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Abstract

The information-based optimal subdata selection (IBOSS) is a computationally ef-
ficient method to select informative data points from large data sets through processing
full data by columns. However, when the volume of a data set is too large to be pro-
cessed in the available memory of a machine, it is infeasible to implement the IBOSS
procedure. This paper develops a divide-and-conquer IBOSS approach to solving this
problem, in which the full data set is divided into smaller partitions to be loaded into
the memory and then subsets of data are selected from each partitions using the IBOSS
algorithm. We derive both finite sample properties and asymptotic properties of the
resulting estimator. Asymptotic results show that if the full data set is partitioned
randomly and the number of partitions is not very large, then the resultant estimator
has the same estimation efficiency as the original IBOSS estimator. We also carry out
numerical experiments to evaluate the empirical performance of the proposed method.
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1 Introduction

In big data analysis, a common challenge is that available computing facilities are inadequate
to meet the computational needs. To overcome this challenge, there are two fundamental
approaches: one is the divide-and-conquer approach in which a large data set is divided into

smaller partitions and results are calculated from each partition and then combined; the
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other approach is to use a subset of the full data as a surrogate, and use calculation results
from the subdata to approximate the full data calculation results.

The divide-and-conquer approach naturally fits into parallel and distributed computing
systems, and it is effective to deal with the challenge that the data volume is too large to
be loaded into the memory although it may not always reduce the computing time with a
single processor. Most distributed computational platforms are expensive to access and they
are not suitable for daily routine usages such as exploratory data analysis and pilot model
prototyping. The divide-and-conquer method has attracted many researchers in machine
learning and statistics, leading to key advancements in Lin and Xie (2011); Jordan (2012);
Chen and Xie (2014); Shang and Cheng (2017); Battey et al. (2018), among others. In the
streaming setting where data blocks are accessible sequentially for only one time, the online
updating method has been developed (Schifano et al., 2016; Xue et al., 2018). In order to
produce an estimator that preserves the same convergence rate as the full data estimator, a
key requirement for the divide-and-conquer method is that the number of partitions cannot
be too large (Shang and Cheng, 2017).

The approach of using a subset of the full data is an effective method to reduce the
computational burden, and it is often the only way to extract useful information from mas-
sive data sets when available computing power is limited. An advantage of this approach is
that once a subset of data is taken, thorough analysis can often be performed on a regular
computer such as a laptop. This is important in statistics because data analysis is not just
computing. Note that the primary goal of selecting an informative subset from the full data
agrees with the basic motivation of optimal design of experiments in which one wants to get
as much information as possible with a fixed design budget. The major challenge of subdata
selection from big data is how to identify informative data points computationally fast in
order to maintain the computational advantage in the whole procedure of data analysis. For
this purpose, statistical leverage scores are often used to define subsampling probabilities in
linear regression (Drineas et al., 2012; Ma et al., 2015). In the context of logistic regres-
sion, Wang et al. (2018) derived the optimal subsampling probabilities that minimize the
asymptotic variance of the subsampling estimator under the A- and L-optimality criteria,
and Wang (2018) further developed a more efficient estimation approach based on optimal
subsamples. Yao and Wang (2019) extended this technique to include the softmax regression.

The aforementioned work uses random subsampling to take subsets of full data, and
Wang et al. (2019) showed that an estimator obtained from this approach for linear regres-
sion has a variance that is bounded from below by a term that is proportional to the inverse
of the subset sample size, i.e., the estimator will not converge to the true parameter if the

subset sample size is fixed no matter how fast the full data sample size goes to infinity.



