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Abstract—Workflow reconstruction through logs is crucial for
troubleshooting targeted distributed systems. It is also challeng-
ing to extract enough information from logs and keep a concise
view, which makes manual log analysis hard to practice. However,
currently popular tools rely on identifier-based log parsing,
leaving a large amount of workflow information unexploited.

In this paper, we propose a log extraction approach NLog,
which utilizes a natural language processing based approach to
obtain the key information from log messages and identify the
same object in logs generated by different statements without
any domain knowledge. We propose to use keyed message, a new
log storage structure to store the parsed logs. We implement
NLog and apply it to distributed data analytics frameworks
Spark and MapReduce. Evaluation results show that NLog can
accurately identify the objects in log messages even without
explicit identifiers. By using keyed messages, users can have a
concise as well as flexible view of the workflows.

Index Terms—Distributed Systems, Profiling, Information Ex-
traction, Troubleshooting

I. INTRODUCTION

Logs generated by distributed systems contain rich infor-
mation including operations done by objects, the amount of
processed data, system events, warnings, errors and etc. Ef-
fectively extracting and presenting information from raw logs
helps users to boost the process of understanding workflows,
detecting anomalies and troubleshooting the targeted systems.

Due to the unstructured nature of raw logs, how to ef-
fectively utilize raw logs is an important problem. Spell [1]
shows that logs can be used to infer the corresponding log
statements in the source code so as to group log messages
generated by the same statement. Stitch and Iprof [2], [3]
focus on reconstructing system workflows from raw logs
to accelerate manual log analysis. For automatic anomaly
detection, a number of studies apply machine learning methods
to logs [4], [5], [6], [7], [8], [9], [10]. However, extracting and
reconstructing logs of distributed systems are challenging tasks
because of the following two reasons:

« Profiling one log message: one log message usually
consists of multiple fields, such as timestamps, identifiers,
events. To extract information from a log message, the
profiling tool needs to distinguish the fields and their
meaning in one log message.

Profiling multiple log messages: multiple log messages
can record the same kind of objects performing various
operations. For example, three log messages may record
the same task. The first one indicates the start mark of the
task. The second one indicates the task is running, and the
last one indicates the end mark of the task. It is even more
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TABLE I
LINES AND PERCENTAGES OF NATURAL LANGUAGE (NL) LOGS IN THREE
FRAMEWORKS, RESPECTIVELY.

Platform NL logs total logs % of NL logs
Yarn 84652 88628 99.5%
Spark 106686 106686 100%

MapReduce 85752 92648 92.6%

average - - 97.4%

challenging if the object is not tagged with any identifier.
An effective profiling tool needs to identify the same kind
of objects that appear in different log messages.

There is a study that focuses on leveraging identifiers to
reconstruct a hierarchical view of the workflow [2]. However,
there is no work identifying the same kind of objects or events
that are not tagged with any identifier, which leaves a large
amount of recorded information unexploited. Furthermore, the
prevalent identifier-recognition based approaches are unable
to extract the exact events in the log messages. For example,
following is a simplified log message generated by Spark:
"Task 39 force spilling in-memory map to disk
and it will release 159.6 MB memory". Both Spell
and Stitch [2], [1] can identify that this is a log message
concerning Task 39, but they cannot recognize the
spilling event.

We propose NLog, a log analysis tool that targets on
distributed data analytics systems. It is inspired by the original
goal of system logs: logs are for users to read. In other
words, logs are usually written in natural languages by system
designers. To show this fact, we inspect about 20 MB log
files with over 100,000 log messages generated by Spark [11],
Yarn [12] and Hadoop MapReduce [13], respectively. We
convert the log messages to their corresponding message
types by Spell [1] and manually inspect whether the resulting
message types are written in natural language. The results in
Table I show that on average 97.4% of the logs are written in
natural languages. The rest logs are mainly about the status of
applications and clusters.

