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Abstract—Workflow reconstruction through logs is crucial for
troubleshooting targeted distributed systems. It is also challeng-
ing to extract enough information from logs and keep a concise
view, which makes manual log analysis hard to practice. However,
currently popular tools rely on identifier-based log parsing,
leaving a large amount of workflow information unexploited.

In this paper, we propose a log extraction approach NLog,
which utilizes a natural language processing based approach to
obtain the key information from log messages and identify the
same object in logs generated by different statements without
any domain knowledge. We propose to use keyed message, a new
log storage structure to store the parsed logs. We implement
NLog and apply it to distributed data analytics frameworks
Spark and MapReduce. Evaluation results show that NLog can
accurately identify the objects in log messages even without
explicit identifiers. By using keyed messages, users can have a
concise as well as flexible view of the workflows.

Index Terms—Distributed Systems, Profiling, Information Ex-
traction, Troubleshooting

I. INTRODUCTION

Logs generated by distributed systems contain rich infor-

mation including operations done by objects, the amount of

processed data, system events, warnings, errors and etc. Ef-

fectively extracting and presenting information from raw logs

helps users to boost the process of understanding workflows,

detecting anomalies and troubleshooting the targeted systems.

Due to the unstructured nature of raw logs, how to ef-

fectively utilize raw logs is an important problem. Spell [1]

shows that logs can be used to infer the corresponding log

statements in the source code so as to group log messages

generated by the same statement. Stitch and Iprof [2], [3]

focus on reconstructing system workflows from raw logs

to accelerate manual log analysis. For automatic anomaly

detection, a number of studies apply machine learning methods

to logs [4], [5], [6], [7], [8], [9], [10]. However, extracting and

reconstructing logs of distributed systems are challenging tasks

because of the following two reasons:

• Profiling one log message: one log message usually

consists of multiple fields, such as timestamps, identifiers,

events. To extract information from a log message, the

profiling tool needs to distinguish the fields and their

meaning in one log message.

• Profiling multiple log messages: multiple log messages

can record the same kind of objects performing various

operations. For example, three log messages may record

the same task. The first one indicates the start mark of the

task. The second one indicates the task is running, and the

last one indicates the end mark of the task. It is even more

TABLE I
LINES AND PERCENTAGES OF NATURAL LANGUAGE (NL) LOGS IN THREE

FRAMEWORKS, RESPECTIVELY.

Platform NL logs total logs % of NL logs
Yarn 84652 88628 99.5%
Spark 106686 106686 100%

MapReduce 85752 92648 92.6%
average - - 97.4%

challenging if the object is not tagged with any identifier.

An effective profiling tool needs to identify the same kind

of objects that appear in different log messages.

There is a study that focuses on leveraging identifiers to

reconstruct a hierarchical view of the workflow [2]. However,

there is no work identifying the same kind of objects or events

that are not tagged with any identifier, which leaves a large

amount of recorded information unexploited. Furthermore, the

prevalent identifier-recognition based approaches are unable

to extract the exact events in the log messages. For example,

following is a simplified log message generated by Spark:

"Task 39 force spilling in-memory map to disk

and it will release 159.6 MB memory". Both Spell

and Stitch [2], [1] can identify that this is a log message

concerning Task 39, but they cannot recognize the

spilling event.

We propose NLog, a log analysis tool that targets on

distributed data analytics systems. It is inspired by the original

goal of system logs: logs are for users to read. In other

words, logs are usually written in natural languages by system

designers. To show this fact, we inspect about 20 MB log

files with over 100,000 log messages generated by Spark [11],

Yarn [12] and Hadoop MapReduce [13], respectively. We

convert the log messages to their corresponding message

types by Spell [1] and manually inspect whether the resulting

message types are written in natural language. The results in

Table I show that on average 97.4% of the logs are written in

natural languages. The rest logs are mainly about the status of

applications and clusters.

In this paper, we propose and develop NLog to extract

objects in logs and present them to users in a uniformed

format called keyed message. Our main contributions lie in

the following aspects:

First, we propose a natural language processing (NLP) based

approach to identify the objects and events even without any

identifiers in logs. Since most logs are written in natural

languages, the part of speech of each word in a log message

446

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00084



Fig. 1. Overview of the parsing process by NLog.

can be used to distinguish objects and tell the operations done

by the objects. We further apply a sorting strategy to increase

the accuracy of object identification. The NLP procedure takes

sample log files as input. It is a one-time off-line procedure

for each targeted system. Results are rules that can be utilized

to transform raw log messages to keyed message at runtime.