From the characterization of the optimal subdata under the D-optimality criterion, they
further develop a computationally efficient IBOSS algorithm. The resulting estimator from
this algorithm converges to the true parameter even if the subdata sample size is fixed as
long as the full data sample size gets large and the supports of the covariate distributions
are unbounded. The IBOSS algorithm selects data points by examining each column of the
design matrix, so it is infeasible to apply if the data volume is too large to be loaded into the
random-access memory (RAM). This paper combines the divide-and-conquer method and
the IBOSS algorithm to solve this issue. The basic approach is to divide a large data set
into smaller partitions so that each partition can be loaded into the RAM and the IBOSS
algorithm is applied on the smaller partitions. In practice, big data are seldom stored in a
single file; they are often stored in multiple data blocks. The proposed method fits this sce-
nario naturally. We will investigate both finite sample properties and asymptotic properties
of this procedure, and use numerical experiments to evaluate its empirical performance.
The rest of the paper is organized as the following. We present notations for the model
setup and introduce the IBOSS method in Section 2. The main theoretical results on the
divide-and-conquer IBOSS algorithm will be presented in Section 3. Section 4 evaluates the
empirical performance of the divide-and-conquer IBOSS algorithm using numerical examples.

Section 5 concludes the paper and all proofs are provided in the Appendix.

2 IBOSS framework and detailed algorithm

Assume that the full data Dy = {(z1, 1), ..., (zn, yn) } satisfy the following linear regression

model
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where y; are the responses, z; = (zi1, ..., )" are the covariates, 8y and 3y, ..., B, are the inter-
cept and slope parameters, respectively, and &; are model errors. For easy of presentation, we
define some notations. Let ; = (1,2;) and Z = (z],...,zx)". Denote By = (b1, Ba, ..., Bp) "
and B = (By,3])". Here we assume that the error terms ; are uncorrelated and satisfy
E(e;) = 0 and V(g;) = 0. Without loss of generality, we assume that 02 = 1 when dis-
cussing the selection of subdata sets.

To estimate the unknown (3, the best linear unbiased estimator (BLUE) is the least

squares estimator. With the full data Dy, it has an expression of
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with variance-covariance matrix
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where My, is the observed Fisher information matrix of 3 for the full data if ¢; are normally
distributed.

When the sample size N of the full data set is too large, full data analysis may take
too long to afford. To extract some useful information from the data in time with limited
computing resources, a subset of the full data can be selected and thoroughly analyzed. For
this purpose, Wang et al. (2019) proposed the IBOSS method. We summarize the motivation
and procedure in the following.

Use § = {01, 02, ...,0n} to indicate a subset of data where ¢; = 1 if (z;,y;) is included in
the subset and ¢; = 0 otherwise. Here § may depend on Z but it does not depend on y,
so the subdata selection rule is ancillary to the regression parameter, and the least squares
estimator is still the BLUE based on the subset of the full data. With this notation, the

information matrix for 3 based on a subset of the full data indexed by é is
N
i=1

To extract the maximum amount of information from the full data with a fixed subset sample
size k so that |6] = Zf\il d; = k, Wang et al. (2019) proposed to select the subset of data
that maximizes Mg with respect to é under the the D-optimality criterion in optimal design

of experiments, namely, to find
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In general, there is no analytical solution to d7 * and numerical search for an exact solution
is computationally NP-hard. Wang et al. (2019) derived an upper bound for | M|, and then
proposed an algorithm to approximate it. To be specific, they showed that for any § with
|6| =k,

k
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where z(y); and z(); are the sample maximum and sample minimum, respectively, for the



j-th covariate. Although the upper bound (y is typically unachievable, it indicates that the
more informative data points are in the tail regions of the covariates. This motivated the
IBOSS algorithm to approximate the upper bound, and here is a summary of the IBOSS
procedure. Assume that r = k/(2p) is an integer. For each covariate, using a partition-based
selection algorithm (Martinez, 2004), select r data points with the smallest z;; values and r
data points with the largest z;; values among the data points that are not yet included in
the subsample. The data points obtained according to the p covariates are then combined
to form a subdata of size k for statistical analysis.

The original IBOSS paper by Wang et al. (2019) did not present all practical details of
implementing the IBOSS procedure. For example, it is mentioned that if some data points
have been included in the subdata by some covariate, the IBOSS algorithm requires to
exclude them from consideration when using other covariates to select data points, but the
implementation details were not provided. This step may add significant CPU time if not
implemented appropriately. Thus, for completeness, we present a detailed IBOSS algorithm

taking into account necessary practical considerations in Algorithm 1.

