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A SINGLE TIMESCALE STOCHASTIC APPROXIMATION

METHOD FOR NESTED STOCHASTIC OPTIMIZATION\ast 
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Abstract. We study constrained nested stochastic optimization problems in which the objective
function is a composition of two smooth functions whose exact values and derivatives are not avail-
able. We propose a single timescale stochastic approximation algorithm, which we call the nested
averaged stochastic approximation (NASA), to find an approximate stationary point of the problem.
The algorithm has two auxiliary averaged sequences (filters) which estimate the gradient of the com-
posite objective function and the inner function value. By using a special Lyapunov function, we show
that the NASA achieves the sample complexity of O(1/ε2) for finding an ε-approximate stationary
point, thus outperforming all extant methods for nested stochastic approximation. Our method and
its analysis are the same for both unconstrained and constrained problems, without any need of batch
samples for constrained nonconvex stochastic optimization. We also present a simplified parameter-
free variant of the NASA method for solving constrained single-level stochastic optimization prob-
lems, and we prove the same complexity result for both unconstrained and constrained problems.
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1. Introduction. The main objective of this work is to propose a new recursive
stochastic algorithm for constrained smooth composition optimization problems of
the following form:

(1.1) min
x\in X

\bigl\{ 

F (x) = f(g(x))
\bigr\} 

.

Here, the functions f : Rm \rightarrow R and g : Rn \rightarrow R
m are continuously differentiable,

and the set X \subseteq R
n is convex and closed. We do not assume f, g, or F to be convex.

We focus on the simulation setting where neither the values nor the derivatives
of f or g can be observed, but at any argument values x \in R

n and u \in R
m we can

obtain random estimates of g(x), of the Jacobian \nabla g(x), and of the gradient \nabla f(u).
Such situations occur in stochastic composition optimization, where we need to solve
the problem

(1.2) min
x\in X

E
\bigl[ 

\varphi 
\bigl( 

E[\psi (x; \zeta )]; \xi 
\bigr) \bigr] 

in which \zeta and \xi are random vectors, and E denotes the expected value. In such
situations, one can obtain samples (\xi , \zeta ) of (\xi , \zeta ), and treat \psi (x, \zeta ), \nabla x\psi (x, \zeta ), and
\nabla u\varphi (u, \xi ) as random estimates of E[\psi (x; \zeta )], \nabla E[\psi (x; \zeta )], and \nabla E

\bigl[ 

\varphi (u, \xi )
\bigr] 

, respec-
tively. In this paper, we propose stochastic gradient-type methods for finding approx-
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NESTED STOCHASTIC APPROXIMATION 961

imate stationary points of problems of this type. We also derive sample complexity
guarantees for these methods.

Stochastic composition problems of form (1.1)–(1.2) occur in many applications;
we present three modern motivating examples.

Example 1.1 (stochastic variational inequality). We have a random mapping
H : Rn \times Ω \rightarrow R

n on some probability space (\Omega ,\scrF , P ) and a closed convex set X.
The problem is to find x \in X such that

(1.3)
\bigl\langle 

E[H(x)], y  - x
\bigr\rangle 

\leq 0 for all y \in X.

The reader is referred to the recent publications [13] and [17] for a discussion of the
challenges associated with this problem and its applications (our use of the “\leq ”
relation instead of the common “\geq ” is only motivated by the ease with which we
show the conversion to our formulation). We propose to convert problem (1.3) to the
nested form (1.1) by defining the lifted gap function f : Rn \times R

n \rightarrow R as

(1.4) f(x, h) = max
y\in X

\biggl\{ 

\langle h, y  - x\rangle  - 1

2
\| y  - x\| 2

\biggr\} 

,

and the function g : Rn \rightarrow R
n \times R

n as g(x) =
\bigl( 

x,E[H(x)]
\bigr) 

. In this case, we actually
have access to the gradient of f , but the value and the Jacobian of g must be estimated.
We do not require E[H(x)] to be monotone.

Example 1.2 (policy evaluation for Markov decision processes). For a Markov
chain \{ X0, X1, . . .\} \subset \scrX with an unknown transition operator P , a reward function
r : \scrX \mapsto \rightarrow R, and a discount factor \gamma \in (0, 1), we want to estimate the value function
V : \scrX \mapsto \rightarrow R given by V (x) = E [

\sum \infty 
t=0 \gamma 

tr(Xt) | X0 = x]. For a finite space \scrX , the
functions r and V may be viewed as vectors, and the following policy evaluation
equation is satisfied:

V = r + \gamma PV.

As P is not known and | \scrX | may be large, this system cannot be solved directly. To
reduce the dimension of this problem, we employ a sketching matrix S \in R

d\times | \scrX | and
a linear model for the value function V (x) \approx \sum k

i=1 wi\phi i(x), where \phi 1(\cdot ), . . . , \phi k(\cdot ) are
given basis functions. Then we can formulate the residual minimization problem for
the policy evaluation equation:

min
w\in Rd

E

\Bigl[ 

\bigm\| 

\bigm\| S
\Bigl( 

\Phi w  - r  - \gamma E[P̂ ]\Phi w
\Bigr) 

\bigm\| 

\bigm\| 

2
\Bigr] 

,

where \Phi is the matrix with columns being the basis functions, P̂ is a sample transition
matrix (see [28] and the references therein), S is a sketching matrix that selects a
random subset of \{ 1, . . . , d\} such that E[\| Sy\| 2] = yTΞy corresponds to a weighted
norm (this weight is often chosen to be the invariant distribution of P , which is not
known but can be sampled from to construct the random S). In this case, we may
define the outer function f as the weighted squared norm, and the inner function g as
the linear mapping inside the norm. Neither of the functions has an easily available
value or derivative, but their samples can be generated by simulation.

Example 1.3 (low-rank matrix estimation). Let X̄ \in R
n\times n be an unknown

matrix that we aim to approximate. One can sample from the unknown matrix and
each sample returns a random matrix X such that E[X] = X̄. Let k < n be a
prespecified rank. The low-rank matrix estimation problem has the following form:

min
(U,V )\in S

\ell 
\bigl( 

E[X] - UV T
\bigr) 

.
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962 S. GHADIMI, A. RUSZCZYŃSKI, AND M. WANG

In this problem, the unknowns U and V are n \times k matrices, S \subset R
n\times k \times R

n\times k is a
bounded set, and \ell : Rn\times n \rightarrow R is a loss function (e.g., the Frobenius norm). Low-rank
matrix approximation finds wide applications including image analysis, topic models,
recommendation systems, and Markov models (see [8] and the references therein).
Our formulation is nonconvex. When data arrive sequentially, our method can be
applied in an online fashion to find a stationary solution.

Interest in stochastic approximation algorithms for problems of form (1.1) dates
back to [6, Chap. V.4], where penalty functions for stochastic constraints and com-
posite regression models were considered. There, and in the literature that followed,
the main approach was to use two- or multiple-level stochastic recursive algorithms
in different timescales. For problems of form (1.1) this amounts to using two step size
sequences: one for updating the main decision variable x, and another one for filtering
the value of the inner function g. The crucial requirement is that the outer method
must be infinitely slower than the inner method, which decreases the convergence
rate and creates practical difficulties. Sample complexity analysis and acceleration
techniques of stochastic approximation methods with multiple timescales for solv-
ing problems of form (1.1) gained interest in recent years. We refer the readers to
[27, 28, 30] for a detailed account of these techniques and existing results for the
general nested composition optimization problem. Furthermore, a central limit theo-
rem for the stochastic composition problem (1.1)–(1.2) has been established in [5]. It
shows that the N -sample empirical optimal value of problem (1.2) converges to the
true optimal value at a rate of \scrO (1/

\surd 
N). The work [7] establishes large deviation

bounds for the empirical optimal value.
In addition to the general solution methods studied in [5, 27, 28, 30], several

notable special cases of the composition problem have been considered in the machine
learning literature. In the case where f is convex and g is linear, one can solve (1.1)
using duality-based methods via a Fenchel dual reformulation [2]. In the case where
it is allowed to take minibatches, [1] proposed a sampling scheme to obtain unbiased
sample gradients of F by forming randomly sized minibatches. In the case when f
and g take the form of a finite sum and strong convexity holds, one can leverage the
special structure to obtain linearly convergent algorithms; see, e.g., [18, 20]. To the
authors’ best knowledge, no method exists for solving (1.1) with general smooth f
and g, which uses a single timescale stochastic approximation update and does not
resort to minibatches. There is also no method for approximating stationary solutions
that has provable complexity bounds, when the composition problem is constrained.