In this paper, we propose and develop NLog to extract
objects in logs and present them to users in a uniformed
format called keyed message. Our main contributions lie in
the following aspects:

First, we propose a natural language processing (NLP) based
approach to identify the objects and events even without any
identifiers in logs. Since most logs are written in natural
languages, the part of speech of each word in a log message
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Fig. 1. Overview of the parsing process by NLog.
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can be used to distinguish objects and tell the operations done
by the objects. We further apply a sorting strategy to increase
the accuracy of object identification. The NLP procedure takes
sample log files as input. It is a one-time off-line procedure
for each targeted system. Results are rules that can be utilized
to transform raw log messages to keyed message at runtime.

Second, we propose to use keyed message, a uniformed log
storage structure, to store processed logs. A keyed message
is a key-value like tuple but it contains more fields. Database
operations such as Count, Sum and GroupBy can be easily ap-
plied to keyed messages to help users understand the targeted
systems.

We implement NLog and apply it to distributed data analyt-
ics frameworks Spark [14] and MapReduce [13] on Apache
Yarn [12]. Evaluation results show that it can help users to
effectively reconstruct the workflows of the targeted systems.
By applying database operations, keyed messages provide the
flexibility for users to get both a coarse- and fine-grained view
of the workflows.

II. LOG MESSAGE PARSING

In NLog, log parsing is divided into three steps: 1) iden-
tifying the corresponding message type of each log message,
2) extracting the key objects in log messages, and 3) finding
the identifiers that uniquely distinguish key objects from each
other and the numeric values in log messages. Step 1 is
considered to be a solved problem. In Steps 2 and 3, we
use NLP-based approaches. Finally, the parsing results can
be directly used to construct keyed message [15]. Figure 1
depicts the overview of the parsing process.

Step 1 We apply the definition of message type from
Spell [1]: each log message can be mapped to a message type,
and each message type has a one-to-one relationship to the log
printing statement in the source code. We utilize Spell [1] to
find the corresponding message types of logs messages.

Step 2 We introduce an NLP-based approach to identify
the objects recorded in each log message concerning the
workflows. Our intuition is that if an object is concerning
the workflow of an application, it may repeatedly appear in
log files and it is usually recorded in multiple message types.
For example, task may appear in multiple log messages that
indicate the events about the task. Thus, we regard task as a
key object. However, since a message type consists of multiple
words, it is challenging to determine which of them actually
contains the key object without knowing the literal meaning
of the words. In the following, we describe our NLP-based
approach.
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Step 2.1 POS analysis In order to identify the key objects
in message types, we apply part-of-speech analysis (POS
analysis) on each log type. We use the tool OpenNLP [16]
to tag each word with its part-of-speech in the context within
a log type.

Step 2.2 Key identification Taking the training log files
as the input, we infer the part-of-speech of each word in a
log message from the corresponding tagged message type.
In order to identify the key objects, we have to decide the
importance of the words. Most of objects are recorded as noun
in log messages, which indicates that noun words have a higher
priority than words of other kinds of part-of-speech.

First, we extract all the noun words appearing in the training
log files but filter out all the other words. In this step, we
only consider the static words in log messages but ignore the
variables. After extracting all the nouns, we further lemmatize
each noun to its singular form.

Second, we calculate the frequency of each noun word. The
result shows that words concerning the key objects usually
have higher frequencies (10X ~ 1000X) than other words have.
We sort the result in descending order and take the top «
percent of the words as the candidate keys. A key indicates
the key information recorded in a log message.

Finally, we assign message types with keys. In this step,
we iterate through the sorted candidate keys and assign a key
to the message type if the key appears as a noun in it. Since
a message type can indicate multiple objects or events, it is
necessary to allow assigning multiple keys to one message
type. However, a log type assigned with too many keys may
confuse the users in manual analysis, since the users are hard
to tell which are most important objects. In our design, we
allow as many as four keys to be assigned to one message
type. We discard a message type if it is not assigned with any
key after the iteration.