3 Divide-and-conquer IBOSS algorithm

The IBOSS approach in Algorithm 1 needs to look at the data column by column. Although
for most programming languages, such as R (R Core Team, 2018) and Julia (Bezanson et al.,
2017), data matrices are stored by columns in the memory, data files are often stored on
hard drive by rows. Thus, if the data volume exceeds the size of the available memory, it is
difficult to implement the IBOSS algorithm. To deal with the problem of limited memory, a
natural approach is the divide-and-conquer procedure, in which the full data set is divided
into partitions by rows and then each partition can be loaded into the memory and processed
individually. To combine this procedure with the IBOSS procedure, we present the divide-
and-conquer IBOSS method in Algorithm 2.

Remark 1. Algorithm 2 takes a subdata Déb) from each partition DES) and then combines
them to have a final subdata Dgg. This is recommended if only one machine is used, and
the combined subdata should be small enough so that thorough analysis can be performed
on the machine. If a distributed computing system is used and data partitions are processed
in parallel by multiple machines, we can calculate the least squares estimators and their
estimated variance-covariance matrices on each subdata Dg’) in all machines and then aggre-
gate these estimates using a linear combination with the inverses of the variance-covariance
matrices as weights. The final estimators from these two approaches are identical (Lin and

Xie, 2011; Schifano et al., 2016). The latter procedure takes advantage of parallel computing
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Algorithm 1 Original IBOSS algorithm

Input: full data Dy, subdata size k
Output: subdata set Dg

(N,p) = size(Z) {get the full data size and covariate dimension}
S=1 {initialize the index set of the subdata}
r=[k/(2p)] {number of data points to take at each covariate tail}
for jin1,...,p do
S = sort(.5) {sort elements in S in an increasing order}
w = (ug,....,un_is|)" {allocate u to store elements of z;, z;;,7 ¢ S}
t=1,s=1 {t is the counter for u; s is the counter for S’}

foriin1,...,N do
if i # S[s| then

u =2z, t=t+1 {record z;; in w if i ¢ S}
else if s < |S| then
s=s+1 {skip i if it is already in S’}
end if
end for
I =@y, ¢ = UN—ri1) {using partition based quick selection}
s=1,rm=1r,=1 {ry, r, count numbers of data points in each tail}

foriin1,...,N do
if |S| >k or (r; > r and r, > r) then
break {break when enough data points are taken}
else if s < |S| and ¢ = S[s] then
s=s+1 {skip ¢ if it is already in S}
else if r; <r and z;; <[ then
S=SUi,rm=r+1 {include one data point from the left tail}
else if r, <r and z;; > ¢ then
S=8Ui,rg=r,+1 {include one data point from the right tail}
end if
end for
end for
S=sort(S)
Ds=10 {initialize the set of the subdata}
t=1,s=1
foriin1,..., N do
if s <|S| and i = S|s| then
Ds =DsU (zi,y:), s=s+ 1 {take the subdata according to S}
end if
end for
return Dg




Algorithm 2 Divide-and-conquer IBOSS algorithm

Input: full data Dy, subdata size k, partition size ng.

Output: subdata set Dgg

if r5 =k/(2pB) < 1 then

print “The number of data points from each covariate tail is smaller than one.”

end if

(Dg\}), . D](f)) = split(Dy, np) {Divide the full data into B partitions of
size ng. This step can be skipped if the

full data are stored in multiple small files.}

Dgs =0

forbin 1,..., B do
Run Algorithm 1 on D%’) with k, = [k/B] to obtain Dg’)
Dps = Dpg UDY

end for

return Dgg

facilities, but it has to carry out additional calculations on each machine if further regression

diagnostics are to be performed.

Remark 2. Using one machine to implement Algorithm 2, the step to divide the full data Dy
into blocks Dﬁ), - DJ(V{B) can be done by using the UNIX command split. This command

is also available for Windows through Cygwin.

3.1 Theoretical properties

In this section, we investigate the performance of Algorithm 2 theoretically. With out loss
of generality, we assume that rp = r/B = k/(2pB) and np = N/B are both integers, where
B is the number of partitions on the full data.