Our contributions are the following. First, we propose a new nested averaged
stochastic approximation (NASA) algorithm for solving (1.1), which is qualitatively
different from the earlier approaches. Its main idea, inspired by [25, 22, 23], is to lift
the problem into a higher dimensional space, Rn\times R

n\times R
m, where our objective is not

only to find the optimal x, but also to find the gradient of F at the optimal point, and
the value of g at this point. In this space, we construct an iterative method using one
step size sequence, and we prove convergence by employing a specially tailored merit
(Lyapunov) function. This leads to the first single-timescale stochastic approximation
algorithm for the composition problem, and entails essential improvements over the
earlier approaches.

Second, we show that with proper choice of the step size sequence, \scrO (1/\varepsilon 2) obser-
vations are sufficient for the NASA algorithm to find a pair (x̄, z̄) \in X\times R

n satisfying
E[V (x̄, z̄)] \leq \varepsilon , where z̄ is an estimate for\nabla F (x̄), and V (x, z) is an optimality measure
generalizing \| \nabla F (x̄)\| 2 to constrained problems; see (2.6). This complexity bound is
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consistent with the central limit theorem for composite risk functionals [5] and is bet-
ter than the best-known complexity of \scrO (1/\varepsilon 2.25) obtained in [28] for smooth nested
nonconvex stochastic optimization. In fact, our complexity bound for the two-level
composition problem is of the same order as the complexity of the stochastic gradient
method for general smooth one-level nonconvex stochastic optimization [9].

Third, our convergence analysis of the NASA method is the same for both un-
constrained and constrained problems, allowing us to obtain the same complexity of
\scrO (1/\varepsilon 2) for the constrained case, without taking batches of samples per iteration. To
the best of our knowledge, this is the first direct convergence analysis of a method
for general stochastic nested problems of form (1.1) which avoids multiple samples
per iteration to reduce the variance of the stochastic gradients. Hence, this property
makes the NASA method attractive for online learning where the samples are received
one by one.

Finally, we present a simplified variant of the NASA method for solving a class
of single-level stochastic optimization problems, i.e., with g(x) \equiv x in problem (1.1).
This simplified version is a form of a constrained dual averaging method. We show
that the sample (iteration) complexity of this algorithm is of the same order as that
of the NASA method. Moreover, the step size schedule of this method, unlike almost
all existing stochastic approximation algorithms, does not depend on any problem
parameters or employ line-search procedures. Its rate of convergence is established
without forming minibatches of samples, and is valid for both unconstrained and
constrained problems. It should be mentioned that a similar complexity bound has
recently been obtained in [4, 3] for finding an approximate stationary point (albeit
with a different optimality measure) for nonsmooth, constrained, and nonconvex one-
level stochastic optimization problems without taking minibatches of samples per
iteration. Some online algorithms for constrained problems that use minibatches of
samples choose their size to improve error complexity, while making a trade-off with
sample complexity (see, e.g., [10, 11]). Hence, they may be more desirable in the cases
where the projection onto the feasible set is computationally hard.

Notation. The optimal value of problem (1.1) is denoted by F \ast . For any Lip-
schitz continuous function h, we use Lh to denote its Lipschitz constant. We use \nabla h
to denote the gradient (or Jacobian) of a scalar (or vector) function h.

2. The method. Our goal in this section is to propose a stochastic approxima-
tion algorithm for solving problem (1.1) where estimates of the gradient of f and the
value and Jacobian of g are available through calls to a stochastic oracle.

The method generates three random sequences, namely, approximate solutions
\{ xk\} , average gradients \{ zk\} , and average g-values \{ uk\} , defined on a certain proba-
bility space (Ω,\scrF , P ). We let \scrF k be the \sigma -algebra generated by

\{ x0, . . . , xk, z0, . . . , zk, u0, . . . , uk\} .
We also make the following assumption on the stochastic oracle.

Assumption 1. For each k, the stochastic oracle delivers random vectors Gk+1 \in 
R

m, sk+1 \in R
n, and a random matrix Jk+1 \in R

m\times n, such that

E[Gk+1| \scrF k] = g(xk+1), E[\| Gk+1  - g(xk+1)\| 2| \scrF k] \leq \sigma 2
G,

E[Jk+1| \scrF k] = \nabla g(xk+1), E[\| Jk+1\| 2| \scrF k] \leq \sigma 2
J ,

E[sk+1| \scrF k] = \nabla f(uk), E[\| sk+1\| 2| \scrF k] \leq \sigma 2
s ,

and Jk+1 and sk+1 are conditionally independent, given \scrF k.
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The shift in indexing of xk in the above assumption is due to the fact that xk+1

will be \scrF k-measurable in our method. Our method proceeds as presented in Algorithm
2.1.

Algorithm 2.1 Nested averaged stochastic approximation (NASA).

Input: x0 \in X, z0 \in R
n, u0 \in R

m, a > 0, b > 0, \beta > 0.
0. Set k = 0.
1. For an \scrF k-measurable step size \tau k \in (0, 1/a], compute

(2.1) yk = argmin
y\in X

\biggl\{ 

\langle zk, y  - xk\rangle + \beta 

2
\| y  - xk\| 2

\biggr\} 

and set

(2.2) xk+1 = xk + \tau k(y
k  - xk).

2. Call the stochastic oracle to obtain sk+1 at uk, Gk+1 and Jk+1 at xk+1, and
update the running averages as

zk+1 = (1 - a\tau k)z
k + a\tau k

\bigl[ 

Jk+1
\bigr] T
sk+1,(2.3)

uk+1 = (1 - b\tau k)u
k + b\tau kG

k+1.(2.4)

3. Increase k by one and go to step 1.

A few remarks are in order. First, the stochastic gradient
\bigl[ 

Jk+1
\bigr] T
sk+1 returned

by the stochastic oracle is a biased estimator of the gradient of F (xk+1). Hence,
zk+1, as a weighted average of these stochastic gradients, is also a biased estimator
of \nabla F (xk+1). However, the sum of the bias terms of the latter estimator grows
slower than the former one, ensuring convergence of the algorithm (see Theorem 3.5).
Second, uk+1 is also a biased estimator of g(xk+1), whose error can be properly
controlled and asymptotically driven to 0. Finally, convergence of Algorithm 2.1
depends on the choice of the sequence \{ \tau k\} and the parameters a, b, and \beta , which
will be specified in the next section.

We end this section with a brief review of the optimality conditions for problem
(1.1) and their relation to the subproblem (2.1). The following fact is standard (e.g.,
[24, Thm. 3.24]).

Theorem 2.1. If a point x̂ \in X is a local minimum of problem (1.1), then

(2.5)  - \nabla F (x̂) \in \scrN X(x̂),

where \scrN X(x̂) denotes the normal cone to X at the point x̂. If in addition the function

F (\cdot ) is convex, then every point x̂ satisfying (2.5) is the global minimum of problem

(1.1).

Condition (2.5) is closely related to the subproblem (2.1). Denote (for \beta > 0)

ȳ(x, z, \beta ) = argmin
y\in X

\biggl\{ 

\langle z, y  - x\rangle + \beta 

2
\| y  - x\| 2

\biggr\} 

.

Elementary manipulation shows that

ȳ(x, z, \beta ) = ΠX

\Bigl( 

x - 1

\beta 
z
\Bigr) 

,
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where ΠX(\cdot ) is the operation of the orthogonal projection on the set X. The relation
 - z \in \scrN X(x) is equivalent to ȳ(x, z, \beta ) = x. We will, therefore, use the function

(2.6) V (x, z) = \| ȳ(x, z, 1) - x\| 2 + \| z  - \nabla F (x)\| 2

as a measure of violation of the optimality condition (2.5) by the primal-dual pair
(x, z). In the unconstrained case where X = R

n, we have V (x, z) = \| z\| 2 + \| z  - 
\nabla F (x)\| 2.