Step 3 Identifiers can be recorded as either words (e.g. user
name) or numbers (e.g. task id). The numeric identifiers are
hard to be distinguished from values in log messages. Previous
work [2] requires users’ efforts to specify the identifiers in log
messages. In our design, we also utilize a NLP-based approach
to identify numeric identifiers and numeric values.

Identifier In Step 2, we mark all the noun words in log
messages. In our design, if a numeric identifier follows a noun
word, we treat the numeric number and the noun word as an
identifier and its referring object, respectively. We manually
identify the total number of numeric fields and the number
of actual id fields from all message types, and compare the
results to the identifiers found by NLog. Table II shows the
results of accuracy of identifier recognition by NLog.

Value Numeric values that are not identifiers are all re-
garded as values. Furthermore, the values in log messages
usually indicate the amount of processed data or the elapsed
time of operations. Such values are usually followed by units
such as kb or ms.

To put it all together, we use a log message from Hadoop
MapReduce to illustrate the parsing process of NLog step by
step, as shown in Figure 2.



TABLE II
THE ACCURACY OF NLog IDENTIFIER RECOGNITION. TP, FP, TN AND FN
STAND FOR ‘TRUE POSITIVE’, ‘FALSE POSITIVE’, ‘TRUE NEGATIVE’ AND
‘FALSE NEGATIVE’, RESPECTIVELY

Total # of # of actual TP FP TN FN
numeric fields id fields
112 42 36 4 70 6

TABLE IV
ACCURACY OF KEY IDENTIFICATION IN DIFFERENT FRAMEWORKS. THE
TOTAL COLUMN SHOWS THE TOTAL NUMBER OF MESSAGE TYPES OF
EACH FRAMEWORK. THE CORRECT COLUMN SHOWS THE MESSAGE
TYPES THAT ARE ASSOCIATED WITH CORRECT KEYS.

Platform Total Correct Accuracy
Yarn 115 99 85.3%
Spark 34 32 94.1%
MapReduce 92 86 93.5%

[

Raw log fetcher 4 about to shuffle output of map
attempt_1 decomp: 1965 len: 1969 to MEMORY

Step 1 fetcher about to shuffle output of map *

decomp: * len: * to MEMORY
Step 2.1 fetcher NN 4_CD about_IN to_TO shuffle VB
POS. output_ NN of IN map NN attempt_ 1 NN decomp_ NN:
1965 CD len NN: 1969 CD to_TO MEMORY NNP
Step 2.2 Decide the key based on the filtering policy
Key Key: Fetcher

Id:
Value:

Step 3 {Fetcher, Attempt}
Id & Key {1965, 1969}
Fig. 2. An example of step-by-step parsing process on a log message by

NLog.

III. KEYED MESSAGE

Once we have identified the keys of a log message and
extracted the values and identifiers, we use them to construct
keyed messages, a uniformed log storage structure. Users can
reconstruct the workflow by applying database operations on
the keyed messages.

A keyed message consists of four fields in order to describe
a raw log message. Table III shows the four fields in a keyed
message.

Key objects represent the objects or events in a log message.
As described in Section II, a message type can be assigned
with multiple keys. A log message can be transformed to as
many keyed messages as the number of keys assigned to its
corresponding message type.

Identifiers are used to uniquely identify the objects or
eventsin a message.

Value stores a numeric value recorded in a log message if
applicable. It is common that a log message contains a numeric
value that usually indicates the amount of processed data or
elapsed time.

TABLE III
DESCRIPTION OF FIELDS IN A KEYED MESSAGE.
Field Description
key objects the key objects in the message
identifiers to identify the object
values a list of numeric variables to store the
value in the log message
timestamp the timestamp in the log message
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Timestamp is extracted from the timestamp field of one log
message.

Taking the advantage of keyed messages, operations such as
Groupby, Count and Sum can be easily applied for workflow
reconstruction. The procedure is shown in Section IV.

