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Abstract
We prove convergence of a single time-scale stochastic subgradient method with
subgradient averaging for constrained problems with a nonsmooth and nonconvex
objective function having the property of generalized differentiability. As a tool of our
analysis, we also prove a chain rule on a path for such functions.

Keywords Stochastic subgradient method · Nonsmooth optimization · Generalized
differentiable functions · Chain rule

1 Introduction

We consider the problem

min
x∈X f (x) (1)

where X ⊂ Rn is convex and closed, and f : Rn → R is a Lipschitz continuous
function, which may be neither convex nor smooth. The subgradients of f (·) are not
available; instead, we postulate access to their random estimates.

Research on stochastic subgradient methods for nonsmooth and nonconvex func-
tions started in late 1970’s. Early contributions are due to Nurminski, who considered
weakly convex functions and established a general methodology for studying conver-
gence of non-monotonic methods [20], Gupal and his co-authors, who considered
convolution smoothing (mollification) of Lipschitz functions and resulting finite-
difference methods [11], and Norkin, who considered unconstrained problems with
“generalized differentiable” functions [17, Ch. 3 and 7]. Recently, by an approach

B Andrzej Ruszczyński
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via differential inclusions, Duchi and Ruan [10] studied proximal methods for sum-
composite problemswithweakly convex functions,Davis et al. [8] proved convergence
of the subgradientmethod for locallyLipschitzWhitney stratifiable functionswith con-
straints, and Majewski et al. [15] studied several methods for subdifferentially regular
Lipschitz functions.

Our objective is to show that a single time-scale stochastic subgradient method
with direction averaging [21,22], is convergent for a broad class of functions enjoying
the property of “generalized differentiability,” which contains all classes of functions
mentioned above, as well as their compositions.

Our analysis follows the approach of relating a stochastic approximation algorithm
to a continuous-time dynamical system, pioneered in [13,14] and developed in many
works (see, e.g., [12] and the references therein). Extension to multifunctions was
proposed in [1] and further developed, among others, in [3,8,10,15].

For the purpose of our analysis, we also prove a chain rule on a path under gener-
alized differentiability, which may be of independent interest.

Finally, we illustrate the use of the method for training a ReLu neural network.

2 The chain formula on a path

Norkin [19] introduced the following class of functions.

Definition 1 A function f : Rn → R is differentiable in a generalized sense at a
point x ∈ Rn , if an open setU ⊂ Rn containing x , and a nonempty, convex, compact
valued, and upper semicontinuous multifunction G f : U ⇒ Rn exist, such that for
all y ∈ U and all g ∈ G f (y) the following equation is true:

f (y) = f (x) + 〈g(y), y − x〉 + o(x, y, g),

with

lim
y→x

sup
g∈G(y)

o(x, y, g)

‖y − x‖ = 0.

The set G f (y) is the generalized subdifferential of f at y. If a function is differen-
tiable in a generalized sense at every x ∈ Rn with the same generalized subdifferential
mapping G f : Rn ⇒ Rn , we call it differentiable in a generalized sense.

A function f : Rn → Rm is differentiable in a generalized sense, if each of its
component functions, fi : Rn → R, i = 1, . . . ,m, has this property.

The class of such functions is contained in the set of locally Lipschitz functions [17,
Thm. 1.1], and contains all subdifferentially regular functions [5], Whitney stratifiable
Lipschitz functions [9], semismooth functions [16], and their compositions. In fact,
if a function is differentiable in generalized sense and has directional derivatives at
x in every direction, then it is semismooth at x . The Clarke subdifferential ∂ f (x) is
an inclusion-minimal generalized subdifferential, but the generalized subdifferential
mapping G f (·) is not uniquely defined in Definition 1, which plays a role in our
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considerations. For stochastic optimization, essential is the closure of the class of such
functions with respect to expectation, which allows for easy generation of stochastic
subgradients. In the Appendix we recall basic properties of functions differentiable in
a generalized sense. For thorough exposition, see [17, Ch. 1 and 6].

