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Online Updating Proportional Hazards Test
1. Introduction

Recent advances in information technology have made available data that arrive in high
velocity everyday. Online methods, such as the online updating estimation and inference
presented in Schifano et al. (2016), are appealing as storage of historical data is not required
which yields great savings in computing resources. Survival data, or time-to-event data,
may also arrive sequentially, and the desire for online updated inferences in the survival
setting is not uncommon. For example, flight information, such as delay time until take-off
or cancellation, is available for more than 114,000 commercial flights scheduled daily around
the world (Air Transport Action Group, 2018); real estate information, such as time on
market until sold, is updated continuously for the over 6 million homes in the real-estate
market (National Association of Realtors, 2018). As such events occur everyday at high
frequency, observations also accumulate quickly.

The Cox model (Cox, 1972) is the most commonly used tool in analyzing survival data.
A crucial step in fitting the popular Cox model is to check the proportional hazards (PH)
assumption (e.g., Xue and Schifano, 2017). The standard approach, if new data becomes
available along a stream, would be to pool all historical data together, fit a new Cox model,
and use standard methods such as the test of Grambsch and Therneau (1994) to examine
whether the PH assumption is appropriate. This, however, can pose a heavy computational
burden and can be very time-consuming when the data size gets large. While efforts have
been made in fitting Cox model using distributed computing and therefore reducing the
computing time, such as in Wang et al. (2019), methods for checking the PH assumption in
these settings have not been developed.

In this work, we propose a method to test the PH assumption in the online updating
setting, which does not require storage or access to the historical data. Our approach is

an application of the divide-and-conquer and online updating strategies (Lin and Xi, 2011;
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Schifano et al., 2016) to the streaming survival data setting. The data is assumed to arrive
sequentially in blocks, an the test statistic is an appropriately aggregated version of the
standard test statistic of Grambsch and Therneau (1994) computed from each block. The
statistics can be adapted to be based on data in a moving window of certain size, which may
be more useful in detecting local deviations from the null hypothesis. A byproduct of our
method is a cumulatively updated estimating equation (CUEE) estimator for the regression
coefficients if the PH assumption is not rejected.

When the null hypothesis of PH is true, our test statistic is shown to have the same
asymptotic distribution as the standard (full data) statistic under certain regularity con-
ditions. In simulation studies, under the null hypothesis, the proposed test holds its size
and the CUEE estimator closely approximates the estimator based on the full data; when
the null hypothesis is not true, the test has comparable or higher power than the standard
statistic based on the full data. For a dataset that can be loaded into computer memory, our
proposed statistic can be computed in significantly less time than the standard statistic. Our
test can also successfully be used within a reasonable amount of time for big data that cannot
(easily) be loaded into memory. The method is illustrated by analyzing the survival time of
the lymphoma cancer patients in the Surveillance, Epidemiology, and End Results (SEER)
Program. Interestingly, while the changes in parameters were not captured by using the
standard (full data) test of Grambsch and Therneau (1994), they were promptly identified
by our online updated version.

The rest of this article is organized as follows. In Section 2, we review the notation of the
Cox model and the test statistic of Grambsch and Therneau (1994). In Section 3, we propose
our online updating test statistics for the PH assumption. We present simulation results in
Section 4, and illustrate the usage of the test with an application to the survival time of

patients with lymphoma cancer from the SEER data in Section 5. A discussion concludes
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in Section 6. The proposed methods are all implemented in R based on functions from the

survival package (Therneau, 2015), and the code can be found via GitHub (Xue, 2018).

2. Cox Proportional Hazards Model
2.1 Notation and Preliminaries

For completeness we review the Cox model and tests for the PH assumption. Let 77" be the
true event time and C; be the censoring time for subject i. Define 7; = min(7}", C;) and
0; = I(T; < C;). Suppose we observe independent copies of (d;,T;, X;), i = 1,...,n, where

X ; is the p-dimensional vector of covariates of the ith subject. The Cox model specifies the
hazard for individual 7 as
Ailt) = Xo(t) exp (X B) , (1)
where )\g is an unspecified non-negative function of time called the baseline hazard, and 3
is a p-dimensional coefficient vector in a compact parameter space. Because the logarithm
of the hazard ratio for two subjects with fixed covariate vectors X; and X, (X; — X;)'3,
is proportional to the difference in covariate values and is otherwise constant over time (3),
the model is also known as the PH model. It has been later extended to incorporate time-
dependent covariates. For the rest of the article, we use X;(¢) to indicate the possibility of
covariates being time-dependent.
Cox (1972, 1975) formulated the partial likelihood approach to estimate (3. For untied
failure time data, Fleming and Harrington (1991) expressed it under the counting process

formulation to be
dN; (¢)

H H exp {X B } @)
peiel t)exp{X; ( )" B} ’
where Y;(t) = I(T; > t) is the at-risk indicator of the ith subject, N;(¢) is the number of

events for subject i at time ¢, and dN;(¢t) = I(T; € [t,t + A), §; = 1), with A sufficiently

small such that >  dN;(t) < 1 for any ¢t. Taking the natural logarithm of (2) gives the log
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partial likelihood in the form of a summation:

=3[

We differentiate pl(3) with respect to 3 to obtain the p x 1 score vector, U(3):

_ Z/Om (X,(t) - X (B0} AN.(t)

where X (3,t) is a weighted mean of X;’s for those observations still at risk at time ¢

t)exp {X,(t)" B} —logZY}(t) exp{X;(t)" B} | dAN;(t).  (3)

with the weights being their corresponding risk scores, exp{X;(t)'3}. Taking the neg-
ative second order derivative of pl(3) yields the observed information matrix Z,(8) =
S ST V(B 1)dN;(t), with V(8,t) being the weighted variance of X at time ¢:

2oy Yi(t) exp{ X (1) 'BHX () — X (B, ) H{X(t) — X (B, 1)}
2. Ya(t) exp{ X (t) " B} '

The maximum partial likelihood estimator Bn is obtained as the solution of U (8) = 0. The

V(B,t) =

solution Bn is consistent, and asymptotically normal. The inverse of the observed information,

In(Bn), is often used to approximate the asymptotic variance of Bn

2.2 Test Statistic for Entire Dataset

Following Grambsch and Therneau (1994), an alternative to PH in Model (1) is to allow

time-varying coefficients, which can be characterized by

Bi(t) =B +0;9,(t), 7=1,...,p, (4)
where g;(t) is a function of time that varies around 0 and 6; is a scalar. Common choices
of g(t) include the Kaplan—Meier (KM) transformation, which scales the horizontal axis by
the left-continuous version of the KM survival curve, the identity function, and the natural
logarithm function. Formulation (4) is rather general, as many tests fall within this framework
for different choices of g(t) (see, e.g., Xue and Schifano, 2017). Writing (4) in matrix notation

yields

A1) = Mot exp [X() (B + G(1)8)] . i=1.....n, (5)
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where G(t) is a p x p diagonal matrix with the jth diagonal element being g;(¢), and 8 =