Second, we propose to use keyed message, a uniformed log

storage structure, to store processed logs. A keyed message

is a key-value like tuple but it contains more fields. Database

operations such as Count, Sum and GroupBy can be easily ap-

plied to keyed messages to help users understand the targeted

systems.

We implement NLog and apply it to distributed data analyt-

ics frameworks Spark [14] and MapReduce [13] on Apache

Yarn [12]. Evaluation results show that it can help users to

effectively reconstruct the workflows of the targeted systems.

By applying database operations, keyed messages provide the

flexibility for users to get both a coarse- and fine-grained view

of the workflows.

II. LOG MESSAGE PARSING

In NLog, log parsing is divided into three steps: 1) iden-

tifying the corresponding message type of each log message,

2) extracting the key objects in log messages, and 3) finding

the identifiers that uniquely distinguish key objects from each

other and the numeric values in log messages. Step 1 is

considered to be a solved problem. In Steps 2 and 3, we

use NLP-based approaches. Finally, the parsing results can

be directly used to construct keyed message [15]. Figure 1

depicts the overview of the parsing process.

Step 1 We apply the definition of message type from

Spell [1]: each log message can be mapped to a message type,

and each message type has a one-to-one relationship to the log

printing statement in the source code. We utilize Spell [1] to

find the corresponding message types of logs messages.

Step 2 We introduce an NLP-based approach to identify

the objects recorded in each log message concerning the

workflows. Our intuition is that if an object is concerning

the workflow of an application, it may repeatedly appear in

log files and it is usually recorded in multiple message types.

For example, task may appear in multiple log messages that

indicate the events about the task. Thus, we regard task as a

key object. However, since a message type consists of multiple

words, it is challenging to determine which of them actually

contains the key object without knowing the literal meaning

of the words. In the following, we describe our NLP-based

approach.

Step 2.1 POS analysis In order to identify the key objects

in message types, we apply part-of-speech analysis (POS

analysis) on each log type. We use the tool OpenNLP [16]

to tag each word with its part-of-speech in the context within

a log type.

Step 2.2 Key identification Taking the training log files

as the input, we infer the part-of-speech of each word in a

log message from the corresponding tagged message type.

In order to identify the key objects, we have to decide the

importance of the words. Most of objects are recorded as noun

in log messages, which indicates that noun words have a higher

priority than words of other kinds of part-of-speech.

First, we extract all the noun words appearing in the training

log files but filter out all the other words. In this step, we

only consider the static words in log messages but ignore the

variables. After extracting all the nouns, we further lemmatize

each noun to its singular form.

Second, we calculate the frequency of each noun word. The

result shows that words concerning the key objects usually

have higher frequencies (10X ˜ 1000X) than other words have.

We sort the result in descending order and take the top α
percent of the words as the candidate keys. A key indicates

the key information recorded in a log message.

Finally, we assign message types with keys. In this step,

we iterate through the sorted candidate keys and assign a key

to the message type if the key appears as a noun in it. Since

a message type can indicate multiple objects or events, it is

necessary to allow assigning multiple keys to one message

type. However, a log type assigned with too many keys may

confuse the users in manual analysis, since the users are hard

to tell which are most important objects. In our design, we

allow as many as four keys to be assigned to one message

type. We discard a message type if it is not assigned with any

key after the iteration.

Step 3 Identifiers can be recorded as either words (e.g. user

name) or numbers (e.g. task id). The numeric identifiers are

hard to be distinguished from values in log messages. Previous

work [2] requires users’ efforts to specify the identifiers in log

messages. In our design, we also utilize a NLP-based approach

to identify numeric identifiers and numeric values.

Identifier In Step 2, we mark all the noun words in log

messages. In our design, if a numeric identifier follows a noun

word, we treat the numeric number and the noun word as an

identifier and its referring object, respectively. We manually

identify the total number of numeric fields and the number

of actual id fields from all message types, and compare the

results to the identifiers found by NLog. Table II shows the

results of accuracy of identifier recognition by NLog.

Value Numeric values that are not identifiers are all re-

garded as values. Furthermore, the values in log messages

usually indicate the amount of processed data or the elapsed

time of operations. Such values are usually followed by units

such as kb or ms.

To put it all together, we use a log message from Hadoop

MapReduce to illustrate the parsing process of NLog step by

step, as shown in Figure 2.
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TABLE II
THE ACCURACY OF NLog IDENTIFIER RECOGNITION. TP, FP, TN AND FN
STAND FOR ‘TRUE POSITIVE’, ‘FALSE POSITIVE’, ‘TRUE NEGATIVE’ AND

‘FALSE NEGATIVE’, RESPECTIVELY

Total # of
numeric fields

# of actual
id fields

TP FP TN FN

112 42 36 4 70 6

Fig. 2. An example of step-by-step parsing process on a log message by
NLog.

