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ABSTRACT

Logging is a universal approach to recording important events in
system workflows of distributed systems. Current log analysis tools
ignore the semantic knowledge that is key to workflow construc-
tion and analysis. In addition, they focus on infrastructure-level
distributed systems. Because of fundamental differences in log fea-
tures, they are ineffective in distributed data analytics systems.

This paper proposes IntelLog, a semantic-aware non-intrusive
workflow reconstruction tool for distributed data analytics systems.
It is capable of building hierarchical relationships between compo-
nents and events from logs generated by the targeted systems with
little or even no domain knowledge. Leveraging natural language
processing, IntelLog automatically extracts and formats semantic in-
formation in each log message, including system events, identifiers,
locality information, and metrics values. It builds a graph to rep-
resent the hierarchical relationship of components in the targeted
system via nomenclature conventions. We implement IntelLog for
Hadoop MapReduce, Spark and Tez. Evaluation results show that
IntelLog provides a fine-grained view of the system workflows with
semantics. It outperforms existing tools in automatically detecting
anomalies caused by real-world problems, misconfigurations and
system bugs. Users can query the formatted semantic knowledge
to understand and further troubleshoot the systems.
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1 INTRODUCTION

Distributed clusters have been commonly used to support growing
computational demands. In order to take advantage of distributed
clusters, numerous data analytics systems are designed for clus-
ters of distributed machines. For example, MapReduce [16] and
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Spark [37] are two popular general-purpose data analytics systems
that are designed for distributed deployment. TensorFlow [8] is a
distributed system for large-scale machine learning jobs.

Understanding and troubleshooting distributed data analytics
systems is critical to ensure reliable production environments. Those
systems use logging to record important events in execution, includ-
ing configuration information, events in workflows, system status
and error messages. Administrators use logs to understand the un-
derlying systems and perform anomaly analysis. However, manual
log analysis is intimidating due to the system complexity. One job
request with different configurations can generate log sessions with
variable lengths. Numerous components are usually involved when
a system responds to a user request. When an anomaly occurs, an
administrator needs to understand the complex workflow of vari-
ous components in order to analyze the root causes, which makes
the troubleshooting work difficult and time consuming.

Log analysis tools can generally be classified into two categories:
information inference and automatic anomaly detection. Informa-
tion inference tools [28, 30, 38, 39] help users to understand the tar-
geted system more efficiently but leave the burden of anomaly anal-
ysis to users. They require users to have domain knowledge of the
systems. To achieve automatic anomaly detection, there are tools
that leverage machine learning and automaton methods [18, 26, 36].
Those tools can report potential problems and reduce user efforts
in log analysis. However, they focus on infrastructure-level dis-
tributed systems (e.g., OpenStack [4] and HDFS [10]) which have
log sessions with relatively fixed lengths. More importantly, the
existing tools of the both categories do not exploit the semantic
knowledge of logs, which however is key to workflow construction
and analysis for distributed data analytics systems.

Our work is inspired by the original goal of system logs: logs are
for users to read. In other words, logs are usually written in natural
languages by system designers. Leveraging semantic information
in logs for workflow construction and troubleshooting not only
provides users a clear view of the workflows of systems, but also
reduces the user efforts for manual analysis. In order to extract
semantic knowledge from log messages, our intuition is that natural
language processing (NLP) should be used to process logs that are
written in natural languages.

We propose IntelLog, an NLP-assisted log analysis tool that
reconstructs workflows of distributed data analytics systems and
automatically pinpoints the erroneous components when anomalies
occur. By leveraging NLP approaches, the goal of IntelLog is to
provide a workflow graph of a targeted system. IntelLog also relies
on the workflow graph to conduct automatic anomaly detection.

However, there are technical challenges to develop NLP-assisted
workflow reconstruction and anomaly detection. First of all, it is
difficult for existing NLP tools to extract useful information from
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log messages since they are different from free-form text. Secondly,
an effective tool should build relationships between objects and
events in the targeted systems even if they are not associated with
identifiers. Ignoring such logmessages can lead to incomplete recon-
structed workflow. Finally, one request in distributed data analytics
systems can generate logs with various lengths and orders. Cur-
rently, tools [18, 36] perform automatic detection in infrastructure-
level distributed systems only, of which the same request usually
outputs log sequences with short lengths and a relatively fixed
order. Thus, they are not effective in data analytics systems.

The novelty of IntelLog lies in that it extracts semantics from
system logs via NLP-assisted approaches and it achieves workflow
reconstruction and anomaly detection for distributed data analytics
systems. Its contribution lie in the following three aspects. Firstly,
IntelLog leverages the Part-of-Speech (POS) analysis approach to
extract entities (both objects and events) from logmessages. Such an
approach is also helpful in distinguishing identifiers from numeric
values since both of them can be represented by numeral strings.
Using the results from POS analysis, IntelLog is able to extract
operations done by entities via parsing the sentence structure of
a log message. After the parsing, the log keys are transformed to
a key-value like storage called Intel Keys. We call a log message
corresponding to an Intel Key as an Intel Message.

Secondly, IntelLog builds a Hierarchical Workflow graph (HW-
graph) that represents the lifespans of entities and execution of
a targeted system. In order to build the HW-graph, IntelLog first
analyzes the nomenclature of entity names and groups correlated
entities together. Then, it analyzes the lifespans of the entities
in each group and builds the hierarchical relationship. For data
analytics systems, workflows in an entity group usually output
identifiers to distinguish from each other. Thus, we further refine
our design by leveraging the identifiers to check the subroutines.
The HW-graph that abstracts the workflow helps users understand
task execution and analyze causes of anomalies.

Last but not least, IntelLog uses the HW-graph to perform au-
tomatic anomaly detection. It obtains the relations of each entity
group as well as the log sequences in each group from normal ex-
ecution. In the anomaly detection phase, IntelLog checks the log
messages against the HW-graph built from normal execution and
tries to reconstruct a full graph. If an incomplete graph is built, In-
telLog can pinpoint the abnormal components. For an unexpected
log message, IntelLog also extracts the information from it and
transforms it to an Intel Message. Note that IntelLog does not di-
rectly find the root causes that can be related to multiple factors in a
distributed system. Instead, pinpointing the abnormal components
assists users to narrow down the reasons that cause the anomaly.

We evaluate IntelLog in three general-purpose data analytics
systems, MapReduce [16], Spark [37] and Tez [31]. Experimental
results show its NLP-assisted approaches achieve high accuracy in
entity extraction. IntelLog reconstructs hierarchical relationships
between components in the targeted systems and the operations
done by the components in a fine-grained manner. For workflow re-
construction, we compare IntelLog with a existing tool Stitch [39],
and show that IntelLog is able to present more abundant work-
flow information to users. Evaluation shows that IntelLog reaches
a 87.23% precision and 91.11% recall in problem detection of real-
world scenarios. Users can query the formatted semantic knowledge

1 fetcher # 1 about to shuffle
  output of map attempt_01

1 fetcher # * about to shuffle
  output of map *

2 [fetcher # 1] read 2264 bytes
  from map-output for attempt_01

3 host1:13562 freed by
  fetcher # 1 in 4ms

2 [fetcher # *] read * bytes
  from map-output for *

3 * freed by
  fetcher # * in *

red: entity  blue: identifier  green: value  purple: locality

Figure 1: A real-world log snippet of MapReduce.

to locate the root causes. IntelLog also has the power to detect un-
expected anomalies due to inappropriate configurations or system
bugs. We compare it with DeepLog [18] and LogCluster [21] and
results show that IntelLog achieves better performance of anomaly
detection when applied to distributed data analytics systems.

