
Statistica Sinica

OPTIMAL SUBSAMPLING ALGORITHMS

FOR BIG DATA REGRESSIONS

Mingyao Ai1, Jun Yu2, Huiming Zhang1, HaiYing Wang3

LMAM, School of Mathematical Sciences and Center for Statistical Science,

Peking University 1

School of Mathematics and Statistics, Beijing Institute of Technology2

Department of Statistics, University of Connecticut 3

Abstract: In order to quickly approximate maximum likelihood estimators from

massive data, this study examines the optimal subsampling method under the

A-optimality criterion (OSMAC) for generalized linear models. The consistency

and asymptotic normality of the estimator from a general subsampling algo-

rithm are established, and optimal subsampling probabilities under the A- and

L-optimality criteria are derived. Furthermore, using Frobenius-norm matrix

concentration inequalities, the finite-sample properties of the subsample estima-

tor based on optimal subsampling probabilities are also derived. Because the

optimal subsampling probabilities depend on the full data estimate, an adaptive

two-step algorithm is developed. The asymptotic normality and optimality of the

estimator from this adaptive algorithm are established. The proposed methods

are illustrated and evaluated using numerical experiments on simulated and real

data sets.
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1. Introduction

Today, massive data sets are ubiquitous in many scientific fields and prac-

tices, including astronomy, economics, and industrial problems. Extracting

useful information from these large data sets is a core challenge in areas

such as computer science, machine learning, statistics, and, as a result, has

attracted much attention. However, computational limitations still exist,

owing to rapid growth in the volume of data. Subsampling is a popular

technique for extracting useful information from massive data. Therefore,

this study develops optimal subsampling strategies for generalized linear

models (GLMs). Typically, the maximum likelihood estimators (MLEs)

are found numerically by using the Newton–Raphson method. However,

fitting a GLM on massive data is not an easy task using the iterative

Newton–Raphson method, requiring O(p2n) time in each iteration of the

optimization procedure.

Subsampling provides an efficient way to solve this problem (e.g., see

Drineas et al., 2006) because it essentially reduces the volume of the data.

Drineas et al. (2011) proposed performing a randomized Hadamard trans-
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form on the data and then using the uniform subsampling to take random

subsamples to approximate the ordinary least squares estimators in linear

regression models. Ma et al. (2015) and Ma and Sun (2015) developed an

effective subsampling method for linear regression models that uses nor-

malized statistical leverage scores of the covariate matrix as nonuniform

subsampling probabilities. Jia et al. (2014) studied leverage sampling for

GLMs, based on generalized statistical leverage scores. Wang et al. (2018b)

and Yao and Wang (2019) developed an optimal subsampling procedure

to minimize the asymptotic mean squared error (MSE) of the resultant

subsample-estimator, given the full data, based on A- or L-optimality cri-

teria in the language of optimal design. Wang et al. (2019) proposed a new

algorithm, called the information-based optimal subdata selection method,

for linear regressions on big data. The basic idea is to select the most infor-

mative data points deterministically based on D-optimality, without relying

on random subsampling. A divide-and-conquer version of the algorithm is

presented in Wang (2019). Recent developments related to the big data

subsampling method can be found in Wang et al. (2016).

Methodological investigations on subsampling methods with statistical

guarantees for massive data regression are still limited when models are

complex. To the best of our knowledge, most existing results concern lin-
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ear regression models, as in Ma et al. (2015) and Wang et al. (2019). The

optimal subsampling methods in Wang et al. (2018b) and Yao and Wang

(2019) are designed specifically for logistic and multinomial regression mod-

els, respectively. However, using only linear and logistic regressions is not

sufficient, in practice (Czado and Munk, 2000). For example, we may need

a Poisson or a negative binomial distribution for count data, or need a

Gamma or an inverse Gaussian distribution for data with nonnegative re-

sponses. In addition, the aforementioned investigations do not consider the

finite-sample properties of the subsampled estimators. We attempt to fill

these gaps by deriving the optimal subsampling probabilities for GLMs, in-

cluding those with noncanonical link functions, thus allowing a wide range

of statistical models for a regression analysis. Furthermore, we derive the

finite-sample upper bounds for the approximation errors, which can be used

in practice to balance the subsample size and the prediction accuracy. Ow-

ing to the nonnatural link, our investigation is quite different from that

of Wang et al. (2018b). For example, the Hessian matrix in the models

considered in this study may be dependent on the responses.

The rest of this paper is organized as follows. Section 2 introduces the

model setup and derives the asymptotic properties for the general subsam-

pling estimator. Section 3 derives optimal subsampling strategies based on
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A- and L-optimality criteria for GLMs. The finite-sample error bounds are

also derived in this section. Section 4 designs a two-step algorithm to ap-

proximate the optimal subsampling procedure, and obtains the asymptotic

properties of the resultant estimator. Section 5 demonstrates the proposes

method using numerical simulations and real data.

2. Preliminaries

2.1 Models and Assumptions

Recall the definition of the one-parameter exponential family of distribu-

tions f(y|θ) = h(y) exp(θy − ψ(θ)), for θ ∈ Θ, as in (5.50) of Efron and

Hastie (2016), where θ is called the canonical parameter, and Θ is called

the natural parameter space. Here f(·|θ) is a probability density function

for the continuous case, or a probability mass function for the discrete case;

h(·) is a specific function that does not depend on θ; and the parameter

space Θ is defined as Θ := {θ ∈ R :
∫
h(x) exp(θx)µ(dx) < ∞}, with µ

being the dominating measure. The exponential family includes most of

the commonly used distributions, such as the normal, gamma, Poisson, and

binomial distributions (see Efron and Hastie, 2016; Mccullagh and Nelder,

1989).

A key tactic for a generalized linear regression model is to express θ
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in the form of a linear function of regression coefficients. Let (x, y) be a

pair of random variables, where y ∈ R and x ∈ Rp. The generalized linear

regression model assumes that the conditional distribution of yi, given xi,

is determined by θi = u(βTxi). Specifically for the exponential family, it

assumes that the distribution of y|x is

f(y|β,x) = h(y) exp(yu(βTxi)− ψ(u(βTxi))), with βTx ∈ Θ. (2.1)

The problem of interest is to estimate the unknown β from the observed

data. As a special case, when u(t) = t, the corresponding models are the

so-called GLMs with canonical link functions. Typical examples include

the logistic regression for binary data, and the Poisson regression for count

data. A commonly used GLM with a noncanonical link function is the

negative binomial regression (NBR), which is often used as an alternative

to the Poisson regression when the data exhibit overdispersion. For this

model, u(t) = t − log(ν + et) and ψ(u(t)) = ν log(ν + et), for some size

parameter ν.

2.2 General Subsampling Algorithm and its Asymptotic Prop-

erties

In this subsection, we present a general subsampling algorithm for GLMs

and obtain some asymptotic results.
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To facilitate the presentation, denote the full data matrix by Fn =

(X,y), whereX = (x1, . . . ,xn)T is the covariate matrix, and y = (y1, . . . , yn)T

is the response vector. In this paper, we assume that (xi, yi)’s are generated

independently from a GLM. Let S be a set of subsamples with r data points,

and define the sampling distribution πi for all data points i = 1, 2, ...n, as

π. Then, we have the following general subsampling algorithm:

1. Assign a sampling distribution π such that, in each draw, the ith

element in the full data set Fn has the inclusion probability πi.

2. Sample with replacement r times to form the subsample set S :=

{(y∗i ,x∗i , π∗i ), i = 1, . . . , r}, where x∗i , y
∗
i , and π∗i denote the covari-

ates, responses, and subsampling probabilities, respectively, in the

subsample.

3. Based on the subsample set S, calculate the weighted log-likelihood

estimator by maximizing the following function:

L∗(β) =
1

r

r∑
t=1

1

π∗i
[y∗i u(βTx∗i )− ψ(u(βTx∗i ))]. (2.2)

An important feature of the above algorithm is that the subsample

estimator is essentially a weighted MLE, where the corresponding weights

are inverses of the subsampling probabilities. This is analogous to the
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Hansen–Hurwitz estimator (Hansen and Hurwitz, 1943) in classic sampling

techniques. For an overview see Särndal et al. (1992). Although Ma et al.

(2015) showed that the unweighted subsample estimator is asymptotically

unbiased for β in leveraging sampling, an unweighted subsample estimator,

is in general, biased if the sampling distribution π depends on the responses.

The inverse-probability weighting scheme removes this bias; thus we restrict

our analysis to the weighted estimator.

Let ψ̇(t) and ψ̈(t) be the first and the second derivatives of ψ(t), re-

spectively. To characterize the asymptotic properties of the subsampled

estimators, we require the following regularity assumptions:

(H.1): Assume that βTx lies in the interior of a compact set K ∈ Θ

almost surely.

(H.2): The regression coefficient β is an inner point of the compact

domain ΛB = {β ∈ Rp : ‖β‖ ≤ B}, for some constant B.

(H.3): Central moments condition: n−1
∑n

i=1 |yi − ψ̇(u(βTxi))|4 =

OP (1), for all β ∈ ΛB.

(H.4): As n→∞, the observed information matrix

JX := 1
n

n∑
i=1

{ü(β̂TMLExi)xix
T
i [ψ̇(u(β̂TMLExi))− yi]

+ψ̈(u(β̂TMLExi))u̇
2(β̂TMLExi)xix

T
i ]}
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goes to a positive-definite matrix in probability.

(H.5): Require that the full sample covariates have finite sixth-order

moments; that is, E‖x1‖6≤∞.

(H.6): Assume n−2
∑n

i=1 ‖xi‖k/πi = OP (1), for k = 2, 4.

(H.7): For γ = 0 and some γ > 0, assume

1

n2+γ

n∑
i=1

|yi − ψ̇i(u(β̂TMLExi))|2+γ‖u̇(β̂TMLExi)xi‖2+γ

π1+γ
i

= OP (1).

Assumptions (H.1) and (H.2) are used in Clémencon et al. (2014). The

set in (H.2) is also called the admissible set, which, is the premise for con-

sistent estimators in GLMs with full data (see Fahrmeir and Kaufmann,

1985). These two assumptions ensure that E(yi|xi) < ∞, for all i. As-

sumption (H.4) imposes a condition on the covariates to ensure that the

MLE based on the full data set is consistent. To obtain the Bahadur rep-

resentation of the subsampled estimator, (H.3) and (H.5) are needed. As-

sumptions (H.6) and (H.7) are moment conditions on the covariates and the

subsampling probabilities. Assumption (H.7) is required by the Lindeberg-

Feller central limit theorem. Specifically, for uniform subsampling with

πi = n−1 or, more generally, when maxi=1,...,n(nπi)
−1 = OP (1), (H.7) is

implied by n−1
∑n

i=1 |yi − ψ̇i(u(β̂TMLExi))|2+γ‖u̇(β̂TMLExi)xi‖2+γ = OP (1),
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which is guaranteed by the condition E|y|4+2γ = O(1) when (H.1) and

(H.5) are satisfied.

The theorem below presents the consistency of the estimator from the

subsampling algorithm to the full-data MLE.

Theorem 1. If Assumptions (H.1)–(H.6) hold, then as n → ∞ and r →

∞, β̃ is consistent to β̂MLE in conditional probability, given Fn. Moreover,

the rate of convergence is r−1/2. That is, with probability approaching one,

for any ε > 0, there exist finite ∆ε and rε, such that

P (‖β̃ − β̂MLE‖ ≥ r−1/2∆ε|Fn) < ε, (2.3)

for all r > rε.

In addition to the consistency, we derive the asymptotic distribution of

the approximation error, thus proving that the approximation error, β̃ −

β̂MLE, is asymptotically normal in conditional distribution.