Our interest is in a formula for calculating the increment of a function f : Rn → R
along a path p : [0,∞) → Rn , which is at the core of the analysis of nonsmooth
and stochastic optimization algorithms (see [7,9] and the references therein). For
an absolutely continuous function p : [0,∞) → Rn we denote by

•
p(·) its weak

derivative, that is, a measurable function such that

p(t) = p(0) +
∫ t

0

•
p(s) ds, ∀ t ≥ 0.

Theorem 1 If f : Rn → R and p : [0,∞) → Rn are differentiable in a generalized
sense, then for every T > 0, any generalized subdifferential G f (·), and every selection
g(p(t)) ∈ G f (p(t)), we have

f (p(T )) − f (p(0)) =
∫ T

0

〈
g(p(t)),

•
p(t)

〉
dt . (2)

Proof Consider the function

ϕ(ε) =
∫ T

0
f (p(t + ε)) dt, ε ≥ 0.

Its right derivative at 0 can be calculated in two ways:

ϕ′+(0) = lim
ε↓0

1

ε

[
ϕ(ε) − ϕ(0)

]
= lim

ε↓0
1

ε

[ ∫ T

0
f (p(t + ε)) dt −

∫ T

0
f (p(t)) dt

]

= lim
ε↓0

1

ε

[ ∫ T+ε

ε

f (p(τ )) dτ −
∫ T

0
f (p(t)) dt

]

= lim
ε↓0

1

ε

[ ∫ T+ε

T
f (p(t)) dt −

∫ ε

0
f (p(t)) dt

]
= f (p(T )) − f (p(0)).

(3)

On the other hand,

ϕ′+(0) = lim
ε↓0

∫ T

0

1

ε

[
f (p(t + ε)) − f (p(t))

]
dt . (4)

By the generalized differentiability of f (·), the differential quotient under the integral
can be expanded as follows:
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1

ε

[
f (p(t + ε)) dt − f (p(t))

]

= 1

ε

〈
g(p(t + ε)), p(t + ε) − p(t)

〉
+ 1

ε
o
(
p(t), p(t + ε), g(p(t + ε))

)
,

with lim
ε↓0

1

ε
o
(
p(t), p(t + ε), g(p(t + ε))

)
= 0. (5)

Since p(·) is differentiable in a generalized sense, it is locally Lipschitz continuous
[17, Thm. 1.1], hence absolutely continuous. Therefore, for almost all t , we have
1
ε

[
p(t + ε) − p(t)

] = •
p(t) + r(t, ε), with limε↓0 r(t, ε) = 0. Combining this with

(5), and using the local boundedness of generalized gradients, we obtain

1

ε

[
f (p(t + ε)) − f (p(t))

]
=

〈
g(p(t + ε)),

•
p(t)

〉
+ O(t, ε), (6)

with limε↓0 O(t, ε) = 0.By [17,Thm. 1.6] (Theorem3), the functionψ(t) = f (p(t))
is differentiable in a generalized sense as well, and

Gψ(t) =
{
〈g, h〉 : g ∈ G f (p(t)), h ∈ Gp(t)

}

is its generalized subdifferential. By virtue of [17, Cor. 1.5] (Theorem 5), any general-
ized subdifferential mapping Gψ(·) is single-valued except for a countable number of
points in [0, 1]. Since it is upper semicontinuous, it is continuous almost everywhere.
By [17, Thm. 1.12] (Theorem 4), almost everywhere Gp(t) = { •

p(t)}. Then for any
h(t + ε) ∈ Gp(t + ε) and for almost all t ,

lim
ε↓0

〈
g(p(t + ε)), h(t + ε)

〉
=

〈
g(p(t)),

•
p(t)

〉
.