In the following, Section 2 introduces logging and IntelLog
overview. Section 3 focuses on NLP-assisted information extraction.
Section 4 describes the HW-graph. Sections 5, 6, and 7 describe im-
plementation, evaluation and discussions of IntelLog, respectively.
We present related work in Section 8 and conclusion in Section 9.

2 PRELIMINARIES AND OVERVIEW

2.1 Preliminaries

A logmessage has a constant text field and variable fields that record
information such as identifiers, amount of processed data, time
spent, localities. Correspondingly, the text field and the variable
fields are outputs by the constant string and variables in the printing
statement in the source code. A log printing statement can be
abstracted as a log key, in which the constant field is unchanged
while the variable fields are represented by asterisk (*). Log keys is
widely used by previous studies for the purpose of log analysis [18,
36, 39]. We use Spell [17] to extract log keys from log messages.
It consumes raw logs generated from the systems and adopts a
longest string matching algorithm to identify the log keys.

However, a log key is a coarse grained abstraction of log mes-
sages since it does not distinguish the variable fields. IntelLog parses
the log keys and analyzes the meanings of the variable fields by
NLP-assisted approaches (§3). We use a simplified real-world log
snippet from MapReduce, shown in Figure 1, to introduce the ter-
minologies that will be used in this paper. The log snippet describes
the subroutine instance of a fetcher that gets data from a remote
node. The instance is a log sequence consisting of three log mes-
sages on the left side. Their corresponding log keys are on the right
side. For each log key, IntelLog distinguishes four categories of
information from the variables fields including entities, identifiers,
values and localities marked in colors in Figure 1. Then, the log keys
are transformed to Intel Keys with key-value pairs representing
each category of information. The sequence of the Intel Keys are
called a subroutine in the HW-graph.

2.2 Log Features

We observe three log features that offer opportunities to take ad-
vantage of NLP-assisted approaches for workflow reconstruction
and anomaly detection via log analysis.

First, we find that using natural languages to record system
events is common in distributed systems. In this paper, we define
that a log message is written in a natural language if it contains
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Table 1: Lines and percentages of natural language logs.

System NL logs total logs % of NL logs

Spark 1,286,159 1,286,159 100%
MapReduce 599,103 549,922 91.8%

Tez 112,478 103,609 92.2%
Yarn 156,196 159,995 97.6%

nova-compute1 73,318 73,318 100%

at least one clause. We analyze over 300MB logs generated from
three popular data analytics systems (MapReduce, Spark and Tez),
a cluster resource management framework (Apache YARN) and
a component of a cloud infrastructure (nova-compute in Open-
Stack [4]). Table 1 shows the number of lines and percentages of
natural language logs in the five systems, which indicate that most
of the logs are written in natural languages. Other logs usually
record status of the systems such as access control and resource
usages. The log feature inspires us that NLP-assisted approaches
can be applied to analyze log messages generated by systems. How-
ever, log messages have more identifiers and domain-specific words
compared to free-form text written by human. This fundamental
difference makes it challenging to apply NLP analysis on logs.

Second, although logs contain domain-specificwords, we are able
to find the relationship between correlated entities by analyzing
the nomenclature. To be specific, correlated entities usually share
common sub-phrase in their names. Thus, users know those entities
are closely related when reading the logs. For example, Spark uses
block to store data and uses BlockManager to do block manage-
ment. Finding such entities gives users a clear view of the correlated
components in the system. Nevertheless, it is time consuming for
users to manually find such entities by key word searching due
to the large number of logs. Furthermore, it is possible that entity
names with a common sub-phrase are not correlated. Therefore, a
more subtle algorithm should be used in order to distinguish such
entities as well as group correlated entities.

Third, since logs are output by execution of the structured source
code, the log sequences may follow specific orders [18]. However,
the order is not strict in distributed systems due to concurrency.
Currently, existing log analysis tools [18, 21, 36] focus on the order
between individual log messages of infrastructure-level distributed
systems such as OpenStack [4] and HDFS [10]. However, they do
not exploit the semantic knowledge in logs. The log sequences
generated by one request in those systems are usually of a short
and fixed length since the number of operations in the execution is
deterministic. For example, OpenStack has eight most frequently
used requests, each generating a fixed-length log sequence with
an average length of nine [36]. This feature facilitates workflow
reconstruction for infrastructure-level distributed systems.

On the contrary, logs generated by prevalent distributed data
analytics systems (e.g., MapReduce, Spark and Tez) are usually with
various lengths and interchangeable orders. Different data sizes and
configurations cause various log sequence lengths while parallel
executions cause interchangeable orders. Our experiments show

1Nova-compute constantly outputs log messages with a fixed format that reports the
current node resource usage regardless whether there are VM requests. We eliminate
such messages and only calculate log messages that are related to VM requests.

HW-graph

entity 
group 1

entity 

group 2

entity 

group 3

subroutine 1

subroutine 2

…

subroutine n

training

log file

Intel Keys

[entities]
[ids]
[values]
[localities]
[operations]

log keys

key1

key2

keyn

…

HW-graph instance

incoming 
log file

workflow

inference

anomaly

report

key3

log key 
extraction

information
extraction

entity grouping and
HW-graph construction

checking incoming log against 
HW-graph instance

group
ins 1

group 

ins 2

ins 1

ins 2

…

ins n

Figure 2: The Overview of IntelLog.

that the log sequence lengths of these systems range from tens to
thousands (§6.4), which makes existing log analysis approaches
ineffective in distributed data analytics systems. By leveraging the
nomenclature of entity names, IntelLog is able to find the ordering
and hierarchical relationships between groups of entities. As a
result, users can have both an overview and a detailed look of
workflows in the systems.

2.3 IntelLog Overview

Figure 2 shows the overview of IntelLog. Its first stage, similar
to other tools, extracts log keys from log files generated by the
targeted systems. The second and third stages build Intel Keys and
construct workflows of the systems represented by HW-graphs.
The fourth stage consumes newly incoming logs and automatically
report anomalies to the users.

Entity extraction. The second stage extracts and distinguishes
fields in log keys using two NLP approaches: POS analysis and
sentence structure analysis. The extraction result of this stage is
execution information of the systems that includes entities, identi-
fiers, values, localities and operations. The extracted fields from a
log key is stored in an Intel Key that consists of a set of key-value
pairs so that users can use queries to request data. An Intel Key is
an enhanced representation of a log key. The extracted entities are
also used in the next stage to reconstruct workflows (§3).