The following lemma relates the optimality measure V (x, z) to subproblem (2.1)
for an arbitrary \beta > 0.

Lemma 2.2. For every x \in X and every \beta > 0,

(2.7) \| ȳ(x, z, 1) - x\| \leq max(1, \beta ) \| ȳ(x, z, \beta ) - x\| .

Proof. To simplify notation, set x = 0, y(\beta ) = ȳ
\bigl( 

x, z, \beta 
\bigr) 

= ΠX( - 1
β
z). By the

characterization of the orthogonal projection,

(2.8)
\bigl\langle 

z + \tau y(\tau ), \xi  - y(\tau )
\bigr\rangle 

\geq 0 for all \xi \in X, \tau > 0.

Setting \tau = \beta and \xi = y(1) we obtain

\bigl\langle 

z + \beta y(\beta ), y(1) - y(\beta )
\bigr\rangle 

\geq 0.

Now we set \tau = 1 and \xi = y(\beta ) in (2.8) and get

\bigl\langle 

z + y(1), y(\beta ) - y(1)
\bigr\rangle 

\geq 0.

Adding these inequalities yields

(2.9) \langle \beta y(\beta ) - y(1), y(1) - y(\beta )\rangle \geq 0.

Consider two cases.
Case 1. \beta \geq 1. Inequality (2.9) implies that

(\beta  - 1)\| y(\beta )\| = \| \beta y(\beta ) - y(\beta )\| \geq \| y(1) - y(\beta )\| .

By the triangle inequality and the last relation,

\| y(1)\| \leq \| y(\beta )\| + \| y(1) - y(\beta )\| \leq \beta \| y(\beta )\| ,

which proves our claim in this case.
Case 2. 0 < \beta \leq 1. From (2.9) we obtain

(1 - \beta )\langle y(\beta ) - y(1), y(1)\rangle \geq \beta \| y(\beta ) - y(1)\| 2 \geq 0.

Therefore, \| y(\beta )\| \geq \| y(1)\| and our claim is true in this case as well.

Note that our measure of nonoptimality in (2.6) is an upper bound for the squared
norm of the gradient, when X = R

n. For the constrained case, it can also be related
to the existing ones in the literature. To do so, we need to view other algorithms in
the primal-dual space. For example, for the proximal point mapping used in [4, 3],

ŷ = argmin
y\in X

\biggl\{ 

F (y) +
1

2
\| y  - x\| 2

\biggr\} 

,
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the squared distance \| ŷ  - x\| 2 is employed as a measure of nonoptimality (the use
of a parameter \gamma there can be dealt with by minor adjustments). By optimality
conditions of the above subproblem, we have ŷ = ȳ(x, ẑ, 1) with ẑ = \nabla F (ŷ). If we
view the method of [4] as generating primal-dual pairs of form (x, ẑ), we obtain

\| ŷ  - x\| 2 \leq V (x, ẑ) = \| ŷ  - x\| 2 + \| ẑ  - \nabla F (x)\| 2 \leq (1 + L2
\nabla F )\| ŷ  - x\| 2.

It follows that both optimality criteria would be equivalent in the primal-dual space,
if ẑ were observed. In the (accelerated) projected gradient method of [10, 11], the
optimality criterion is the squared distance \| ỹ  - x\| 2, where

ỹ = argmin
y\in X

\biggl\{ 

\langle \nabla F (x), y\rangle + 1

2
\| y  - x\| 2

\biggr\} 

.

Evidently, ỹ = ȳ(x, z̃, 1) and if we could see the dual vector z̃ = \nabla F (x) we would
obtain

\| ỹ  - x\| 2 = V (x, z̃) = \| ỹ  - x\| 2 + \| z̃  - \nabla F (x)\| 2.
It should be mentioned that while the above ẑ and z̃ are not computable under the
stochastic setting, the vector zk defined in (2.3) is computed every iteration and can
be used as an online estimate of \nabla F (x).

3. Convergence analysis. In this section, we provide convergence analysis of
Algorithm 2.1. To do so, we need the following assumption.

Assumption 2. The functions f and g and their derivatives are Lipschitz contin-
uous.

This immediately implies that the gradient of the composite function F is Lip-
schitz continuous.

Lemma 3.1. Under Assumption 2, the gradient of the function F defined in (1.1)
is Lipschitz continuous with L\nabla F := L2

gL\nabla f + LfL\nabla g.

Proof. Let x, x̂ \in X be given. Then, by the chain rule we have

\| \nabla F (x) - \nabla F (x̂)\| = \| \nabla g(x)\top \nabla f(g(x)) - \nabla g(x̂)\top \nabla f(g(x̂))\| 
\leq \| \nabla g(x)\| \| \nabla f(g(x)) - \nabla f(g(x̂))\| + \| \nabla f(g(x̂))\| \| \nabla g(x) - \nabla g(x̂)\| 
\leq (L2

gL\nabla f + LfL\nabla g)\| x - x̂\| .

The next result about the subproblem employed at step 2 of Algorithm 2.1 will
be used in our convergence analysis.

Lemma 3.2. Let \eta (x, z) be the optimal value of subproblem (2.1) for any (x, z),
i.e.,

(3.1) \eta (x, z) = min
y\in X

\biggl\{ 

\langle z, y  - x\rangle + \beta 

2
\| y  - x\| 2

\biggr\} 

.

Then the gradient of \eta w.r.t. (x, z) is Lipschitz continuous with the constant

L\nabla η = 2
\sqrt{} 

(1 + \beta )2 + (1 + 1
2β )

2.

Proof. Let ȳ(x, z) \in X be the solution of (3.1). Since the solution is unique, the
partial derivatives of the optimal value function \eta are given by

\nabla x\eta (x, z) =  - z + \beta (x - ȳ(x, z)), \nabla z\eta (x, z) = ȳ(x, z) - x.
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Hence, for any (x, z) and (x̂, ẑ), we have

\| \nabla \eta (x, z) - \nabla \eta (x̂, ẑ)\| \leq \| \nabla x\eta (x, z) - \nabla x\eta (x̂, ẑ)\| + \| \nabla z\eta (x, z) - \nabla z\eta (x̂, ẑ)\| 
\leq 2(1 + \beta )\| x - x̂\| + (2 + 1/\beta )\| z  - ẑ\| \leq L\nabla η\| (x, z) - (x̂, ẑ)\| ,

where the inequalities follow from the nonexpansiveness of the projection operator
and the Cauchy–Schwarz inequality, respectively.

The proof of convergence of Algorithm 2.1 follows from the analysis of the follow-
ing merit function:

(3.2) W (x, z, u) = a(F (x) - F \ast ) - \eta (x, z) +
\gamma 

2
\| g(x) - u\| 2,

where \gamma > 0 and \eta (x, z) is the optimal value of subproblem (3.1).

Lemma 3.3. Let \{ xk, zk, yk, uk\} k\geq 0 be the sequence generated by Algorithm 2.1.
Also assume that Assumption 2 holds, and

(3.3) 2(a\beta  - c)(\gamma b - 2c) \geq L2
g(aL\nabla f + \gamma )2

for some positive constants c and \gamma . Then

(3.4) c
N - 1
\sum 

k=0

\tau k
\bigl( 

\| dk\| 2 + \| g(xk) - uk\| 2
\bigr) 

\leq W (x0, z0, u0) +
N - 1
\sum 

k=0

rk+1 \forall N \geq 1,

where, for any k \geq 0,

dk = yk  - xk,

rk+1 =
\tau 2k
2

\Bigl( 

[aL\nabla F + L\nabla η + \gamma L2
g + 2aL2

gL\nabla f ]\| dk\| 2 + b2\| g(xk+1) - Gk+1\| 2
\Bigr) 

+ \tau k

\Bigl( 

\gamma b(1 - b\tau k)\langle g(xk+1) - uk,∆g
k\rangle + a\langle dk,∆F

k \rangle 
\Bigr) 

+
L\nabla η

2
\| zk+1  - zk\| 2,

∆g
k =g(xk+1) - Gk+1, ∆F

k := \nabla g(xk+1)\top \nabla f(uk) - 
\bigl[ 

Jk+1
\bigr] \top 
sk+1.