(01,...,0,)". Then the null hypothesis of B being time-invariant becomes Hy : @ = 0,y.
The test of Grambsch and Therneau (1994) is based on Schoenfeld residuals. Assuming

no tied event times and denoting them in increasing order as tq, ..., t;, where d is the total

number of events among the n observations, the Schoenfeld residuals are defined as

re(B) = X0y — X(8, 1),

where X (4 is the covariate vector corresponding to the £th event time. In practice, we use Bn

and obtain 7, for £ =1,...,d. Let V, = V(Bn,tg), G, = G(ty), and H = 2?21 G,\V.,G, —
~ N1 NT

(Z?Zl G’ng) <Z?:1 Vg) (Zzlzl Gng> . Grambsch and Therneau (1994) proposed the

statistic

T(G) = (i Ge?e) H™ (Zd: Gﬁe) ) (6)

which, under the null hypothesis, has asymptotic distribution X;-

For identifiability, g(t) is assumed to vary around 0, so for data analysis Gy, £ = 1,...,d,
need to be centered such that Z?:l G, = 0,4,. As pointed out by Therneau and Grambsch
(2000), V, is rather stable for most datasets, and therefore S G,V is often small.
Therefore, H is often replaced by Z?Zl G,V ,G,. The cox.zph() function in the survival
package implements the test in (6) using this same centering technique. In the sequel, we will
assume that all G matrices are centered prior to any calculation of the diagnostic statistics.

Tied events are common in practice and there are several methods to handle ties. We use
the approximation of Efron (1977), which is the default option in the package survival and

returns fairly accurate results (Therneau and Grambsch, 2000, Section 3.3).
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3. Online Updated Test and its Variations
3.1 Cumulative Version

Instead of a given, complete dataset, we now consider a scenario in which survival data
become available in blocks. Suppose that for each new arriving block k, we observed dy
events among ny subjects, for k = 1,..., K, where K is some terminal accumulation point of
interest. With a given ¢(¢) we obtain dj centered p x p diagonal matrices G(ty),. .., G(t4,)
such that Zgil G(t;) = 0,xp. Let Gy and ¥y, € = 1,...,dy, be the kth block counterpart
of previously defined G, and Schoenfeld residual 7, respectively. Without loss of generality,
we assume that there is at least one event in each block so that a Cox model can be fitted,
and each block-wise observed information matrix Z,, j, evaluated at some estimate of 3, is
invertible. Let V4, be the weighted variance-covariance matrix of the covariate matrix at the
(th event time in the kth block. With the approximation that ‘7% = T,, 1/dk, again where
Z,, r is evaluated at some estimate of 3, we have Z?il ng‘/}gk = 0pxp. We will discuss the
choice of estimate for 3 that will be used to evaluate Z,, j, and also 7y, in Section 3.3.
We denote Hy, ) = (2?21 GuZL,, 1Gu)/dy, and Qg , = Zfil Guru. Let Hy = 0y,
H,  =Y'""H;, Q,=0,,,and Q, , =>"/ Q,, ;- Then we have the online updating

test statistic given by

Ti(G)=QiH;'Q,=(Q 1+ Qu ) (Hiy + Hy i) (Qry + Quy 1)- (7)

At each accumulation point k, we need to store Hy_; and Q,,_; from previous calculations,

and compute H g, and Q,, , for the current block.

3.2 Window Version

The cumulative test statistic takes all historical blocks into consideration, one potential
problem of which is that discrepancies from the PH assumption will accumulate and after a
certain time period, the test will always reject the null hypothesis. This motivates us to focus

on more recent blocks in some applications. At block k, we consider a window of width w(>



Online Updating Proportional Hazards Test

1), which is tunable, and use summary statistics for all blocks in this window to construct

the corresponding test statistic. With Hyg, ; and Q,, ;. defined above, we again assume there

is at least one event in each block of data. Denoting H} = Zf:kH_w H, ,;, and Q) =
Zf:k +1-w @y, ;s the window version online updating test statistic for nonproportionality

based on the most recent w blocks is:

TY(G) = (@) (HY)'Qy. (8)
In implementation, we only need to store Hy, , and Q, , for all but the first block in
the window, and compute these summary statistics for the current block to obtain the
aggregated diagnostic statistic. Compared to the cumulative version statistic, which at each
update requires storage of one p x 1 vector Q,,, one p x 1 vector for an estimate of 3, one
p X p matrix H, and one p X p variance matrix of 3, the window version requires storage of
these quantities for w — 1 steps, which is still minimally storage intensive when p < ny. In
addition, as an auxiliary approach that provides an indication approximately where along

the stream a violation has occurred, w is generally chosen to not be large. This also makes

the storage of these quantities affordable, and the handling of large blocks possible.

3.3 Where to Evaluate the Matrices and Residuals

The observed information matrix Z,, j and the residuals 7, must be evaluated at a particular

choice of B. A straightforward choice would be B the estimate of 3 using the kth block

nge k>
of data, £k = 1,2,..., K. It may, however, be more advantageous to use an estimate that
utilizes all relevant historical information.

Now let us consider the kth accumulation point. The score function for subset k£ can be

obtained as U, x(8), and we denote the solution to U,, x(8) = 0,x1 as Bnkk A Taylor

expansion of —U,, ,(8) at Bnkk is given by

o~ -~

_Unk,k(/g) = Ink,k(lank,k>(/8 - Ignk,k) + Rnk,k
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-~

as Uy k(B 1) = Opx1 and R, . is the remainder term. Again, without loss of generality,

we assume that there is at least one event in each block, and each Z,,, j is invertible.
Denote Ink;k(//énk,k) as i’nkk Similar to the aggregated estimating equation (AEE) esti-

mator of Lin and Xi (2011), which uses a weighted combination of the subset estimators, an

AEE estimator under the Cox model framework may be given by

o (L) Tt o
k=1 k=1

which is the solution to Zszl.’i'nk,k(B - Bnkk) = 0,x1, with N being the total number of
observations at the final accumulation point K. Schifano et al. (2016) provided the variance
estimator for the original AEE estimator of Lin and Xi (2011), and under the Cox model

~ ~ -1

framework it simplifies to Ay = <Z£{:1 Ink,k> )
Following Schifano et al. (2016), a cumulative estimating equation (CEE) estimator for 38

at accumulation point k£ under the Cox model framework is
~ ~ ~ 1 /0 - ~ o~
Bi= (T +Zun) (ToiBir+Zuabos) (10)

for k = 1,2,..., where ,?30 = Opx1, i’o = 0,xp, and fl\'k = Zlei'mz = Z/ik_l +i'nk,k. The
variance estimator at the kth update simplifies to ﬁk = (f,H —i—i’nkk) _1. Note that for
terminal £k = K, the AEE estimators and CEE estimators coincide.