Theorem 2. If Assumptions (H.1)–(H.7) hold, then as n → ∞ and r →

∞, conditional on Fn in probability,

V −1/2(β̃ − β̂MLE) −→ N(0, I) (2.4)

in distribution, where V = J −1
X VcJ −1

X = Op(r
−1) and

Vc =
1

rn2

n∑
i=1

{yi − ψ̇(u(β̂TMLExi))}2u̇2(β̂TMLExi)xix
T
i

πi
. (2.5)
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3. Optimal Subsampling Strategies

In this section, we specify the subsampling distribution π = {πi}ni=1, with

theoretical backup.

3.1 Optimal Subsampling Strategies Based on Optimal Design

Criteria

Based on the A-optimality criterion in the theory of experiment design (see

Pukelsheim, 2006), optimal subsampling selects subsampling probabilities

such that the asymptotic MSE of β̃ is minimized. This idea was proposed

in Wang et al. (2018b). Here, we say the resulting subsampling strategy is

mV-optimal.

Theorem 3. A subsampling strategy is mV-optimal if the subsampling prob-

ability is chosen such that

πmV
i =

|yi − ψ̇(u(β̂TMLExi))|‖J −1
X u̇(β̂TMLExi)xi‖∑n

j=1 |yj − ψ̇(u(β̂TMLExi))|‖J
−1
X u̇(β̂TMLExj)xj‖

, i = 1, 2, ..., n.

(3.6)

The optimal subsampling probability πmV has a meaningful interpreta-

tion from the viewpoint of the optimal design of experiments (Pukelsheim,

2006). Note that, under a mild condition, the “empirical information ma-

trix” J e
X = 1

n

∑n
i=1[yi − ψ̇(u(β̂TMLExi))]

2u̇2(β̂TMLExi)xix
T
i and JX converge
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to the same limit, namely, the Fisher information matrix of model (2.1).

This means that J e
X − JX = oP (1). Thus, JX can be replaced by J e

X

in πmV, because Theorem 2 still holds if JX is replaced by J e
X in (2.5).

Let ηxi = [yi − ψ̇(u(β̂TMLExi))]
2u̇2(β̂TMLExi)xix

T
i be the contribution of

the ith observation to the empirical information matrix, and let J e
Xxiα

=

(1−α)J e
X +αηxi , which can be interpreted as a movement of the informa-

tion matrix in a direction determined by the ith observation. The direc-

tional derivative of tr(J e
X
−1) through the direction determined by the ith

observation is Fi = limα→0+ α
−1{tr(J e

X
−1)− tr(J e

Xxiα
−1)}. This directional

derivative is used to measure the relative gain in estimation efficiency under

the A-optimality after adding the ith observations to the sample. Thus, the

optimal subsampling strategy prefers to select data points with large values

of directional derivatives, that is, data points that will result in a larger

gain under the A-optimality.

The optimal subsampling strategy derived from the mV-optimality cri-

terion requires that we calculate ‖J −1
X u̇(β̂TMLExi)xi‖, for i = 1, 2, ..., n,

which takes O(np2) time. To reduce the computing time, Wang et al.

(2018b) proposed a modified optimality criterion to minimize tr(Vc). This

criterion is essentially the L-optimality criterion in optimal experimental

design (see Pukelsheim, 2006), which aims to improve the estimation qual-
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ity of JXβ̃. It is easy to see that only O(np) time is needed to calculate the

optimal sampling probabilities. We say the resulting subsampling strategy

is mVc-optimal.

Theorem 4. A subsampling strategy is mVc-optimal if the subsampling

probability is chosen such that

πmVc
i =

|yi − ψ̇(u(β̂TMLExi))|‖u̇(β̂TMLExi)xi‖∑n
j=1 |yj − ψ̇(u(β̂TMLExj))|‖u̇(β̂TMLExj)xj‖

, i = 1, 2, ..., n. (3.7)

Note that in order to calculate ‖J −1
X u̇(β̂TMLExi)xi‖, for i = 1, 2, ..., n, we

need O(np2) time, but we only need O(np) time to evaluate ‖u̇(β̂TMLExi)xi‖.

Here, JX and Vc are nonnegative definite, and V = J −1
X VcJ −1

X . Simple ma-

trix algebra yields tr(V ) = tr(VcJ −2
X ) ≤ σmax(J −2

X )tr(Vc), where σmax(A)

denotes the maximum singular value of matrix A. Because σmax(J −2
X ) does

not depend on π, minimizing tr(Vc) minimizes an upper bound of tr(V ).

In fact, for two given subsampling strategies π(1) and π(2), if Vc(π
(1)) ≤

Vc(π
(2)) in the sense of Loewner-ordering, then it follows that V (π(1)) ≤

V (π(2)). Thus, the alternative optimality criterion greatly reduces the com-

puting time, without losing too much in terms of estimation accuracy.

The score function for the log-likelihood means that πmVc
i in Theorem

4 is proportional to ‖{yi − ψ̇(β̂TMLExi)}u̇(β̂TMLExi)xi‖, the norms of the

gradients of the log-likelihood at individual data points, evaluated at the
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full-data MLE. Here, we are trying to identify the subsample that best

approximates the full data score function at the full-data MLE.

We now illustrate Theorem 3 and Theorem 4 using some commonly

used GLMs. Note that u(·) is the identity function for GLMs with natural

link functions, such as the logistic and Poisson regressions. For the logistic

regression,

πmV
i =

|yi − pi|
∥∥J −1

X xi
∥∥∑n

j=1 |yj − pj|
∥∥J −1

X xj
∥∥ , πmVc

i =
|yi − pi| ‖xi‖∑n
j=1 |yj − pj| ‖xj‖

,

with pi = exp(β̂TMLExi)/{1 + exp(β̂TMLExi)} and JX = n−1
∑n

k=1 pk(1 −

pk)xkx
T
k . These are the same as the results in Wang et al. (2018b). For the

Poisson regression,

πmV
i =

|yi − λi|
∥∥J −1

X xi
∥∥∑n

j=1 |yj − λj|
∥∥J −1

X xj
∥∥ , πmVc

i =
|yi − λi| ‖xi‖∑n
j=1 |yj − λj| ‖xj‖

,

with λi = exp(β̂TMLExi) and JX = n−1
∑n

k=1 exp(β̂TMLExk)xkx
T
k . The NBR

does not have a canonical link function, and the conditional distribution of

the response is modeled by the two-parameter distribution

f(yi|ν, µi) =
Γ(ν + yi)

Γ(ν)yi!

(
µi

ν + µi

)yi ( ν

ν + µi

)ν
, i = 1, 2, . . . , n,

where the size parameter ν can be estimated as a nuisance parameter. The

optimal subsampling probabilities for NBR with size parameter ν are

πmV
i =

|yi−µi|
∥∥∥J−1

X
νxi
ν+µi

∥∥∥∑n
j=1 |yj−µj |

∥∥∥∥J−1
X

νxj
ν+µj

∥∥∥∥ , πmVc
i =

|yi−µi|
∥∥∥ νxi
ν+µi

∥∥∥∑n
j=1 |yj−µj |

∥∥∥∥ νxi
ν+µj

∥∥∥∥ ,
with µi = exp(β̂TMLExi) and JX = n−1

∑n
k=1{ν(ν + yi)µi}/(ν + µi)

2xkx
T
k .
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3.2 Non-asymptotic Properties

Here, we derive some finite-sample properties of the subsample estimators

based on the optimal subsampling probabilities πmV and πmVc. The results

are presented in the form of the excess risk when approximating the mean

responses and they hold for fixed r and n, without requiring any quantity

to go to infinity. These results may identify the factors that affect the

approximation accuracy.

Because ψ̇(u(xTi β)) is the conditional expectation of the response yi,

given xi, we aim to characterize the quantity of β̃ in the prediction by

examining ‖ψ̇(u(XT
d β̂MLE)) − ψ̇(u(XT

d β̃))‖. This quantity is the distance

between the estimated conditional mean responses based on the full-data,

and that based on the subsamples. Intuitively, it measures the goodness of

fit when using a subsample estimator to predict the mean responses. Note

that we can always improve the accuracy of the estimator by increasing the

subsample size r. Here, we examine the effects of different quantities such

as the covariate matrix, data dimension, and the effect of subsample size r,

on approximation accuracy.

Let σmax(A) and σmin(A) be the maximum and minimum nonzero sin-

gular values, respectively, of matrix A, where κ(A) := σmax(A)/σmin(A).

Denote ψ̇(u(XTβ)), a vector with the ith element equals to ψ̇(u(xTi β)),
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and define u̇(XTβ) := diag{u̇(xT1 β), · · · , u̇(xTnβ)}. For the estimator β̃

obtained from the algorithm in Section 2 based on the subsampling proba-

bilities, πmV and πmVc, the following theorem holds.

Theorem 5. Let X̃ denote the design matrix consisting of the subsample

covariates, with each sampled element rescaled by 1/
√
rπ∗i . Assume that

σ2
min(u̇(XT β̃)X̃) ≥ 0.5σ2

min(u̇(XT β̃)X), and both σmax(u̇(XT β̃)X)/
√
n

and σmin(u̇(XT β̃)X)/
√
n are bounded. For any given ε ∈ (0, 1/3), with

probability at least 1− ε, we have

‖ψ̇(u(XT β̂MLE))− ψ̇(u(XT β̃))‖

≤ 2Cu̇[1 +
4α
√

log(1/ε)√
r

]
√
pκ2(u̇(XT β̃)X)‖[y − ψ̇(u(XT β̂MLE))]‖, (3.8)

where α = κ(J −1
X ) for πmV, α = 1 for πmVc, and Cu̇ = sup

r∈K⊂Θ
|u̇(r)|.

Theorem 5 indicates that the accuracy increases with the subsample

size r, which agrees with the results in Theorem 1. In addition, it enables

us to examine the effects of various quantities such as the covariate matrix,

data dimension, and the effect of subsample size r, on the approximation

accuracy. Heuristically, the condition number of u̇(XT β̃)X measures the

collinearity of the covariates in the full-data covariate matrix, p shows the

curse of dimensionality, and ‖y − ψ̇(u(XT β̂MLE))‖ measures the goodness

of fit of the underlying model on the full data.
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The result in (3.8) also indicates that we should choose r ∝ p to control

the error bound; hence, it seems reasonable to choose the subsample size as

r = cp. This agrees with the recommendation by Chapman et al. (1994) and

Loeppky et al. (2009) of choosing a sample size as large as 10 times number

of covariates for designed experiments. However, in such designed experi-

ments, the covariate matrices are often orthogonal, or close to orthogonal,

in which case, κ(u̇(XT β̃)X) is equal or close to one. Here, we consider

that the full data may not be obtained from well-designed experiments, in

which case, u̇(XT β̃)X may vary substantially. Thus, κ(u̇(XT β̃)X) should

also be considered when determining the required subsample size for a given

level of prediction accuracy.

The constant 0.5 in Theorem 5’s condition σ2
min(u̇(XT β̃)X̃) ≥ 0.5σ2

min(u̇(XT β̃)X)

can be replaced by any constant between 0 and 1. Here, we follow the setting

of Drineas et al. (2011), and choose 0.5 for convenience. This condition

indicates that the rank of u̇(XT β̃)X̃ is the same as that of u̇(XT β̃)X.

Further details and interpretations about this condition can be found in

Mahoney (2012).

Using a similar argument to that in the proof of Theorem 5, we prove

that this condition holds with high probability.

Theorem 6. Let u̇(XT β̃)X̃ denote the design matrix consisting of sub-
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samples, with each sampled element rescaled by 1/
√
rπ∗i . Assume that |yi−

ψ̇(u(β̂TMLExi))|‖u̇(β̂TMLExi)xi‖ ≥ γ‖xi‖, for all i, and that σmax(u̇(XT β̃)X)/
√
n,

and σmin(u̇(XTβ)X)/
√
n are bounded. For any given ε ∈ (0, 1/3), let

cd ≤ 1 be a constant depending on u̇(XT β̃)X, Cu̇ = sup
r∈K⊂Θ

|u̇(r)| , and

r > 64c2
dC

2
u̇ log(1/ε)σ4

max(X)p2/(α2δ2σ4
min(u̇(XT β̃)X)), where δ is some

constant depending on γ, and ‖y − ψ̇(u(XT β̂MLE))‖. Then, with probabil-

ity at least 1− ε:

σ2
min(u̇(XT β̃)X̃) ≥ 0.5σ2

min(u̇(XT β̃)X),

where α = κ(J −1
X ) for πmV and α = 1 for πmVc.