HW-graphmodeling.Before building theHW-graph, we group
correlated entities based on their names using nomenclature con-
vention. Besides finding the ordering relationships between indi-
vidual Intel Keys, we construct hierarchical relationships between
entity groups. This step is done by finding the lifespan of each
entity group. In an entity group, there are multiple subroutines
that represent the ordering relationships between Intel Keys. A
HW-graph represents the workflow of a targeted system, which
assists users to understand the system. (§4.1)

Anomaly detection. IntelLog instantiates aHW-graph instance
when a system starts a new session. A session is generally an ex-
ecution path invoked by a user request. In our case, a session is
the execution within one Yarn container (§5). While consuming
incoming logs, IntelLog aims to build the graph instance to meet
the structure of the corresponding HW-graph. Per its design, In-
telLog reports two categories of anomalies to users: 1) unexpected
log messages, and 2) erroneous HW-graph instances. Similar to
previous studies [18, 36], this step does not directly find root causes
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log key:     *    MapTask metrics system

log msg: Starting MapTask metrics system

tagged log msg: Starting_VBG MapTask_NNP metrics_NNS system_NN

POS tagging on msg

Assigning tags on key

tagged log key:     *_VBG    MapTask_NNP metrics_NNS system_NN

Figure 3: POS tagging on a log key.

of anomalies. It reports the affected components and entity group,
which significantly reduces the user effort for root cause analysis.

3 INFORMATION EXTRACTION

After collecting system logs, we use Spell [17] to obtain the log
keys of the logs. This section describes how we extract information
from the log keys and transform them to Intel Keys. The extracted
information includes entities, identifiers, values, localities and op-
erations recorded in the log keys. The former four categories of
information is extracted by a POS tagging based approach while the
last one is extracted by a sentence structure parsing based approach.
The information extraction phase transforms each log key to an
Intel Key. The log message matching the corresponding Intel Key
can be easily stored in databases for queries.

The first step in the information extraction phase is POS analysis.
Existing POS tagging tools are widely used in academia and indus-
try, such as OpenNLP [3], Stanford POS tagger [33] and NLTK [11].
However, POS analysis for log keys is slightly different from that
for free-form text. Since a log key is an abstraction of log messages,
it contains variable fields that is represented by asterisk (*). If we di-
rectly feed log keys to a POS tagger, the results will not be accurate.
Thus, for each log key, we take a corresponding sample log message
and feed it as the input of the POS taggers. The output POS tags
are used for the log key. Figure 3 shows an example of this process.
The log key ‘* MapTask metrics system’ is an abstraction of the
log message ‘Starting MapTask metrics system’. Apparently, it
is inappropriate to feed the log key as the input to the POS tagger.
In this case, we use the sample log message as the input. The result
of POS tagging is a log message in which each word is tagged with
its part-of-speech. Finally, we assign the corresponding words in
the log keys with the POS tags in the sample log message. We use
the Penn Treebank tag set [24] as our POS marks.

3.1 POS Tagging Based Extraction

Entity extraction. The step is based on a theory in a previous
study [20], which postulates that over 97% of terminological entities
only consist of nouns and adjectives and thus can be matched by a
list of seven POS patterns. Furthermore, in system logs, entities can
also be a single-word noun. We use Penn Treebank to present these
patterns as shown in Table 2. Note that patterns ‘JJ JJ NN’ and ‘JJ
NN NN’ have no example since we do not observe such patterns in
our implementation. We keep these two patterns to make IntelLog
extensible to other systems.

Beside the POS pattern matching, we also use a camel-case word
filter to find entity names. The intuition is that some entities in logs
are also classes defined in the source code whose names follow the
camel-case naming format convention. Such entities are usually

Table 2: Patterns to match phrases and the corresponding

Penn Treebank presentation. Due to the limited space, ‘NN’

includes four noun tags: ‘NN’, ‘NNS’, ‘NNP’ and ‘NNPS’.

Patterns Penn

Treebank Pst.

Examples

noun NN task
adjective noun JJ NN remote process
noun noun NN NN event fetcher

adjective adjective noun JJ JJ NN -
adjective noun noun JJ NN NN -
noun adjective noun NN JJ NN cleanup temporary folders
noun noun noun NN NN NN map completion events

noun preposition noun NN IN NN output of map

Table 3: UD relations for operation extration.

Element Relations Descriptions

predicate
ROOT a relation indicating the root of the sen-

tence

xcomp an open clausal complement of a verb or
an ajective

subj-entity nsubj a nominal subject of a clause
nsubjpass a passive nominal subject

obj-entity
dobj a direct object of a verb
iobj an indirect object of a verb
nmod a nominal modifier of a clausal predicates

correlated to other entities such as ‘MapTask’ and ‘map output’.
This filter separates a camel-caseword into a phrase. In this example,
‘MapTask’ is transformed to ‘map task’. After we extract the entity
phrases, we lemmatize them to their singular forms. Note that users
can define their own filters for other naming format conventions.

Locality extraction.We define a set of patterns to capture com-
monly used locality information in distributed systems. These pat-
terns include: 1) host names, 2) IP addresses and ports, 3) local
directory paths, and 4) distributed file system paths. Besides, users
can define new patterns when applying IntelLog on their own
targeted systems.

Identifier and Value extraction. Both identifiers and values
are represented by variable fields in a log key. Previous studies
either manually define identifier patterns [36] or do not distinguish
these two kinds of variables [18]. We apply four heuristics one after
another on a variable field, which accurately recognize identifiers
and values. First, we filter out variable fields that have verb POS tags
and locality information recognized in the previous steps. Second,
we categorize a field as a value if it is followed by a unit, such as
‘12 MB’ and ‘5 ms’. Third, we categorize a field as an identifier if
the field is mixed with letters and numbers, such as ‘attempt_01’.
Finally, for the fields consist of only numbers, we check the POS tag
of the word prior to the field. We categorize the field as an identifier
if the POS tag represents a noun. Otherwise, the field is a value.

3.2 Structure Parsing Based Extraction

Operation. The idea is that an operation is usually indicated by a
predicate in a log key, and the entities related to the predicate are
either the source or the target of the operation. We use universal
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Intel key
finished task * in stage * (TID *)

* bytes result sent to driver

finished_VBN task_NN *_CD in_IN 

stage_NN *_CD (TID_NN *_CD)

*_CD bytes_NNS result_NN sent_VBN 

to_TO driver_NN

Entities:

[task, stage, TID, result

, driver]

Identifiers:

[(task) *, (stage) *

, (TID) *]

Values: * (bytes)

Locality: NULL

finished task * in stage * (TID *)

dobj

* bytes result sent to driver

nsubj nmod

Operations:

[-, finished, task]

[result, sent to, driver]

Log key:

POS tagging:

Structure parsing:

Figure 4: Process of transforming a log key to an Intel Key.

dependency (UD) relations [27] to denote the structure of a log key.
For simplicity, we define an operation as a 3-tuple: {subj-entity,
predicate, obj-entity}. Since most entities are nouns, the sub-
entity and obj-entity can be extracted by checking whether a word
has a specific relation with the predicate. We carefully choose 7
relations out of a total of 40 UD relations. Table 3 describes these
relations. These relations indicate a predicate and the entity related
to the predicate.

3.3 A Summary Example

We take a log key in the critical path of Spark jobs as an example to
demonstrate the process of the information extraction approach as
shown in Figure 4. This log key records the task finish event and the
amount of data sent to the driver. After the POS tagging phase, each
word in the log key is tagged with a POS mark. IntelLog extracts
five entities (but omit ‘bytes’ since it is a unit), three identifiers and
one value. The structure parsing technique allows us to obtain the
relations between words. Two operations are extracted according
to the relations in Table 3.