Similar to Schifano et al. (2016), we propose a CUEE estimator framework to better
approximate the maximum partial likelihood estimator (based on the entire sample) with
less bias. Take the Taylor expansion of —U,, (8) around B, j, which will be defined later.

We have

_Unk7k(/6) = _Unk7k(/énk,k) +Ink,k(/énk,k)(/6 - Bnk,kz) + Rnk,lm

where R,  is the remainder term. Again for simplicity, we denote Z,,, x(Bn, ) 85 Ly, 4, and

U(Bn,x) as Uy, k. We now ignore the remainder term and sum the first order expansions
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for blocks 1,..., K, and set it equal to 0,;:

K K
Z _Unk,k + ZInk,k < /Bnk, > p><1 (11)
k=1 k=1

Then we have the solution to (11): B = (Zle fnkk> (Ek T iBrk + i Ui )
The choice of Bnkk is subjective. At accumulation point k, it is possible to utilize information

at the previous accumulation point to define ,\B/nkk One candidate intermediary estimator is
k—1
~ ~ A~ -1 ~ ~ A~ ~
Bnk,k = (kal + Ink7k> (Z Ini:i/gni:i + Inkkﬁ%,k) (12)
i=1

for k = 1,2,..., Z, = 0pxps Bno,O = 0px1, and I, = Zlei'm, Estimator (12) is the
weighted combination of the previous intermediary estimators an,l =1,...,k—1 and
the current subset estimator Bnk’k. It results as the solution to the estimating equation
ST (5 ,8n> YT ([3 . Bnk,k) = 0,1, with Z,,, (5 - Bnk,k) being the bias
correction term since — Zk LU ni,i has been omitted.

With B, » given in (12), the CUEE estimator Ek for the Cox model is
- - - -1 - _
B = <Ik—1 + Ink,k> (Sk—l + Loy kBt + &1 + Unk,k> ;

. k ~~ ~~ ~~ ~ k ~~ ~~
with s = Zi:l Inuilgnui = Inkyk/gnkvk + sg—1 and Ek - Zizl Univi = UnkJC + Ek—lv where
8o =&y = 0,x1, and & = 1,2,.... For the variance of 8;, as 0px1 = —U,, r = Uy, 1 +

Z., .k (Bnk k ,Bnk k), we have Z, 1B,k + Unyx = Ly 18, x- The estimated variance of

Bk is online updated by, in simplified form,

. - - a (ko - - 1) "
Va‘r(IBk) = (Ik_l + Ink7k> Z Inkka Nk, kInk k { (Ik_l + Ink7k> } '
=1

Thus, for the cumulative version statistic, the matrices and Schoenfeld residuals are eval-
uated at Bk, the CUEE estimator, in our implementation. For the window version statistic,
the matrices and Schoenfeld residuals are evaluated at the CEE estimator, as with a limited
window size, there is little room for the bias of the CEE estimator to accumulate, and

the difference between the CUEE estimator and the CEE estimator within a window is
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negligible for small w. Note that when w = 1, both estimators are the same, and are equal

to the parameter estimate for the current block, Enkk

3.4 Asymptotic Results

We now provide the asymptotic distribution of the test statistic T (G) given in Equation (7).

For ease of presentation, we assume that all subsets of data are of equal size n, i.e., n;, = n.

THEOREM 3.1: Under conditions C1-C5 in Web Appendiz A, as n — oo, if K = 0(n")

with 0 < v < min{1 — 2a, 4 — 1}, then for any k < K, the test statistic satisfies that

i distribution when all data blocks follow the PH model with the same covariate parameters.

The proof is provided in Web Appendix A. The asymptotic distribution is valid for any
stage of the updating process if each subset is not very small and the null hypothesis is
true. This means that the type one error rate is always well maintained. As more data
accumulate along the updating procedure, the test statistic gains more power. If the n’s
are different, the asymptotic result is still valid under some mild condition, for example,
maxy, ny/ ming ny = O(1). Note that the window version statistic T} (G) is essentially the
cumulative version statistic evaluated at the CEE with different starting blocks. Therefore,
the asymptotic distribution is also valid for the window version statistic. In the special case
of w = 1, the proposed statistic reduces to the original T'(G) on the most recent block, which

has been shown to be x2 by Grambsch and Therneau (1994).

4. Simulation Studies
Simulation studies were carried out to evaluate the empirical sizes and powers of both Tj(G)
and T (G). When data were generated under the PH assumption, we also compared the

empirical distribution of T}(G) with that of the standard statistic computed using all data
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up to selective accumulation points k, denoted by T1.,(G). While we look at the end of each
stream to decide whether the entire stream of data satisfies the PH assumption or not, we
also examine the results at each accumulation point to verify the performance of the proposed
test statistics. Simulations have also been conducted to assess the savings in computing time
and reduction in memory usage for the proposed statistics with big survival data. See Web

Appendices B.1 and B.2.

4.1 Size

Event times were generated from Model (1) with three covariates @y, N (0,1), @iz i

Bernoulli(0.5), &3 S Bernoulli(0.1) for ¢ = 1,...,n;, making a n; x 3 covariate matrix.
We set a vector of parameters 3, = (0.67, —0.26,0.36) ", and baseline hazard A\o(t) = 0.018.
Censoring times were generated independently from a mixture distribution: €(60) + (1 —
e)7 (0,60), where (60) represents a point mass at 60, and % (0,60) denotes the uniform
distribution over (0, 60). Setting ¢ = 0.9 gives approximately 40% censoring rate, and ¢ =
0.1 gives approximately 60% censoring rate. For each censoring level, we generated 1,000

independent streams of survival datasets, each of which had N = 200,000 observations in

K =100 blocks with n; = 2, 000.
[Figure 1 about here.|

Three choices of g(t) were considered, the identity, KM, and log transformations, in the
calculation of the test statistics. For each choice, we calculated both T}(G) and T} (G) with
w = 5 upon arrival of each block of simulated data. Figure 1 summarizes empirical sizes of the
test with nominal level 0.05 at each accumulation point £ = 1, ..., 100 for the two versions of
the tests under two censoring levels. The empirical sizes for the three choices of ¢(t) fluctuate
closely around the nominal level 0.05 in all the scenarios. The log transformation, however,

results in a slightly larger size, and its usage should therefore be treated with caution.