Therefore, for almost all t ,

lim
ε↓0

〈
g(p(t + ε)),

•
p(t)

〉

=
〈
g(p(t)),

•
p(t)

〉
+ lim

ε↓0

〈
g(p(t + ε)),

•
p(t) − h(t + ε)

〉
=

〈
g(p(t)),

•
p(t)

〉
,

where the last equation follows from the local boundedness ofG f (·) and the continuity
of Gp(·) at the points of differentability. Thus, for almost all t , we can pass to the limit
in (6):

lim
ε↓0

1

ε

[
f (p(t + ε)) dt − f (p(t))

]
=

〈
g(p(t)),

•
p(t)

〉
.

We can now use the Lebesgue theorem and pass to the limit under the integral in (4):

ϕ′+(0) =
∫ T

0
lim
ε↓0

1

ε

[
f (p(t + ε)) dt − f (p(t))

]
dt =

∫ T

0

〈
g(p(t)),

•
p(t)

〉
dt .

Comparison with (3) yields (2). 
�
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3 The single time-scale method with subgradient averaging

We briefly recall from [21,22] a stochastic approximation algorithm for solving prob-
lem (1) where only random estimates of subgradients of f are available.

The method generates two random sequences: approximate solutions {xk} and
path-averaged stochastic subgradients {zk}, defined on a certain probability space
(Ω,F , P). We letFk to be the σ -algebra generated by {x0, . . . , xk, z0, . . . , zk}. We
assume that for each k, we can observe an Fk-measurable random vector gk ∈ Rn ,
such that, for some Fk-measurable vector rk , we have gk − rk ∈ G f (xk). Further
assumptions on the errors rk will be specified in Sect. 4.

The method proceeds for k = 0, 1, 2 . . . as follows (a > 0 and β > 0 are fixed
parameters). We compute

yk = argmin
y∈X

{
〈zk, y − xk〉 + β

2
‖y − xk‖2

}
, (7)

and, with anFk-measurable stepsize τk ∈
(
0,min(1, 1/a)

]
, we set

xk+1 = xk + τk(y
k − xk). (8)

Then we observe gk+1 at xk+1, and update the averaged stochastic subgradient as

zk+1 = (1 − aτk)z
k + aτkg

k+1. (9)

Convergence of the method was proved in [22] for weakly convex functions f (·).
Unfortunately, this class does not contain functions with downward cusps, which are
common in modern machine learning models (see Sect. 5).

4 Convergence analysis

We call a point x∗ ∈ Rn Clarke stationary of problem (1), if

0 ∈ ∂ f (x∗) + NX (x∗), (10)

where NX (x∗) denotes the normal cone to X at x∗. The set of Clarke stationary points
of problem (1) is denoted by X∗.

We start from a useful property of the gap function η : X × Rn → (−∞, 0],

η(x, z) = min
y∈X

{
〈z, y − x〉 + β

2
‖y − x‖2

}
. (11)

We denote the minimizer in (11) by ȳ(x, z). Since it is a projection of x − z/β on X ,
we observe that

〈z, ȳ(x, z) − x〉 + β‖ȳ(x, z) − x‖2 ≤ 0. (12)
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Moreover, a point x∗ ∈ X∗ if and only if g∗ ∈ ∂ f (x∗) exists such that η(x∗, g∗) = 0.
We analyze convergence of the algorithm (7)–(9) under the following conditions,

the first three of which are assumed to hold with probability 1:

(A1) All iterates xk belong to a compact set;

(A2) τk ∈
(
0,min(1, 1/a)

]
for all k, limk→∞ τk = 0,

∑∞
k=0 τk = ∞;

(A3) For all k, rk = ek + δk , with
∑∞

k=0 τkek convergent, and limk→∞ δk = 0;
(A4) The set { f (x) : x ∈ X∗} does not contain an interval of nonzero length.

Condition (A3) can be satisfied for a martingale
∑∞

k=0 τkek , but can also hold for
broad classes of dependent “noise” sequences {ek} [12]. Condition (A4) is true for
Whitney stratifiable functions [2, Cor. 5], but we need to assume it here.

