RIGHTS

Pufferfish: Container-driven Elastic Memory Management for
Data-intensive Applications

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou
Department of Computer Science
University of Colorado, Colorado Springs, CO, USA
{cwei,epi,swang,xzhou}@uccs.edu

ABSTRACT

Data-intensive applications often suffer from significant memory
pressure, resulting in excessive garbage collection (GC) and out-of-
memory (OOM) errors, harming system performance and reliability.
In this paper, we demonstrate how lightweight virtualization via
OS containers opens up opportunities to address memory pressure
and realize memory elasticity: 1) tasks running in a container can
be set to a large heap size to avoid OutOfMemory (OOM) errors,
and 2) tasks that are under memory pressure and incur significant
swapping activities can be temporarily “suspended” by depriving
resources from the hosting containers, and be “resumed” when
resources are available. We propose and develop Pufferfish, an elastic
memory manager, that leverages containers to flexibly allocate
memory for tasks. Memory elasticity achieved by Pufferfish can be
exploited by a cluster scheduler to improve cluster utilization and
task parallelism. We implement Pufferfish on the cluster scheduler
Apache Yarn. Experiments with Spark and MapReduce on real-
world traces show Pufferfish is able to avoid OOM errors, improve
cluster memory utilization by 2.7x and the median job runtime by
5.5x compared to a memory over-provisioning solution.

CCS CONCEPTS

« Computer systems organization — Cloud computing; Avail-
ability; « Software and its engineering — Operating systems;
Memory management; Cloud computing.

KEYWORDS

cloud computing, containerization, memory management, cluster
scheduling

ACM Reference Format:

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou. 2019. Pufferfish: Container-
driven Elastic Memory Management for Data-intensive Applications. In
ACM Symposium on Cloud Computing (SoCC ’19), November 20-23, 2019,
Santa Cruz, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3357223.3362730

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC 19, November 20-23, 2019, Santa Cruz, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6973-2/19/11...$15.00
https://doi.org/10.1145/3357223.3362730

Ay

259

1 INTRODUCTION

Data-intensive applications have become increasingly popular in
many fields, such as data mining, machine learning, and database
query. To enable data-parallel processing on large datasets and to
improve hardware utilization, those applications are often executed
in a shared cluster and scheduled by a modern resource manager [21,
42]. A typical resource manager relies on the estimation of workload
resource (e.g., CPU cores and memory) by users to perform resource
allocation and enforce resource limits. Currently, most resource
managers employ static resource allocation mechanisms. Therefore,
the allocated resource remains unchanged and cannot be revoked
during application runtime.

Popular data-processing frameworks such as Hadoop [4], Spark [49],

Dryad [25] and Hyracks [7], are implemented using managed lan-
guages (e.g., Java) in which runtimes commonly have built-in au-
tomatic memory management. For these frameworks, garbage col-
lection (GC) often causes significant memory and CPU overhead.
It even fails applications with OOM errors when the JVM heap is
not configured properly. However, the JVM heap usage depends on
many application-related factors, such as the size of the input data,
the size of the generated intermediate results, and the execution
stage, which vary largely across different applications and during
application runtime.

As a result, it is almost impossible to accurately estimate the
required memory for data-intensive applications before execution.
As manual configuration and tuning are tedious and ineffective,
users tend to provision task memory size based on the measured
peak demand. However, for the prevalent static cluster resource al-
location, the resource request acceptance decisions are made based
on the resource availability on each individual node. The prevalent
static cluster resource allocation accepts a resource request based
on the resource availability on each node. A task normally has
to wait until sufficient memory becomes available. Thus, memory
over-provision often leads to under-utilized cluster resource and
significant job queuing delay when allocated but inefficiently used
cluster resources accumulate.

In this paper, we focus on data-intensive applications that have
a large memory demand and a long running time (e.g., iterative
machine learning applications and large batch workloads), in Java-
based frameworks. We identify two major challenges: (1) improper
memory setting causes individual tasks to suffer from performance
degradation or even OOM,; (2) dynamic and unpredictable task mem-
ory behaviors under static memory management cause significant
resource wastage and queuing delay.

We present Pufferfish, a container-driven application-agnostic
elastic memory manager. To address the first challenge, Pufferfish
proposes an effective yet simple approach based on lightweight

https://doi.org/10.1145/3357223.3362730
https://doi.org/10.1145/3357223.3362730
https://doi.org/10.1145/3357223.3362730

RIGHTS

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

virtualization to address the performance issue and OOM of an in-
dividual task. The key idea is to leverage OS containers to limit the
memory usage of a task while setting a sufficiently large heap size to
avoid OOM. In this scenario, a task under memory pressure incurs
disk swapping instead of running out of memory. However, simply
running the task with a large heap incurs significant overhead and
degrades system performance due to excessive disk accesses. There-
fore, we temporarily suspend the swapping container by capping
its CPU resource to a very low level such that thrashing is throttled
but the task is still alive.