11
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[Figure 2 about here.|

To compare the empirical distribution of T;(G) and the standard statistic 71.4(G), we
additionally computed T1.x(G) at blocks k € {25,50,75,100} based on cumulative data up
to those blocks. Figure 2 presents the quantile-quantile plots of the two statistics obtained
with g(t) being the KM transformation. The points line up closely on the 45 degree line,
confirming that the online updating cumulative statistics T;(G) follow the same asymptotic
XZ distribution under the null hypothesis as T} .x(G).

Additional simulation results on the sizes for scenarios where p € {10,20} and where
covariate coefficients are piecewise constant with respect to time (and accommodated in the
PH model by including additional covariates to handle the pieces separately) are reported

in Web Appendices B.3 and B.4. In both cases, the size was well-maintained.

4.2 Power

Continuing with the simulation setting from Section 4.1, two scenarios where the PH as-

sumption is violated were considered to assess the power of the proposed tests.
[Figure 3 about here.]

The first scenario breaks the PH assumption by a multiplicative frailty in the hazard
function. Starting from the 51st block in each stream, the hazard function, instead of
being (1), becomes \;(t) = Xo(t) exp(X;' B+ €;), where a normal frailty ¢ ~ N(0,0?) is
introduced. Two levels of o were considered, 0.5 and 1. Figure 3 shows the empirical rejection
rates of the tests at level 0.05 from 1,000 replicates against accumulation point k. The tests
have higher power under lower censoring rate or higher frailty standard deviation. At a
given censoring rate and frailty standard deviation, T} (G) picks up the change more rapidly
than T, (G) because it discards information from older blocks for which the PH assumption

holds; the power remains at a certain level (less than 1) after all the blocks in the window
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contain data generated from the frailty model. While T;(G) responds to the change more
slowly, as the proportion of blocks with data generated from the frailty model increases, the
power approaches 1 eventually. In all settings, tests based on the log and KM transformations
seem to have higher power than that based on the identity transformation.

The second scenario breaks the PH assumption by a change in one of the covariate effects.
Specifically, we considered an increase of 0.5 or 1 in [y, the coefficient for the first covariate
in data generation, starting from the 51st block. The empirical rejection rates of the tests
with level 0.05 from 1,000 replicates are presented in Figure 3. Both versions of the tests
have higher power when the censoring rate is lower or the change in (3; is larger. At a given
censoring rate and change in 3, T*(G) only has power to detect the change near the 51st
block, where the blocks in the window contain data from two models. The cumulative version,
Ti(Q), picks up the change after the 51st block and the power increases quickly to 1.

A more comprehensive simulation study was conducted to compare the power of Tk (G)
and the full data test statistic T(G) = T1.x(G) at the end of each data stream, and the
results are presented in Web Appendix B.5. When there is a model change, the power of
Tk (G) is comparable to the power of T(G); when there is a change in covariate effect, Tk (G)

has significantly higher power than T'(G).

5. Survival Analysis of SEER Lymphoma Patients

We consider analyzing the survival time of the lymphoma patients in the SEER program
with the proposed methods. Among the 131,960 patients diagnosed with lymphoma between
1973 to 2007, 47,009 experienced an event within 60 months due to lymphoma, resulting in
a censoring rate of 64.4%. The risk factors considered in our analysis were Age (centered and
scaled), gender indicator (Female), African-American indicator (Black). There were 60,432
females, and 9,199 African-Americans. We wish to compare the performance of the standard

statistic T'(G) from Equation (6) with T;(G) under a setting in which the PH assumption

13
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is judged to be satisfied based on the standard T(G) test. For online updating, the patients
in the data were ordered by time of diagnosis, and partitioned by quarter of a year into 140
blocks. The average sample size per block was 943, but the block sizes and censoring rates
increased over time; see Web Figure 4.

As a starting point, an initial model that included the three risk factors was fitted,
and T(G) based on the full data as in Equation (6) was calculated to be 83.38, which
indicated that the model does not satisfy the PH assumption. The online updating cumulative
statistic Ty (G) was calculated to be 95.60. Due to the relatively high censoring rate, the KM
transformation was chosen in calculation of the diagnostic statistics as it is more robust in
such a scenario (e.g., Xue and Schifano, 2017). Diagnosis with function plot.cox.zph() in the
survival package revealed that all the parameters are likely to be time-dependent; see Web
Figure 5.

Techniques in Therneau et al. (2018) were used to allow the parameters to be piecewise-
constant over time. Two cut-offs were chosen at 2 and 30 months based on the time-variation
pattern of B(t) obtained from the naive model. A factor variable tgroup is defined to indicate
on which intervals the corresponding observation contributes to estimation of 3. For example,
a subject with survival time 25 and event 1 will now be represented separately on two
intervals: one with time interval (0,2], with event 0 and tgroup = 1, and the other with time
interval (2,25], with event 1 and tgroup = 2. The interaction of Age, Female and Black with
the generated tgroup as strata gives the model more flexibility to fit to the data. The new
model resulted in T(G) = T1.140(G) = 5.75 on 9 degrees of freedom with a p-value of 0.77,
which indicates that the PH assumption for the revised model is appropriate based on the
full data. Web Figure 6 presents time-variation plot of parameters for the revised model.

To evaluate the performance of the online updating parameter estimates and test statistics

under the revised model, at each block k, k£ = 1,...,140, we calculated the parameter
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estimates, T,(G), T(G), and also T1.,(G) based on the single large dataset consisting of
all cumulative data up to block k. Two versions of T;(G) were obtained, one using the CEE
estimator Bk and the other using the CUEE estimator 3,. For T (G), the CEE estimator
,@k was used as discussed previously, and two widths w = 1 and w = 10 were considered. The
trajectories of different versions of the test statistics were plotted in the left panel of Figure 4.
While the PH assumption seemed to be satisfied within each individual block (w = 1), as
well as in cumulative data up to each accumulation point, both online updating cumulative
statistics Ti(G) resulted in a rejection of the null hypothesis, and T*(G) when w = 10 also

resulted in a few rejections along the stream.
[Figure 4 about here.|
[Figure 5 about here.]