Let z¢); (¢ =1,...,N;j = 1,...,p) be the i-th order statistic on the j-th covariate in the
full data and z;); (b=1,...,B;i =1,...,np;j = 1,...,p) be the i-th order statistics on the
j-th covariate in the b-th block. Denote the covariate matrix for the subdata Dgg by Zhs
and denote the sample correlation matrix of Z5, by Rop,g. Let Xp = (1,25 ).

For the divide-and-conquer IBOSS method, we first present a result showing the quality
of using Algorithm 2 to approximate (y, a typically unachievable upper bound of |Mj|
defined in (2).

Theorem 1. The subdata Dgs selected using Algorithm 2 satisfies that

(D) Xl
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and Amin(Ropgg) s the smallest eigenvalue of Rpy,.

Remark 3. The lower bound of the approximation ratio in (3) has two terms: C in (4) and
Cg in (5). Heuristically, Cr is a bound corresponding to the scenario that the full data is
divided randomly so that the covariate distributions for different partitions are the same. In
this scenario C'g is a sharper bound compared with Cg, i.e., Cr > Cg. On the other hand,
CE is a bound corresponding to some extreme cases, e.g., ranges of covariate values for all

blocks do not overlap. In this case, Cr may be larger than Ck.

Theorem 1 is aligned with Theorem 3 of Wang et al. (2019) for the original IBOSS
algorithm, which shows that for the subdata Dg obtained from Algorithm 1, the following
inequality holds.

‘(ng)TXBS | mm RDS : N ”"H)J (T)j 2 6
11 , (6)
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where Xp = (1, 25,), 25, is the covariate matrix for the subdata Dg, and A} (Rop;) is the
minimum eigenvalue of RDS, the correlation matrix of Z7_. Comparing (3) and (6), we see
that there may be some information loss due to the divide-and-conquer procedure because
(Zb(np—rp+1)j = 2b(rp)i)” A0 (2(N—rp11)j — 2(rp);)°/ B are typically smaller than (2(n—r41); —
z(r)j)2. However, if B is not too large, zypmyz—rp+1)j — 2b(rz); a0d Z2(N—r4+1); — Z(r); are on the
same order under reasonable assumptions, so the lower bounds of the approximation ratios
are at the same order. Theorem 1 also indicates that |(Xp )" X% | may achieve the same
order of the unachievable upper bound (5 under some reasonable assumptions if B and p
do not go to infinity.

Now we investigate the properties of the resulting estimator form Algorithm 2. Let
BDBS = ( DBS, ﬁDBS . BEBS)T be the least squares estimator calculated from the divide-

and-conquer IBOSS subdata, namely,

-1 B np
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where x}, = (1,z5;,)T and (z;;,y;;) is the i-th observation in the subdata Dg’) from the b-th
block. To investigate the theoretical properties of BDBS, we focus on the variances because
BPss is unbiased for 3.

The following theorem provides finite sample bounds on variances of BjDBS, 7=0,1,...,p.

No quantity is required to go to infinity here.

Theorem 2. If the sample correlation matriz for covariates Zp_ . in the subdata Dgs is
column full rank, then the following results hold for the estimator, BPes | obtained from
Algorithm 2:

V(512) > T, and (7)
402 ADps .
<V(ﬁj |Z) S mln(vaj7 ‘/ej)7 (8)

with probability one for j = 1,...,p, where
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and Amin(Rpgys) s the minimum eigenvalue of the sample correlation matriz of Z%Bs'

BS is bounded

Theorem 2 shows that for the intercept, the variance of the estimator BS)
from below by ¢?/k, which is the same as the bound for the original IBOSS algorithm. It
indicates that this variance cannot go to zero for a fixed k. However, for slope parameters,
the variances of the estimators BJDBS may converge to zero under some assumptions even k
is fixed.

Theorem 2 is aligned with Theorem 4 of Wang et al. (2019), which shows that the
variances of the slope estimators from the original IBOSS procedure are bounded from above

by
4po?