(3.5)

Proof. We estimate the decrease of the three terms of the function W (x, z, u) in
iteration k.

1. Due to Assumption 2 and in view of Lemma 3.1, we have

F (xk) - F (xk+1) \geq \langle \nabla F (xk+1), xk  - xk+1\rangle  - L\nabla F

2
\| xk  - xk+1\| 2.

After rearranging the terms and using (2.2), we obtain

(3.6) F (xk+1) - F (xk) \leq \tau k\langle \nabla F (xk+1), dk\rangle + L\nabla F \tau 
2
k

2
\| dk\| 2.

2. By (2.2), (2.3), and Lemma 3.2, we have

\eta (xk, zk) - \eta (xk+1, zk+1) \leq \langle zk + \beta (yk  - xk), xk+1  - xk\rangle  - \langle yk  - xk, zk+1  - zk\rangle 

+
L\nabla η

2

\bigl[ 

\| xk+1  - xk\| 2 + \| zk+1  - zk\| 2
\bigr] 

= \tau k\langle (1 + a)zk + \beta dk, dk\rangle  - a\tau k\langle dk,
\bigl[ 

Jk+1
\bigr] T
sk+1\rangle 

+
L\nabla η

2

\bigl[ 

\| xk+1  - xk\| 2 + \| zk+1  - zk\| 2
\bigr] 

.(3.7)
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Due to the optimality condition of subproblem (2.1), we have \langle zk+\beta (yk - xk), y - yk\rangle \geq 
0 for all y \in X, which together with the choice of y = xk implies that

(3.8) \langle zk, dk\rangle + \beta \| dk\| 2 \leq 0.

Combining the last relation with (3.7), we obtain

\eta (xk, zk) - \eta (xk+1, zk+1) \leq  - a\beta \tau k\| dk\| 2  - a\tau k\langle dk,\nabla g(xk+1)\top \nabla f(uk)\rangle 
+ a\tau k\langle dk,\nabla g(xk+1)\top \nabla f(uk) - 

\bigl[ 

Jk+1
\bigr] \top 
sk+1\rangle 

+
L\nabla η

2

\bigl[ 

\| xk+1  - xk\| 2 + \| zk+1  - zk\| 2
\bigr] 

.(3.9)

3. By (2.4) we have

\| g(xk+1) - uk+1\| 2 = (b\tau k)
2\| g(xk+1) - Gk+1\| 2 + (1 - b\tau k)

2\| g(xk+1) - uk\| 2
+ 2b\tau k(1 - b\tau k)\langle g(xk+1) - Gk+1, g(xk+1) - uk\rangle ,

\| g(xk+1) - uk\| 2 \leq \| g(xk) - uk\| 2 + L2
g\tau 

2
k\| dk\| 2 + 2Lg\tau k\| dk\| \| g(xk) - uk\| ,(3.10)

where the last inequality follows from (2.2) and the Lipschitz continuity of g. More-
over, using (2.2) and Assumption 2, we obtain
(3.11)
\langle dk,\nabla F (xk+1) - \nabla g(xk+1)\top \nabla f(uk)\rangle \leq LgL\nabla f

\bigl[ 

\tau kLg\| dk\| 2 + \| dk\| \| g(xk) - uk\| 
\bigr] 

.

4. The overall estimate is obtained by combining (3.2), (3.6), (3.9), (3.10), and
(3.11):

W (xk+1, zk+1, uk+1) - W (xk, zk, uk)

\leq  - \tau k
\Bigl( 

a\beta \| dk\| 2 + \gamma b

2
\| g(xk) - uk\| 2  - (aLgL\nabla f + \gamma Lg)\| dk\| \| g(xk) - uk\| 

\Bigr) 

+ rk+1,

where rk+1 is defined in (3.5). Hence, when condition (3.3) holds, we have

W (xk+1, zk+1, uk+1) - W (xk, zk, uk) \leq  - c\tau k
\bigl( 

\| dk\| 2 + \| g(xk) - uk\| 2
\bigr) 

+ rk+1.

Observe that \eta (x, z) \leq 0 for any (x, z), due to (3.8). Therefore, W (x, z, u) \geq 0 for all
(x, z, u). Summing up the above inequalities for all k, we obtain (3.4).

As a consequence of the above result, we can provide upper bounds for the se-
quences generated by Algorithm 2.1.

Proposition 3.4. Let \{ xk, zk, yk, uk\} k\geq 0 be the sequence generated by Algorithm

2.1 and Assumption 1 holds. Then

(a) if \tau 0 = 1/a, we have

\beta 2
E
\bigl[ 

\| dk\| 2| \scrF k - 1

\bigr] 

\leq E
\bigl[ 

\| zk\| 2| \scrF k - 1

\bigr] 

\leq \sigma 2
J\sigma 

2
s \forall k \geq 1;

(b) if Assumption 2 also holds and a\tau k \leq 1/
\surd 
2 for all k \geq 1, we have

\infty 
\sum 

k=0

E[\| zk+1  - zk\| 2| \scrF k] \leq 2

\Biggl[ 

\| z0\| 2 + 24a2\sigma 2
J\sigma 

2
s

\infty 
\sum 

k=0

\tau 2k

\Biggr] 

,

\infty 
\sum 

k=0

E[rk+1| \scrF k] \leq \sigma 2
\infty 
\sum 

k=0

\tau 2k ,(3.12)
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where

(3.13)

\sigma 2 =
1

2

\Bigl( 

[L\nabla F + L\nabla η + \gamma L2
g + 2aL2

gL\nabla f ]
\sigma 2
J\sigma 

2
s

\beta 2
+ b2\sigma 2

g + 4L\nabla η

\bigl[ 

\| z0\| 2 + 24a2\sigma 2
J\sigma 

2
s

\bigr] 

\Bigr) 

.

Proof. We first show part (a). The first inequality follows immediately from (3.8)
and the Cauchy–Schwarz inequality. Also, defining

(3.14) Γ1 :=

\biggl\{ 

1, \tau 0 = 1/a,
1 - a\tau 0, \tau 0 < 1/a,

Γk := Γ1

k - 1
\prod 

i=1

(1 - a\tau i) \forall k \geq 2,

and noting (2.3), we obtain

z1

Γ1
=

(1 - a\tau 0)z
0

Γ1
+
a\tau 0
Γ1

\bigl[ 

J1
\bigr] \top 
s1,

zk+1

Γk+1
=
zk

Γk

+
a\tau k
Γk+1

\bigl[ 

Jk+1
\bigr] \top 
sk+1 \forall k \geq 1.

Summing up the above inequalities and assuming that \tau 0 = 1/a, we obtain, for any
k \geq 1,

(3.15) zk =

k - 1
\sum 

i=0

\alpha i,k

\bigl[ 

J i+1
\bigr] \top 
si+1, \alpha i,k =

a\tau i
Γi+1

Γk,

k - 1
\sum 

i=0

\alpha i,k = 1,

where the last equality follows from the fact that

k - 1
\sum 

i=0

a\tau i
Γi+1

=
a\tau 0
Γ1

+

k - 1
\sum 

i=1

a\tau i
(1 - a\tau i)Γi

=
a\tau 0
Γ1

+

k - 1
\sum 

i=1

\biggl( 

1

Γi+1
 - 1

Γi

\biggr) 

=
1

Γk

 - 1 - a\tau 0
Γ1

.

Therefore, noting that \| \cdot \| 2 is a convex function and using Assumption 1, we conclude
that

E
\bigl[ 

\| zk\| 2
\bigm| 

\bigm| \scrF k - 1

\bigr] 

\leq 
k - 1
\sum 

i=0

\alpha i,kE
\bigl[ 

\| J i+1\| 2
\bigm| 

\bigm| \scrF i

\bigr] 

E
\bigl[ 

\| si+1\| 2
\bigm| 

\bigm| \scrF i

\bigr] 

\leq \sigma 2
J\sigma 

2
s

k - 1
\sum 

i=0

\alpha i,k = \sigma 2
J\sigma 

2
s .