IV. IMPLEMENTATION AND EVALUATION

We implement NLog tool with about 2,000 lines of Java
code and 100 lines of Python code. Its part-of-speech analysis
and lemmatization are implemented by using OpenNLP [16], a
natural language processing framework based on the principle
of maximum entropy. We evaluate NLog using logs generated
by Yarn [12], a popular container-based resource alloca-
tion framework in data-parallel clusters, and Spark [14] and
MapReduce [13], two prevalent BigData application frame-
works. In the implementation, we assign the corresponding
application ids and the container ids to keyed messages. We
use OpenTSDB [17] as the time series database and figure
plotting tool.

The log files are generated by the applications on a 25-node
cluster managed by Yarn. Each node is installed with Ubuntu
Server 16.04 and has four Intel Xeon E5-2640 v3 CPUs, 132
GB RAM. The cluster is connected by 10 Gbps Ethernet. In
experiments, we run Spark-2.1.0 and Hadoop MapReduce on
Hadoop-3.0.0-alpha. The total amount of the log files is about
2 GB. For each framework (Yarn, Spark and MapReduce),
we randomly select 20 MB log files to conduct the object
identification and parsing process.

We evaluate NLog by answering the following two ques-
tions: 1) How accurate do keys reflect the contents of the log
messages? 2) How can keyed messages be used to reconstruct
the workflow?

A. Accuracy

After the object identification process, message types are
either assigned with keys or discarded. We evaluate the ac-
curacy by presenting two metrics: 1) the number of message
types assigned with keys, and 2) among the message types
assigned with keys, the number of message types in which
keys actually tell the objects or events recorded. Following the
key assignment approach, an assigned key always appears in
the corresponding message type. However, these keys might
be words that have too general meanings, such as event
or service. We categorize a message type as inaccurate,
1) if all of its keys have too general meanings for users to
understand, or 2) if all of its keys do not include the key
objects in the log message.



Related message types:

Ql: key: task 1. Got assigned task *
aggregator: count 2. Running task * in stage * (TID *)
3. Task * force spilling in-memory map to
Q2: key: task disk and it will release * memory
aggregator: count 4. Finished task * in stage * (TID *)
groupBy: container 5. Executor killed task * in stage * (TID *)
(a) Queries and related message types about tasks.
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(c) Number of tasks in each container.

Fig. 3. Queries, message types, and query results of Spark task objects.

We use Yarn, Spark and MapReduce as the targeted systems.
Table IV shows the accuracy results. The accuracy of NLog in
Yarn is lower than that in the other two systems. The reason is
that a Yarn message type is usually written in a fashion of long
sentence that records many objects. In such a case, NLog has
more chances to assign inaccurate keys to a message type. To
increase the accuracy, one solution is to increase the number
of keys that can be assigned to a message type. However, the
trade-off is that a message type may have too many keys such
that it may confuse users during manual analysis since users
have difficulty in knowing the actually important information.
In contrary, the logs of Spark and Hadoop MapReduce are
written in short sentences, each of which contains limited
number of objects. Thus, NLog can more accurately identify
the objects in logs.

B. Queries on Keyed Message

In this experiment, we use two case studies, one with a
Spark application and the other with a MapReduce application,
to demonstrate the efficacy of keyed messages.

We run a Spark TPC-H application configured with three
containers. By applying database operations on keyed mes-
sages, users can flexibly inspect the tasks during the execution.
For the ease of presentation, we down sample all queries into
one-second granularity. The queries and related message types
are shown in Figure 3(a). Figure 3(b) shows that using query
QI, users can have a coarse-grained view of the workflow in
terms of the number of running tasks during the execution.
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Related message types:
Fetcher* about to shuffle
* len: *

03: key: fetcher
aggregator: sum 1.
identifier: {value=len} output of * decamp:

groupBy: container to MEMORY

(a) Queries and related message types about fetchers.
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(b) Data fetched by each container.

Fig. 4.
objects.