‘/;. pr—
k)\min(RDS)(Z(N—rH)j - Z(r)j)
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Comparing the upper bounds V,; and V,; with the upper bounds V,; for the original IBOSS
procedure, we also see that the divide-and-conquer IBOSS algorithm may subject to some
information loss. However, the information loss can be ignored asymptotically if the full
data is partitioned randomly and the number of partitions does not go to infinity too fast.
We derive the following theorem showing that the orders of V(BjDBS|Z) can be the same as

those of the variances for the original IBOSS estimators.

9



Theorem 3. Assume that covariate distributions are in the domain of attraction of the
generalized extreme value distribution, and hm 1nf)\mm(RDBS) > 0. For large enough N,
when the full data is divided randomly in Algomthm 2, the following results hold for the
estimator, ﬁj BS g=1,...,p.

. P .
Vﬂ-DBSZ =0 { }, i=1,..p,
(5;712) = Or k(z(v)j — (1))

if one of the following conditions holds: 1) r and B are fized; 2) the support of F; is bounded
and r/N — 0, where F; is the marginal distribution function of the j-th component of z; 3)

the upper endpoint for the support of F; is oo and the lower endpoint for the support of F

1s finite, and

F.(1—-1/N
r — 0 and ]( /N)

N1 - F{(1 - e F (1~ N1} F(1-B/N) 1, (9)

for all e > 0; 4) the upper endpoint for the support of F; is finite and the lower endpoint for
the support of F; is —oo, and

r BN
N1 _oF vy M BB

J

— 1, (10)

for all € > 0; and 5) the upper endpoint and the lower endpoint for the support of F; are oo
and —oo, respectively, and both (9) and (10) hold.

The convergence rates of V(BjDBS |Z) described in Theorem 3 are the same as those given
in Theorem 5 of Wang et al. (2019) for the original IBOSS estimators of slope parameters.

For case 1), if p is fixed, then the total subdata size k is also fixed. As long as the supports
of covariate distributions are not bounded, z(x_y41); — 2(); — 00 in probability as n — oo,
and thus the variances V(BJ-DBS|Z) converge to zero in probability. This is not the case for
random subsampling-based methods (Ma et al., 2015; Wang et al., 2018). In this case, the
asymptotic expression for the variance-covariance matrix of BDBS when z; follow normal and
lognormal distributions are identical to those in Theorem 6 of Wang et al. (2019). For case
2), Z(N—r+1); — Z(r); 0es to some finite constant, so it is necessary that & — oo in order for
V(BJ-DBS]Z) to converge to zero. For case 3), the condition in (9) impose constrains on r, B,

N, and the tail behavior of the covariate distributions. For example, if
Fi() = 1 - exp{—="h(2)}, (1)
where v > 0 and h(z) is a slowly varying function, then the first constrain in (9) is to require
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that logr/log N — 0 (Hall, 1979). The distribution in (11) includes many commonly seen
distributions, such as exponential distribution, gamma distribution, Gumbel distribution,
Laplace distribution, and normal distribution. For these distributions, if log B/log N — 0,
then the second constrain in (9) also holds. For case 4), the condition in (10) is essentially
the same as that in (9) if one takes transformation z = —z. For case 5, it is a combination of
cases 3 and 4. Under the given conditions, F; ' (1-=N"")/z); = Land F; '{(N7')/zq); — 1,

so the rates for V(BJ%S |Z) to converge to zero are

p
R{F7Y (1= N-1) — FrY(N-1))

=1 ..p.

4 Numerical experiments

In this section, we use numerical experiments to evaluate the empirical performance of the
divide-and-conquer IBOSS algorithm.

We generate data from model (1) with 8y = 1 and 3 being a 50 dimensional vector of
ones. We assume that ¢; are independent following N(0,1). The following five cases are

considered to generate the covariate matrix Z.

Case 1: Normal. We generate Z from a multivariate normal distribution, N (0, %), where
the (i, 7)-th element of 3 is 0.5 if ¢ # j and 1 otherwise.

Case 2: LogINormal. We generate Z from a multivariate lognormal distribution, namely,
generate V from N(0,3X) as defined in Case 1 and then set Z = eV, where the exponen-

tiation is element-wise.

Case 3: Th. We generate Z from a multivariate ¢ distribution with two degrees of freedom
t2(0,X) with 3 being the same as in Case 1.