We now show part (b). By (2.3), the above estimate, and assuming that \tau 0 = 1/a,
we have

E
\bigl[ 

\| z1  - z0\| 2
\bigm| 

\bigm| \scrF 0

\bigr] 

\leq 2
\Bigl( 

\| z0\| 2 + E
\bigl[ 

\| [J1]\top s1\| 2
\bigm| 

\bigm| \scrF 0

\bigr] 

\Bigr) 

\leq 2
\Bigl( 

\| z0\| 2 + \sigma 2
J\sigma 

2
s

\Bigr) 

,

E
\bigl[ 

\| zk+1  - zk\| 2
\bigm| 

\bigm| \scrF k

\bigr] 

\leq 2a2\tau 2k
(1 - a\tau k)2

\Bigl( 

E
\bigl[ 

\| zk+1\| 2
\bigm| 

\bigm| \scrF k

\bigr] 

+ E
\bigl[ 

\| [Jk+1]\top sk+1\| 2
\bigm| 

\bigm| \scrF k

\bigr] 

\Bigr) 

\leq 4a2\sigma 2
J\sigma 

2
s\tau 

2
k

(1 - a\tau k)2
\forall k \geq 1,

implying that

\infty 
\sum 

k=0

E[\| zk+1  - zk\| 2| \scrF k] \leq 2

\Biggl[ 

\| z0\| 2 + \sigma 2
J\sigma 

2
s

\Biggl( 

1 + 2a2
\infty 
\sum 

k=1

\bigl( \tau k
1 - a\tau k

\bigr) 2

\Biggr) \Biggr] 

.

Combining the above inequality with the fact that 1
(1 - aτk)2

\leq 12 due to the assump-

tion that a\tau k \leq 1/
\surd 
2, we obtain the first inequality in (b). Finally, due to the

equation
E
\bigl[ 

\langle g(xk+1) - uk,∆g
k\rangle 
\bigm| 

\bigm| \scrF k

\bigr] 

= E
\bigl[ 

\langle dk,∆F
k \rangle 
\bigm| 

\bigm| \scrF k

\bigr] 

= 0,

the second inequality in (b) follows from the first one in (a) and (3.5).
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We are now ready to estimate the quality of the iterates generated by Algo-
rithm 2.1. In view of Lemma 2.2, we can bound the optimality measure at iteration
k as follows:

(3.16) V (xk, zk) \leq max(1, \beta 2) \| dk\| 2 + \| zk  - \nabla F (xk)\| 2.

Theorem 3.5. Suppose Assumptions 1 and 2 are satisfied and let

\{ xk, zk, yk, uk\} k\geq 0

be the sequence generated by Algorithm 2.1. Moreover, assume that the parameters

are chosen so that (3.3) holds and step sizes \{ \tau k\} are deterministic and satisfy

(3.17)
N
\sum 

i=k+1

\tau iΓi \leq c̄Γk+1 \forall k \geq 0 and \forall N \geq 1, and a\tau k \leq 1/
\surd 
2 \forall k \geq 1, \tau 0 =

1

a
,

where Γk is defined in (3.14), and c̄ is a positive constant. Then

(a) for every N \geq 2, we have

(3.18)
N
\sum 

k=1

\tau kE
\bigl[ 

\| \nabla F (xk) - zk\| 2
\bigm| 

\bigm| \scrF k - 1

\bigr] 

\leq ac̄

\biggl( 

1

c
max(L1, L2)\sigma 

2 + 2a\sigma 2
J\sigma 

2
s

\biggr) \biggl( N - 1
\sum 

k=0

\tau 2k

\biggr) 

+
ac̄

c
max(L1, L2)W (x0, z0, u0),

where

(3.19) L1 :=
2L2

\nabla F

a2
+ 4L4

gL
2
\nabla f , L2 := 4L2

gL
2
\nabla f ;

(b) as a consequence, we have

E
\bigl[ 

V (xR, zR)
\bigr] 

(3.20)

\leq 1
\sum N - 1

k=1 \tau k

\biggl\{ 

ac̄

\biggl( 

1

c

\bigl[ 

max(L1, L2) + max(1, \beta 2)
\bigr] 

\sigma 2 + 2a\sigma 2
J\sigma 

2
s

\biggr) \biggl( N - 1
\sum 

k=0

\tau 2k

\biggr) 

+
1

c

\Bigl( 

ac̄max(L1, L2) + max(1, \beta 2)
\Bigr) 

W (x0, z0, u0)

\biggr\} 

,

where the expectation is taken with respect to all random sequences generated by the

method and an independent random integer number R \in \{ 1, . . . , N  - 1\} , whose prob-

ability distribution is given by

(3.21) P [R = k] =
\tau k

\sum N - 1
j=1 \tau j

;

(c) moreover, if a = b = 1, if the regularization coefficient is equal to

(3.22) \beta =

\biggl( 

(1 + \alpha )2

\alpha 
L2
g +

\alpha 

4

\biggr) 

L\nabla f

for some \alpha > 0, and if the step sizes are equal to

(3.23) \tau 0 = 1, \tau k \equiv 1\surd 
N

\forall k = 1, . . . , N  - 1,
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then

(3.24)

E
\bigl[ 

V (xR, zR)
\bigr] 

\leq 4\surd 
N  - 1

\biggl( 

2

\alpha L\nabla F

\bigl[ 

max(L1, L2) + max(1, \beta 2)
\bigr] \bigl[ 

W (x0, z0, u0) + \sigma 2
\bigr] 

+ \sigma 2
J\sigma 

2
s

\biggr) 

and

(3.25) E
\bigl[ 

\| g(xR) - uR\| 2
\bigr] 

\leq W (x0, z0, u0) + \sigma 2

\alpha L\nabla F (
\surd 
N  - 1)

.

Proof. We first show part (a). By (2.3), we have

\nabla F (xk+1) - zk+1

= (1 - a\tau k)[\nabla F (xk) - zk +\nabla F (xk+1) - \nabla F (xk)] + a\tau k[\nabla F (xk+1) - [Jk+1]\top sk+1].

Dividing both sides of the above inequality by Γk+1, summing them up, noting the
fact that \tau 0 = 1/a, similarly to (3.15), we obtain

\nabla F (xk) - zk =

k - 1
\sum 

i=0

\alpha i,k

\bigl[ 

ei +∆F
i

\bigr] 

\forall k \geq 1

with

ei :=
(1 - a\tau i)

a\tau i

\bigl[ 

\nabla F (xi+1) - \nabla F (xi)
\bigr] 

+\nabla F (xi+1) - \nabla g(xi+1)\top \nabla f(ui),(3.26)

where ∆F
i is defined in (3.5). Hence,

\nabla F (xk - 1) - zk - 1 =

k - 2
\sum 

i=0

\alpha i,k - 1

\bigl[ 

ei +∆F
i

\bigr] 

=
Γk - 1

Γk

k - 2
\sum 

i=0

\alpha i,k

\bigl[ 

ei +∆F
i

\bigr] 

,

which together with (3.26) implies that

\| \nabla F (xk) - zk\| 2

=
\bigm\| 

\bigm\| 

\bigm\| 

Γk

Γk - 1

\bigl[ 

\nabla F (xk - 1) - zk - 1
\bigr] 

+ \alpha k - 1,k

\bigl[ 

ek - 1 +∆F
k - 1

\bigr] 

\bigm\| 

\bigm\| 

\bigm\| 

2

=
\bigm\| 

\bigm\| (1 - a\tau k - 1)
\bigl[ 

\nabla F (xk - 1) - zk - 1
\bigr] 

+ a\tau k - 1

\bigl[ 

ek - 1 +∆F
k - 1

\bigr] \bigm\| 

\bigm\| 

2

=
\bigm\| 

\bigm\| (1 - a\tau k - 1)
\bigl[ 

\nabla F (xk - 1) - zk - 1
\bigr] 

+ a\tau k - 1ek - 1

\bigm\| 

\bigm\| 

2
+ a2\tau 2k - 1

\bigm\| 

\bigm\| ∆F
k - 1

\bigm\| 

\bigm\| 

2

+ 2a\tau k - 1

\bigl\langle 

(1 - a\tau k - 1)
\bigl[ 

\nabla F (xk - 1) - zk - 1
\bigr] 