4. Practical Consideration and Implementation

For practical implementation, the optimal subsampling probabilities {πmV
i :

i = 1, . . . , n} and {πmVc
i : i = 1, . . . , n} cannot be used directly, because

they depend on the unknown full-data MLE, β̂MLE. As suggested in Wang

et al. (2018b), in order to calculate πmV or πmVc, a pilot estimator of β̂MLE

has to be used. Let β̃0 be a pilot estimator based on a subsample of size

r0. This can be used in place of β̂MLE in πmV or πmVc, which then can be

used to derive more informative subsamples.

From the expression of πmV or πmVc, the approximated optimal sub-

sampling probabilities are both proportional to |yi − ψ̇(u(β̃T0 xi))|. Thus,
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a data point with yi ≈ ψ̇(u(β̃T0 xi)) has a very small probability of being

selected, and the data point with yi = ψ̇(u(β̃T0 xi)) will never be included

in a subsample. On the other hand, if these data points are included in

the subsample, they may dominate the weighted log-likelihood function in

(2.2). As a result, the subsample estimator may be sensitive to these data

points. Ma et al. (2015) also noticed that some extremely small subsam-

pling probabilities may inflate the variance of the subsampling estimator in

the context of leveraging sampling.

To protect the weighted log-likelihood function from being inflated

by these data points in practice, we propose setting a threshold, say δ,

for |yi − ψ̇(u(β̃T0 xi))|; that is, use max{|yi − ψ̇(u(β̃T0 xi))|, δ} in place of

|yi − ψ̇(u(β̃T0 xi))|. Here, δ is a small positive number, say 10−6. Setting

a threshold δ in the subsampling probabilities truncates the weights of the

subsample weighted log-likelihood. Truncating the weight function is com-

monly used in practice to ensure a robust estimation. Note that, in practice,

an intercept should always be included in the model, so it is typical that

‖u̇(β̂TMLExi)xi‖ and ‖J −1
X u̇(β̂TMLExi)xi‖ are bounded away from zero, and

do not need a threshold. Let Ṽ be the version of V with β̂MLE substituted
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by β̃0. It can be shown that

tr(Ṽ ) ≤ tr(Ṽ δ) ≤ tr(Ṽ ) +
δ2

n2r

n∑
i=1

1

πi
‖J̃ −1

X u̇(β̂TMLExi)xi‖2.

Thus, minimizing tr(Ṽ δ) is close to minimizing tr(Ṽ ) if δ is sufficiently

small. The threshold δ makes our subsampling estimator more robust,

without compromising too much on estimation efficiency. Here, we can

also approximate JX using the pilot sample. Specifically, the JX in mV is

approximated by J̃X = (r0)−1
∑r0

i=1 {ü(β̃Tx∗i )x
∗
ix
∗T
i [ψ̇(u(β̃Txi

∗)) − yi
∗] +

ψ̈(u(β̃Txi
∗))u̇2(β̃Txi

∗)xi
∗x∗Ti ]}, based on the first-stage subsamples {(x∗i , y∗i ) :

i = 1, . . . , r0}.

For transparent presentation, we combine the aforementioned practical

considerations in the following two-step algorithm:

1. Run the general subsampling algorithm with π = πUNIF and r = r0

to obtain the pilot subsample set S̃r0 and a pilot estimator β̃0.

2. Use β̃0 to calculate the approximated subsampling probabilities π̃opt =

{π̃mV
i }ni=1 or π̃opt = {π̃mVc

i }ni=1, where π̃mV
i is proportional to max(|yi−

ψ̇(u(β̃T0 xi))|, δ)‖J̃ −1
X u̇(β̃T0 xi)xi‖s and π̃mVc

i is proportional to max(|yi−

ψ̇(u(β̃T0 xi))|, δ)‖u̇(β̃T0 xi)xi‖.

3. Sample with replacement r times based on π̃opt to obtain the sub-

sample set Sr∗ := S̃r0 ∪ {(y∗i ,x∗i , π̃∗i ), i = 1, . . . , r}.
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4. Maximize the following weighted log-likelihood function to obtain the

estimator β̆:

L∗(β) =
1

r + r0

∑
i∈Sr∗

1

π̃∗i
[y∗i u(βTx∗i )− ψ(uβTx∗i ))]. (4.9)

The following theorems describe the asymptotic properties of β̆.

Theorem 7. Under Assumptions (H.1)–(H.5), if r0r
−1 → 0 as r0 →

∞, r → ∞, and n → ∞, then for the estimator β̆ obtained from the two-

step algorithm, with probability approaching one, for any ε > 0, there exist

finite ∆ε and rε, such that

P (‖β̆ − β̂MLE‖ ≥ r−1/2∆ε|Fn) < ε,

for all r > rε.

The asymptotic normality is presented in the following theorem.

Theorem 8. Under assumptions (H.1)–(H.5), if r0r
−1 → 0, then for the

estimator obtained from the two-step algorithm, as r0 → ∞, r → ∞, and

n→∞, conditional on Fn,

V
−1/2
opt (β̆ − β̂MLE)→ N(0, I), (4.10)

where Vopt = J −1
X Vc,optJ −1

X ;

Vc,opt =
1

r

1

n

n∑
i=1

{yi − ψ̇(u(β̂TMLExi))}2u̇2(β̂TMLExi)xix
T
i

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖u̇(β̂TMLExi)xi‖
(4.11)
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× 1

n

n∑
i=1

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖u̇(β̂TMLExi)xi‖

when subsampling probabilities based on π̃mVc
i , and

Vc,opt =
1

r

1

n

n∑
i=1

{yi − ψ̇(u(β̂TMLExi))}2u̇2(β̂TMLExi)xix
T
i

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖J
−1
X u̇(β̂TMLExi)xi‖

× 1

n

n∑
i=1

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖J −1
X u̇(β̂TMLExi)xi‖

when subsampling probabilities based on π̃mV
i .

In order to obtain the standard error of the corresponding estimator,

we estimate the variance-covariance matrix of β̆ by V̆ = J̆ −1
X V̆cJ̆ −1

X , where

J̆X =
1

n(r0 + r)
×{ r0∑

i=1

ü(β̆Tx∗i )x
∗
ix

T
i [ψ̇(u(β̆Tx∗i ))− y∗i ] + ψ̈(u(β̆Tx∗i ))u̇

2(β̃T0 x
∗
i )x

∗
ix

T
i

π∗i0

+
r∑
s=1

ü(β̆Tx∗s)x
∗
sx

T
s [ψ̇(u(β̆Tx∗s))− y∗s ] + ψ̈(u(β̆Tx∗s))u̇

2(β̆Tx∗s)xsx
T
s

π̃∗s

}
,

V̆c =
1

n2(r0 + r)2

{ r0∑
i=1

{yi − ψ̇(u(β̆Tx∗i ))}2u̇2(β̆Tx∗i )x
∗
i (x

∗
i )
T

(π̃∗i0)2

+
r∑
i=1

{y∗i − ψ̇(u(β̆Tx∗i ))}2u̇2(β̆Tx∗i )x
∗
i (x

∗
i )
T

(π̃∗i )
2

}
,

π∗i0 is the subsampling probability used in the first stage, and π̃∗i = π̃mV∗
i or

π̃mVc∗
i , for i = 1, . . . , r.
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5. Numerical Studies

5.1 Simulation Studies

In this section, we use simulations to evaluate the finite-sample performance

of the proposed method for a Poisson regression and a NBR. Computations

are performed in R (R Core Team, 2018). The performance of a sampling

strategy π is evaluated using the empirical mean squared error (eMSE) of

the resultant estimator: eMSE = K−1
∑K

k=1 ‖β
(k)
π − β̂MLE‖, where β

(k)
π is

the estimator from the kth subsample with subsampling probability π, and

β̂MLE is the MLE calculated from the whole data set. We set K = 1000

throughout this section.

Poisson regression. Full data of size n = 10, 000 are generated from

model y|x ∼ P(exp(βTx)), where the true value of β is a 7 × 1 vector

of 0.5. We consider the following four cases to generate the covariates

xi = (xi1, ..., xi7)T .

Case 1: The seven covariates are independent and identically distributed

(i.i.d) from the standard uniform distribution, namely, xij
i.i.d∼ U([0, 1]),

for j = 1, ..., 7.

Case 2: The first two covariates are highly correlated. Specifically, xij
i.i.d∼

U([0, 1]), for all j except that xi2 = xi1 + εi, with εi
i.i.d∼ U([0, 0.1]).
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For this setup, the correlation coefficient between the first two co-

variates is about 0.8.

Case 3: This case is the same as the second, except that εi
i.i.d∼ U([0, 1]). For

this case, the correlation between the first two covariates is close

to 0.5.

Case 4: This case is the same as the third, except that xij
i.i.d∼ U([−1, 1]),

for j = 6, 7. For this case, the bounds for each covariates are not

all the same.

We consider both π̃mV
i and π̃mVc

i , and choose δ = 10−6. For com-

parison, we also consider uniform subsampling with πi = 1/n for all i,

and the leverage subsampling strategy in Ma et al. (2015), in which πi =

hi/
∑n

j=1 hi = hi/p, with hi = xi(X
TX)−1xi. Here hi is the leverage score

for the linear regression. For GLMs, the leverage scores are defined by

using the adjusted covariate matrix, namely, h̃i = x̃i(X̃
TX̃)−1x̃i, where

X̃ = (x̃1, ..., x̃n)T , x̃i =
√
−E{∂2 log f(yi|θ̃i)/∂θ2}xi, and θ̃i = β̃Txi, with

an initial estimate β̃0 (see Lee, 1987). In this example, simple algebra

yields x̃i =
√

exp(β̃T0 xi)xi. For the leverage score subsampling, we consid-

ered both hi and h̃i. We compare the following methods: UNIF, uniform

subsample; mV, πi = π̃mV
i ; mVc, πi = π̃mVc

i ; Lev, leverage sampling based
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on hi; and Lev-A, adjusted leverage sampling based on h̃i.

We first consider the case in which the first step sample size is fixed.

We let r0 = 200, and the second step sample size r be 300, 500, 700, 1000,

1200, and 1400. When subsampling probabilities that do not depend on

unknown parameters, these are implemented with a subsample size r + r0,

for fair comparisons.

Figure 1 shows the eMSEs. For all four data sets, the subsampling

methods based on π̃mV and π̃mVc always result in a smaller eMSE than

that of the uniform subsampling, which agrees with the theoretical result

that they aim to minimize the asymptotic eMSEs of the resultant estimator.

If the components of x are independent, π̃mV and π̃mVc exhibit similar

performance. However, they may perform differently if some covariates are

highly correlated because π̃mVc reduces the impact of the data correlation

structure, because we replaced ‖J̃ −1
X xi‖2 in π̃mV with ‖xi‖2 in π̃mVc.

For Cases 1, 3, and 4, the eMSEs are small. This is because the condi-

tion number of Xd is quite small (≈ 5), and a small subsample size r = 100

produces satisfactory results. However, for Case 2, the condition number

is large (≈ 40); therefore, a larger subsample size is needed to approximate

β̂MLE accurately. This agrees with the conclusion in Theorem 5.