Case 4: Mix with order. We generate Z from five different distributions. Specifically,
generate Z; from N (0, X); generate 2, from t5(0, X); generate Z3 from t3(0, X); gener-
ate Z, with its elements independently following the same uniform distribution between
zero and two; and generate Z5 from the multivariate lognormal distribution defined in

Case 2. Here, Z; (i = 1,...,5) all contain n/5 rows, and X is the same as defined in
Case 1. Set Z2 = (21, 2}, 25 ZF 25T,

Case 5: Mix random order. We generate Z using the same procedure as in Case 4, and

then we randomize the row orderings.
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Here, Cases 1-4 are the same as those in Wang et al. (2019). Cases 4 and 5 would
produce identical results for the full data analysis approach but produce different results
for the divide-and-conquer IBOSS algorithm as different row orderings will affect the data
partitions. The purpose of considering both Cases 4 and 5 is to investigate the effect of
different data partitions on the the divide-and-conquer IBOSS algorithm. We divide the full
data according to the sequence of row numbers in the numerical experiments.

We repeat the simulation for 7' = 1000 times to calculate the empirical mean squared
error (MSE) as MSE=T""3"", HBY) — B4 for the slope parameter, where ,8@ is the
estimate at the t-th repetition.

Figure 1 plots log of empirical MSEs against full data sample size N of N = 5 x
103,10%,10° and 10°, with total subdata size k¥ = 1000. Here the natural logarithm is
taken to have better presentations. For the number of partitions B, we considered four
values: B = 1,2,5, and 10, and the corresponding values of rg are rg = 10,5,2, and 1,
respectively. Note that when B = 1, the method is the original IBOSS approach. For com-
parison, the uniform Poisson subsampling method is also implemented. From Figure 1, the
empirical MSE decreases as N gets large for the divide-and-conquer IBOSS approach, while
it stays constant for the random sampling approach. Different values of B have some effect
on the performance of divide-and-conquer IBOSS approach, the effect is not very significant,
especially for Cases 2, 3, and 5. Comparing results in Cases 4 and 5, we see that different
row orderings affect the performance of the divide-and-conquer IBOSS algorithm, and the
random row ordering (random partitions) is preferable.

We also consider the scenario that rp is fixed while B changes. This is to mimic the
scenario that one may have B machines to use while the computational capacity for each
machine is limited. This is often the case for parallel distributed computing systems. We set
rg = b and choose B to be B =1, 2, 5, 10, and 20, which gives the values of k as k = 500,
1000, 2500, 5000, and 10000, respectively. We fixed N = 10°. Figure 2 presents the results.
It is seen that both the divide-and-conquer method and the Poisson subsampling method
improve as B increases because the total subdat size k increases. The divide-and-conquer
method dominates the Poisson subsampling method and the difference in their performance
depends on the covariate distribution.

To further explore the effect of larger number of partitions B with a fixed k£ = 2000, we
reduce the value of p to be p = 2 so that the maximum value of B is B = 500 corresponding
to rg = 1. We consider B =1, 2, 5, 10, 20, 50, 100, 125, 250, and 500, which gives values of
rg as rg = 500, 250, 100, 50, 25, 10, 5, 4, 2, and 1, respectively. Figure 3 gives the results.
We see that the effect of B on the performance of the divide-and-conquer IBOSS algorithm is

small compared with its significant improvement relative to the Poisson subsampling method.
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Figure 1: MSE of the slope parameter against full data sample size for the five cases of
covariate distributions. The subdata size k is fixed at & = 1000.
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Figure 2: MSE of the slope parameter against number of partitions B with a fixed rg. The
subdata size k changes as B changes.
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Table 1: Computing times for different number of partitions B with N = 107, p = 102, and
k = 10*. “FULL” uses all the observations in each data block; “IBOSS” uses the IBOSS
algorithm to select a subdata set of k/B observations; and “UNI uses Poisson subsampling
to select a subdata set of k/B observations.