III. KEYED MESSAGE

Once we have identified the keys of a log message and

extracted the values and identifiers, we use them to construct

keyed messages, a uniformed log storage structure. Users can

reconstruct the workflow by applying database operations on

the keyed messages.

A keyed message consists of four fields in order to describe

a raw log message. Table III shows the four fields in a keyed

message.

Key objects represent the objects or events in a log message.

As described in Section II, a message type can be assigned

with multiple keys. A log message can be transformed to as

many keyed messages as the number of keys assigned to its

corresponding message type.

Identifiers are used to uniquely identify the objects or

eventsin a message.

Value stores a numeric value recorded in a log message if

applicable. It is common that a log message contains a numeric

value that usually indicates the amount of processed data or

elapsed time.

TABLE III
DESCRIPTION OF FIELDS IN A KEYED MESSAGE.

Field Description
key objects the key objects in the message
identifiers to identify the object

values a list of numeric variables to store the
value in the log message

timestamp the timestamp in the log message

TABLE IV
ACCURACY OF KEY IDENTIFICATION IN DIFFERENT FRAMEWORKS. THE

TOTAL COLUMN SHOWS THE TOTAL NUMBER OF MESSAGE TYPES OF

EACH FRAMEWORK. THE CORRECT COLUMN SHOWS THE MESSAGE

TYPES THAT ARE ASSOCIATED WITH CORRECT KEYS.

Platform Total Correct Accuracy
Yarn 115 99 85.3%
Spark 34 32 94.1%

MapReduce 92 86 93.5%

Timestamp is extracted from the timestamp field of one log

message.

Taking the advantage of keyed messages, operations such as

Groupby, Count and Sum can be easily applied for workflow

reconstruction. The procedure is shown in Section IV.

IV. IMPLEMENTATION AND EVALUATION

We implement NLog tool with about 2,000 lines of Java

code and 100 lines of Python code. Its part-of-speech analysis

and lemmatization are implemented by using OpenNLP [16], a

natural language processing framework based on the principle

of maximum entropy. We evaluate NLog using logs generated

by Yarn [12], a popular container-based resource alloca-

tion framework in data-parallel clusters, and Spark [14] and

MapReduce [13], two prevalent BigData application frame-

works. In the implementation, we assign the corresponding

application ids and the container ids to keyed messages. We

use OpenTSDB [17] as the time series database and figure

plotting tool.

The log files are generated by the applications on a 25-node

cluster managed by Yarn. Each node is installed with Ubuntu

Server 16.04 and has four Intel Xeon E5-2640 v3 CPUs, 132

GB RAM. The cluster is connected by 10 Gbps Ethernet. In

experiments, we run Spark-2.1.0 and Hadoop MapReduce on

Hadoop-3.0.0-alpha. The total amount of the log files is about

2 GB. For each framework (Yarn, Spark and MapReduce),

we randomly select 20 MB log files to conduct the object

identification and parsing process.

We evaluate NLog by answering the following two ques-

tions: 1) How accurate do keys reflect the contents of the log

messages? 2) How can keyed messages be used to reconstruct

the workflow?

A. Accuracy

After the object identification process, message types are

either assigned with keys or discarded. We evaluate the ac-

curacy by presenting two metrics: 1) the number of message

types assigned with keys, and 2) among the message types

assigned with keys, the number of message types in which

keys actually tell the objects or events recorded. Following the

key assignment approach, an assigned key always appears in

the corresponding message type. However, these keys might

be words that have too general meanings, such as event
or service. We categorize a message type as inaccurate,

1) if all of its keys have too general meanings for users to

understand, or 2) if all of its keys do not include the key

objects in the log message.

448



(a) Queries and related message types about tasks.
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(c) Number of tasks in each container.

Fig. 3. Queries, message types, and query results of Spark task objects.

We use Yarn, Spark and MapReduce as the targeted systems.

Table IV shows the accuracy results. The accuracy of NLog in

Yarn is lower than that in the other two systems. The reason is

that a Yarn message type is usually written in a fashion of long

sentence that records many objects. In such a case, NLog has

more chances to assign inaccurate keys to a message type. To

increase the accuracy, one solution is to increase the number

of keys that can be assigned to a message type. However, the

trade-off is that a message type may have too many keys such

that it may confuse users during manual analysis since users

have difficulty in knowing the actually important information.

In contrary, the logs of Spark and Hadoop MapReduce are

written in short sentences, each of which contains limited

number of objects. Thus, NLog can more accurately identify

the objects in logs.