We have the following elementary property of the sequence {zk}.
Lemma 1 Suppose the sequence {xk} is included in a set A ⊂ Rn and conditions (A2)
and (A3) are satisfied. Then

lim
k→∞ dist(zk, B) = 0, where B = conv

( ⋃
x∈A

∂ f (x)
)
.

Proof Using (A2), we define the quantities z̃k = zk + a
∑∞

j=k τ j e j and establish the
recursive relation

z̃k+1 = (1 − aτk)z̃
k + aτkg

k + τkΔk, k = 0, 1, 2, . . . ,

where gk ∈ B and Δk = aδk + a
∑∞

j=k τ j e j → 0 a.s.. The convexity of the distance
function and (A2) yield the result. 
�
Theorem 2 If assumptions (A1)–(A4) are satisfied, then, with probability 1, every
accumulation point x̂ of the sequence {xk} is Clarke stationary, and the sequence
{ f (xk)} is convergent.
Proof Due to (A1), by virtue of Lemma 1, the sequence {zk} is bounded. We divide
the proof into three standard steps.

Step 1: The Limiting Dynamical System. We define pk = (xk, zk), accumulated
stepsizes tk = ∑k−1

j=0 τ j , k = 0, 1, 2 . . . , and we construct the interpolated trajectory

P0(t) = pk + t − tk
τk

(pk+1 − pk), tk ≤ t ≤ tk+1, k = 0, 1, 2, . . . .

For an increasing sequence of positive numbers {sk} diverging to∞, we define shifted

trajectories Pk(t) = P0(t + sk). Recall that Pk(t) =
(
Xk(t), Zk(t)

)
.

By [15, Thm. 3.2], for any increasing sequence {nk} of positive integers, there exist
a subsequence {ñk} and absolutely continuous functions X∞ : [0,+∞) → X and
Z∞ : [0,+∞) → Rn such that for any T > 0

lim
k→∞ sup

t∈[0,T ]

(∥∥∥Xñk (t) − X∞(t)
∥∥∥ +

∥∥∥Zñk (t) − Z∞(t)
∥∥∥
)

= 0,
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and (X∞(·), Z∞(·)) is a solution of the system of differential equations and inclusions:

•
x(t) = ȳ

(
x(t), z(t)

)
− x(t), (13)

•
z(t) ∈ a

(
∂ f (x(t)) − z(t)

)
. (14)

Moreover, for any t ≥ 0, the pair (X∞(t), Z∞(t)) is an accumulation point of the
sequence {(xk, zk)}.

Step 2: Descent Along a Path. We use the Lyapunov function

W (x, z) = a f (x) − η(x, z).

For any solution (X(t), Z(t)) of the system (13)–(14), and for any T > 0, we esti-
mate the differenceW (X(T ), Z(T ))−W (X(0), Z(0)). We splitW (X(·), Z(·)) into a
generalized differentiable composition f (X(·)) and the “classical” part η(X(·), Z(·)).

Since the path X(·) satisfies (13) and ȳ(·, ·) is continuous, X(·) is continuously dif-
ferentiable. Thus, we can use Theorem 1 to conclude that for any g(X(·)) ∈ ∂ f (X(·))

f (X(T )) − f (X(0)) =
∫ T

0

〈
g(X(t)),

•
X(t)

〉
dt

=
∫ T

0

〈
g(X(t)), ȳ(X(t), Z(t)) − X(t)

〉
dt . (15)

On the other hand, since ȳ(x, z) is unique, the function η(·, ·) is continuously differ-
entiable. Therefore, the chain formula holds for it as well:

η(X(T ), Z(T )) − η(X(0), Z(0))

=
∫ T

0

〈
∇xη(X(t), Z(t)),

•
X(t)

〉
dt +

∫ T

0

〈
∇zη(X(t), Z(t)),

•
Z(t)

〉
dt .