Methods | B=2 B=5 B=10 B=25 B=50
FULL 98.80 95.76  90.82 86.41 85.28
IBOSS | 29.74 24.90 20.79 18.81 18.42

UNI 6.81 5.67 4.32 6.75 14.08

Additionally, there is no clear increasing pattern for the empirical MSE as B gets large.
This is different from the observations for regular cases in the existing literature where the
estimation efficiency of the divide-and-conquer estimators often decreases as the number of
partitions increases (e.g. Lin and Xie, 2011; Schifano et al., 2016; Battey et al., 2018).

We investigate the computing times of the divide-and-conquer IBOSS algorithm for the
case that data blocks are stored on hard drive. We set N = 107, p = 100, k = 10, and
choose values of B to be B = 2,5,10,25, and 50, giving values of rg = 25,10,5,2, and 1,
respectively. For comparisons, we implement the full data divide-and-conquer approach in
which all observations in each block of data are used to calculate least squares estimators and
these estimators are then aggregated to form a full data estimator. We also implement the
Poisson subsampling method on each data block to obtain subdata sets and then combine
these subdata sets to calculate an estimate. Table 1 presents the results on computing times,
where the time to load each data block into the memory is also counted. The calculation was
performed on a computer with Intel Core i7 processors, a 64 GB RAM, and SSD hard drives,
running Ubuntu 18.04 Linux system. Only one CPU was used for fair comparisons. It is
seen that the divide-and-conquer IBOSS algorithm is faster than the full data approach, but
is not as fast as the the uniform subsampling approach. For the divide-and-conquer IBOSS
approach and the full data approach, as the number of blocks increases, the computing times
are reduced. However, this is not the case for the uniform subsampling approach, for which
the computing time decreases first but then increases as B increases. This is because as B
gets large, the data loading time becomes the dominating term for the time required by the

divide-and-conquer uniform Poisson subsampling method.

5 Concluding remarks

In this paper, we have developed a divide-and-conquer IBOSS method in the context of lin-
ear regression to solve the issue that the data volume is too large to apply the D-optimality

motivated IBOSS method in memory. We have derived theoretical guarantees for the resul-
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tant estimator and drawn comparisons with the original IBOSS approaches. We have also
carried out numerical experiments to evaluate and demonstrate the proposed method.

We found that the estimation efficiency of the divide-and-conquer IBOSS algorithm may
not be a monotonic function of the number of partitions as in other divide-and-conquer
methods, which indicates the possibility of a nontrivial optimal number of partitions. This

is an interesting and challenging question warrants for further investigations.

6 Proofs

6.1 Proof of Theorem 1

Proof. For [ # j, let z " be the concomitant of zay for z;, ie., if 24y = 24 then z( QL Zsj)

i=1,..,N. Let Zjp_, and var(zjp_.) be the sample mean and sample variance for covariate

z; of subdata Dgg. For the proof of Theorem 3 in Wang et al. (2019), we know that

p
|<XBBs)TX£le 2 k( - 1)p)\ﬁ11n RDBS) Hvar(Z;DBs)' (12)

j=1
Let kg = k/B be the number of data points to take from each partition, and zj;; be the i-th
observation on the j-th covariate in the subdata D from the b-th partition. The sample

variance for each j satisfies,

k B kg
k—1 )?
( - )Var JDBS Z JDBS ZZ Zbl] JDBS
=1 b=1 i=1
B
j : 2
b=1 1= i=ng—-rp+1

B
( 1
B B 9 r
—x —kU B [ _xu —k
:Z{Z(Zb(i>a‘—zbj + Z (30 = 7)) + 5 5 RN }
1=1

b=1 i=ngp—rp+1
r B r B
B A Y B 2
> (5" =5 2 7D (tbins—rns1s — 2hirm)s)
b=1 b=1

where Z;* =X+ L 7‘B+1) 2(i);/(21B), Zi = D121 (i) /T
and z}' —ZZ p—rpt1 2b(@)j/ (rB). Thus,