B. Queries on Keyed Message

In this experiment, we use two case studies, one with a

Spark application and the other with a MapReduce application,

to demonstrate the efficacy of keyed messages.

We run a Spark TPC-H application configured with three

containers. By applying database operations on keyed mes-

sages, users can flexibly inspect the tasks during the execution.

For the ease of presentation, we down sample all queries into

one-second granularity. The queries and related message types

are shown in Figure 3(a). Figure 3(b) shows that using query

Q1, users can have a coarse-grained view of the workflow in

terms of the number of running tasks during the execution.

(a) Queries and related message types about fetchers.
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Fig. 4. Queries, message types, and query results of MapReduce fetcher
objects.

In this figure, we find that the number of concurrently

running tasks varies significantly from time to time during

execution. After getting the overview of the number of tasks,

users can further drill down and inspect the number of tasks in

each container using query Q2 in Figure 3(a), which provides

a fine-grained view of the workflow. Results are shown in

Figure 3(c).

In this figure, we find that the number of tasks in different

containers also varies significantly. From the 3th second to the

6th second, container 02 and container 04 receive much more

tasks than container 03 does. From the 8th second to the end

of the application, however, container 02 does not receive any

task. In practice, we find that the uneven distribution of tasks

in containers is actually caused by a bug in Spark scheduler.

Due to the limitation of space, we omit the details of how we

find the bug and its root cause.

We also run a MapReduce wordcount application that is

configured with 16 map tasks and 8 reduce tasks. During the

reduce phase, the reduce tasks need to fetch the intermediate

results. The amount of the fetched data is recorded in logs.

NLog is capable to extract such events and the amount of the

processed data. Query Q3 in Figure 4(a) obtains the amount

of fetched intermediate data at each moment of execution. The

results are shown in Figure 4(b).

The amount of fetched data is closely related to the network

usage of a container. Such information helps users diagnose

network interference in the cluster.

V. DISCUSSIONS AND LIMITATIONS

A major advantage of NLog is that it does not require the

domain knowledge of the targeted system. The only constraint

is that logs of the targeted systems must be written in a

natural language. The effectiveness of NLog depends on the

quality of log messages. In practice, we found that NLog
has higher accuracy if a targeted system generates the log

messages in a fine-grained manner where each log message

only contains one object or event and its corresponding
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information such as identifiers, amount of processed data, etc.

Otherwise, the key assignment process may reduce accuracy

of key identification process, because there are more objects

in the log message than the maximum number of keys of a

message type. Increasing the maximum number of keys helps

capture the information in a log message, but can also mislead

users away from the key information. In the experiments, we

show that applying simple NLP based approaches can achieve

high accuracy in identifying the key object in log messages.

Currently, NLog targets log messages in English. The same

idea can be extended to other languages by leveraging the

corresponding POS taggers.

One drawback of NLog is that it only considers noun words

in log messages, while some operations are not recorded as

noun words. For example, words such as Abort, Timeout
that explicitly indicate anomalies are common in log messages.

We argue that users can use pattern matching to extract these

specific words. In the future work, we aim to extend NLog to

identify the importance of words that are not noun.

VI. RELATED WORK

There are extensive studies on log analysis. Applying learn-

ing methods on logs generated by the targeted system is a

hot topic [5], [18], [19], [7], [6], [20], [9], [21]. The goal

of learning approaches is to automatically report potential

anomalies to users, which reduces efforts required for users

to do manual analysis. One approach [7] extracts fields in log

messages by inferring the source code, and applies Principle

Component Analysis to detect the anomalies.

Studies [4], [3], [2], [22], [23], [24], [25], [15], [26] focus

on using logs to reconstruct the workflow. Our work also falls

into this category. By leveraging the reconstructed workflow,

users can have a clear view of the system components that

serve user requests. Iprof [3] performs source code analysis

to infer the relationship between log printing statements. By

using such information, it can identify interleaved logs and

associates them to requests. A recent work [2] reconstructs the

workflow by identifying the hierarchical relationship between

object identifiers. However, it requires the logs to follow

certain constraints to guarantee the accuracy.

VII. CONCLUSION AND FUTURE WORK

This paper presents a NLP-based approach, NLog, that iden-

tifies the key objects in logs. It proposes to use keyed message,

a uniformed structure to store information in raw logs. By

applying database operations, users can easily reconstruct the

workflow. It also provides the flexibility for users to view

the workflow in either coarse-grained or fine-grained level.

Experiments show that the NLP-based approach has the ability

to accurately identify the key information in logs.

In the future, we plan to use more sophisticated NLP-based

approaches to extract more fine-grained information from logs

generated by distributed data analytics systems.
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