To address the second challenge, Pufferfish monitors the memory
usage of application containers and optimizes memory allocation
by dynamically adjusting the container memory size on the fly. As
long as free node memory is detected and a task demands more
memory (when JVM heap usage increases), Pufferfish increases the
container memory size to avoid container swapping using a mem-
ory puff mechanism. However, if memory contention is detected
when Pufferfish serves memory requests from multiple containers
on the same node, a heuristic is used to selectively increase the
memory of prioritized containers and depress the rest. If a node’s
memory is insufficient to start a new job, Pufferfish uses reclaim
mechanism to squeeze the memory of puffed containers. Pufferfish
achieves memory elasticity so that improved cluster memory usage
can be translated to higher parallelism, lower queuing delay and
improved job completion time.

The ideology of Pufferfish is similar to that of VM ballooning.
However, Pufferfish is designed to be deployed within an operating
system, which requires different techniques and poses different
challenges and opportunities. For instance, in Pufferfish, the mem-
ory consumption of containers can be obtained via Linux cgroup
interfaces while VM ballooning requires a balloon driver to indi-
rectly infer the memory demand of VMs. Pufferfish is transparent
to applications and compatible with existing cluster schedulers.
We implemented it on a popular cluster scheduler, Yarn [42]. Ex-
periments with Google trace [38] on a 26-node cluster show that
Pufferfish can help applications with a large memory footprint
avoid OOM errors, and survive from memory pressure with less
than 10% performance overhead. Through its memory elasticity,
Pufferfish improves cluster utilization by 2.7x and the median job
runtime by 5.5x compared to a memory over-provisioning solution.

2 IMPACT OF TASK MEMORY SIZE

For Java-based applications, the task memory size is given by set-
ting the maximum JVM heap size (i.e., parameter -Xmx). If the JVM
heap size is not set properly and there is not enough memory in
the JVM heap for creating new objects, the JVM throws an OOM
error and the task fails. Determining the optimal heap size for ap-
plications is not realistic. The aggregated heap size of all tasks on
the same node should not be too large to cause memory swapping.
Thus, setting a large per-task heap size limits the degree of paral-
lelism for application tasks in one machine, which leaves potential
concurrency unexploited. In contrast, a small heap size jeopardizes
task execution with degraded performance and OOM errors.

We profile the task memory usage of representative data-intensive
applications: Spark Kmeans, Spark Pagerank and MapReduce Tera-
sort. Figure 1 illustrates how JVM heap sizes affect job performance

Ay

260

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou

3000 4 3 spark-kmeans-ex
[mapreduce-terasort-exe
Wl spark-pagerank-exe

3 gc

2500 +

2000 +

Time (s)

1500 1 ‘ ‘ ‘

1000 1 ‘ ‘ ‘

500 + D ‘_}_}
L1 W0

Figure 1: Job runtime of Spark Kmeans, Spark Pagerank and
MapReduce Terasort with different heap sizes.

32

16
JVM heap size (GB)

by breaking down the job runtime into execution time and GC time.
For MapReduce Terasort, we only modify the heap size of reduce
tasks, since Terasort is bottlenecked by the reduce phase.

For the three applications, their performance is improved by
increasing the JVM heap size. Kmeans throws OOM at a 4GB heap
size. Pagerank only survives when heap size is larger than 64GB.
However, the 64GB heap boosts the performance of Kmeans by 5x
over the 8GB heap. GC is often not triggered by a large heap size,
thus GC overhead is decreased with the increase of heap size. We
further find that the job execution also benefits from a large heap
size. Frameworks like Spark and MapReduce reserve memory pools
to store intermediate data [48] (for Spark) or to improve I/O per-
formance (for MapReduce). In case of memory insufficiency, data
cached in the memory pool is spilled to disks, resulting in excessive
1/0 and degraded performance. We notice that this phenomenon
is significant on Spark Kmeans, since Kmeans is an iterative appli-
cation and its intermediate results are immediately needed in the
next iteration. A big heap size not only reduces the GC overhead
but also avoids spilling.