Theorem 8 also enables inferences on β. Note that in the subsampling
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Figure 1: The eMSEs for a Poisson regression with different second step

subsample size r and a fixed first step subsample size r0 = 200. The distri-

butions of the covariates are listed at the beginning of Section 5.
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setting, r is much smaller than the full data size n. If r = o(n), then β̂MLE

in Theorem 8 can be replaced by the true parameter. As an example, we

take β2 as a parameter of interest and construct 95% confidence intervals

for it. Here the estimator given by V̆ = J̆ −1
X V̆cJ̆ −1

X is used to estimate the

variance-covariance matrices based on selected subsamples. For compari-

son, the uniform subsampling method is also implemented.

Table 1 reports the empirical coverage probabilities and average lengths

for the Poisson regression model over the four synthetic data sets, with

the first step subsample size fixed at r0 = 200. It is clear that π̃mV and

π̃mVc exhibit similar performance and are uniformly better than the uniform

subsampling method. As r increases, the lengths of the confidence intervals

decrease uniformly, which echoes the results of Theorem 8. The confidence

intervals in Case 2 are longer than those in other cases with the same

subsample sizes. This is because the condition number of Xd in Case 2 is

bigger than that of Xd in other cases. This indicates that we should select

a larger subsample when the condition number of the full data set is bigger,

which echoes the results discussed in Section 3.2.

Negative Binomial Regression. Next, we perform a simulation for

the negative binomial regression with n = 100, 000; the results are summa-

rized in Figure 2. Here, we assume yi|xi ∼ NB(µi, ν), where µi = exp(βTxi)
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Table 1: Empirical coverage probabilities and average lengths of confidence

intervals for β2. The first step subsample size is fixed at r0 = 200.

method mV mVc UNIF

r Coverage Length Coverage Length Coverage Length

case 1

300 0.954 0.2037 0.955 0.2066 0.952 0.2275

500 0.954 0.1684 0.945 0.1713 0.942 0.1924

1000 0.946 0.1254 0.938 0.1281 0.953 0.1471

case 2

300 0.961 1.9067 0.946 2.0776 0.950 2.2549

500 0.958 1.5470 0.948 1.7263 0.947 1.9082

1000 0.954 1.1379 0.948 1.2919 0.945 1.4559

case 3

300 0.959 0.1770 0.953 0.1816 0.939 0.2000

500 0.942 0.1451 0.949 0.1507 0.942 0.1693

1000 0.954 0.1082 0.954 0.1132 0.939 0.1291

case 4

300 0.955 0.2097 0.951 0.2179 0.953 0.2402

500 0.951 0.1721 0.956 0.1803 0.942 0.2033

1000 0.957 0.1276 0.960 0.1347 0.943 0.1552
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and ν = 2. The other simulation settings are the same as the Poisson regres-

sion example. Note that, compared with the Poison regression, the eMSEs

are lager for the NBR when r is the same. This agrees with Theorem 5,

because Cu̇ > 1 for NBR. The result for the 95% confidence intervals of β2

are reported in Table 2.

Now, we investigate the effect of different sample size allocations be-

tween the two steps. Because the Poisson regression and the NBR exhibit

similar performance, we report the results for the Poisson regression only,

for brevity. Here, we calculate the eMSEs for various proportions of the

first step subsamples, with fixed total subsample sizes. The results are

given in Figure 3, with total subsample size r0 + r = 800 and 1200. Be-

cause the results are similar in all cases, we present the results for Case 4

only. Note that the two-step method outperforms the uniform subsampling

method in all four cases, for both the Poisson regression and the NBR,

when r0/r ∈ [0.1, 0.9]. This indicates that the two-step approach is more

efficient than the uniform subsampling. The two-step approach works best

when r0/r is around 0.2.

To explore the influence of δ in π̃mV
i and π̃mVc

i , we calculate the eMSEs

for various δ, ranging from 10−6 to 1, with fixed total subsample sizes.

Because the results for the Poisson regression and the NBR are similar,
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Figure 2: The eMSEs for the NBR with different second step subsample

size r and a fixed first step subsample size r0 = 200. The distributions of

the covariates are listed at the beginning of Section 5.
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Table 2: Empirical coverage probabilities and average lengths of the confi-

dence intervals for β2 in the NBR with ν = 2. The first step subsample size

is fixed at r0 = 200.

method mV mVc UNIF

r Coverage Length Coverage Length Coverage Length

case1

300 0.952 0.2122 0.955 0.2147 0.947 0.2354

500 0.952 0.1758 0.954 0.1776 0.946 0.1991

1000 0.951 0.1305 0.933 0.1331 0.940 0.1520

case2

300 0.947 2.0228 0.963 2.2160 0.943 2.3913

500 0.953 1.6468 0.952 1.8423 0.946 2.0225

1000 0.957 1.2065 0.947 1.3849 0.942 1.5439

case3

300 0.950 0.1878 0.950 0.1925 0.942 0.2110

500 0.949 0.1546 0.954 0.1595 0.944 0.1786

1000 0.953 0.1150 0.957 0.1197 0.943 0.1361

case4

300 0.956 0.2288 0.953 0.2366 0.953 0.2573

500 0.968 0.1876 0.963 0.1956 0.936 0.2176

1000 0.950 0.1396 0.952 0.1469 0.940 0.1662



5. NUMERICAL STUDIES 32

0.012

0.014

0.016

0.25 0.50 0.75 1.00

r

eM
S

E

method

UNIF

mV

mVc

(a) Case 4 (r0 + r = 800)

0.008

0.009

0.010

0.011

0.012

0.25 0.50 0.75 1.00

r

eM
S

E

method

UNIF

mV

mVc

(b) Case 4 (r0 + r = 1200)

Figure 3: The eMSEs vs. the proportions of the first step subsample, with

fixed total subsample sizes r + r0, in the Poisson regression.

we report the results for the Poisson regression only. Figure 4 presents

the results for Case 4, with a total subsample size r0 + r = 800 and 1200.

JFigure 4 shows that the eMSE is not sensitive to the choice of δ when δ is

not large, say δ = 1.

To evaluate the computational efficiency of the subsampling strategies,

we record the computing time of each (uniform, πmV, πmVc, leverage score

and adjusted leverage score), using the Sys.time() function in R to record

the start and end times. Each subsampling strategy is evaluated 50 times.

All methods are implemented in the R programming language. Computa-

tions are performed on a desktop computer running Windows 10, with an

Intel I7 processor and 32 GB memory. Table 3 shows the results for Case 4
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Figure 4: The eMSEs vs δ ranging from 10−6 to 1 with fixed total subsam-

ple sizes r + r0 in Poisson regression. Logarithm is taken on δ for better

presentation.

with different r and a fixed r0 = 400. The computing time for the full data

set is also given for comparison.

It is not surprising to observe that the uniform subsampling algorithm

requires the least computing time, because it does not require an additional

step to calculate the subsampling probability. The algorithm based on πmV

requires a longer computing time than that of the algorithm based on πmVc,

which agrees with the theoretical analysis in Section 4. The leverage score

sampling takes nearly as long as the mV method, because the leverage scores

are computed directly, by definition. Note that p = 7 is not sufficiently large

to use the fast computing method of Drineas et al. (2011). For fairness, we

also consider the case with p = 80, and n = 100, 000, for which it is suitable
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to use the fast computing method for the Lev and Lev-A methods. The

first seven variables are generated as in Case 4, and the rest are generated

independently from U([0, 1]). Here, r0 is also selected as 400, and the

corresponding results are reported in Table 5. In order to see the estimation

effects, we also present the eMSEs in Tables 4 and 6.

From Table 5, it is clear that the subsampling algorithms all take sig-

nificantly less computing time than the full data approach does. The Lev

and Lev-A methods are faster than the mV method because the fast al-

gorithm runs in O(pn log n) time to obtain the subsampling probabilities,

as opposed to the O(p2n) time required by the mV method. However, the

mVc method is faster than the Lev and Lev-A methods, because the time

complexity is just O(pn) when computing the subsampling probabilities.

As the dimension increases, the computational advantage of πmVc becomes

even more significant.

5.2 Real Data Studies

In the following, we demonstrate the methods described in Section 4 by ap-

plying them to a data set from musicology. This data set contains 1,019,318

unique users’ music play counts in the Echo Nest, which is available at

http://labrosa.ee.columbia.edu/millionsong/tasteprofile. One of the chal-
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Table 3: Computing time (in seconds) for the Poisson regression in Case 4,

with different r and fixed r0 = 400.

r FULL UNIF mV mVc Lev Lev-A

1000 0.187 0.003 0.020 0.016 0.024 0.031

1500 0.195 0.005 0.022 0.017 0.022 0.033

2000 0.193 0.007 0.021 0.018 0.026 0.036

2500 0.194 0.004 0.027 0.022 0.024 0.036

Table 4: Empirical MSE for the Poisson regression in Table 3. The numbers

in parentheses are standard errors.

r UNIF MV MVc Lev Lev-A

1000 0.0091 (0.0065) 0.0064 (0.0041) 0.0088 (0.0051) 0.0088 (0.0065) 0.0095 (0.0068)

1500 0.0071 (0.0054) 0.0047 (0.0034) 0.0049 (0.0038) 0.0067 (0.0049) 0.0070 (0.0051)

2000 0.0056 (0.0043) 0.0037 (0.0026) 0.0040 (0.0031) 0.0054 (0.0041) 0.0054 (0.0040)

2500 0.0045 (0.0032) 0.0030 (0.0021) 0.0033 (0.0025) 0.0044 (0.0034) 0.0047 (0.0036)
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Table 5: Computing time (in seconds) for the Poisson regression with n =

100, 000, dimension p = 80, different values of r, and a fixed r0 = 400.

r FULL UNIF mV mVc Lev Lev-A

1000 11.738 0.129 0.638 0.218 0.475 0.557

1500 11.659 0.163 0.689 0.253 0.514 0.595

2000 11.698 0.203 0.725 0.296 0.552 0.637

2500 12.005 0.240 0.777 0.339 0.602 0.681

Table 6: Empirical MSE for the Poisson regression in Table 5. The numbers

in parentheses are standard errors.

r UNIF MV MVc Lev Lev-A

1000 0.1003 (0.0174) 0.0786 (0.0135) 0.0782 (0.0136) 0.1011 (0.0172) 0.1021 (0.0192)

1500 0.0729 (0.0121) 0.0582 (0.0100) 0.0579 (0.0101) 0.0722 (0.0125) 0.0732 (0.0127)

2000 0.0562 (0.0095) 0.0472 (0.0085) 0.0470 (0.0085) 0.0565 (0.0094) 0.0577 (0.0099)

2500 0.0466 (0.0079) 0.0392 (0.0070) 0.0395 (0.0067) 0.0463 (0.0078) 0.0471 (0.0078)



5. NUMERICAL STUDIES 37

lenges with this data set is to build a music recommendation system. As a

basic step, it is interesting to predict the play counts using the song infor-

mation collected in the Million Song Dataset (Bertin-Mahieux et al., 2011).

Because the major mode and minor mode usually express different feelings,

the play counts may perform differently under the two modes. Thus, we

only focus on the major mode in this example. In addition to the mode

of the music, the following six features are selected to describe the song

characteristics: x1, the duration of the track; x2, the overall loudness of

the song; x3, tempo in BPM; x4, artist hotnesss; x5, song hotnesss; x6, the

hotness of the album, which is selected as the maximum value of the song

hotnesss in the album. Here, x1, x2, and x3 are features of a specified song,

and x4, x5, and x6 are features of the artist, audience, and album, respec-

tively. The last three features are subjective assessments by The Echo Nest,

and all are expressed on a scale between zero and one. Because the first

three variables in the data set are on different scales, we normalize them

first. In addition, we drop the NA values in the data set. After cleaning the

data, we have n = 205, 032 data points. As a first attempt to capture the

relationship between the play counts and all regressors described above, we

fit the basic Poisson regression model, and the results are shown in Figure

5a.
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Another way of modeling count data is to use a NBR. For comparison,

we also report the results from a NBR in Figure 5b, with the size parameter

set as θ = 1.4, which indicates overdispersion of the data.