2

B 2
var(2ip, ) > (Z(N B (1 Z( (np—rp+1)j Z(rB)J) 7 (13)

b=1 N)j — A1)
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which, combined with (12), shows that

p
[ R T Bp kAfnm(RDBs) [T = 2a,)°
j=1
p B 1 Zo(rp)s 2
% b(np—rp+1) TB >
This shows that
* * B
|(XDBS>TXDBS‘ mln RDBS - Zb(nB —rp+1)j — 2b(rg)j ? 14
i > 11> — ~ (14)
N 7=1 b=1 (1)j

Each numerator in the summation of the bound in (14) relay on the covariate range of
each data partition. If the full data is not divided randomly, this may not produce a sharp
bound and using the full data covariate ranges may produce a better bound. We use this
idea to derive the bound Cg in the following. From Algorithm 2, for each j = 1, ..., p, the
rp data points with the smallest value of z; and the rp data points with the largest value of

z; must be included in Dgg. Thus, for each sample variance,

B N

(k — Dvar(z)p,,) > (Z + > > (265 = Z}pns)”
> <Z+ ) > (25— 27)°

i=1 i=N—-rp+1

>2 (5" = 5" 2 2 (2vmratai = o)

N - r
In this case, Z7* = (3212, + D iy rpi1)205/ (2rB), 218 = 220 20/ (1),
and Zj* =70 (i)j/(rB). Thus,

var(2ip,,.

2
) > — ) (Z(N—TBH)j - st)j) ‘ (15)
— 2Ak-1)B ANY T AW

This, combined with (12), shows that

* * 2
|(XDBS)TXDBS| > /\mln RDBS v - (Z(N re+1)j — (TB)J'> _ (16)
My - e Z(N); — (1)
The proof finishes if we combine (14) and (16). O
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6.2 Proof of Theorem 2

Proof. The proof for (7) is similar to the proof of inequality (19) in Wang et al. (2019). For
(8), from the proof of Theorem 4 in Wang et al. (2019), we know that

2
var(Zpe) < 1 (2w — 2y5) (17)
e 4D o’ (Rpy)ii
V(B38| Z) = BS 18
(67%12) k—1 var(z}) (18)
From the (17), (18), and the fact that (R%]is)jj > 1, we have
. 4 2 L 2
V(BJPBS|Z) > g <Z(N)Jk Z(U]) . (19)
From (13), (15) and the fact that (Rp. );; < At (Rpgs), we have
4pBo?
V(37 |2) < , and (20)
k)‘mln<RDBs)<Z(N rp+1)j (T’B)j)2
. 4pBo?
V(p7512) < 5 7- (21)
ki Amin (Rpyg) Zb:l (Zb(nB—TB-i-l)j - Zb(TB)j)
The proof finishes by combining (19), (20), and (21). O

6.3 Proof of Theorem 3

Proof. For the first case that B and r are fixed, from (8) with V,;, we only need to verify
that

O 0p(1), (22)
Z(N—rp+1)j = Z(rp)j

which is true according to Theorems 2.8.1 and 2.8.2 in Galambos (1987).
For the second case, Zpny—rp4+1); — Zb(rp); and z(vy; — z1); converge to the same fixed

constant in probability, and 2y, —rz+1); — 2b(rp); are bounded by this constant for all b.
Thus,

M:o

2
Zb nB 7”B+1 (TB)])
b:l

converges to the same finite constant. Thus, (22) can be easily verified.
For the third case, let gn; = F; (1= 1/N) and g, ; = F;'(1—1/np). When (9) holds,
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from the proof of Theorem 5 in Wang et al. (2019), we have zyy;/gn; = 1 + op(1) and
Znp—rp+1)j/9ng,j = 1 + op(1). Thus, noting that z,,); and zq); are bounded in probability

when the lower endpoint for the support of Fj is finite, we have

Zb(np—rp+1)j — Zb(r)j
A(N)j — A(1)j

=1+ Op(l).

Zb(ng—r i T2b(r)j
Note that | Xre—retli b))
2(N)j A1)

are bounded by the same constant for all b, so

B
1 § owrats T (1)
Be 20 — 2w;

Combining this and (8) with V;, the result follows.

For the forth case, the result follows from reversing the signs of the covariates in the
proof for the third case.

The proof for the fifth case is obtained by combining the proof for the third case and the
proof for the fourth case. O
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