Memory heterogeneity opportunity. Figure 2 shows the 5
and the 90" percentiles of memory usage of each container! through-
out the application execution time. The results show that there is a
heterogeneous memory distribution across the executors. Executor-
9 uses much more memory than others do. After examining the
Spark logs and repeating the experiment with various inputs, we
find Executor-9 is cached with more intermediate data (as Spark
RDD) and scheduled with more Spark tasks than other executors.
We generally denote a task as the scheduling entity managed by a
cluster scheduler, such as a Spark executor and a MapReduce task.
Note that a Spark task means the execution thread in each executor.
We conclude three causes of heterogeneous memory distribution:
(1) Skewed input data. The intermediate results might be gathered
on the hotspot executor after shuffling [15]. (2) Localization. The
hotspot executor residing on the node with more localized data
might be scheduled with more Spark tasks [1, 34, 48]. (3) Stragglers.
The executor with less or without straggler tasks might be sched-
uled with more Spark tasks [27, 28]. In these situations, a unified
task memory configuration makes memory over-provisioning a
necessity to avert OOM.

Memory dynamics opportunity. The profiled memory usage
also shows that a task’s memory usage can be significantly below
its assigned heap size. For one third of the execution time, Spark

oth

!We ran Spark executor in a Docker container managed by Yarn.

RIGHTS LI

Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications

60 | HEE Pagerank-50th
[Pagerank-90th

| 1§

1 2 3 4 5 6 7 8 9 10
Executor number (#)

Figure 2: Memory usage of Spark Pagerank with different
number of executors.

Pagerank, Spark Kmeans, and MapReduce Terasort jobs only uti-
lize 49%, 64%, and 86% its configured heap, respectively, although
the heap is not over-provisioned. It demonstrates that the memory
usage for a single task is dynamic, and much memory is unused
during its execution. Causes include: (1) JVM uses lazy memory al-
location mechanism, which means memory is allocated on demand.
As a result, application memory usage is slowly increased from a
small value. (2) Application behavior is dynamic. Intermediate data
might be dropped by the application and collected by the GC at
runtime.

In this paper, we consider that memory heterogeneity and mem-
ory dynamics are prevalent in data-intensive applications, which
provide Pufferfish the opportunities to achieve memory elasticity
in datacenter scheduling.

3 CONTAINERIZATION

3.1 Avoiding OOM Errors

In Pufferfish, the key to avoiding Java OOM errors is to set a large
enough heap size for JVMs running inside OS containers. The heap
size (e.g., 64GB) should be larger than the physical memory limit
of the container (e.g., 4GB). Thus, the JVM heap is built on the
virtual memory of the container rather than on its allocated physical
memory. In this case, when a task is under memory pressure, the
container will start to swap recently unused data to the disk. The
memory overcommitment supported by the OS allows JVMs to
run with a much larger heap size than the physical memory limit.
With this mechanism, a task will not run into OOM errors but
start memory swapping once the task memory usage exceeds the
container memory size. However, application performance could
be degraded.

Note that one alternative is to simply kill the swapping JVM.
However, Pufferfish targets long-running applications, such as off-
line batch jobs and iterative machine learning jobs that can run for
hours or even days. Killing causes substantial slowdown due to the
loss of execution progress. It also leads to low cluster utilization.

3.2 Suppressing Memory Thrashing

While containerization and a large JVM heap help avoid OOM
errors, the problem shifts from JVM heap pressure to container
memory pressure. When task memory demand grows beyond the
memory limit of a container, memory swapping or thrashing signif-
icantly slows down the task execution and even affect other tasks

Ay

261

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

on the same node. Further, GC is not effective since heap scanning
under memory pressure does not reclaim much memory [14]. To
address these issues, we temporarily suspend a task in trouble by
reducing the CPU allocation of the container to a low level. Since
memory access in a swapping container generates paging activities,
the reduced CPU usage reduces the rate at which the JVM accesses
memory so as to reduce its contribution to paging activities. The
low CPU allocation should be sufficient so that the cluster scheduler
does not consider the task as a failed one.

Identifying OCM heuristic. We use a heuristic to identify con-
tainers in which the running processes are out of container memory
(OCM): if the sum of the memory usage and swap usage are larger
than the memory limit and there are swapping activities detected, the
container should be suspended. For an OCM container, Pufferfish sus-
pends its execution to confine its swapping and GC activities. After
an OCM container is suspended, Pufferfish checks the node memory
availability and determines if the suspended container is able to puff
(by puffing, the memory capacity of a container is increased). After
multiple rounds of puffing, the container size will be adjusted to its
actual demand during execution. By this design, containerization
enables tasks to utilize temporarily available node memory (sourced
from memory over-provision, memory dynamics and heterogeneity
opportunities), achieving memory elasticity. Pufferfish may also
trigger memory reclaim by forcing memory pages to be swapped
to disk under node memory contention. Suspended and reclaimed
containers can be resumed to normal execution with sufficient CPU
and memory if memory availability is detected when completed
containers release their allocated resources.