Similarlly to the synthetic data sets, we compare our method with the

uniform subsampling and leverage score subsampling methods, and report

the results for r varying from 600 to 2800. The empirical MSEs are reported

in Figure 5. It is clear that as r increases, the eMSE decreases quickly for

all methods. Moreover, πmV and πmVc perform similarly, and are uniformly

better than the uniform subsampling and leverage score subsampling meth-

ods for larger values of r. Note that the eMSE in the NBR is less than the

Poisson regression. This may because the ratio of the squared Winsorized

mean to the Winsorized variance of y is around 1.4, which implies the data

is overdispersed. This echoes the results in Theorem 5, which advise us to

include additional subsamples to improve the goodness of fit.

Supplementary Material

All technical proofs and additional simulation results are included in the

online Supplementary Material.
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Figure 5: Empirical MSEs for different second step subsample size r with

the first step subsample size being fixed at r0 = 400.
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Supplementary Material

S1 Proofs

To prove Theorem 1, we begin with the following remark and lemma.

Remark 1. By the fact that λ(θ) : = exp(ψ(θ)) is analytic in the interior

of Θ (see Theorem 2.7 in Brown (1986)), Cauchy’s integral formula tells

us that all its higher derivatives exist and are continuous. Therefore, the

derivatives ψ̇(t), ψ̈(t),
...
ψ(t) are continuous in t, and ψ̇(t),ψ̈(t) are bounded

on the compact set, which follows by a well-known property that every

real-valued continuous function on a compact set is necessarily bounded.
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Lemma 1. If Assumptions (H.1)–(H.4) and (H.6) hold, then as r → ∞

and n→∞, conditionally on Fn in probability,

J̌X − JX = OP |Fn(r−1/2), (S1.1)

1

n
L∗(β)− 1

n
L(β) = OP |Fn(r−1/2), (S1.2)

1

n

∂L∗(β̂MLE)

∂β
= OP |Fn(r−1/2), (S1.3)

where

J̌X = − 1

n

∂2L∗(β̂MLE)

∂β∂βT
=

1

nr

r∑
i=1

ψ̈(u(βTx∗i))u̇(βTx∗i)x
∗
i [u̇(β̂TMLEx

∗
i )x

∗
i ]
T

π∗i

+
1

nr

r∑
i=1

ü(β̂TMLEx
∗
i )x

∗
ix
∗T
i [ψ̇(u(β̂TMLEx

∗
i ))− y∗i ]

π∗i
.

Proof. By the definition of conditional expectation and towering property

of flirtations, it yields that

E(J̌X |Fn) = JX .

For any component J̌ j1j2
X of J̌X where 1 ≤ j1, j2 ≤ p,

E
(
J̌ j1j2
X − J j1j2

X

∣∣∣Fn)2

(S1.4)

=
1

r

n∑
i=1

πi

{
ψ̈(u(β̂TMLExi))u̇

2(β̂TMLExi)xij1xij2
nπi

+
ü(β̂TMLExi)xij1xij2 [ψ̇(u(β̂TMLExi))− yi]

nπi
− J j1j2

X

}2

=
1

r

n∑
i=1

πi

{
ψ̈(u(β̂TMLExi))u̇

2(β̂TMLExi)xij1xij2
nπi
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+
ü(β̂TMLExi)xij1xij2 [ψ̇(u(β̂TMLExi))− yi]

nπi

}2

− 1

r

(
J j1j2
X

)2

≤2

r

n∑
i=1

πi

[{
ψ̈(u(β̂TMLExi))u̇

2(β̂TMLExi)xij1xij2
nπi

}2

+

{
ü(β̂TMLExi)xij1xij2 [ψ̇(u(β̂TMLExi))− yi]

nπi

}2 ]

≤2

r

n∑
i=1

πi

[
OP (1)

{
xij1xij2
nπi

}2

+OP (1)

{
xij1xij2 [ψ̇(u(β̂TMLExi))− yi]

nπi

}2 ]
=OP |Fn(

1

r
),

where the last inequality stems form (H.1) and the last equality holds by

assumptions (H.3) and (H.6). From Chebyshev’s inequality, it is proved

that Equation (S1.1) holds.

To prove Equation (S1.3), let ti(β) = yiu(βTxi)− ψ(u(βTxi), t
∗
i (β) =

y∗i u(βTx∗i )− ψ(u(βTx∗i )), then

L∗(β) =
1

r

r∑
i=1

t∗i (β)

π̃∗i
, and L(β) =

n∑
i=1

ti(β).

Under the conditional distribution of the subsample given Fn,

E

{
L∗(β)

n
− L(β)

n

∣∣∣∣Fn}2

=
1

rn2

n∑
i=1

t2i (β)

πi
− 1

r

(
1

n

n∑
i=1

ti(β)

)2

.

Combining the facts that the parameter space is compact and u(t) is con-

tinuous function, by assumption (H.1) we have that u(βTxi) are uniformly

bounded. Then, it can be shown that by Remark 1 that

|ti(β)| ≤ |yiu(βTxi)− ψ̇(u(βTxi))u(βTxi)|+ |ψ̇(u(βTxi))u(βTxi)− ψ(u(βTxi))|

≤ |[yi − ψ̇(u(βTxi))]u(βTxi)|+ |ψ̇(u(βTxi))u(βTxi)|+ |ψ(u(βTxi))|,
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Therefore, we have(
1

n

n∑
i=1

ti(β)

)2

≤

(
1

n

n∑
i=1

OP (1)|yi − ψ̇(u(βTxi))|

)2

+
OP (1)

n

n∑
i=1

|yi − ψ̇(u(βTxi))|+OP (1).

From Assumptions (H.1), we have sup
n
n−1

∑n
i=1 ti(β) <∞. Thus,

E

{
L∗(β)

n
− L(β)

n

∣∣∣∣Fn}2

= OP |Fn(r−1/2). (S1.5)

Now the desired result (S1.2) follows from Chebyshev’s Inequality.

Similarly, we can show that

Var

(
1

n

∂L∗(β̂MLE)

∂β

)
= OP (r−1).

Thus (S1.3) is true.

S1.1 Proof of Theorem 1

Proof. As r → ∞, by (S1.5), we have that n−1L∗(β) − n−1L(β) → 0 in

conditional probability given Fn. Note that the parameter space is compact

and β̂MLE is the unique global maximum of the continuous convex function

L(β). Thus, from Theorem 5.9 and its remark of van der Vaart (1998), by

(S1.3) we have

‖β̃ − β̂MLE‖ = oP |Fn(1). (S1.6)
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as n→∞, r →∞, conditionally on Fn in probability.

Using Taylor’s theorem for random variables (see Ferguson, 1996, Chap-

ter 4),

0 =
L̇∗j(β̃)

n
=
L̇∗j(β̂MLE)

n
+

1

n

∂L̇∗j(β̂MLE)

∂βT
(β̃ − β̂MLE) +

1

n
Rj, (S1.7)

where L̇∗j(β) is the partial derivative of L∗(β) with respect to βj, and the

remainder

1

n
Rj =

1

n
(β̃ − β̂MLE)T

∫ 1

0

∫ 1

0

∂2L̇∗j{β̂MLE + uv(β̃ − β̂MLE)}
∂β∂βT

vdudv (β̃ − β̂MLE).

By calculus, we get

∂2L̇∗j (β)

∂β∂βT
=

1

r

r∑
i=1

{
...
u (βTx∗i )[y∗i − ψ̇(u(βTx∗i ))]

π∗i
− ü(βTx∗i )u̇(βTx∗i )ψ̇(u(βTx∗i ))

π∗i

− 2ψ̈(u(βTx∗i ))ü(βTx∗i )u̇(βTx∗i )

π∗i
−

...
ψ(u(βTx∗i ))u̇2(βTx∗i )

π∗i
}x∗ijx∗ix∗i

T .

From (H.1) and Remark 1, we have

1

n

∥∥∥∥∥∂2L̇∗j(β)

∂β∂βT

∥∥∥∥∥
S

=
1

nr

∥∥∥∥ r∑
i=1

(
ü(βTx∗i )ψ̇(u(βTx∗i ))

π∗i
+

2ψ̈(u(βTx∗i ))ü(βTx∗i )

π∗i
+

...
ψ(u(βTx∗i ))u̇(βTx∗i )

π∗i

)
u̇(βTx∗i )x

∗
ijx
∗
ix
∗
i
T

∥∥∥∥
S

+
1

rn

∥∥∥∥∥
r∑
i=1

...
u (βTx∗i )[y

∗
i − ψ̇(u(βTx∗i ))]

π∗i

∥∥∥∥∥
S

≤C3

rn

r∑
i=1

‖x∗i ‖3

π∗i
+
C4

rn

∥∥∥∥∥
r∑
i=1

|[y∗i − ψ̇(u(βTx∗i )]x
∗
ij|

π∗i
x∗ix

∗
i
T

∥∥∥∥∥
S

,

for all β ∈ ΛB, where C3 and C4 are some constants according to Remark 1.
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As τ →∞, assumption (H.5) gives,

P

(
1

nr

r∑
i=1

‖x∗i ‖3

π∗i
≥ τ

∣∣∣∣∣Fn
)
≤ 1

nrτ

r∑
i=1

E

(
‖x∗i ‖3

π∗i

∣∣∣∣∣Fn
)

=
1

nτ

n∑
i=1

‖xi‖3 P→ 0.

Also note that as τ →∞,

P

(
1

nr

r∑
i=1

∥∥∥∥∥ |[yi − ψ̇(u(βTxi))]xij|xixTi
π∗i

∥∥∥∥∥
S

≥ τ
∣∣∣Fn)

≤ 1

nrτ
E

(
r∑
i=1

∥∥∥∥∥ |[yi − ψ̇(u(βTxi))]xij|xixTi
π∗i

∥∥∥∥∥
S

∣∣∣Fn)

≤ 1

nτ

n∑
i=1

∥∥∥|[yi − ψ̇(u(βTxi))]xij|xixTi
∥∥∥
S

≤ 1

τn

n∑
i=1

|[yi − ψ̇(u(βTxi))]| ×
∥∥xijxixTi ∥∥S

≤ 1

τ

√√√√ 1

n

n∑
i=1

|yi − ψ̇(u(βTxi))|2 ·

√√√√ 1

n

n∑
i=1

‖xijxixTi ‖
2

S

=
1

τ
OP (1)

P→ 0,

where the last equality is due to (H.3) and (H.5) by noting that

1

n

n∑
i=1

∥∥x∗ijx∗ix∗Ti ∥∥2

S
≤ 1

n

n∑
i=1

∣∣x∗ij∣∣2 ∥∥x∗ix∗Ti ∥∥2

S

≤ 1

n

n∑
i=1

‖xi‖2
∥∥xixTi ∥∥2

S
≤ 1

n

n∑
i=1

‖xi‖6.

Thus we have

1

n

∥∥∥∥∥∂2L̇∗j(β)

∂β∂βT

∥∥∥∥∥
S

= OP |Fn(1).

From (H.1)-(H.3) and Remark 1, it is known that

1

n

∥∥∥∥∥
∫ 1

0

∫ 1

0

∂2L̇∗j{β̂MLE + uv(β̃ − β̂MLE)}
∂β∂βT

vdudv

∥∥∥∥∥
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≤ 1

n

∫ 1

0

∫ 1

0

∥∥∥∥∥∂2L̇∗j{β̂MLE + uv(β̃ − β̂MLE)}
∂β∂βT

∥∥∥∥∥ vdudv = OP |Fn(1).

Combining the above equations with the Taylor’s expansion (S1.7), we

have

β̃ − β̂MLE = −J̌ −1
X

{
L̇∗(β̂MLE)

n
+OP |Fn(‖β̃ − β̂MLE‖2)

}
. (S1.8)

From Lemma 1 and Assumption (H.4), it is obvious that J̌ −1
X = OP |Fn(1).

Therefore,

β̃ − β̂MLE = OP |Fn(r−1/2) + oP |Fn(‖β̃ − β̂MLE‖),

which implies that β̃ − β̂MLE = OP |Fn(r−1/2).