+ a\tau k - 1ek - 1,∆
F
k - 1

\bigr\rangle 

\leq (1 - a\tau k - 1)
\bigm\| 

\bigm\| \nabla F (xk - 1) - zk - 1
\bigm\| 

\bigm\| 

2
+ a\tau k - 1

\bigm\| 

\bigm\| ek - 1\| 2 + a2\tau 2k - 1\| ∆F
k - 1

\bigm\| 

\bigm\| 

2

+ 2a\tau k - 1

\bigl\langle 

(1 - a\tau k - 1)[\nabla F (xk - 1) - zk - 1] + a\tau k - 1ek - 1,∆
F
k - 1

\bigr\rangle 

,

where the inequality follows from the convexity of \| \cdot \| 2. Dividing both sides of the
above inequality by Γk, using (3.14), summing all the resulting inequalities, and noting
the facts that \tau 0 = 1/a, and \tau k \leq 1/a, we obtain

(3.27) \| \nabla F (xk) - zk\| 2 \leq Γk

\Biggl[ 

k - 1
\sum 

i=0

\biggl( 

a\tau i
Γi+1

\| ei\| 2 +
a2\tau 2i
Γi+1

\| ∆F
i \| 2 +

2a\tau i\delta i
Γi+1

\biggr) 

\Biggr] 

,
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where

\delta i := \langle (1 - a\tau i)[\nabla F (xi) - zi] + a\tau iei,∆
F
i \rangle .

Now, using (2.2), (3.11), with a view to Lemma 3.1, we obtain

\| ei\| 2 \leq 2L2
\nabla F (1 - a\tau i)

2

a2
\| di\| 2 + 4L2

gL
2
\nabla f

\Bigl[ 

\tau 2i L
2
g\| di\| 2 + \| g(xi) - ui\| 2

\Bigr] 

,

which together with (3.19) implies that
(3.28)

N
\sum 

k=1

\biggl( 

\tau kΓk

k - 1
\sum 

i=0

a\tau i
Γi+1

\| ei\| 2
\biggr) 

\leq 
N
\sum 

k=1

\biggl( 

\tau kΓk

k - 1
\sum 

i=0

a\tau i
Γi+1

\bigl[ 

L1\| di\| 2 + L2\| g(xi) - ui\| 2
\bigr] 

\biggr) 

= a

N - 1
\sum 

k=0

\Biggl\{ 

\tau k
Γk+1

\biggl[ N
\sum 

i=k+1

\tau iΓi

\biggr] \biggl[ 

L1\| dk\| 2 + L2\| g(xk) - uk\| 2
\biggr] 

\Biggr\} 

\leq ac̄

N - 1
\sum 

k=0

\bigl\{ 

\tau k
\bigl[ 

L1\| dk\| 2 + L2\| g(xk) - uk\| 2
\bigr] \bigr\} 

,

where the last inequality follows from the condition (3.17). In a similar way,
(3.29)
N
\sum 

k=1

\biggl( 

\tau kΓk

k - 1
\sum 

i=0

a2\tau 2i
Γi+1

\| ∆F
i \| 2

\biggr) 

= a2
N - 1
\sum 

k=0

\tau 2k
Γk+1

\biggl( N
\sum 

i=k+1

\tau iΓi

\biggr) 

\| ∆F
k \| 2 \leq c̄a2

N - 1
\sum 

k=0

\tau 2k\| ∆F
k \| 2.

Moreover, under Assumption 1 we have

E[\| ∆F
k \| 2| \scrF k] \leq 2E[

\bigl[ 

Jk+1
\bigr] \top 
sk+1| \scrF k] \leq 2\sigma 2

J\sigma 
2
s , E[\delta k| \scrF k] = 0.

Therefore, by taking the conditional expectation of both sides of (3.27), noting (3.28),
(3.29), the above inequality, and Lemma 3.3, we obtain (3.18). Part (b) then follows
from (3.16) and the facts that

c

N - 1
\sum 

k=0

\tau kE[\| dk\| 2| \scrF k] \leq W (x0, z0, u0) + \sigma 2
N - 1
\sum 

k=0

\tau 2k ,

E
\bigl[ 

V (xR, zR)
\bigr] 

=

\sum N - 1
k=1 \tau kE

\bigl[ 

V (xk, zk)
\bigr] 

\sum N - 1
k=1 \tau k

,

due to (3.4), (3.12), and (3.21).
To show part (c), observe that condition (3.3) is satisfied by (3.22) and the choice

of \gamma = 4c = \alpha L\nabla f . Also by (3.14) and (3.23), we have

N - 1
\sum 

k=1

\tau k \geq 
\surd 
N  - 1,

N - 1
\sum 

k=0

\tau 2k \leq 2, Γk =
\Bigl( 

1 - 1\surd 
N

\Bigr) k - 1

,

N
\sum 

i=k+1

\tau iΓi =
\Bigl( 

1 - 1\surd 
N

\Bigr) k 1\surd 
N

N - k - 1
\sum 

i=0

\Bigl( 

1 - 1\surd 
N

\Bigr) i

\leq 
\Bigl( 

1 - 1\surd 
N

\Bigr) k

,

which ensures (3.17) with c̄ = 1 and, hence, together with (3.21), implies (3.24).
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We now add a few remarks about the above result. First, the estimate (3.24)
implies that to find an approximate stationary point (x̄, z̄) of problem (1.1) satisfying
E[V (x̄, z̄)] \leq \varepsilon , Algorithm 2.1 requires at most \scrO (1/\varepsilon 2) iterations (stochastic gradi-
ents), which is better than \scrO (1/\varepsilon 2.25) obtained in [28] for unconstrained nonconvex
stochastic optimization. Our complexity bound indeed matches the sample complex-
ity of the stochastic gradient method for the general (single-level) smooth nonconvex
optimization problem [9]. It is also consistent with the central limit theorem for com-
posite risk functionals [5], because the objective value gap is essentially proportional to
the squared gradient norm at an approximate stationary point (in the unconstrained
case). Second, Theorem 3.5 provides the same convergence rate of Algorithm 2.1 for
both constrained and unconstrained problems: we can still get sample complexity of
\scrO (1/\varepsilon 2) with taking only one sample per iteration in the constrained case. To the
best of our knowledge, this is the first direct convergence analysis for constrained
nonconvex stochastic optimization providing the aforementioned sample complexity.
Third, (3.25) provides not only accuracy bounds for the approximate stationary point
xR but also squared error bounds for estimating the exact value of the inner function,
g(xR), by the second running average, uR. As a result, Algorithm 2.1 provides not
only accurate approximations to the stationary solution but also reliable estimates of
the gradients. Finally, note that Assumption 1 implies that derivatives of f and g are
bounded. Hence, to establish the results of Theorem 3.5, we can relax Assumption 2
and require Assumption 1 together with Lipschitz continuity of the derivatives of f
and g.

For the stochastic variational inequality (SVI) problem of Example 1.1, our method
has significantly lower complexity and faster convergence than the approach of [13].
Most of the literature on stochastic methods for SVI requires monotonicity or even
strong monotonicity of the operator H(\cdot ) (see, e.g., [14, 17] and the references within).
The authors in [13] consider SVI with operators E[H(\cdot )] satisfying a weaker pseu-
domonotonicity assumption. With the use of a variance reduction technique by in-
creasing sizes of minibatches, a generalization of the extragradient method originating
in [16] was developed, with the oracle complexity \scrO (\varepsilon  - 2), which is matched by our
results. The recent manuscript [19] considers a special case of SVI, a stochastic saddle
point problem, with weakly convex-concave functions. By employing a proximal point
scheme, the resulting SVI is converted to a monotone one, and approximately solved
by a stochastic algorithm. The resulting two-level scheme has the rate of convergence
\scrO (\varepsilon  - 2), if acceleration techniques are used. Our approach does not make any mono-
tonicity assumption and achieves the oracle complexity of \scrO (\varepsilon  - 2) as well. This is due
to the use of a one-level method for a special merit function (3.2), involving the lifted
gap function (1.4) as one of its components (the other being a projection mapping
using its gradient).