The resulted Intel Key is shown on the right side of Figure 4.
When a newly incoming logmessage matches the Intel Key, the vari-
able fields represented by asterisks are replaced by the actual values
in the log message. As a result, the log message is transformed to
an Intel Message. Compared to a log message, an Intel Message is
a more structured representation of logs since it structurizes both
the text formats and the contents of logs. Further, an Intel Message
can be considered as a collection of key-value pairs. It naturally fits
in the storage structure of time series databases [1, 5] and can be
utilized by other profiling tools [28].

4 MODELING AND ANOMALY DETECTION

IntelLog builds the HW-graph to present the workflow of a targeted
distributed system. First, entities are grouped by their names. We
identify the hierarchical relationships between groups by check-
ing their lifespans. In each group, we leverage the log orders and
identifiers to build subroutines.

In the anomaly detection phase, IntelLog tries to reconstruct a
HW-graph instance from the incoming logs and check it against
the HW-graph built for the system. IntelLog reports two kinds of
potential anomalies to users: 1) unexpected log messages, and 2)
incomplete subroutines.

4.1 Workflow Reconstruction

Entity grouping. In a targeted system, entities are usually corre-
lated with each other. However, such entities are not always associ-
ated with the same identifiers. Thus, Stitch [39], which constructs
workflows solely based on identifiers, only presents workflows
in a course-grained manner. Moreover, the identifier names only
contain limited semantic knowledge, leaving a large amount of
information unexploited.

Algorithm 1 Grouping entities.
1: Input: a list of all extracted entities in ascending order by the # of

words: E;
2: a dictionary D < дroup, Eд > that maps a common phrase дroup

to a set of entities Eд ;
3: a dictionary Dr < entity, G > that is a reverse key index of D,

mapping an entity to a set of groups G;
4: D ← {};
5: for all e in E do

6: дrouped ← f alse ;
7: for all (дroup, Eд ) in D do

8: com_phrasel ← LongestCommonPhrase(дroup , e );
9: if com_phrasel , NU LL then

10: Eд ← Eд ∪ {e };
11: дroup ← com_phrasel ;
12: if ! дrouped then

13: дrouped ← true ;
14: end if

15: end if

16: end for

17: if дrouped = f lase then

18: D ← D ∪ {e, {e }};
19: end if

20: end for

21: Dr ← ReverseIndex(D)
22:
23: function LongestCommonPhrase(G, E)
24: if G has one word or E has one word then

25: return the longest common string of G and E ;
26: else if G and E have common last few words then
27: return empty string;
28: end if

29: return the longest common string of G and E ;
30: end function

In IntelLog, we leverage the nomenclature of entities to group
together log keys that contain correlated entities. The intuition
is that correlated entities usually share the common sub-phrase
in their names. For example, block, block manager and block
manager endpoint share a common sub-phrase ‘block’. However,
some entities are not correlated even they share a common sub-
phrase. We find that such phrases usually share last few words that
have a general meaning. For example, phrases ‘block manager’
and ‘security manager’ in Spark share the common sub-phrase
‘manager’ but they are not tightly correlated.

Algorithm 1 describes the algorithm for grouping entities. It takes
a list of extracted entities as an input and maintains a dictionary
that maps group names to a set of entities. It compares each entity
e in the list to each group in the dictionary and returns the longest
common phrase. If either e or group only contains one word, the
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function returns the longest common phrase of these two words.
In this case, it is either a one-word phrase or an empty string. Since
the one-word phrase is part of the other multi-word phrase, their
meanings are correlated. For two multi-word phrases, the function
also checks whether the two phrases only have the last few words
in common. If so, the function ignores the common phrase and
returns an empty string. Otherwise, the function returns the longest
common phrase that could contain one or multiple words (Line 23
∼ 30). The idea behind of this step is that the last few words of a
system entity usually have general meanings such as ‘manager’,
‘file’ or ‘output’. The algorithm does not group together entities
sharing the last few words since their meanings are not tightly
correlated. In theory, it is possible that such entities are correlated.
Thus, the algorithm categorizes these entities into different groups,
missing the correlation. However, IntelLog can still capture the
lifespans of the entity groups during HW-graph construction phase.
In practice, we do not encounter such entity groups.

Algorithm 2 Assigning Intel Keys into subroutines.
1: Input: a set of log message sequence in the entity group collected from

different sessions: S < Seqloд >;
2: a dictionary mapping sets of identifier values to log message sequences:
Dv l < Sv , Seqloд >;

3: a dictionary mapping sets of identifier types to Intel Key sequences:
Dt i < St , Seqkey >;

4: for all Seqloд in S do

5: Dv l ← {{NONE }, []};
6: for all loд in Seqloд do

7: if loд .Sv = NU LL then

8: append loд to the Seq with the NONE key;
9: else if ∃(Sv , Seqloд ) in Dv l
10: s.t. loд .Sv ⊆ Sv or Sv ⊆ loд .Sv then

11: Sv ← Sv ∪ loд .Sv ;
12: Seqloд .append (loд);
13: else

14: Dv l ← Dv l ∪ (loд .Sv , [loд]);
15: end if

16: end for

17: if in training process then
18: Dt i ← UpdateSubroutine(Dt i , Dv l );
19: end if

20: end for

Subroutine. The Intel Keys in an entity group are built as sub-
routines that are sequences of Intel Keys. Some subroutines can
concurrently run multiple instances during execution distinguished
by identifiers. Algorithm 2 builds Intel Keys in one entity group
into subroutines. Before applying the algorithm, we find all log
sequences belonging to the entity group generated by different ex-
ecutions. The set of log sequences is represented as S < Seqloд >.
The algorithm takes S < Seqloд > as the input to build subroutines.
It maintains a dictionary Dvl that maps identifier types to Intel
Key sequences. The dictionaryDvl is a temporary storage for each
session that maps the actual identifiers to log message sequences.
Before consuming a session, it clears Dvl and assigns an empty
sequence with the key NONE (Line 5). The empty sequence is used
to store log messages that has no identifiers. In one session, it it-
erates each log message in the sequences (Line 6). It first updates
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Figure 5: Illustration of the UpdateSubroutine function.

the log sequence with the NONE key if the log message does not
have an identifier (Line 7 ∼ 8). If the identifier values a log message
that has already been in this session, it updates the log sequence
with corresponding identifiers (Line 9 ∼ 12). Otherwise, it creates
a new key-value pair in Dvl and adds the log message to the new
sequence (Line 14). After each session, it updates the subroutines
based on the log sequence in this session.