The trajectories of three parameter estimates BAge, Epemah, and §B|ack on the three time
intervals (0, 2], (2, 30] and (30, 60] (obtained from the covariate interactions with tgroup) were
plotted with respect to block indices to investigate this apparent discrepancy; see Figure 5.
Apparently, BAge on (0, 2] remained relatively stable for blocks 1 to 50, but started to first
decrease and later increase. This change was captured by both T}*(G) and Tk (G), but not
by T1.x(G). This is explained by the fact that T}.x(G) is based on a single estimator of 3,
while in the online updating statistics, each block has its own estimate of 3. The temporal
changes that are observed in the CUEE estimate of 3 get canceled in the calculation based

on the full cumulative data.
[Figure 6 about here.|

To confirm that the temporal change in parameter contributed to the highly significant
online updating test statistics, we randomly permuted the order of the observations in the

original dataset 1,000 times using the same block size as the original data. For each permuta-
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tion, we applied the same techniques and cut-offs to allow for piecewise constant parameters
over time as before. The histogram of the 1,000 CUEE-based Ty (G) is included in Web
Figure 7. The empirical p-value based on these 1,000 permutations is 0.016, indicating that
the particular order of blocks in the original temporally ordered data is indeed contributing
to non-proportionality. Figure 6 presents the same diagnostic plots as Figure 5 except that
they are for one random permutation. While the final cumulative data parameter estimates
remain the same, the trajectories are much flatter, with no obvious temporal trend over
blocks. The diagnostic statistics were also obtained under this random permutation, and
plotted in the right panel of Figure 4. Each block again satisfies the PH assumption, and
the performance of the online updating cumulative statistic based on CUEE is very close
to T(G) computed on the entire dataset. The online updating window version (w = 10),
however, still identified a few neighborhoods where the variation is large, and this behavior

persists across different choices of window size.

6. Discussion

We developed online updating test statistics for the PH assumption of the Cox model
for streams of survival data. The test statistics were inspired by the divide and conquer
approach (Lin and Xi, 2011) and the online updating approach for estimation and inference
of regression parameters for estimating equations (Schifano et al., 2016). We proposed two
versions of test statistics, T;(G) using cumulative information from all historical data, and
T/ (G) using information only from more recent data. Both statistics have an asymptotic X;%
distribution under the null hypothesis. In our simulation studies, the power of T;(G) is
comparable to or higher than the power of the standard test T'(G) on the entire dataset, for
scenarios of a model change or parameter change, respectively. In addition, when T'(G) fails
to detect violation of the null hypothesis on the whole dataset, Tj,(G) may still identify the

violation with high power. This was observed in our application to the SEER data, and also
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echoes the findings in Battey et al. (2018). This also suggests that, even when the dataset is
not huge, it might be desirable to partition the data and examine the partitions for possibly
masked violations of the null hypothesis. At the final block, the cumulative version test
statistic will help us decide if the PH assumption has been satisfied. The window version,
however, can be run at the same time, as it is sensitive to heterogeneity among a few blocks.

As with previous online updating approaches, T;(G) and T}*(G) are computationally fast,
and minimally storage intensive. As shown in the supporting information, the methods are
also capable of handling large datasets of a few gigabyte’s size, and can return the estimation
and diagnostic results within reasonable time limit. Compared to parallel computing for such
datasets, the proposed approach reduces time needed for communication between nodes, and
allows for bias correction of the parameter estimates.

A few issues beyond the scope of this paper are worth further investigation. The size
of blocks should be chosen following general guidelines (e.g., Schoenfeld, 1983) so that
the covariate effects can be sufficiently identified, and that the information matrices exist
and are invertible. In practice, with a data stream, we can always choose to let the data
accumulate until a certain number of events are observed. Then these observations can be
grouped into one block, which can produce stable and valid results for test purposes. For
TY(G), the choice of w may affect the test results and local parameter estimates. Possible
influential factors include the size of data chunks, the censoring rate within each chunk,
among others. Additionally, as we are more interested in local or current goodness-of-fit
when using the window version, w should generally be small. Also, as illustrated in Figure 3,
T(G) can behave differently under different violations of the PH assumption, therefore,
prior knowledge on what types of changes are likely to occur, if available, may also be
taken into consideration. As we are more concerned with deciding whether the entire stream

satisfies the PH assumption, this window version should be treated as of auxiliary purpose.
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Also, the test statistics and parameter estimates perform well when p is small to moderate.
When p is high or ultra-high, singularity issues could arise, and appropriate penalization
methods should be considered (e.g. Fan and Li, 2002; Zou, 2008; Mittal et al., 2014).
Finally, in this work we are only concerned with making a final decision regarding the
PH assumption at the end of a data stream. There are scenarios, however, under which we
may wish to make decisions alongside the data stream as the updating process progresses.
This brings up the issue of multiple hypothesis testing. Hypothesis testing in the online
updating framework is an interesting topic, and has been explored recently in Webb and
Petitjean (2016) and Javanmard and Montanari (2018), and also in the statistical process
control framework in, e.g., Lee and Jun (2010, 2012). Appropriate adjustment procedures in

the online updating PH test context are areas devoted for future research.
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Figure 1. Empirical size (proportion of statistic values greater than x3 ;) calculated at
each update using the identity, KM, and log transformations under the null hypothesis. This
figure appears in color in the electronic version of this article.
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Figure 2. Empirical quantile-quantile plots of the online updating cumulative statistics
Ty(G) (z-axis) and T1.,(G) obtained using cumulative data (y-axis) with censoring rate 40%
and 60%, taken at block k € {25, 50, 75,100}, both calculated using the KM transformation
on event times. This figure appears in color in the electronic version of this article.



Online Updating Proportional Hazards Test

model misspecification model misspecification parameter change parameter change
frailty 6= 0.5 frailty o= 1 ABy=05 ABy =1
1.00 — > T
e q L
/J H 3 8
0.75- !; £
i = =
0.50 / i i 2 3
b i i i =
: Y if ; @ 3
, ,/ i e &
0.25- y ; i 28
// p { g
0.00 TR YTzl TR a2 M“WMNMM}:\J s
1.00- e
o
ENG
0.75- é 3 3
| 5 S
0.50- i 2
0.25- j 38
g R
5 0.00- oy D AR ] AR A A
o i
S 1.00 o
=
23
0.75- = 2
a 8
¢ 2 s
0.50- ya 2 S
7 3
£ e
0.25- / 2 2
/ =
. o =
PR 4 @
0.00- A
1.00-
S
E:
0.75- 3 2
5 2
g 3
0.50- 3 g» @
o]
b ‘; T
0.25- s g
‘ ] g =
n = , =
0.001 LL;}'\WA‘V»«"U?X{”"J cpranmaANa SN IR N M) VIR Mok
0 25 50 75 100 0 25 50 75 25 50 75 100 0 25 50 75 100

100 0
Block Index

transformation — identity -~ Kaplan-Meier -~ log

Figure 3. Empirical power (proportion of statistic values greater than X§70_95) for the online
updating cumulative and window tests, calculated at each update using the identity, KM,
and log transformations under the alternative hypotheses of model misspecification (left)
and parameter change (right) under censoring rate 40% (top) and 60% (bottom). This figure
appears in color in the electronic version of this article.
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Web Appendix A. Proof of Theorem 3.1

The following regularity assumptions are required to establish the asymptotic distribution.