Substituting ∇xη(x, z) = −z + β(x − ȳ(x, z)), ∇zη(x, z) = ȳ(x, z) − x and
•
Z(t) =

a
(
ĝ(X(t)) − Z(t)

)
with some ĝ(X(·)) ∈ ∂ f (X(·)), and using (12) we obtain

η(X(T ), Z(T )) − η(X(0), Z(0))

=
∫ T

0

〈
− Z(t) + β(X(t) − ȳ(X(t), Z(t))) , ȳ(X(t), Z(t)) − X(t)

〉
dt

+ a
∫ T

0

〈
ȳ(X(t), Z(t)) − X(t) , ĝ(X(t)) − Z(t)

〉
dt

≥ a
∫ T

0

〈
ȳ(X(t), Z(t)) − X(t) , ĝ(X(t)) − Z(t)

〉
dt

≥ a
∫ T

0

〈
ȳ(X(t), Z(t)) − X(t) , ĝ(X(t))

〉
dt + aβ

∫ T

0

∥∥∥ȳ(X(t), Z(t)) − X(t)
∥∥∥2 dt .
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We substitute the subgradient selector g(X(t)) = ĝ(X(t)) into (15) and combine it
with the last inequality, concluding that

W (X(T ), Z(T )) − W (X(0), Z(0))

≤ −aβ

∫ T

0

∥∥∥ȳ(X(t), Z(t)) − X(t)
∥∥∥2 dt = −aβ

∫ T

0

∥∥∥ •
X(t)

∥∥∥2 dt . (16)

Step 3: Analysis of limit pointsDefine the setS =
{
(x, z) ∈ X∗×Rn : η(x, z) = 0

}
.

Suppose (x̄, z̄) is an accumulation point of the sequence {(xk, zk)}. If η(x̄, z̄) < 0,
then every solution (X(t), Z(t)) of the system (13)–(14), starting from (X(0), Z(0)) =
(x̄, z̄) has

•
X(0) �= 0. Using (16) and arguing as in [10, Thm. 3.20] or [15, Thm. 3.5],

we obtain a contradiction. Therefore, we must have η(x̄, z̄) = 0. Suppose x̄ /∈ X∗.
Then

dist
(
0, ∂ f (x̄) + NX (x̄)

)
> 0. (17)

Suppose X(t) = x̄ for all t ≥ 0. The inclusion (14) simplifies:
•
z(t) ∈ a

(
∂ f (x̄)−z(t)

)
.

By using the convex Lyapunov function V (z) = dist
(
z, ∂ f (x̄)

)
and applying the

classical chain formula on the path Z(·) [4], we deduce that

lim
t→∞ dist

(
Z(t), ∂ f (x̄)

)
= 0. (18)

It follows from (17)–(18) that T > 0 exists, such that −Z(T ) /∈ NX (x̄), which yields
•
X(T ) �= 0. Consequently, the path X(t) starting from x̄ cannot be constant. But then

again T > 0 exists, such that
•
X(T ) �= 0. By Step 1, the pair (X(T ), Z(T ))would have

to be an accumulation point of of the sequence {(xk, zk)}, a case already excluded.
We conclude that every accumulation point (x̄, z̄) of the sequence {(xk, zk)} is inS .
The convergence of the sequence

{
W (xk, zk)

}
then follows in the same way as [10,

Thm. 3.20] or [15, Thm. 3.5]. As η(xk, zk) → 0, the convergence of { f (xk)} follows
as well. 
�
Directly from Lemma 1 we obtain convergence of averaged stochastic subgradients.

Corollary 1 If the sequence {xk} is convergent to a single point x̄ , then every accumu-
lation point of {zk} is an element of ∂ f (x̄).