The UpdateSubroutine function maintains an order relation
set of Intel Keys. With a focus on building the order relations, we
assign each identifier with a corresponding identifier type rep-
resented by a capitalized word. For example, ‘container_01’ and
‘container_02’ have a type of ‘CONTAINER’. For each session, it first
groups the key-value pairs in Dvl according to the correspond-
ing identifier types of the identifiers in Sv . The set of identifier
types can be considered as a signature. For a signature, it iterates
through the (Sv , Seqloд) pairs and checks the order of the corre-
sponding Intel Keys of the log messages in Seqloд . If Key1 always
appears before Key2 in every Seqloд , it assigns a BEFORE relation
Key1 → Key2 to the two Intel Keys. Otherwise, these two Intel
Keys can appear in parallel. The function also keeps track of the
Intel Keys that always appear in a subroutine and marks them as
critical Intel Keys. IntelLog uses critical Intel Keys for anomaly
detection. Figure 5 illustrates the subroutine construction process
for the signature {ID_1, ID_2}. It first consumes two log sequences
in session 1 that have the same order of Intel Key sequences. In-
telLog takes this key sequence as the subroutine. Every Intel Key
in this sequence is marked as critical (bold font). Once IntelLog
consumes Seq3 in session 2, it finds that the log messages of B and
C are interchangeable. As a result, it breaks the BEFORE relation
between B and C and assigns them as parallel. Finally, in Seq4 there
is no log message matching Intel Key D. IntelLog marks Intel Key
D as a not critical one (normal font).

HW-graph. The lifespan of an entity group in a session is de-
fined by the duration between the first and the last log message
that belong to the group. We construct the hierarchical relation-
ships by checking the lifespan of each entity group. The idea is
that if the lifespan of an group LSa is always within the lifespan
of another group LSb in every session, group a is dependent on
group b and should be a child of group b. In addition, two groups
can either execute sequentially or in parallel. In order to capture
the relationships, we define three relations as described in Figure 6.
Two entity groups are assigned with PARENT or BEFORE only if they
satisfy such relations in every log session. Otherwise, they execute
in parallel and are assigned with PARALLEL.
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entity relations.

IntelLog constructs the HW-graph of the targeted system based
on the relations between each pair of entity group. We use an
example to illustrate the construction procedure, as shown in Fig-
ure 7. For the simplicity of explanation, we add two auxiliary group
relations CHILD and AFTER that are the opposites of PARENT and
BEFORE respectively. First, IntelLog identifies the groups that only
have PARALLEL, PARENT and BEFORE relations, say group a (step
1). Then, IntelLog constructs other groups based on their relations
with group a. In this case, group b and d are children of group a, and
group c executes with a in parallel (step 2). Once group a is built, In-
telLog crosses out all the relations that are associated with group a
(step 3). IntelLog repeats this procedure until all groups are crossed
out. At this point, IntelLog constructs a complete HW-graph of a
targeted system (step 4).

4.2 Anomaly Detection

When consuming incoming logs, IntelLog instantiates a HW-graph
instance for each session of the targeted system. A HW-graph
instance has the same entity group hierarchy as the corresponding
HW-graph. In each entity group, however, it hasmultiple subroutine
instances. For example, an entity group G in a HW-graph has a
subroutine represented by a sequence of Intel Keys [A, B]. In the
HW-graph instance, the entity group G may have two subroutine
instances [a1, b1] and [a2, b2], where ai and bi are log messages. For
each incoming log message, IntelLog uses Algorithm 2 to determine
its subroutine instance. For an instance, if the corresponding Intel
Key of an incoming log message is a critical one, IntelLog marks
the critical Intel Key as used in the subroutine sequence.

IntelLog reports two kinds of anomalies: 1) unexpected log mes-
sages, and 2) erroneous HW-graph instances. These anomalies are
common in a multi-tenant data cluster since tasks can be affected
by administrators or other user processes.

Unexpected log message. IntelLog reports log messages that
are not matched with any Intel Key. Furthermore, IntelLog tries
to extract information of the five fields from the unexpected mes-
sages using the approaches of POS tagging and structure parsing.
Evaluation shows that such information helps users diagnose the
erroneous components and the root causes.

Erroneous HW-graph instance.When a whole session is con-
sumed, IntelLog reports the erroneous HW-graph instances. Such
instances either have an erroneous hierarchy of entity groups, ab-
normal subroutine instances or missed critical Intel Keys. IntelLog
reports the problematic entity groups or subroutine instances.

5 IMPLEMENTATION

We implement IntelLog in about 6,700 lines of Java code and 200
lines of Python code. We have its package open-source at Github,
https://github.com/EddiePi/IntelLog/. The code package also
includes about a 400-line implementation of Spell. Spell defines a
threshold t that helps matching log messages to log keys. We em-
pirically set t to 1.7 via our experiments. We use OpenNLP [3] as
the POS tagging tool and use Stanford Parser [12] to analyze the
structures of log keys. Both HW-graphs and its instances are output
as JSON files which can be queried by JSON query tools such as
JSONQuery [2].

We deploy three popular distributed data analytics frameworks,
Hadoop MapReduce, Spark and Tez as our targeted systems. All
three systems are managed by Yarn [34], a cluster resource manage-
ment framework. Execution in Yarn is encapsulated inside contain-
ers. Thus, we consider the log messages generated by one container
as a log session. Since the formats of logs generated by different
systems vary, we implement two log formatters for the targeted
systems in about a total of 200 lines of Java code. The formatters
simply recognize the log formats such as timestamps, output classes
and log contents by pattern matching. Note that for new systems,
users need to customize and implement their own formatters.

We omit log messages that only consist of a set of key-value
pairs since they are not written in natural language. They can
be captured by pattern matching In the training phase. We also
use Spell to discover the log keys of these omitted log messages.
IntelLog maintains a list of these log keys. Once a log message
matches a log keys in the list, IntelLog ignores them instead of
triggering the unexpected message errors.

6 EVALUATION

We evaluate IntelLog from three aspects. 1) We evaluate the ac-
curacy of information extraction for Intel Keys. (2) We use a case
study to illustrate the HW-graph that represents the workflow of a
targeted system. We evaluate the effectiveness of HW-graph and
compare it with the S3 graph in Stitch [39]. 3) We evaluate the
problem detection accuracy of IntelLog and compare it with related
work DeepLog [18] and LogCluster [21]. We also demonstrate how
HW-graphs can help users diagnose the root causes of anomalies.

6.1 Experiment Setup

We conduct the experiments on a 27-node physical cluster (1 master
node and 26 worker nodes) managed by Yarn [34]. The cluster is
connected with 10-Gbps Ethernet. Each node has 128 GB memory,
4 Intel Xeon E5-2640 CPUs (8 cores per CPU, 32 cores in total)
and is installed with Ubuntu 16.04 with Linux kernel 4.12.8. The
versions of the targeted data analytics systems are Spark-2.1.0,
Hadoop MapReduce-2.9.1 and Tez-0.8.4, respectively.

We implement a workload generator that submits jobs for each
targeted system. For Spark andMapReduce, the generator randomly
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Table 4: Accuracy of information extraction by IntelLog in the three systems.

Frame- Consumed # of Entities Identifiers Values Locations Operations

works log msg. Intel Keys (Total / FP / FN) (Total / FP / FN) (Total / FP / FN) (Total / FP / FN) (Total / Missed)
Spark 1,361,008 60 63 / 3 / 0 19 / 1 / 1 13 / 1 / 0 9 / 0 / 1 63 / 5

MapReduce 5,254,050 44 43 / 9 / 2 11 / 1 / 1 41 / 1 / 1 1 / 0 / 0 45 / 5
Tez 1,127,549 95 101 / 2 / 3 13 / 0 / 3 43 / 3 / 0 3 / 0 / 0 97 / 7
Total 7,742,607 219 207 / 14 / 5 43 / 2 / 5 97 / 5 / 1 13 / 0 / 1 205 / 17

chooses jobs from HiBench[19] to generate the workloads. HiBench
includes a wide range of jobs including text processing, machine
learning and graph processing. For Tez, we use Hive-1.2.2 [32] as
the query interface. The generator randomly chooses queries from
TPC-H [7] as the workloads. TPC-H is a suite of database queries
that have broad industry-wide relevance. In the model training
phase, resource configurations are carefully tuned in the generator
in order to guarantee successful and normal execution of every job.
In § 6.2 and § 6.3, we use the generator to randomly submit 100
jobs to each system. The logs are collected for evaluation.