S1.2 Proof of Theorem 2

Proof. Note that

L̇∗(β̂MLE)

n
=

1

r

r∑
i=1

{y∗i − ψ̇(u(β̂TMLEx
∗
i ))}u̇(β̂TMLEx

∗
i )x

∗
i

nπ∗i
=:

1

r

r∑
i=1

ηi. (S1.9)

It can be seen that given Fn, η1, . . . , ηr are i.i.d random variables with mean

0 and variance

var(η1|Fn) =
1

n2

n∑
i=1

{yi − ψ̇i(u(β̂TMLExi))}2u̇2(β̂TMLExi)xix
T
i

πi
. (S1.10)

Then from (H.7) with γ = 0, we know that var(ηi|Fn) = OP (1) as n→∞.
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Meanwhile, for some γ > 0 and every ε > 0,
r∑
i=1

E{‖r−1/2ηi‖2I(‖ηi‖ > r1/2ε)|Fn}

≤ 1

r1+γ/2εγ

r∑
i=1

E{‖ηi‖2+γI(‖ηi‖ > r1/2ε)|Fn}

≤ 1

r1+γ/2εγ

r∑
i=1

E(‖ηi‖2+γ|Fn)

=
1

rγ/2
1

εγ
1

n2+γ

n∑
i=1

|yi − ψ̇i(u(β̂TMLExi))|2+γ‖u̇(β̂TMLExi)xi‖2+γ

π1+γ
i

.

(S1.11)

From (H.7) for some γ > 0, we obtain

r∑
i=1

E{‖r−1/2ηi‖2I(‖ηi‖ > r1/2ε)|Fn} ≤
1

rγ/2
1

εγ
OP (1) ·OP (1) = oP (1),

This shows that the Lindeberg-Feller conditions are satisfied in probability.

From (S1.9) and (S1.10), by the Lindeberg-Feller central limit theorem

(Proposition 2.27 of van der Vaart, 1998), conditionally on Fn,

1

n
V −1/2
c L̇∗(β̂MLE) =

1

r1/2
{var(ηi|Fn)}−1/2

r∑
i=1

ηi → N(0, I),

in distribution. From Lemma 1, (S1.8) and Theorem 1, we have

β̃ − β̂MLE = − 1

n
J̌ −1
X L̇∗(β̂MLE) +OP |Fn(r−1). (S1.12)

From (S1.1) in Lemma 1, it follows that

J̌ −1
X − J

−1
X = −J −1

X (J̌X − JX)J̌ −1
X = OP |Fn(r−1/2). (S1.13)

Based on Assumption (H.4) and (S1.10), it can be proved that

V = J −1
X VcJ −1

X =
1

r
J −1
X (rVc)J −1

X = OP (r−1).
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Thus,

V −1/2(β̃ − β̂MLE) = −V −1/2n−1J̌ −1
X L̇∗(β̂MLE) +OP |Fn(r−1/2)

=− V −1/2J −1
X n−1L̇∗(β̂MLE)− V −1/2(J̌ −1

X − J
−1
X )n−1L̇∗(β̂MLE) +OP |Fn(r−1/2)

=− V −1/2J −1
X V 1/2

c V −1/2
c n−1L̇∗(β̂MLE) +OP |Fn(r−1/2).

So the result in (2.4) of Theorem 2 follows by applying Slutsky’s Theorem

(Theorem 6, Section 6 of Ferguson, 1996) and the fact that

V −1/2J −1
X V 1/2

c (V −1/2J −1
X V 1/2

c )T = V −1/2J −1
X V 1/2

c V 1/2
c J −1

X V −1/2 = I.

S1.3 Proof of Theorem 3

Proof. Note that

tr(V ) = tr(J −1
X VcJ −1

X )

=
1

n2r

n∑
i=1

tr

[
1

πi
{yi − ψ̇(u(β̂TMLExi))}2J −1

X u̇(β̂TMLExi)xi[u̇(β̂TMLExi)xi]
TJ −1

X

]
=

1

n2r

n∑
i=1

[
1

πi
{yi − ψ̇(u(β̂TMLExi))}2‖J −1

X u̇(β̂TMLExi)xi‖2

]
=

1

n2r
(
n∑
i=1

πi)
n∑
i=1

[
π−1
i {yi − ψ̇(u(β̂TMLExi))}2‖J −1

X u̇(βTxi)xi‖2
]

≥ 1

n2r

[
n∑
i=1

|yi − ψ̇(u(β̂TMLExi))|‖J −1
X u̇(β̂TMLExi)xi‖

]2

,
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where the last inequality follows from the Cauchy-Schwarz inequality, and

the equality in it holds if and only if

πi ∝ |yi − ψ̇(u(β̂TMLExi))|‖J −1
X xi‖I{|yi − ψ̇(u(β̂TMLExi))|‖J −1

X xi‖ > 0}.

Here we define 0/0 = 0, and this is equivalent to removing data points with

|yi − ψ̇(u(β̂TMLExi))| = 0 in the expression of Vc.

S1.4 Proof of Theorems 5 and 6

Let ‖A‖F := (
∑m

i=1

∑n
j=1A

2
ij)

1/2 denote the Frobenius norm. For a given

m× n matrix A and an n× p matrix B, we want to get an approximation

to the product AB. In the following fast Monte Carlo algorithm in Drineas

et al. (2006), we do r independent trials. In each trial we randomly sample

an element of {1, 2, · · · , n} with given discrete distribution P =: {pi}ni=1.

Then we extract an m × r matrix C from the columns of A, and extract

an r × n matrix R from the corresponding rows of B. If the P is chosen

appropriately in the sense that CR is a nice approximation to AB, then

the F-norm matrix concentration inequality in Lemma 2 holds with high

probability.

Lemma 2. (Theorem 2.1 in Drineas et al. (2006)) Let A(i) be the i-th

row of A ∈ Rm×n as row vector and B(j) be the j-th column of B ∈ Rn×p

as column vector. Suppose sampling probabilities {pi}ni=1, (
∑n

i=1 pi = 1) are
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such that

pi ≥ β

∥∥A(i)
∥∥∥∥B(j)

∥∥∑n
j=1 ‖A(i)‖

∥∥B(j)

∥∥
for some β ∈ (0, 1]. Construct C and R with Algorithm 1 in Drineas et al.

(2006), and assume that ε ∈ (0, 1/3). Then, with probability at least 1− ε,

we have

‖AB − CR‖F ≤
4
√

log(1/ε)

β
√
c

‖A‖F‖B‖F .

Now we prove Theorems 5 and 6 by applying the above Lemma 2.

Proof. Note the fact that the maximum likelihood estimate β̂MLE of the

parameter vector β satisfy the following estimation equation

XT [y − ψ̇(u(XTβ))]u̇(XTβ) = 0, (S1.14)

where ψ̇(u(XTβ)) denotes the n × n diagonal matrix whose i-th element

in its diagonal is ψ̇(u(xTi β)).

Without of loss of generality, we only show the case with probability

πmV, since the proof for πmVc is quite similar. Let S be an n × r matrix

whose i-th column is 1/
√
rπmV

ji
eji , where eji ∈ Rn denotes the all-zeros

vector except that its ji-th entry is set to one. Here ji denotes the ji-

th data point chosen from the i-th independent random subsampling with

probabilities πmV. Then β̃ satisfies the following equation

XTSST [y − ψ̇(u(XTβ))]u̇(XTβ) = 0. (S1.15)



12

Let ‖ · ‖F denote the Frobenius norm, we have

σmin(XTSST u̇(XT β̃))‖[ψ̇(u(XT β̃))− ψ̇(u(XT β̂MLE))]‖

≤ ‖XTSST u̇(XT β̃)[ψ̇(u(XT β̃))− ψ̇(u(XT β̂MLE))]‖F

≤ ‖XTSST u̇(XT β̃)[ψ̇(u(XT β̃))− y]‖F

+ ‖XTSST u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖F

= ‖XTSST u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖F [by (S1.15)]

≤ ‖XT u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖F

+
∥∥∥XT u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]−XTSST u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]

∥∥∥
F

≤ ‖XT u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖F

+
4κ(J −1

X )
√

log(1/ε)√
r

‖X‖F‖u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖

≤ σmax(X)
√
p‖u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖

+
4κ(J −1

X )
√

log(1/ε)√
r

σmax(X)
√
p‖u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖

≤ [1 +
4κ(J −1

X )
√

log(1/ε)√
r

]σmax(X)
√
p‖u̇(XT β̃)[y − ψ̇(u(XT β̂MLE))]‖

≤ Cu̇[1 +
4κ(J −1

X )
√

log(1/ε)√
r

]σmax(X)
√
p‖[y − ψ̇(u(XT β̂MLE))]‖

where the fourth last inequality follows from Lemma 2 by putting A =

XT u̇(XT β̃), B = u̇(XT β̃)[y−ψ̇(u(XT β̂MLE))], C = XTS, R = ST u̇(XT β̃)(y−

ψ̇(u(XT β̂MLE))) and β = 1/κ(J −1
X ), and last equality stems from (H.1) and

Remark 1 with Cu̇ = sup
r∈K⊂Θ

|u̇(r)|.
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Hence,

‖ψ̇(u(XT β̂MLE))− ψ̇(u(XT β̃))‖

≤Cu̇
[1 +

4κ(J−1
X )
√

log(1/ε)
√
r

]
√
pσmax(X)

σmin(u̇(XT β̃)XTSST )
‖[y − ψ̇(u(XT β̂MLE))]‖. (S1.16)

Then by following the facts that

σmin(u̇(XT β̃)XTSSTXu̇(XT β̃)) ≤ σmax(u̇(XT β̃)X)σmin(u̇(XT β̃)XTSST )

and σ2
min(u̇(XT β̃)X̃T ) = σmin(u̇(XT β̃)XTSSTXu̇(XT β̃)) ≥ 0.5σ2

min(X),

it holds that

σmin(u̇2(XT β̃)XTSST ) ≥ 0.5σ2
min(u̇(XT β̃)X)/σmax(u̇(XT β̃)X). (S1.17)

Combing the result (S1.17) with (S1.16), the desired result holds

‖ψ̇(u(XT β̂MLE))− ψ̇(u(XT β̃))‖

≤ 2Cu̇[1 +
4α
√

log(1/ε)√
r

]
√
pκ2(u̇(XT β̃)X)‖[y − ψ̇(u(XT β̂MLE))]‖. (S1.18)

Now, we turn to prove Theorem 6.

Note that

pi ≥ α
minj |yj − ψ̇(u(β̂TMLExj))||u̇(β̂TMLExj)|√∑

j |yj − ψ̇(u(β̂TMLExj))|2|u̇2(β̂TMLExj)|

‖xi‖∑
j ‖xj‖

= δ
‖xi‖∑
j ‖xj‖

,

with some 0 < δ := αγ√∑
j |yj−ψ̇(u(β̂T

MLExj))|2|u̇2(β̂T
MLExj)|

≤ 1.
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According to the Weyl inequality, we have

|σmin(u̇(XT β̃)XT u̇(XT β̃)X)− σmin(u̇(XT β̃)XTSSTXu̇(XT β̃))|

≤‖u̇(XT β̃)XT u̇(XT β̃)X − u̇(XT β̃)XTSSTXu̇(XT β̃)‖S

≤‖u̇(XT β̃)‖S‖(XTX −XTSSTX)‖S‖u̇(XT β̃)‖S

≤cdC2
u̇‖(XTX −XTSSTX)‖F

≤cd
4
√

log(1/ε)C2
u̇

δ
√
r

‖X‖2
F

≤cd
4
√

log(1/ε)C2
u̇

δ
√
r

pσ2
max(X).