C1 We assume the regularity conditions A-D in Section 2.4 of Andersen and Gill (1982).

C2 The function g(t), ¢t € [0, 7], is bounded, where 7 is the follow-up time.

C3 Assume that {X(¢),¢ € [0, 7]} is a bounded Donsker class (Kosorok, 2008).

C4 There exists an a € (1/4,1/2) such that for any n > 0, the subdata estimator Bnk
satisfies P(naHBnk — Boll > n) < Cyn** 1, where C,, > 0 is a constant only depending
on 7.

C5 For each subdata, || Z?il ngf/ng < Cgvn”,@n’k—,@OH, or || Z?ﬁl ng‘v/gkﬂ < C’QUTLH,\@/”,;@—

Boll, where Cy, is a constant that does not depend on k.

The conditions assumed in Section 2.4 of Andersen and Gill (1982) are commonly used in
the literature of survival analysis. Since g(t) is user-specified, it is reasonable to assume that
it is bounded. Most widely used g(¢) functions are bounded if the follow-up time is finite.
Condition C3 imposes a constraint on the time dependent covariate. If it is time independent,
the condition can be replaced by bounded covariate. Condition C4 is a typical assumption
required for online updating method such as in Lin and Xi (2011); Schifano et al. (2016).
Condition C5 indicates that || Z?i ) ng‘A/'ng = Op(y/n). This condition is typically satisfied
in practice. As mentioned in Therneau and Grambsch (2000), Vi, are often replaced by

T, r/dx in practice and Gy are always centered. Thus, Zzi 1 ng‘/}gk = 0 for this scenario.

Proof. It K = O(n"), then any k < K satisfies this condition. Thus, we only need to prove
the result for K.

We first consider the case that Z,,; and 7y are evaluated at Bmk. Denote

K dg

FK = H;(l/QQK, where HK = Z Z G@k‘/}nggk. (Al)

k=1 (=1



To prove the asymptotic chi-square distribution, we only need to show that I'x converges in
distribution to a p-dimensional multivariate standard normal distribution.

We first show that (nK) ' H g converges in probability to some positive definite matrix.
Note that the function g(¢) is bounded. Thus, under the conditions A-D in Andersen and Gill
(1982), using arguments similar to those used in the proof of Theorem 3.2 (page 1107-1108)

of Andersen and Gill (1982), we have that
dy
1 R T
- Z G VG — / G (t)v(Bo, )G () (B, ) o (t)dt = %, (A.2)
=1 0

in probability, where v(3,t) and s (3,t) are limits (uniformly in probability) of V(83,t)
and SO(B,t) = n=1 3" Vi(t) exp{ X,(t) " B}, respectively as defined in Conditions A and
D in Andersen and Gill (1982).

Since {X (t),t € [0, 7]} is a bounded Donsker class, {Y () exp{ X (¢)"B},t € [0,7],3 € B}
is also Donsker. A Donsker class is also a Glivenko-Cantelli class, so we have

1

A.
; -0, (43)

sup
te[0,7],8€B

Z Yir(t) exp{ X s1(t) T B'} — 59(B, 1)

almost surely, where B is the compact parameter space. This means that S (3,¢) is uni-
formly bounded away from 0. As a result, % Z‘Zi 1 ng‘/}nggk is bounded since the covariate
X (t) is bounded. Thus, from Theorem 1.3.6 of Serfling (1980), Equation (A.2) implies that
1 &
E (— Z ngngng> — 2.
"=

With this, from Fubini’s theorem, we have
K di
H 1 1 ~
k=1 =1
Thus,

H
SN A4
5 (A.4)

in probability.

Now we examine Qx = > ;_, > ,5, GuTu. For each component of 7y, ?‘\él) (1=1,...p),



the Taylor series expansion yields

i i ~ (%)
7 =18 = Vi(Bart) Bui — Bo),

where V() (ﬁn k),tg) is the ith row of V(ﬁnk,tg) and ,@:Z) is on the line segment between

,Bnk, and 3. If V(,Bnk,tg) is the matrix whose rows are V ; (B:?,tg) t=1,...,p, then we

have
To = Top — V(Bjuwtz)(/@ — Bo).

Thus

K dy

QK = Z Z Gekﬂk
k=1 (=1
K dg K dg . N (A5)
=YY Gura =YY GuaV (B te) By — Bo) = A1 — A,
k=1 (=1 k=1 (=1

Note that A is a weighted score function for the full data log partial likelihood, and the
weights are bounded. Thus, using arguments similar to the those used in the proof of Theorem
3.2 (pages 1106-1107) of Andersen and Gill (1982), we know that

Ay
vVnK

— N(0,%), (A.6)

in distribution. Now we show that

= op(1). (A.7)

Note that for each k, || 0, GaV || < Coun||Bos, — Boll. Thus,

K
I8 <3
- K
2
k=
K dk

K
<C, ZZ IV Bri te) = V(B to)l1By e — Boll + Cpun D 118y — Boll®,
k=1 /=1 k=1

d
Z GudV (B te) = V(B t)}(Brs — Bo)

dk

ZGMV nmté)(ﬁ - Bo) (A.8)

where Cj is a constant that bounds G(t) from above.



~%

For the iisth element of V(8,,,,t¢) — V(,/B\n’k, ty),

AN kk

A~k -~ 3V(Z i )(/Bn ,t@) A~k -~
V(i1i2)(/6n,k7tf) - V(i1i2)<lgn,k7t£) = - 28,3 & (/Bn,k - Bn,k)?

where Bz*k is on the line segment between sz and Bnk From (A.3) and the fact that X (¢)

is bounded, we know that 8V(i1i2)(3::k, t¢)/0B is uniformly bounded. Let M be a constant

that bounds its elements. Since Bz*k and BZk are between Bnk and 3,, we have

o~

|V(i1i2)(16n,k’ tf) - V(i1i2)<18n,k7 tﬁ)| < MH/Bn,k - IBOH (A9)
Combining (A.8) and (A.9), we have
K ~
182 <O Y 11Bux — Bl (A.10)
k=1

where C = CyM+C,,. Since K = O(n"), there exist a constant, say C7, such that K’ < Cin.