6.2 Information Extraction

In IntelLog, accuracy checking is done by comparing Intel Keys
with log messages. However, such an approach has a possibility to
incorrectly categorize an identifier as an value or vice versa. The
reason is that such fields may only contain numeric values that can
appear to be ambiguous even with the context. Since the source
code of the targeted systems is available, we check the accuracy of
information extraction by manually comparing Intel Keys with the
corresponding logging statements in the source code.

Table 4 shows the accuracy of information extraction for each
field. ‘Total’ denotes the manual checking results. ‘FP’ and ‘FN’
denote false positive and false negative, respectively. We present
the total number and the missed number of operations, since there
is no false positive operations (Other fields cannot be categorized as
operations). For the entity field, the major reason of false positives
is that IntelLog categorizes abbreviations as entities, such as ‘ref’
for ‘reference’ and ‘tid’ for ‘task id’. We categorize such words as
false positives since they are meaningless without context. False
negatives are usually caused by entity phrases with four or more
words. Note that IntelLog has relatively high accuracy for Tez. The
reason is that most Tez logs are well formatted as a sentence fol-
lowed by a set of key-value pairs. Thus, the entities can be correctly
recognized. The false negatives of identifiers are also false positives
of values. Such fields only contain numeric variables, which makes
it difficult even for manual categorization. The only false negative
of location is information about a service port categorized as a
value by IntelLog.

For operation extraction, IntelLog performs well when analyzing
sentences with correct grammatical structures. However, some log
messages do not strictly follow grammatical rules. For instance,
MapReduce outputs a log ‘Down to the last merge-pass...’
in its critical path. This log message does not have a predicate
so that IntelLog cannot recognize the operation. We observe two
Tez log keys that record vague information even though they are
grammatically correct. The sample log messages generated by the
two keys are ‘6 Close done’ and ‘4 finished. Closing’. These
two log messages are actually related to query operators after we

Table 5: Log and HW-graph statistics for the three systems.

Frame- length of # of groups length of subroutines

works sessions all / crit max / avg. all / avg. crit

Spark 347 45 / 10 10 / 1.2 / 2.3
MapReduce 137 35 / 13 19 / 1.7 / 2.8

Tez 304 59 / 27 14 / 2.7 / 4.6

check the source code. Information extraction for such log messages
is beyond the scope of this paper.

6.3 HW-graph and Workflows

A HW-graph helps users to understand the workflows from two
aspects. First, it categorizes workflows into entity groups in a hier-
archical manner. This provides an overview of the system without
inspecting the detail events in it. Second, it uses subroutines as a
fine-grained view of workflows in each entity group, which only fo-
cuses on specific entities and filters out irrelevant ones. Subroutines
are helpful when users try to understand parts of the workflow.

Since a HW-graph of a distributed data analytic system is large
and contains rich information, we divide entity groups into two
categories: critical groups and secondary groups. We categorize a
critical group if it meets either of the following two criteria: 1) it
contains multiple Intel Keys or, 2) it contains a Intel Key that has
multiple corresponding log messages in a single session. The first
criterion captures different entities that correlate with each other.
The second criterion captures the entities that execute repeatedly
or in parallel, which usually indicate common tasks. In practice,
users can also choose to obtain a comprehensive HW-graph of a
system that contains all the entity groups.

In order to evaluate how a hierarchical HW-graph can reduce
the user efforts spent on understanding a workflow, we show the
statistics of log sessions and the corresponding HW-graphs. Specif-
ically, we measure the following metrics: 1) average number of log
messages in a session; 2) number of all entity groups of a system;
3) number of critical entity groups of a system; 4) average length
of a subroutine in all entity groups; and 5) average length of a
subroutine in critical groups. Table 5 shows the results.

The number of entity groups (critical groups) are 5∼10 (10∼50)
times fewer compared to the length of a session. Furthermore,
the entity groups are organized in a hierarchical manner, which
provides a clear view of workflows comparing to the original inter-
leaved log messages. The length of a subroutine instance in entity
groups are also shorter than that of a session. The longest instance
has about 20 log messages, which is practical for manual analysis.

Spark HW-graph. Due to the limit of space, we solely illustrate
the most complex HW-graph of Spark containing all the critical
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Figure 9: The S3 graph of Spark built by Stitch.

groups. Figure 8 depicts the HW-graph that is built from over 1.2
million Spark log messages.

Figure 8(a) clearly illustrates the hierarchical relations between
entity groups, which is a high-level view of Spark workflow: 1)
Spark first checks the ‘acl’; 2) Then, it has four major entities
throughout execution, which are ‘memory’, ‘directory’, ‘driver’
and ‘block’; 3) Under these four entities, there are child entities
such as ‘task’ and ‘fetch’; 4) Group ‘shutdown’ is after ‘task’ and
‘directory’. The graph shows that it can execute with operations
in groups ‘memory’, ‘driver’ and ‘block’ . The length of a rectangle
indicates the lifespan of an entity group. We omit the children of
the entity groups in grey rectangles since they are the same as those
under group ‘memory’.

Figure 8(b) shows the subroutines in each entity group and the In-
tel Keys in subroutines. For simplicity, Intel Keys are represented by
the extracted operations. One advantage of using the entity group
is that it categorizes correlated entities and the event of entities. We
use group ‘block’ as an example to illustrate how subroutines in
an entity group describe workflows. Group ‘block’ has three sub-
routines: 1) s1: a subroutine with identifiers of BlockManager; 2) s2:
a subroutine with identifiers of block; and 3) s3: a subroutine with
no identifier. Subroutine 1 records the workflow of a BlockMan-
ager that has three operations: ‘registering’, ‘registered’ and
‘initialized’. Subroutine 2 records the blocks stored whether in
memory or on disk during the execution. Subroutine 3 records the

‘getting block’ events with the number of blocks got. Note that
the ‘stopped’ operation of a BlockManager is categorized into s3
since it has no identifier. The subroutines provide users with a clear
view of the workflows that are related to the ‘block’ component.

Workflows of MapReduce and Tez can also be represented by
HW-graphs. Similarly, entity groups capture related entities in the
two systems. For example, group ‘map’ in MapReduce captures ‘map
metrics system’ and ’map output’. Group ‘task’ in Tez captures
‘task’ and ‘TaskAttempt’.

IntelLog vs. Stitch. Stitch [39] is a closely related tool that
reconstructs the workflow of a targeted system as an S3 graph
based on identifiers. An S3 graph defines four relationships between
the identifier pairs in logs, i.e., empty, 1:1, 1:n, and m:n. The 1:1
relationship indicates that the two identifiers are interchangeable.
The 1:n relationship indicates a hierarchical relationship between
the two identifiers. The m:n relationship indicates that an object
can only be unambiguously identified by the combination of the
identifier pair. To compare the S3 graph with the HW-graph, we
reconstruct the S3 graph of the Spark system.