Using the above inequality, if we set

r > 64c2
dC

2
u̇ log(1/ε)σ4

max(X)p2/(δ2σ4
min(u̇(XT β̃)X)),

it holds that

|σmin(u̇(XT β̃)XTSSTXu̇(XT β̃))− σmin(u̇(XT β̃)XTXu̇(XT β̃))|

≤0.5σmin(u̇(XT β̃)XTXu̇(XT β̃)).

Thus the following equation holds with probability at least 1− ε:

σmin(u̇(XT β̃)XTSSTXu̇(XT β̃)) ≥ 0.5σ2
min(u̇(XT β̃)X).
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S1.5 Proof of Theorem 7

For the average weighted log-likelihood in Step 2 of two-step algorithm, we

have

Ltwo−step

β̃0
(β) : =

1

r + r0

r+r0∑
i=1

t∗i (β)

π∗i (β̃0)
=

1

r + r0

[

r0∑
i=1

t∗i (β)

π∗i (β̃0)
+

r+r0∑
i=r0+1

t∗i (β)

π∗i (β̃0)
]

=
r0

r + r0

· 1

r0

r0∑
i=1

t∗i (β)

π∗i (β̃0)
+

r

r + r0

· 1

r

r+r0∑
i=r0+1

t∗i (β)

π∗i (β̃0)
,

where π∗i (β̃0) in the first item stands for the initial subsampling strategy

which satisfies (H.5).

For the sake of brevity, we begin with the case with probability πmV.

Denote the log-likelihood in the first and second steps by

L∗0
β̃0

(β) =
1

r0

r0∑
i=1

t∗i (β)

π∗i (β̃0)
, and L∗

β̃0
(β) =

1

r

r∑
i=1

t∗i (β)

π∗i (β̃0)
,

respectively, where πi(β̃0) = π̌opt
i in L∗

β̃0
(β), and it has been calculated in

the two-step algorithm in Section 4.

To proof of Theorem 7, we begin with the following Lemma 3.

Lemma 3. If Assumptions (H.1)–(H.4) holds, then as n→∞, condition-

ally on Fn in probability,

J̌ β̃0

X − JX = OP |Fn(r−1/2), (S1.19)

1

n

∂L∗
β̃0

(β̂MLE)

∂β
= OP |Fn(r−1/2), (S1.20)
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where

J̌ β̃0

X = − 1

n

∂2L∗
β̃0

(β̂MLE)

∂β∂βT
=

1

nr

r∑
i=1

ψ̈(u(βTx∗i))u̇(βTx∗i)x
∗
i [u̇(β̂TMLEx

∗
i )x

∗
i ]
T

π∗i (β̃0)

+
1

nr

r∑
i=1

ü(β̂TMLEx
∗
i )x

∗
ix
∗T
i [ψ̇(u(β̂TMLEx

∗
i ))− y∗i ]

π∗i (β̃0)
.

Proof. Using the same arguments in Lemma 1, we have

E
(
J̌ β̃0,j1j2
X − J j1j2

X

∣∣∣Fn, β̃0

)2

≤ OP (1)

r

[ n∑
i=1

u̇2(β̂TMLExi)(xij1xij2)
2

n2πi(β̃0)

+
n∑
i=1

{u̇2(β̂TMLExi)xij1xij2 [ψ̇(u(β̂TMLExi))− yi]}
2

n2πi(β̃0)

]
.

(S1.21)

Now we substitute expression of πi(β̃0) in the two-step algorithm: π̃mV

and π̃mVc. Here we only give the proof of the case π̃mV, and the proof of

the case π̃mVc is analogous thus we omit it. For the first terms in (S1.21),

note that σmax(J̃ −1
X ), σmin(J̃ −1

X ) are bounded from Lemma 1 and (H.4), it

implies

n∑
i=1

u̇2(β̂TMLExi)(xij1xij2)
2

n2πi(β̃0)

≤
n∑
i=1

∥∥∥u̇2(β̂TMLExi)xi

∥∥∥2 n∑
j=1

max(|yj − ψ̇(u(β̃T0 xj))|, δ)
∥∥∥J −1

X u̇(β̃T0 xi)xi

∥∥∥
n2 max(|yj − ψ̇(u(β̃T0 xj))|, δ)

∥∥∥J −1
X u̇(β̃T0 xi)xi

∥∥∥
≤

n∑
i=1

∥∥∥u̇2(β̂TMLExi)xi

∥∥∥2 n∑
j=1

max(|yj − ψ̇(u(β̃T0 xj))|, δ)σmax(J −1
X )

∥∥∥u̇2(β̃T0 xi)xi

∥∥∥
n2δσmin(J −1

X )
∥∥∥u̇2(β̃T0 xi)xi

∥∥∥
≤ κ(J −1

X )
n∑
i=1

‖u̇2(β̂TMLExi)xi‖
n2δ

[ n∑
j=1

|yj − ψ̇(u(β̃T0 xj))|‖u̇2(β̃T0 xi)xj‖
n
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+
n∑
j=1

δ‖u̇2(β̃T0 xi)xj‖
n

]

≤ κ(J −1
X )

n∑
i=1

‖u̇2(β̂TMLExi)xi‖
nδ

[√√√√ n∑
j=1

|yj − ψ̇(u(β̃T0 xj))|2
n

√√√√ n∑
j=1

‖u̇2(β̃T0 xi)xj‖
2

n

+
n∑
j=1

δ‖u̇2(β̃T0 xi)xj‖
n

]

≤ OP (1)κ(J −1
X )

n∑
i=1

‖xi‖
nδ

√√√√ n∑
j=1

|yj − ψ̇(u(β̃T0 xj))|2
n

√√√√ n∑
j=1

‖xj‖2

n
+

n∑
j=1

δ‖xj‖
n


= OP (1).

where the last equality is from (H.3) and (H.5).

For the second terms in (S1.21), we have

n∑
i=1

(u̇2(β̂TMLExi)xij1xij2 [ψ̇(u(β̂TMLExi))− yi])
2

n2πi(β̃0)

≤
n∑
i=1

∥∥∥u̇2(β̂TMLExi)xi

∥∥∥2∣∣∣ψ̇(u(β̂TMLExi))− yi
∣∣∣2

n2δ
∥∥∥J −1

X u̇(β̃T0 xi)xi

∥∥∥
×

n∑
j=1

(|yj − ψ̇(u(β̃T0 xj))|+δ)
∥∥∥J −1

X u̇(β̃T0 xj)xj

∥∥∥
≤ κ(J −1

X )
n∑
i=1

[∥∥∥u̇2(β̂TMLExi)xi

∥∥∥ ∣∣∣ψ̇(u(β̂TMLExi))− yi
∣∣∣2

nδ

×

n∑
j=1

(|yj − ψ̇(u(β̃T0 xj))|+δ)
∥∥∥u̇(β̃T0 xj)xj

∥∥∥
n

]

= κ(J −1
X )

n∑
i=1

∥∥∥u̇2(β̂TMLExi)xi

∥∥∥ ∣∣∣ψ̇(u(β̂TMLExi))− yi
∣∣∣2

nδ
OP (1)
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≤ κ(J −1
X )

δ

√√√√√ n∑
i=1

∥∥∥u̇2(β̂TMLExi)xi

∥∥∥2

n

√√√√√ n∑
i=1

∣∣∣ψ̇(u(β̂TMLExi))− yi
∣∣∣4

n
OP (1)

= OP (1)

where the second last and last equality is from (H.3) and (H.5).

Direct calculation yields

E
(
J̌ β̃0,j1j2
X − J j1j2

X |Fn
)2

= Eβ̃0
E
(
J̌ β̃0,j1j2
X − J j1j2

X |Fn, β̃0

)2

= OP (r−1)

where Eβ̃0
means that the expectation is taken with respect to the distri-

bution of β̃0 given Fn.

On the other hand, following the same arguments in Lemma 1, we can

have

E

{
L∗
β̃0

(β)

n
− L(β)

n

∣∣∣∣Fn, β̃0

}2

= OP (r−1).

Then E
{
n−1L∗

β̃0
(β)− n−1L(β)|Fn

}2

= OP (r−1).

Similarly, we can see that Var(n−1∂L∗
β̃0

(β̂MLE)/∂β) = OP (r−1). Thus,

the desired result holds.

Now we prove Theorem 7.
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Proof. Using the same arguments in Lemma 3 , we have

E

{
Ltwo−step

β̃0
(β)

n
− L(β)

n

∣∣∣∣Fn
}2

≤ 2(
r0

r + r0

)2E

{
L∗0
β̃0

(β)

n
− L(β)

n

∣∣∣∣Fn
}2

+ 2(
r

r + r0

)2E

{
L∗
β̃0

(β)

n
− L(β)

n

∣∣∣∣Fn
}2

= OP (r−1).

Therefore E{n−1Ltwo−step

β̃0
(β)−n−1L(β)|Fn}2 → 0 as r0/r → 0, r →∞ and

n−1Ltwo−step

β̃0
(β) − n−1L(β) → 0 in conditional probability given Fn. Also

note that the parameter space is compact and β̂MLE is the unique global

maximum of the continuous convex function L(β). Thus, from Theorem

5.9 and its remark of van der Vaart (1998), we have

‖β̆ − β̂MLE‖ = oP |Fn(1).

Using Taylor’s theorem,

0 =
L̇two−step

β̃0,j
(β̆)

n
=

r0

r + r0

L̇∗0
β̃0,j

(β̆)

n
+

r

r + r0

L̇∗
β̃0,j

(β̆)

n

=
r

r + r0

{
L̇∗
β̃0,j

(β̂MLE)

n
+

1

n

∂L̇∗
β̃0,j

(β̂MLE)

∂βT
(β̆ − β̂MLE) +

1

n
Rβ̃0,j

}

+
r0

r + r0

L̇∗0
β̃0,j

(β̆)

n
,

where L̇∗
β̃0,j

(β) is the partial derivative of L∗
β̃0,j

(β) with respect to βj.

By similar argument in the Proof of Theorem 1, the Lagrange remainder

have the rate

1

n
Rβ̃0,j

:=
1

n
(β̆ − β̂MLE)T

∫ 1

0

∫ 1

0

∂2L̇∗j{β̂MLE + uv(β̆ − β̂MLE)}
∂β∂βT

vdudv (β̆ − β̂MLE)



20

= OP |Fn
(‖β̆ − β̂MLE‖2).

Note that the subsampling probabilities in the first stage satisfies the con-

dition (H.1)-(H.7), thus from Theorem 2, it holds that

L̇∗0
β̃0,j

(β̆)

n
=
L̇∗0
β̃0,j

(β̂MLE)

n
+

1

n

∂L̇∗0
β̃0,j

(β̂MLE)

∂βT
(β̆ − β̂MLE) +OP |Fn(‖β̆ − β̂MLE‖2).

Therefore

1

n

∂L∗0
β̃0

(β̆)

∂β
=

1

n

∂L∗0
β̃0

(β̂MLE)

∂β
+

1

n

∂2L∗0
β̃0

(β̂MLE)

∂β∂βT
(β̆ − β̂MLE) +OP |Fn(‖β̆ − β̂MLE‖2).

From Lemma 1, it is clear to see that

1

n

∂L∗0
β̃0

(β̂MLE)

∂β
= OP |Fn(r

−1/2
0 )

for the first step, since π∗i is prespecified and satisfied (H.6), and

r0

r + r0

1

n

∂L∗0
β̃0

(β̂MLE)

∂β
=
r0

r
OP |Fn(r

−1/2
0 ) = oP |Fn(r−1/2),

since r0/r → 0. This step holds due to the fact that
√
r0
r
OP |Fn(1) =

√
r0√
r
OP |Fn(1)OP |Fn(r−1/2) = o(1)OP |Fn(r−1/2). Let

J̆X :=
r

r + r0

1

n

∂2L∗
β̃0

(β̂MLE)

∂β∂βT
+

r0

r + r0

1

n

∂2L∗0
β̃0

(β̂MLE)

∂β∂βT
.