From (A.10), for any € > 0,

K R ) .
Q;P()Bn,k_ﬁo C\/ﬁ)
K
<;P( nn? Bn,k_/BO 2> CE(]1>
K
-y P<n(1+w)/4‘l’3\n7k_ 8ol > /o5 1)

Bui BOH ~ (7601)

K

< ZCanafl _ CnKn2a71 _ O(n’y+2a71> _ 0(1)
Here, the last inequality is from condition C4; the second last inequality is because v < 4a—1;
and the last step is because v < 1 — 2a. This proves (A.7). The proof finishes by combining

(A1), (A4), (A5), (A.6), (A.7), and Slutsky’s theorem.

Now we consider the case when Z,,, and 7y are evaluated at Bnk Under Condition C1



and C4, the requirements of (C4’) and (C6) in Lemma E.2 of Schifano et al. (2016) are
satisfied. Thus, the condition described in C4 for Bnk is also valid for Bnk . With this result,

the proof is similar to the case when Z,, ;, and 7y, are evaluated at Bnk

Web Appendix B. Additional Simulation Results
B.1  Computing Time Comparison

In this section, we present the computation time for the standard test 7(G) and the online
updating cumulative statistic T(G), for both the CEE- and CUEE-based versions. In this
comparison, data generation and data loading time is not recorded, but only the computation
time. Survival data streams using the setting of Section 4.1 with ¢ = 0.1 are generated. The
size of the stream, NN, is such that N € {100000, 200000, 300000, 400000, 500000}, and each
stream is partitioned into 100 equally sized blocks, such that n; € {1000, 2000, 3000, 4000, 5000}
for kK = 1,...,100. For each stream, the time it takes to calculate the maximum partial
likelihood estimate of 3 and the diagnostic statistic T'(G) are recorded, as well as the time
it takes to obtain Ty(G), ,@k and Bk for k = 1,...,100. The results are obtained for 100
replicates of simulation performed with Intel® Core(TM) i7-8850H CPU @2.60GHz, and we
illustrate the computing time in Web Figure 1. It is rather apparent that the standard test
is far more time-consuming than both versions of the proposed online updating cumulative
test, and the disparity increases with the size of the data stream. The CUEE-based T;(G)
is slightly slower than the CEE-based T;(G), but the difference is minor. Note that T'(G)
is only computed once, at the end of each stream. If we want to obtain a new T(G) on
cumulative data upon the arrival of each new block, like we can do with T, (G), the contrast
of computing time would be even more significant.

Next we present a brief time complexity study. To compute T(G) on a dataset with N
observations and d events, we first need to evaluate the log partial likelihood (3). The summa-

tion inside the logarithm has O(N') complexity, while the outer integral is indeed a summation



over d individual event times, which requires computing the component inside the square
brackets for d times. Therefore evaluation of the partial likelihood has O(Nd) complexity.
Assuming that d is roughly of the same order as N, this is equivalent to O(N?) complexity.
Calculation of the Schoenfeld residuals, similarly, is roughly O(N?). Other procedures in
Equation (6) include multiplication of 1 x d, d X p, and p X p matrices, and the inversion of
p X p matrices, and the time complexity is capped at O(dp + p* + p?), which is dominated
by O(N?) when the number of events is much larger than the dimension of covariate space
and therefore ignored.

The online updating approach breaks the dataset into K blocks. For simplicity let us
assume the block sizes are all equal to N/ K, then evaluating the partial likelihood, together
with calculation of the Schoenfeld residuals, has O(N?/K?) complexity, therefore doing so
for all K blocks will require O(N?/K) time. This indicates that the speed of online updating
is inversely proportional to the number of blocks that a dataset is partitioned into. Note,

however, that K needs to satisfy the regularity condition in Theorem 3.1.

B.2  Memory Usage Assessment

We present a study on memory usage of our proposed online updating statistics. A big
dataset was simulated using the parameter setting in Section 4.1 with 8, = (0.67, —0.26, 0.36)
and Ao(t) = 0.018, which contains N = 200 million observations. The size of the simulated
dataset, when written into a csv file is 7.65 GB. Using the bigmemory package (Kane
et al., 2013), a description file is created, which contains references to the same dataset
but converted to a C++ object, stored on the hard drive. The description file can be loaded
after it is created to allow access of the corresponding data from within R, without having
to load the entire dataset into the memory. All studies were performed under single-core
mode on the same laptop as in Web Appendix B.1. The total memory available on this

laptop is 32 GB. The profvis package (Chang and Luraschi, 2018) was used to track the
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Web Figure 1: Plot of average computing time versus size of data stream for 100 replicates
of simulation for T'(G) and two versions of T;(G).

memory usage and running time. The block size is chosen to be ny = 2000, resulting
in 10,000 blocks in total. Creation of the description profile takes 407.5 seconds, and the
cumulative memory usage was 16,785.2 MB. Next, the online updating CUEE-based T}(G)
was calculated for the 10,000 blocks. At each update, memory was first allocated and then
de-allocated after the blockwise summary statistics were obtained and the data block was
removed. The cumulative memory allocation for loading the description file and performing
online updating diagnostics was 43,318.2 MB, and the cumulative memory de-allocation
was 43,297.4 MB, which indicates that on average, each update requires slightly more than
4 MB memory. The entire data loading, model estimation and diagnostic process took 1,048
seconds.

As a comparison, we also tried to read the entire dataset into R’s workspace and perform
the standard analysis on the whole data. The read.csv() procedure was attempted first, but

it did not finish after running for more than an hour, and was finally aborted due to memory



insufficiency. The fread() function in the data.table package (Dowle and Srinivasan, 2019),
which has been known for fast reading of big datasets, was also attempted. The data reading
process itself took 4,325 seconds. After the data was loaded, however, even simple operations
(e.g., obtaining summaries of covariate distributions) could not be completed, and the fitting

of the Cox model was not attempted.

