1600
To+r

(d) Case 4

method
“© UNIF
A mv
W mve
~+ Lev
B Lev-A

method
- UNIF
A mv
% mve
—+ Lev
- Lev-A

Figure S2: The eMSEs for the NBR with different subsample size ry +r and fixed

ro/r = 0.2. The distributions of the covariates are listed at the beginning of Section 5.
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From Figures S1 and S2, we can see that our methods are slightly better

than the cases that 7y is fixed at 200. However, this improvement is not

significant.

To explore influential factors on subsample sizes that have been dis-

cussed in Section 3.2 in terms of estimation accuracy, we consider additional

four cases for the Poisson regression models listed as below.

Case S1:

Case S2:

Case S3:

The true value of B is a 7 x 1 vector of 0.5 and the covariates
matrix X = 2, /2X. Here X is the centralized version of a n x 7
matrix whose elements are i.i.d., generated from U([—1,1]), and
Y, is the sample covariance matrix of X so that X has a sample

covariance matrix as [, and a condition number as 1.

The true value of 3 is a 14 x 1 vector whose first seven elements
are set to be 0.5 and rest are set to be 0.1. The covariates matrix
X =%, 2% , where X is the centralized version of a n x 14 matrix
whose elements are i.i.d. generated from U([—1, 1]) and %, is the
sample covariance matrix of X so that the condition number of
X is 1 and the signal to noise ratio is nearly the same as that in

Case S1.

This case is the same as the Case S2 except that x;,5 in Case

S2 is replaced with @ = 241 + &; where g; < U([-0.4,0.4]) for
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¢t =1,...,n. For this setup, the condition number of X is around

D.

Case S4: This case is the same as the Case S2 except that z;; in Case
S2 is replaced with @ = 241 + &; where g; < U(]—-0.1,0.1]) for
¢t =1,...,n. For this setup, the condition number of X is around

26.

To exclude the pilot subsampling effect, the ideal case that BMLE is given
before conducting the subsampling strategy is considered. Although this
setting is hard to satisfy, the simulation provides some key insights for
Theorem 5 and it is also valuable for the two step Algorithm. The sample
size r is selected as 10, 15, 20, 25 and 30 times of the dimension respectively.
For comparison, the uniform subsampling method is also demonstrated.
The eMSEs are reported in Figures S3.

Through the simulation results reported in Figures S3(a) and S3(b),
we can see that the cases with » = 10p, 20p exhibit similar performance
when the conditional numbers of the covariate matrix are fixed at one. And
for the same dimensional case, the eMSEs become larger as the conditional
number of the covariate matrix increasing. These echo the results discussed

in Section 3.2.
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0.06

0.04- method
] & UNF
3 A mv
0.024 - mve
0.00+
10 15 20 25 30
c
(a) Case S1 (p=T7,k=1)
0.15
method
W 0104 © UNIF
3 :\l\‘%g. E
4 mve
0,05+
0.00+

0.04

eMSE

0.02

10 15 20 25 30
c

(b) Case S2 (p=14,k = 1)

(d) Case S4 (p =14,k =~ 26)

method
-® UNIF
A mv

A mve

method
@ UNIF
A mv

A mve

Figure S3: The eMSEs for Poisson regression with different subsample size r = ¢p. The

different distributions of covariates are listed in the beginning of Section S2.



31

References

Brown, L. D. (1986). Fundamentals of statistical exponential families: with applications in sta-

tistical decision theory. Institute of Mathematical Statistics, Hayward, California: Lecture

Notes-Monograph Series, vol. 9.

Drineas, P., R. Kannan, and M. W. Mahoney (2006). Fast monte carlo algorithms for matrices

i: Approximating matrix multiplication. SIAM Journal on Computing 36, 132—157.

Drineas, P., M. W. Mahoney, and S. Muthukrishnan (2006). Sampling algorithms for l2 regres-

sion and applications. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on

Discrete Algorithm, 1127-1136.

Ferguson, T. S. (1996). A Course in Large Sample Theory. London: Chapman & Hall.

van der Vaart, A. (1998). Asymptotic statistics. London: Cambridge University Press.



	Introduction
	Preliminaries
	Models and Assumptions
	General Subsampling Algorithm and its Asymptotic Properties

	Optimal Subsampling Strategies
	Optimal Subsampling Strategies Based on Optimal Design Criteria
	Non-asymptotic Properties

	Practical Consideration and Implementation
	Numerical Studies
	Simulation Studies
	Real Data Studies

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorems 5 and 6
	Proof of Theorem 7
	Proof of Theorem 8

	Additional Simulation Results