Figure 9 shows that the S3 graph reveals the hierarchical rela-
tionship between identifiers in Spark. For example, STAGE and TID
have a 1:n relationship that indicates one stage runs multiple TIDs.
However, a major limitation of S3 is that it does not has semantic
information recorded in logs. Users can only infer workflows from
the names of identifiers, leaving a large amount of information
unexploited. In practice, the reconstructed workflows by Stitch con-
tains the lifespans of objects and their hierarchical relationships.
On the other hand, IntelLog contains not only such kinds of infor-
mation but also the operations and events related to objects. To this
end, IntelLog is more fine-grained in terms of providing workflows
to users because of its semantic awareness.
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Table 6: The accuracy of anomaly detection by IntelLog.

Framework number of

sessions

length of a

session

D / FP / FN / (P/B)

Spark 4∼26 20∼1812 13 / 2 / 2 / (2)
MapReduce 16∼257 67∼2147 15 / 1 / 0 (0)

Tez 2∼36 107∼486 13 / 3 / 2 (3)

6.4 Anomaly Detection

In order to evaluate the capability of anomaly detection by IntelLog,
we develop a problem injection tool that emulates three real-world
scenarios that were also studied in tools DeepLog [18] and LogClus-
ter [21]. The problems include: 1) execution abortion of a session,
2) network failure on a node, and 3) node failure. The first prob-
lem can be caused by administrators or other user processes. We
simulate it by sending a SIGKILL signal that gives the process no
grace period to do cleanup. The second and third problems are
common due to multiple reasons such as mis-configurations or
hardware errors. We simulate network failures by disabling the
network interface and simulate node failures by shutting down the
machine. To generate logs with various lengths, we submit jobs
to the cluster with five sets of configurations that have different
input data sizes and resource allocations for each system. For each
configuration setting, we submit three jobs injected with the three
problems respectively, and submit three jobs that are not affected
by the problems. Note that we tune the configurations such that
these jobs are guaranteed to run successfully as when no problem is
injected. The injection tool triggers the problem at a random point
during the job execution. To summarize, we submit a total of 30
jobs for each system, 15 of which run with the problems.

Table 6 summarizes the anomaly detection results by IntelLog.
For each system, we present the number of sessions and the length
of one session. ‘D’ denotes the number of injected problems that
are detected by IntelLog. ‘FP’ denotes the number of false positives
and ‘FN’ denotes the number of false negatives. In experiments,
we also find that IntelLog can capture performance problems and
anomalies caused by bugs. The number of bugs is denoted as ‘(P/B)’.
IntelLog detects 41 out of 45 injected problems. In addition, IntelLog
captures 5 unexpected problems that are caused by inappropriate
configurations or a internal bug. In general, IntelLog has a 87.23%
precision and a 91.11% recall.

We manually check the system logs and the problem injection
traces in order to analyze the causes of inaccurate anomaly detec-
tion. A typical reason of false positives is incomplete HW-graph
due to insufficient training logs. We use Spark as an example to il-
lustrate this scenario. During the shutdown phase, the Spark driver
sends every Spark worker a ‘shutdown’ command. Then, the driver
itself enters the shutdown phase. The workers may still receive a
heartbeat telling the disconnection of the driver and record it in
the log file. Since the configurations are finely tuned in the training
environments, workers finish the self cleanup procedure so quickly
that they terminate before receiving the last heartbeat from the
driver. In this case, the disconnected event does not show up in the
logs. On the other hand, we change the resource configurations
during the anomaly detection phase. The workers may experience a
slower shutdown and output this log message. Since IntelLog does

Table 7: Job descriptions in the three case studies.

Case system / input / Session anomaly

No. job name resources D / T summary

1 MapReduce / 30GB / 4 / 259 network problem on
a hostWordCount 8-core, 4GB

2.1 Spark / 30GB 1 / 8 a performance issueKMeans 8-core, 2GB
2.2 Tez / 5GB 24 / 25 a performance issueQuery 8 1-core, 1GB
3 Spark / 30GB 4 /8 an internal bug of

SparkWordCount 8-core, 16GB

not capture this log message in the training phase, it categorizes this
message as an unexpected one and alarms users with a potential
anomaly concerning shutdown.

Next, we use three case studies to demonstrate how IntelLog
reports anomaly execution and helps users to diagnose the root
causes. The workload and anomaly information is shown in Table 7.
In column ‘sessions D / T’, ‘D’ denotes the number of problematic
sessions reported by IntelLog while ‘T’ denotes the total number of
sessions of the job.

Injected problem. In the first case, we take advantage of Intel-
Log and detect that a MapReduce WordCount job experiences a
network problem on a host. We show the step-by-step procedure
that IntelLog leads us to the root cause. After consuming the logs
output by this job, IntelLog reports four problematic sessions con-
taining unexpected log messages out of a total of 259 sessions. At
this point, IntelLog already significantly reduces the log range for
analysis. Then, IntelLog applies the information extraction proce-
dure on the unexpected log messages to transform them to Intel
Messages. The result indicates that all of the unexpected messages
belong to the ‘fetcher’ entity group. We apply a GroupBy oper-
ator on the Intel Messages based on their identifiers. The result
shows that 11 groups have log messages indicating host connection
failures. Finally, we apply another GroupBy operator based on the
location information. The result only has one group with a group
ID ‘host A’. In other words, the diagnosis procedure shows that
11 fetchers have a problem when connecting to ‘host A’ during
execution. After checking the trace of the injection tool, we find
that a network failure is injected during the job execution.

Performance issue. The second case illustrates that IntelLog
has the capability to report potential performance issues even if
jobs finish successfully. When IntelLog consumes logs from a Spark
KMeans job and three Tez jobs (Query 8) without injected problems,
it reports unexpected logmessages that are caused by a performance
problem after further inspection. IntelLog detects that one Spark
session and 71 Tez sessions are problematic. IntelLog extracts a
new entity ‘spill’ from the unexpected log messages. Also, the
unexpected logs from Tez record a file path of a disk location. In
this case, the ‘spill’ event stores the intermediate data to the disk
when the memory usage reaches the configured limit, which incurs
additional I/O overhead. Then, we re-run the two jobs with all the
same configurations but a larger memory limit to verify whether the
memory limit causes the anomaly. The resulted logs are consumed
by IntelLog without triggering a problem.
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Table 8: Comparison of the anomaly detection accuracy

among IntelLog, DeepLog and LogCluster.

tools precision recall F-measure

IntelLog 87.23% 91.11% 89.13%
DeepLog 8.81% 100.00% 16.19%
LogCluster 73.08% N/A N/A

An unexpected bug. In the last case, IntelLog automatically
reports an unexpected anomaly of a Spark WordCount job which
finally turns out to be a bug in Spark (Spark-19731 [6]). In this
case, the Spark job successfully finishes and it does not generate
any unexpected log messages. However, IntelLog reports that 4 out
of 8 Spark sessions do not contain any log message of the ‘task’
entity group nor of its child groups, which are shown in Figure 8.
We further inspect the HW-graph instances built from the other
4 sessions. Each session has at most 8 subroutine instances in the
task entity group, which indicates that a Spark container only gets
assigned at most 8 tasks. Per a previous study LRTrace [28], each
Spark container without a task occupies at least 250 MB memory
resource but it does not contribute to the job progress. In this case, at
least 1 GB memory is wasted in the cluster during the job execution.
A possible solution is that Spark should take the input data size into
consideration when it launches containers. Note that a concrete
solution is beyond the scope of this paper.