5 Example

A Rectified Linear Unit (ReLU) neural network [18] predicts a random outcome Y ∈
Rm from random features X ∈ Rn by a nonconvex nonsmooth function y(X ,W ),
defined recursively as follows:

s1 = X , s
+1 = (W
s
)+, 
 = 1, 2, . . . , L − 1, y(X ,W ) = WLsL ,
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Fig. 1 Comparison of methods with (lower graph) and without averaging (upper graph)

where (v)+ = max(0, v), componentwise.Thedecisionvariables areW1, . . . ,WL−1 ∈
Rn×n and WL ∈ Rm×n . The simplest training problem is:

min
W∈W

f (W )
�= 1

2
E

[
‖y(X ,W ) − Y‖2

]
, (19)

where W is a box about 0. The function f (W ) is not subdifferentially regular. It is
not Whitney stratifiable, in general, because this property is not preserved under the
expected value operator. However, we can use Theorems 3 and 6 to verify that it is
differentiable in a generalized sense, and to calculate its stochastic subgradients. For a
random data point (Xk,Y k) we subdifferentiate the function under the expected value
in (19) by recursive application of Theorem 3. In particular, for L = 2 and m = 1 we
have y(X ,W ) = W2(W1X)+, and

gk =
(
y(Xk,Wk) − Y k

) [
Dk(Wk

2 )T (Xk)T (Wk
1 X

k)T+
]
.

Here, Dk is a diagonal matrix with 1 on position (i, i), if (Wk
1 X

k)i > 0, and 0
otherwise. A typical run of the stochastic subgradient method and the method with
direction averaging is shown in Fig. 1, on an example of predicting wine quality [6],
with identical random starting points, sequences of observations, and schedules of
stepsizes: τk = 0.03/(1+ 5k/N ), where N = 500, 000. The coefficient a = 0.1. For
comparison, the loss of a linear regression model is 666.

Acknowledgements This publication was supported by the NSF Award DMS-1907522.

123



A. Ruszczyński

Appendix A Generalized differentiability of functions

Compositions of generalized differentiable functions are crucial in our analysis.

Theorem 3 [17, Thm. 1.6] If h : Rm → R and fi : Rn → R, i = 1, . . . ,m, are dif-

ferentiable in a generalized sense, then the compositionψ(x) = h
(
f1(x), . . . , fm(x)

)
is differentiable in a generalized sense, and at any point x ∈ Rn we can define the
generalized subdifferential of ψ as follows:

Gψ(x) = conv
{
g ∈ Rn : g = [

g1 · · · gm
]
g0,

with g0 ∈ Gh

(
f1(x), . . . , fm(x)

)
and g j ∈ G f j (x), j = 1, . . . ,m

}
.

(20)

Even if we take Gh(·) = ∂h(·) and G f j (·) = ∂ f j (·), j = 1, . . . ,m, we may obtain
Gψ(·) �= ∂ψ(·), but Gψ defined above satisfies Definition 1.

Theorem 4 [17, Thm. 1.12] If f : Rn → R is differentiable in a generalized sense,
then for almost all x ∈ Rn we have G f (x) = {∇ f (x)}.
Functions of one variable have the following remarkable property.

Theorem 5 [17, Cor. 1.5] If f : R → R is differentiable in a generalized sense, then
the set of points x at which a generalized subdifferential G f (x) is not a singleton is
at most countable.

For stochastic optimization, essential is the closure of the class functions differen-
tiable in a generalized sense with respect to expectation.

Theorem 6 [17, Thm. 23.1] Suppose (Ω,F , P) is a probability space and a function
f : Rn × Ω → R is differentiable in a generalized sense with respect to x for all
ω ∈ Ω , and integrable with respect to ω for all x ∈ Rn. Let G f : Rn × Ω ⇒ Rn

be a multifunction, which is measurable with respect to ω for all x ∈ Rn, and
which is a generalized subdifferential mapping of f (·, ω) for all ω ∈ Ω . If for
every compact set K ⊂ Rn an integrable function LK : Ω → R exists, such that
supx∈K supg∈G f (x,ω) ‖g‖ ≤ LK (ω), ω ∈ Ω , then the function

F(x) =
∫

Ω

f (x, ω) P(dω), x ∈ Rn,

is differentiable in a generalized sense, and the multifunction

GF (x) =
∫

Ω

G f (x, ω) P(dω), x ∈ Rn,

is its generalized subdifferential mapping.
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