We also have the following asymptotic convergence result.

Theorem 3.6. Assume that the sequence of step sizes satisfies

(3.30)

\infty 
\sum 

k=1

\tau k = +\infty a.s., E

\infty 
\sum 

k=1

\tau 2k <\infty .

Then a constant ā > 0 exists such that, for all a \in (0, ā), with probability 1, every
accumulation point (x\ast , z\ast , u\ast ) of the sequence \{ xk, zk, uk) generated by Algorithm 2.1
satisfies the conditions

z\ast =
\bigl[ 

\nabla g(x\ast )
\bigr] T\nabla f(u\ast ), u\ast = g(x\ast ),  - z\ast \in \scrN X(x\ast ).
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Proof. Note that the sequence \{ rk\} defined in (3.5) is adapted to \{ \scrF k\} and sum-
mable almost surely under Assumption 1 and (3.30). Therefore, (3.4) implies that
almost surely

lim
k\rightarrow \infty 

inf \| dk\| = 0, lim
k\rightarrow \infty 

inf \| g(xk) - uk\| = 0.

Using the techniques of [23, Lem. 8], we can then show that with probability 1,
dk \rightarrow 0 and g(xk)  - uk \rightarrow 0. Following analysis similar to [23], we prove that each
convergent subsequence of \{ (xk, zk, uk)\} converges to a stationary point of problem
(1.1), the corresponding gradient of F , and the value of g.

In the convergence theorem, we allow the step sizes to be random (but adapted to
the filtration \{ \scrF k\} ), because earlier experience indicates that adaptation of the step
sizes, based on the information gathered along the path, greatly improves performance
of stochastic subgradient methods [25]. We plan to explore this avenue for composition
optimization in our future research.

4. Dual averaging with constraints. Although our main interest is in com-
posite optimization, we also provide a simplified variant of Algorithm 2.1 for solving
a single-level stochastic optimization. Our techniques allow the same convergence
analysis for both constrained and unconstrained problems which removes the neces-
sity of forming minibatches of samples per iteration for constrained problems (see,
e.g., [11, 10]). Moreover, this variant of the NASA method, different from the ex-
isting stochastic-approximation–type methods, is a parameter-free algorithm in the
sense that its step size policy does not depend on any problem parameters and allows
for random (history dependent) step sizes. This algorithmic feature is more impor-
tant under the stochastic setting since estimating problem parameters becomes more
difficult.

Throughout this section, we assume that the inner function g in (1.1) is the
identity map, i.e., g(x) \equiv x, and only noisy information about f is available. In this
case, our problem is reduced to

(4.1) min
x\in X

f(x),

and it is easy to verify that

(4.2) G = g, J = I, \sigma G = 0, \sigma J = 1, Lg = 1, L\nabla g = 0.

Moreover, Algorithm 2.1 can be simplified as follows.

Algorithm 4.1 The averaged stochastic approximation method.

Replace step 2 of Algorithm 2.1 with the following:
2\prime . Call the stochastic oracle to obtain sk+1 at xk and update the “running average”
as

(4.3) zk+1 = (1 - a\tau k)z
k + a\tau ks

k+1.

The above algorithm differs from Algorithm 2.1 in two aspects. First, stochastic
approximation of \nabla g is replaced by its exact value, the identity matrix. Second, the
averaged sequence in (2.4) is not required and uk is simply set to xk, the exact value
of g(xk).

D
o
w

n
lo

ad
ed

 0
4
/0

1
/2

0
 t

o
 1

2
8
.6

.4
5
.2

0
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NESTED STOCHASTIC APPROXIMATION 975

The resulting method belongs to the class of algorithms with direction averaging
(multistep) methods. The literature on these methods for unconstrained problems is
very rich. They were initiated in [26] and developed and analyzed in [12, 15, 21] and
other works. Recently, these methods play a role in machine learning, under the name
of dual averaging methods (see [29] and the references therein). In all these versions,
two timescales were essential for convergence. The first single-timescale method was
proposed in [25], with convergence analysis based on a different Lyapunov function
suitable for unconstrained problems. Our version is related to [22, 23], where a similar
approach to constrained problems was proposed, albeit without rate of convergence
estimates. We may remark here that the version of [22, 23] calculates sk+1 at xk+1

rather than at xk at step 2\prime , which is essential for nonsmooth weakly convex f(\cdot ). For
smooth functions both ways are possible and can be analyzed in the same way with
minor adjustments.

Convergence analysis of Algorithm 4.1 follows directly from that of Algorithm 2.1
by simplifying the definition of the merit function as

(4.4) W (x, z) = a(f(x) - f\ast ) - \eta (x, z),

exactly as used in [22, 23]. We then have the following result.

Lemma 4.1. Let \{ xk, zk, yk\} k\geq 0 be the sequence generated by Algorithm 4.1. Also
assume that function f has Lipschitz continuous gradient. Then

(a) for any N \geq 2, we have

(4.5) \beta 

N - 1
\sum 

k=0

\tau k\| dk\| 2 \leq W (x0, z0) +

N - 1
\sum 

k=0

rk+1,

where, for any k \geq 0,

(4.6)
dk = yk  - xk, ∆f

k = \nabla f(xk) - sk+1,

rk+1 =
1

2
(3aL\nabla f + L\nabla η)\tau 

2
k\| dk\| 2 + a\tau k\langle dk,∆f

k\rangle +
1

2
L\nabla η\| zk+1  - zk\| 2;

(b) if, in addition, Assumption 1 holds along with (4.2), a\tau k \leq 1/
\surd 
2 for all k \geq 1,

and \tau 0 = 1/a, we have

\beta 2
E[\| dk\| 2| \scrF k - 1]] \leq E[\| zk\| 2| \scrF k - 1]] \leq \sigma 2

s \forall k \geq 1,

\infty 
\sum 

k=0

E[\| zk+1  - zk\| 2| \scrF k] \leq 2

\Biggl[ 

\| z0\| 2 + 24a2\sigma 2
s

\infty 
\sum 

k=0

\tau 2k

\Biggr] 

,

\infty 
\sum 

k=0

E[rk+1| \scrF k] \leq \sigma 2
\infty 
\sum 

k=0

\tau 2k , \sigma 2 =
(3aL\nabla f + L\nabla η)\sigma 

2
s

2\beta 2
+ 2L\nabla η

\bigl[ 

\| z0\| 2 + 24a2\sigma 2
s

\bigr] 

.

(4.7)

Proof. Multiplying (3.6) by a, summing it up with (3.9), noting (4.2), (4.4), and
the fact that

a\tau k\langle dk,\nabla f(xk+1) - \nabla f(xk)\rangle \leq aL\nabla f\tau 
2
k\| dk\| 2,

we obtain

(4.8) W (xk+1, zk+1) - W (xk, zk) \leq  - a\beta \tau k\| dk\| 2 + rk+1.

The remainder of the proof is similar to that of Lemma 4.1 and Proposition 3.4; hence,
we skip the details.
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Using the above results, we can provide the main convergence property of Algo-
rithm 4.1.

Theorem 4.2. Let \{ xk, zk, yk\} k\geq 0 be the sequence generated by Algorithm 4.1
with a = 1. Moreover, assume that Assumption 1 holds along with (4.2), and the step

sizes are set to (3.23). Then, for a random R distributed according to (3.21), we have

(4.9) E
\bigl[ 

V (xR, zR)
\bigr] 

\leq 1\surd 
N  - 1

\biggl( 

1

\beta 
(max(1, \beta 2) + L2

\nabla f )
\bigl[ 

W (x0, z0) + 2\sigma 2
\bigr] 

+ 4\sigma 2
s

\biggr) 

,

where V (x, z) and \sigma 2 are, respectively, defined in (2.6) and (4.7).

Proof. Similarly to (3.26), we have

(4.10) \nabla F (xk) - zk =

k - 1
\sum 

i=0

\alpha i,k

\Bigl[ 

ei +∆f
i

\Bigr] 

, ei :=
\nabla f(xi+1) - \nabla f(xi)

a\tau i
,

which, together with the Lipschitz continuity of \nabla f and (2.2), imply that

(4.11) \| ei\| 2 \leq 
L2
\nabla f\| di\| 2
a2

.