Comparison Table 8 shows the anomaly detection accuracy of
IntelLog, DeepLog [18] and LogCluster [21]. IntelLog achieves the
best overall performance. Its precision and F-measure are signifi-
cantly highly than those by the other two tools. LogCluster aims to
reduce human efforts in manually examining logs. Though most of
its reported logs are related to anomalies (high precision of 73.08%),
it may still miss some logs caused by the problems (recall N/A).
DeepLog has a high accuracy rate when it is applied to HDFS and
OpenStack systems. However, its performance degrades when it tar-
gets distributed data analytics systems (low precision of 8.81%). The
reason is that data analytics jobs have much higher parallelism than
infrastructure-level distributed systems. For example, the length of
a log sequence generated by a VM operation request in OpenStack
is relatively small and fixed. In such a case, DeepLog can accurately
predict the next log in a sequence by the logs seen before. But in
data analytics systems, parallelism exists even in one session of a
single job. For example, multiple tasks run in one Spark executor,
and multiple fetchers run in one MapReduce container. Therefore,
the log orders are less predictable. Another fundamental difference
between these two kinds of systems is that the data size affects the
length of log sessions of data analytics systems. The log length of
new job sessions is difficult to be predicted from the job history.

Summary. The experiments show that IntelLog is able to detect
anomalies of the systems, including simulated real-world problems,
performance issues and internal system bugs. For the reported
anomalies including the three cases above, IntelLog also pinpoints
the problematic entity groups or subroutines. By using such infor-
mation, users can easily locate the root causes. In addition, Intel
Messages represented by key-value pairs can be stored as JSON
files or in database, which facilitates log analysis since users can
use queries to obtain related messages of problems.

7 DISCUSSIONS

N-gram extraction [35] is a conventional approach for pattern ex-
traction. However, the approach is not efficient for the information
extraction process in IntelLog for two reasons. It is time consum-
ing to perform the N-gram approach since it searches all possible
sequences that has a length of N. The other reason is that it may
capture word sequences that are not entities such as ‘for attempt’,
which results in a larger result set with many useless phrases.

The accuracy of information extraction depends on the quality of
logs. IntelLog achieves a relatively higher accuracy in Tez compared
to in MapReduce and Spark because logs of Tez are usually short
and well formatted. Factors that affect the accuracy include using
multiple phrases to describe the same entity and using the same
phrase to indicate multiple entities.

The structure parsing based extraction approach of IntelLog is
effective because logs are usually written in simple sentences that
have only one clause. For complex sentences, the approach may
miss the operations in the dependent clause but it can still extract
the operations in the independent clauses.

One limitation of IntelLog is that it only focuses on logs that are
written in natural languages. Otherwise, the HW-graphs may not be
constructed due to the lack of correlated entity names. Fortunately,
popular distributed systems use natural languages when generating
log message.

8 RELATEDWORK

Log analysis. Many previous studies focus on log analysis [14, 15,
18, 26, 28, 29, 36, 38, 39]. Workflow reconstruction from logs re-
ceives much attention. Stitch [39] uses an identifier-based approach
to construct workflows of systems, leaving the rest of the infor-
mation unused. Furthermore, identifiers are usually abbreviations,
which make it difficult for users to understand the systems. A fun-
damental drawback is that it requires manual analysis to detect the
anomalies, which is only practical with small-sized jobs (e.g., jobs
with fewer than 50 sessions). CloudSeer [36] uses an automation
based approach to reconstruct the workflow of a cloud infrastruc-
ture. Since the length and order of the log sequences generated
by the cloud infrastructure are relatively fixed, it can accurately
capture the workflow and detect anomalies. However, it cannot be
applied to distributed data analytics systems since the lengths and
orders of logs in such systems can vary significantly.

There are studies that leverage static analysis to conduct log
analysis [38]. They require the byte code of the systems and need
to perform the static analysis once the systems are upgraded. In ad-
dition, it requires user efforts and has limited capability for specific
problems. There are also many studies applying machine learning
methods on log analysis [9, 15, 26]. PerfScope [15] applies a cluster-
ing algorithm on OS logs to find logs that have similar behaviors.
DeepLog [18] is a recent work in this category. It uses LSTM, a deep
neural network, to obtain the probability of the next log in a log
sequence. For machine learning approaches, the training accuracy
relies on 1) the quality of the training data, and 2) the parameters
in the machine learning models. NetSieve [30] uses an NLP based
approach to extract semantic information from network tickets.
A fundamental difference between NetSieve and IntelLog is that
NetSieve focuses on logs hand-written by network administrators.
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Such logs only record maintenance information but do not have
workflow information for reconstruction.

Different from those tools, IntelLog extracts the semantic knowl-
edge in logs and leverages it to reconstruct the workflows of the
targeted data analytics systems. The semantic knowledge is essen-
tial for users to understand the systems. When an anomaly occurs,
IntelLog not only infers the problematic requests but also the po-
tential erroneous components, which significantly helps users to
locate the root causes.

Intrusive approach. This is a popular approach to obtain in-
formation from inside targeted systems [13, 23, 25], which requires
source code modification. The obtained information are guaranteed
to be accurate an0d unambiguous. However, an intrusive approach
needs to balance the trade-off between the amount of information
and overhead. Dynamic intrusive tools such as Pivot Tracing [23]
insert tracing points into the target systems on the fly, which reduce
the overhead. However, users need to know the intended function
and metric names in the source code. A recent study AUDIT [22]
adopts both log analysis and the intrusive approach. It sets triggers
in the targeted systems and inserts more logging statements in the
targeted systems when triggers are fired by anomalies. In this way,
the additional logging statements only introduces overhead when
the systems need maintenance because of anomalies.

Fundamentally different to intrusive approaches, IntelLog is non-
intrusive. It does not require modification or access to the source
code of the targeted systems. A non-intrusive approach is more
ubiquitous since most systems output logs while fewer systems
make their source code available.

9 CONCLUSION AND FUTURE WORK

This paper presents IntelLog, a workflow reconstruction and anom-
aly detection tool for distributed data analytics systems. It recon-
structs theworkflows of the systems by usingNLP based approaches
in a non-intrusive manner. It uses POS analysis and sentence struc-
ture parsing to extract information from log keys. The results are
Intel Keys, an enhanced representation of the original log keys.
IntelLog leverages the nomenclature of entity names to group to-
gether related entities. Its semantic awareness byHW-graphs allows
users to easily understand the targeted systems. IntelLog also uses
the HW-graphs for anomaly detection. Experimental results show
that IntelLog outperforms existing tools in automatically detect-
ing anomalies caused by real-world problems, performance issues
and internal system bugs and pinpoints the erroneous components.
Logs in natural languages help users not only analyze anomalies
but also understand the underlying mechanism of the systems.

In the future, we plan to extend IntelLog to distributed machine
learning systems (e.g., TensorFlow).
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