Queries, message types, and query results of MapReduce fetcher

In this figure, we find that the number of concurrently
running tasks varies significantly from time to time during
execution. After getting the overview of the number of tasks,
users can further drill down and inspect the number of tasks in
each container using query Q2 in Figure 3(a), which provides
a fine-grained view of the workflow. Results are shown in
Figure 3(c).

In this figure, we find that the number of tasks in different
containers also varies significantly. From the 3" second to the
6" second, container_02 and container_04 receive much more
tasks than container_03 does. From the 8¢ second to the end
of the application, however, container_02 does not receive any
task. In practice, we find that the uneven distribution of tasks
in containers is actually caused by a bug in Spark scheduler.
Due to the limitation of space, we omit the details of how we
find the bug and its root cause.

We also run a MapReduce wordcount application that is
configured with 16 map tasks and 8 reduce tasks. During the
reduce phase, the reduce tasks need to fetch the intermediate
results. The amount of the fetched data is recorded in logs.
NLog is capable to extract such events and the amount of the
processed data. Query Q3 in Figure 4(a) obtains the amount
of fetched intermediate data at each moment of execution. The
results are shown in Figure 4(b).

The amount of fetched data is closely related to the network
usage of a container. Such information helps users diagnose
network interference in the cluster.

V. DISCUSSIONS AND LIMITATIONS

A major advantage of NLog is that it does not require the
domain knowledge of the targeted system. The only constraint
is that logs of the targeted systems must be written in a
natural language. The effectiveness of NLog depends on the
quality of log messages. In practice, we found that NLog
has higher accuracy if a targeted system generates the log
messages in a fine-grained manner where each log message
only contains one object or event and its corresponding



information such as identifiers, amount of processed data, etc.
Otherwise, the key assignment process may reduce accuracy
of key identification process, because there are more objects
in the log message than the maximum number of keys of a
message type. Increasing the maximum number of keys helps
capture the information in a log message, but can also mislead
users away from the key information. In the experiments, we
show that applying simple NLP based approaches can achieve
high accuracy in identifying the key object in log messages.
Currently, NLog targets log messages in English. The same
idea can be extended to other languages by leveraging the
corresponding POS taggers.

One drawback of NLog is that it only considers noun words
in log messages, while some operations are not recorded as
noun words. For example, words such as Abort, Timeout
that explicitly indicate anomalies are common in log messages.
We argue that users can use pattern matching to extract these
specific words. In the future work, we aim to extend NLog to
identify the importance of words that are not noun.

VI. RELATED WORK

There are extensive studies on log analysis. Applying learn-
ing methods on logs generated by the targeted system is a
hot topic [5], [18], [19], [7], [6], [20], [9], [21]. The goal
of learning approaches is to automatically report potential
anomalies to users, which reduces efforts required for users
to do manual analysis. One approach [7] extracts fields in log
messages by inferring the source code, and applies Principle
Component Analysis to detect the anomalies.

Studies [4], [3], [2], [22], [23], [24], [25], [15], [26] focus
on using logs to reconstruct the workflow. Our work also falls
into this category. By leveraging the reconstructed workflow,
users can have a clear view of the system components that
serve user requests. Iprof [3] performs source code analysis
to infer the relationship between log printing statements. By
using such information, it can identify interleaved logs and
associates them to requests. A recent work [2] reconstructs the
workflow by identifying the hierarchical relationship between
object identifiers. However, it requires the logs to follow
certain constraints to guarantee the accuracy.

VII. CONCLUSION AND FUTURE WORK

This paper presents a NLP-based approach, NLog, that iden-
tifies the key objects in logs. It proposes to use keyed message,
a uniformed structure to store information in raw logs. By
applying database operations, users can easily reconstruct the
workflow. It also provides the flexibility for users to view
the workflow in either coarse-grained or fine-grained level.
Experiments show that the NLP-based approach has the ability
to accurately identify the key information in logs.

In the future, we plan to use more sophisticated NLP-based
approaches to extract more fine-grained information from logs
generated by distributed data analytics systems.
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