In view of Lemma 4.1, the rest of the proof is similar to that of Theorem 3.5.

It is worth noting that unlike Algorithm 2.1, the regularization coefficient \beta in
Algorithm 4.1, due to (4.8), can be set to any positive constant number to achieve
the sample (iteration) complexity of \scrO (1/\varepsilon 2). Such a result has not been obtained
before for a parameter-free algorithm for smooth nonconvex stochastic optimization.
Moreover, Algorithm 4.1, similarly to Algorithm 2.1, outputs a pair (xR, zR), where
zR is an accurate estimate of \nabla f(xR) without taking any additional samples. This
is important for both unconstrained and constrained problems, where one can use
the quantity max(1, \beta )\| yk  - xk\| as an online certificate of the quality of the current
solution; see Lemma 2.2.

Note that the convergence result of Theorem 4.2 is established under the bound-
edness assumption of the second moment of the stochastic gradient. In the remainder
of this section, we modify the convergence analysis of Algorithm 4.1 under a relaxed
assumption that only variance of the stochastic gradient is bounded. This assump-
tion, which is common in the literature on smooth stochastic optimization, is stated
as follows.

Assumption 3. For each k, the stochastic oracle delivers a random vector sk+1 \in 
R

n such that

E[sk+1| \scrF k] = \nabla f(xk), E[\| sk+1  - \nabla f(xk)\| 2| \scrF k] \leq \̂sigma 2
s .

Lemma 4.3. Let \{ xk, zk, yk\} k\geq 0 be the sequence generated by Algorithm 4.1. Also
assume that the function f has a Lipschitz continuous gradient. Then

(a) for any N \geq 2, we have

(4.12)

N - 1
\sum 

k=1

\tau k

\Bigl( 

\beta  - (3aL\nabla f+L\nabla η)τk
2

\Bigr) 

\| dk\| 2 \leq W (x0, z0) +

N - 1
\sum 

k=0

r̂k+1,

where, for any k \geq 0,
(4.13)

r̂k+1 =
\bigl\langle 

a\tau kd
k - a2\tau 2kL\nabla η(\nabla F (xk) - zk),∆f

k

\bigr\rangle 

+
1

2
a2\tau 2kL\nabla η

\Bigl[ 

\| \nabla F (xk) - zk\| 2 + \| ∆f
k\| 2
\Bigr] 

;
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(b) if, in addition, Assumption 3 holds and step sizes \{ \tau k\} are chosen such that

(4.14) \tau 0 = 1/a,

N
\sum 

i=k+1

\tau 2i Γi \leq ĉ\tau kΓk+1 \forall k \geq 0 and \forall N \geq 2,

where Γk is defined in (3.14) and ĉ is a positive constant, we have

(4.15)
N - 1
\sum 

k=0

\tau k

\biggl( 

\beta  - 1

2
(3aL\nabla f + L\nabla η + aĉL\nabla ηL

2
\nabla f )\tau k

\biggr) 

E[\| dk\| 2| \scrF k]

\leq W (x0, z0) +
L\nabla η

2
\| \nabla F (x0) - z0\| 2 + 1

2
a2(L\nabla η + 2ĉ)\̂sigma 2

s

N - 1
\sum 

k=0

\tau 2k .

Proof. To show part (a), note that by (2.3), (4.2), and (4.13), we have

\| zk+1  - zk\| 2 = a2\tau 2k

\Bigl[ 

\| \nabla F (xk) - zk\| 2 + \| ∆f
k\| 2  - 2\langle \nabla F (xk) - zk,∆f

k\rangle 
\Bigr] 

,

which together with (4.5) and in view of (4.13) implies (4.12). To show part (b), note
that by (4.10), (4.11), and, similarly to the proof of Theorem 3.5, part (a), we have

N
\sum 

k=1

\tau 2k\| \nabla F (xk) - zk\| 2

\leq ĉ

N - 1
\sum 

k=0

\tau 2k

\Biggl( 

L2
\nabla f\| dk\| 2
a

+ a2\tau k\| ∆f
k\| 2 + 2a\langle \nabla F (xk+1) - zk  - a\tau k[\nabla F (xk) - zk],∆f

k\rangle 
\Biggr) 

.

Taking conditional expectation from both sides of the above inequality and using
(4.13) under Assumption 3, with the choice of \tau 0 = 1/a, we obtain

N - 1
\sum 

k=0

E[rk+1| \scrF k]

\leq a2(L\nabla η + 2ĉ)\̂sigma 2
s

2

N - 1
\sum 

k=0

\tau 2k+
aĉL\nabla ηL

2
\nabla f

2

N - 1
\sum 

k=0

\tau 2kE[\| dk\| 2| \scrF k - 1]+
L\nabla η

2
\| \nabla F (x0) - z0\| 2

(with the notation of \scrF  - 1 \equiv \scrF 0), which together with (4.12) implies (4.15).

We can now specialize the convergence rate of Algorithm 4.1 by properly choosing
the step size policies.

Theorem 4.4. Let \{ xk, zk, yk\} k\geq 0 be the sequence generated by Algorithm 4.1, the
gradient of f(\cdot ) be Lipschitz continuous, and step sizes set to (3.23). If Assumption 3
holds and

(4.16) \beta \geq 
2(3L\nabla f + L\nabla η + ĉL\nabla ηL

2
\nabla f )

3
,

then, for a random R distributed according to (3.21), we have

(4.17) E
\bigl[ 

V (xR, zR)
\bigr] 

\leq 1\surd 
N  - 1

\biggl( 

6(max(1, \beta 2) + L2
\nabla f )

\beta 

\Bigl[ 

W (x0, z0)

+
L\nabla η

2
\| \nabla F (x0) - z0\| 2 + (L\nabla η + 2)\̂sigma 2

s

\Bigr] 

+ 2\sigma 2
s

\biggr) 

.
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Proof. First, note that by the choice of step sizes in (3.23), condition (4.14) is
satisfied with ĉ = 1. Moreover, by (4.15) and (4.16), we have

N - 1
\sum 

k=0

\tau kE[\| dk\| 2| \scrF k - 1] \leq 
6

\beta 

\biggl[ 

W (x0, z0) +
L\nabla η

2
\| \nabla F (x0) - z0\| 2 + (L\nabla η + 2)\̂sigma 2

s

\biggr] 

,

N
\sum 

k=1

\tau kE[\| \nabla F (xk) - zk\| 2| \scrF k - 1] \leq L2
\nabla f

N - 1
\sum 

k=0

\tau kE[\| dk\| 2| \scrF k] + 2\̂sigma 2
s .

Combining the above relations with (3.16), we obtain (4.17).

While the rate of convergence of Algorithm 4.1 in (4.17) is of the same order as
in (4.9), the former is obtained under a relaxed assumption on the outputs of the
stochastic oracle, as stated in Assumption 3. However, in this case, the regularization
coefficient \beta depends on the problem parameters (like in other algorithms for smooth
stochastic optimization).

We also have the following asymptotic convergence result.

Theorem 4.5. Assume that the sequence of step sizes satisfy (3.30). Then a

constant ā > 0 exists such that, for all a \in (0, ā), with probability 1, every accumu-

lation point (x\ast , z\ast ) of the sequence \{ xk, zk) generated by Algorithm 4.1 satisfies the

conditions

z\ast = \nabla f(x\ast ),  - z\ast \in \scrN X(x\ast ).

Proof. The analysis follows from [23].

5. Concluding remarks. We have presented a single-timescale stochastic ap-
proximation method for smooth nested optimization problems. We showed that the
sample complexity bound of this method for finding an approximate stationary point
of the problem is of the same order as that of the best-known bound for the stochas-
tic gradient method for single level stochastic optimization problems. Furthermore,
our convergence analysis is the same for both unconstrained and constrained cases
and does not require batches of samples per iteration. We also presented a simplified
parameter-free variant of the NASA method for single-level problems, which enjoys
the same complexity bound, regardless of the existence of constraints.
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