Combine Lemmas 1 and 3, we have

J̆X − JX =
r

r + r0

(
J̌ β̃0

X − JX
)

+
r0

r + r0

(
1

n

∂2L∗0
β̃0

(β̂MLE)

∂β∂βT
− JX

)

=
r

r + r0

OP |Fn(r−1/2) +
r0

r + r0

OP |Fn(r
−1/2
0 ) = OP |Fn(r−1/2),
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since r0/r → 0.

Hence,

β̆ − β̂MLE =− (J̆X)−1

{
1

n
L̇∗
β̃0

(β̂MLE) +OP |Fn(‖β̆ − β̂MLE‖2) + oP |Fn(r−1/2)

}
,

=OP |Fn(r−1/2) + oP |Fn(‖β̆ − β̂MLE‖)

as r0/r → 0, by noting (J̆X)−1 = OP |Fn(1) from (H.5). Therefore, the

desired result follows by noting

β̆ − β̂MLE = OP |Fn(r−1/2).

S1.6 Proof of Theorem 8

Proof. For the sake of brevity, we begin with the case with probability π̃mVc.

Denote

L̇∗
β̃0

(β̂MLE)

n
=

1

r

r∑
i=1

{y∗i − ψ̇(u(β̂TMLEx
∗
i ))}u̇(β̂TMLEx

∗
i )x

∗
i

nπ∗i (β̃0)
=:

1

r

r∑
i=1

ηβ̃0

i .

(S1.22)

It can be shown that given Fn and β̃0, ηβ̃0

1 , . . . , ηβ̃0
r are i.i.d random variables

with zero mean and variance

var(ηβ̃0

i |Fn, β̃0) = rV β̃0
c =

1

n2

n∑
i=1

πi(β̃0)
{y∗i − ψ̇(u(β̂TMLEx

∗
i ))}2u̇2(β̂TMLEx

∗
i )xix

T
i

π2
i (β̃0)

.
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Meanwhile, for every ε > 0,

r∑
i=1

E{‖r−1/2ηβ̃0

i ‖2I(‖ηβ̃0

i ‖ > r1/2ε)|Fn, β̃0}

≤ 1

r3/2ε

r∑
i=1

E{‖ηβ̃0

i ‖3I(‖ηβ̃0

i ‖ > r1/2ε)|Fn, β̃0}

≤ 1

r3/2ε

r∑
i=1

E(‖ηβ̃0

i ‖3|Fn, β̃0)

≤ 1

r1/2

1

n3

n∑
i=1

{|yi − ψ̇(u(β̂TMLExi))|}3‖u̇(β̂TMLExi)xi‖3

π2
i (β̃0)

≤ 1

r1/2

1

n

n∑
i=1

{|yi − ψ̇(u(β̂TMLExi))|}2‖u̇(β̂TMLExi)xi‖
δ

×

(
1

n

n∑
j=1

max(|yj − ψ̇(u(β̃T0 xj))|, δ)‖u̇(β̃T0 xj)xj‖

)2

≤ 1

r1/2

1

n

n∑
i=1

{|yi − ψ̇(u(β̂TMLExi))|}2‖u̇(β̂TMLExi)xi‖
δ

×

(
1

n

n∑
j=1

(|yj − ψ̇(u(β̃T0 xj))|+ δ)‖u̇(β̃T0 xj)xj‖

)2

.

From (H.1), (H.3) and (H.5),

1

n

n∑
i=1

{|yi − ψ̇(u(β̂TMLExi))|}2‖u̇(β̂TMLExi)xi‖
δ

≤δ−1

(
1

n

n∑
i=1

{|yi − ψ̇(u(β̂TMLExi))|}4

)1/2(
1

n

n∑
i=1

‖u̇(β̂TMLExi)xi‖2

)1/2

=OP (1),

by Holder’s inequality.
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Similarly, it can be shown

1

n

n∑
j=1

(|yj − ψ̇(u(β̃T0 xj))|+ δ)‖u̇(β̃T0 xj)xj‖ = OP (1),

from (H.1), (H.3) and (H.5).

Hence

r∑
i=1

E{‖r−1/2ηβ̃0

i ‖2I(‖ηβ̃0

i ‖ > r1/2ε)|Fn, β̃0} = oP |Fn(1).

This shows that the Lindeberg-Feller conditions are satisfied in probability.

By the Lindeberg-Feller central limit theorem (Proposition 2.27 of van der

Vaart, 1998), conditionally on Fn and β̃0,

1

n
(V β̃0

c )−1/2L̇∗(β̂MLE) =
1

r1/2
{var(ηi|Fn, β̃0)}−1/2

r∑
i=1

ηi → N(0, I),

in distribution.

The distance between V β̃0
c and Vc is

‖Vc − V β̃0
c ‖

≤ 1

r

n∑
i=1

∥∥∥∥ 1

πmVc
i

− 1

πi(β̃0)

∥∥∥∥ {yi − ψ̇(u(β̂T
MLExi))}2u̇2(β̂T

MLExi)‖xi‖2

n

=
1

r

n∑
i=1

∥∥∥∥1− πmVc
i

πi(β̃0)

∥∥∥∥ {yi − ψ̇(u(β̂T
MLExi))}2u̇2(β̂T

MLExi)‖xi‖2

nπmVc
i

≤ 1

r

n∑
i=1

∥∥∥∥1− πmVc
i

πi(β̃0)

∥∥∥∥ |yi − ψ̇(u(β̂T
MLExi))|‖u̇(β̂T

MLExi)xi‖
n

≤ 1

r

(
1

n

n∑
i=1

∥∥∥∥1− πmVc
i

πi(β̃0)

∥∥∥∥2
)1/2( n∑

i=1

{yi − ψ̇(u(β̂T
MLExi))}2u̇2(β̂T

MLExi)‖xi‖2

n

)1/2

= oP |Fn
(r−1),
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where the last equation follows from the facts that∥∥∥∥1− πmVc
i

πi(β̃0)

∥∥∥∥2

≤ (πmVc
i − πi(β̃0))2

δ2
= oP (1),

and
n∑
i=1

{yi − ψ̇(u(β̂TMLExi))}2u̇2(β̂TMLExi)‖xi‖2

n
= OP (1).

Here the first equality in the fact above holds for the continues mapping the-

orem and the second equality holds from (H.1), (H.3), (H.5) and Cauchy’s

inequality.

Utilizing the facts

(J̌ β̃0

X )−1 − J̆ −1
X = −J̆ −1

X (J̌ β̃0

X − JX + JX − J̆X)(J̌ β̃0

X )−1 = OP |Fn(r−1/2),

we have (J̌ β̃0

X )−1 − (J̆X)−1 = OP |Fn(r−1/2) from Lemma 3 and Theorem 7.

Thus

β̆ − β̂MLE=− 1

n
(J̌ β̃0

X )−1L̇∗
β̃0

(β̂MLE) +OP |Fn(r−1) (S1.23)

Based on Equation (S1.19), we further have

(J̌ β̃0

X )−1 − J −1
X = −J −1

X (J̌ β̃0

X − JX)(J̌ β̃0

X )−1 = OP |Fn(r−1/2).

Therefore

V −1/2(β̆ − β̂MLE)

=− V −1/2 1

n
(J̌ β̃0

X )−1L̇∗(β̂MLE) +OP |Fn(r−1/2)
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=− V −1/2J −1
X

1

n
L̇∗(β̂MLE)− V −1/2{(J̌ β̃0

X )−1 − J −1
X }

1

n
L̇∗(β̂MLE) +OP |Fn(r−1/2)

=− V −1/2J −1
X (V β̃0

c )1/2(V β̃0
c )−1/2 1

n
L̇∗(β̂MLE) +OP |Fn(r−1/2).

It can be shown that

V −1/2J −1
X (V β̃0

c )1/2(V −1/2J −1
X (V β̃0

c )1/2)T

=V −1/2J −1
X (V β̃0

c )J −1
X V −1/2

=V −1/2J −1
X (Vc)J −1

X V −1/2 + oP |Fn(r−1/2)

=I + oP |Fn(r−1/2).

The desired result follows by Slutsky’s theorem.

As for the case πi(β̃0) = π̃mV
i in L∗

β̃0
(β), π̃mV

i has the same expression

as πmV
i except that β̂MLE, is replaced by β̃0. Also note that πi(β̃0) ≥

κ(J̃X)−1π̃mVc
i . The rest of the proof is the same as that of π̃mVc

i with minor

modifications.

S2 Additional Simulation Results

In terms of the allocation between r0 and r, it is clear to see that the two-

step approach works the best when r0/r is around 0.2 from the simulation

result in Figure 3 of the main text. To well demonstrate our methods, we

compare different r0 + r with fixed r0/r = 0.2.
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In each of the settings described in Section 5.1 of the article, we reeval-

uated the performance of π̃mV
i and π̃mVc

i when r0/r is fixed at 0.2. For

comparison, the uniform subsampling, leverage subsampling and adjusted

leverage subsampling methods are also considered. Inline with the setting

in the main text, the sample size r0 + r is selected as 500, 700, 900, 1200,

1400, and 1600. We report the results for the Poisson regression and the

negative binomial regression in Figures S1 and S2, respectively.
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Figure S1: The eMSEs for the Poisson regression with different subsample size r0 + r

and fixed r0/r = 0.2. The distributions of the covariates are listed at the beginning of

Section 5.
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Figure S2: The eMSEs for the NBR with different subsample size r0 + r and fixed

r0/r = 0.2. The distributions of the covariates are listed at the beginning of Section 5.
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From Figures S1 and S2, we can see that our methods are slightly better

than the cases that r0 is fixed at 200. However, this improvement is not

significant.

To explore influential factors on subsample sizes that have been dis-

cussed in Section 3.2 in terms of estimation accuracy, we consider additional

four cases for the Poisson regression models listed as below.

Case S1: The true value of β is a 7 × 1 vector of 0.5 and the covariates

matrix X = Σ
−1/2
n X̃. Here X̃ is the centralized version of a n× 7

matrix whose elements are i.i.d., generated from U([−1, 1]), and

Σn is the sample covariance matrix of X̃ so that X has a sample

covariance matrix as Ip and a condition number as 1.

Case S2: The true value of β is a 14× 1 vector whose first seven elements

are set to be 0.5 and rest are set to be 0.1. The covariates matrix

X = Σ
−1/2
n X̃, where X̃ is the centralized version of a n×14 matrix

whose elements are i.i.d. generated from U([−1, 1]) and Σn is the

sample covariance matrix of X̃ so that the condition number of

X is 1 and the signal to noise ratio is nearly the same as that in

Case S1.

Case S3: This case is the same as the Case S2 except that xi2 in Case

S2 is replaced with xi2 = xi1 + εi where εi
i.i.d∼ U([−0.4, 0.4]) for
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i = 1, . . . , n. For this setup, the condition number of X is around

5.

Case S4: This case is the same as the Case S2 except that xi2 in Case

S2 is replaced with xi2 = xi1 + εi where εi
i.i.d∼ U([−0.1, 0.1]) for

i = 1, . . . , n. For this setup, the condition number of X is around

26.

To exclude the pilot subsampling effect, the ideal case that β̂MLE is given

before conducting the subsampling strategy is considered. Although this

setting is hard to satisfy, the simulation provides some key insights for

Theorem 5 and it is also valuable for the two step Algorithm. The sample

size r is selected as 10, 15, 20, 25 and 30 times of the dimension respectively.

For comparison, the uniform subsampling method is also demonstrated.

The eMSEs are reported in Figures S3.

Through the simulation results reported in Figures S3(a) and S3(b),

we can see that the cases with r = 10p, 20p exhibit similar performance

when the conditional numbers of the covariate matrix are fixed at one. And

for the same dimensional case, the eMSEs become larger as the conditional

number of the covariate matrix increasing. These echo the results discussed

in Section 3.2.
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Figure S3: The eMSEs for Poisson regression with different subsample size r = cp. The

different distributions of covariates are listed in the beginning of Section S2.
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