B.8  Sizes under Moderate Dimensions

We present additional simulation results for the size of the proposed test statistics for p €
{10,20}. For each setting, there are p/2 continuous covariates, generated i.i.d. from N(0,1),
and the remaining p/2 covariates are binary, generated i.i.d. from Bernoulli(0.5). The vectors
of coefficients are chosen as 3, = (0.7,—0.5,0.8,0.3,0.1, —=0.4, —0.9, —0.2, —0.3,0.4) ", By, =
(810, B1o) . The baseline hazards are set to, respectively, 0.032 and 0.015, with the weights
at (60) being (0.9, 0.1) to produce the desired censoring rates of approximately 40% and 60%.
For each scenario considered, 1,000 replicates of simulation are performed. It can be seen
from Web Figure 2 that both versions of statistic hold their sizes under the null hypothesis,

under both dimensions, although the log transformation is not recommended.

B.4  Sizes with Piecewise Constant Coefficients

Because our initial analysis of the SEER lymphoma data suggested a Cox model with time-
varying coefficients that could be approximated by a piecewise constant function of time, we
checked the size of the proposed test in a simulation study with a Cox model having a similar
structure. The function survSplit() from R package survival (Therneau, 2015) facilitates the
fitting of Cox models for these piecewise-constant time-varying coefficients with the use
of tgroup as described in Section 5 and further detailed in Therneau et al. (2018). As an
illustration, we used the reda package (Wang et al., 2017) to simulate survival data with
the three covariates as in Section 4, but the coefficients are now piecewise constant. On the

interval (0,12], B, = (0.7,—0.26,0.36), and on the interval (12,60], 3, = (0.6,—0.4,0.46).
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Web Figure 2: Size for the proposed test statistics when p = 10 and 20.

Web Table 1: Size of T},(G) for models with piecewise constant coefficients based on 1,000
replicates.

Censoring Rate Transformation Size

40% Kaplan—Meier  0.067
Identity 0.043
Logarithm 0.156

60% Kaplan—Meier  0.039
Identity 0.033
Logarithm 0.094

The same censoring schemes as in Section 4 have been used and produced censoring rates of
approximately 40% and 60%. Function survSplit() was applied with breaking point 12. The
online updating cumulative statistic 7j(G) evaluated at the CUEE was compared against
critical value X3 g5 ¢ to make the decision. The empirical sizes from the three transformations
are summarized in Web Table 1.

For both censoring rates, it can be seen that the empirical type I error rate is appropriately

controlled around its nominal level of 0.05 when the Kaplan-Meier or identity transforma-
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tions are used. The logarithm transformation does not maintain its size well, which is similar

to the instability we observed in Figure | and Web Figure 2, and is again not recommended.

B.5 Additional Power Comparison

In this section, we present additional simulation results to compare the power of the cu-
mulative version online updating statistic 7(G), and the power of T'(G) in Grambsch and
Therneau (1994), at the end of each data stream, for different types and magnitudes of viola-
tions. The simulation setting in Section 4 yielded power of almost 1 for both T'(G) and T;(G).
Therefore we choose to use smaller magnitudes of change in conducting the power compari-
son. For the model misspecification scenario, we choose o € {0.15,0.20, 0.25,0.30, 0.35,0.40}.
For each o, 1000 replicates of simulation are performed, and the power is calculated in the end
of the data stream in each replicate for both T'(G) and Ti(G). Similarly for the parameter
change scenario, for Ag; € {0.05,0.10,0.15,0.20,0.25,0.30}, the power for 1000 replicates
of simulation is also calculated. All three transformations are assessed under both the low
and high censoring rates. We plot the powers against the magnitudes of model /parameter
change in Web Figure 3.

It can be seen that, when the violation is due to a model change to frailty, both versions
have relatively low power when the frailty standard deviation is small. At ¢ = 0.40, however,
both T(G) and Ty(G) identify the violation with quite high power. The performance of
Ty (G) is not better than, but still comparable to, the performance of T'(G). Note that both
statistics have higher power for the same change at 40% censoring level than at 60% censoring
level.

When the violation is due to a change in covariate effects, however, our proposed online
updating cumulative statistic T},(G) has significantly higher power than T'(G). While both
statistics have small power at Af; = 0.05, when A increases, the power of T;(G) increases

faster than the power of T'(G), and the difference in powers can be as large as nearly 0.5.
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Web Figure 3: Powers of T'(G) and Tj(G) calculated at the end of the data stream when a
violation occurs at the 51st block in each stream, plotted against the magnitude of violations.
For the model misspecification scenario, the x axis denotes the frailty standard deviation, o;
for the parameter change scenario, the z axis denotes the change in (1, i.e., AS;.

Web Appendix C. Additional Analysis of the SEER Lymphoma Data
C.1 Sample Size and Censoring Rate

Observations in SEER lymphoma data were first ordered by their time of diagnosis. Next,
they were grouped by quarter of a year into 140 blocks. The average sample size per block
is approximately 943.

Web Figure 4(a) is the stacked bar plot of censors and events in each block. It can be
seen that, as a consequence of population increase, the total number of diagnoses per block

increases with time. Advancements in medicine, however, helped more recently diagnosed
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Web Figure 4: Sample size and censoring rate in blocks of SEER lymphoma data.

patients survive more than 5 years, which caused the censoring rate to be fast increasing

after year 1995, as shown in Web Figure 4(b).

C.2  Time-Varying Coefficients
Web Figure 5 was obtained by calling plot.cox.zph() on the initial model, which enabled
us to check if the parameters were time-varying. Notice that the z-axis (event time) will be
transformed using the same Kaplan-Meier method as in calculation of the T'(G) statistic.
All three parameters are clearly time-varying. Therefore, it is reasonable to consider using a
more flexible model, with the parameters being piecewise constant with different values on
different, disjoint intervals of survival time.

As a comparison, we plot in Web Figure 6 the time-varying pattern of parameters in the
revised model. In contrast to Web Figure 5, the parameter estimates are much more stable
as the confidence band of each parameter estimate at different times contain its entire data

estimate for almost the whole time range.
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Web Figure 5: Time-varying pattern of the parameters for Age, Gender and Black in the
initial model, with parameter estimates from the entire data overlaid in green.

C.3 A Permutation Test

To confirm that the temporal change in parameter contributed to the highly significant online
updating cumulative test statistic, we randomly permuted the order of the observations in
the original dataset 1,000 times using the same block size as the temporal data. For each
permutation, the same techniques and cut-off values were applied to allow the parameters
to be piecewise constant over disjoint intervals of survival time.

While there is no guarantee that each permutation of the data produces B that is stable
between blocks without obvious trends, the online updating cumulative statistics based on
permutations of the dataset have a certain distribution. Web Figure 7 is the histogram of
online updating cumulative statistics obtained at the final block for 1,000 such permutations.
The empirical p-value based on these 1,000 permutations is 0.016, indicating that the par-
ticular order of blocks in the original temporally ordered data does contribute to the large

values of the online updating test statistics.
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