To suspend an OCM container, we minimize its CPU usage and
pin task threads (including working threads and GC threads) to a
single core while maintaining sufficient footprint for this task to
be alive. We experimentally set the low container CPU usage to 1%
and restrict the container only to run on CPU 0. Because 1% of a
CPU usage still enables the task in the suspended container to send
heartbeats to the cluster scheduler, the cluster scheduler will not
consider this task dead and restart a new one. Note that the task
performance is significantly degraded under swapping. For data-
intensive applications (e.g., Hadoop, Spark), heartbeat mechanism
is often implemented in a separate thread and the thread is woken
up to send heartbeats every 3-5 seconds. Our experiment shows that
a heartbeat thread woken up at this frequency can still be kept alive
even the entire task is only assigned with 1% CPU quota. We do
not expect the task to make progress in this situation, but the task
and its intermediate results should be kept alive. All these resource
manipulations are conducted through the cgroup subsystem that
corresponds to the container. Although heap over-provisioning and
containerization avoid OOM, they do not achieve memory elasticity.
To that end, we discuss elastic memory management in section 4.3.
Address swapping. In the previous section, we advocate to sus-
pend a swapping task by reducing its CPU usage. In this section,
we use an example to demonstrate the necessity of suspension to
address significant I/O traffic and JVM garbage collection. In order
to emulate a scenario where a task is consecutively swapping, we
run a Spark Pagerank job, then manually reclaim its memory by
shrinking the container size, and finally resume its execution by

RIGHTS LI

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

(a) Memory & swapping

o
9 60 \ X read
o \ write
o 3
© 40 s
g \
> \
2 204
< A
g g
= 0 -
300 400 500 600 700 800 900 1000
Time (s)
(b) Heap & GC
m 40
< vy Ved
~ 30+
[}
N
B 201
&
% 10 4 GC
04 on-swapping

400 600 800 1000

Time (s)

Figure 3: (a) Pufferfish effectively suspends Spark Pagerank
without incurring much memory thrashing. The gray line
represents the container memory size. Each dot represents
an IO operation (read/write). (b) A full GC on swapping can
be observed at 270" second when the container starts re-
claiming. The gray line represents the JVM heap size. Each
dark blue line represents the time of a full GC.

recovering the container size. We configure a one-executor Pager-
ank with the optimal 64GB heap (a heap larger than 64GB does not
yield better performance).

Figure 3-(a) shows the memory usage and the container swap-
ping activities. We start reclaiming the container at the 2657 sec-
ond (an arbitrary chosen moment). Significant disk write activities
(as high as 2GB/s) are observed while the container is reclaimed
from 64GB to 4GB because of swapping. At the 4507 h second, we
reduce the container’s CPU usage to 1% and the swapping activities
are quickly throttled with the disk/read rate dropping to below
1MB/s because paging is constrained under low CPU usage. During
suspension, we still observe heartbeats between the Spark executor
and the master. This illustrates that container suspension success-
fully confines the swapping activities. Note that in such a case, the
working set size of the task is far beyond the container size. Thus, it
is not helpful for fast memory retrieval if the task is being swapped
without reducing CPU usage. Additionally, it causes significant I/O
traffic. Finally, the container’s memory and CPU are restored to
64GB and 100% respectively at the 750¢" second. With sufficient
memory, the container experiences a burst of disk activities in order
to load the working set into memory.

Figure 3-(b) shows the full GC activities and the JVM heap usage.
Even though the task is configured with a large heap, an aggressive
full GC upon swapping can be observed at the 270" second, which
lasts for 89 seconds. As a result, the used JVM heap is dropped from
45GB to 30GB. After analyzing the GC logs, we find the full GC is
caused by an OS memory allocation failure. The reason is that JVM
memory allocation requests to the OS (by mmap() or malloc())
fail on container memory shortage, activating the GC to try to
reclaim memory from the JVM heap. Two insights can be drawn
from this experiment. (1) GC on swapping is useful in reducing the
committed memory, especially when the surviving objects after GC

Ay

262

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou

are sparse. Since each task is given an illusion of a large available
memory due to the configured large heap size, it allows tasks to
exploit the memory elasticity when the host has sufficient memory.
On the other hand, tasks can still leverage GC to reduce the JVM
heap to confine swapping. (2) The excessive GC, which spawns
many GC threads, causes strong CPU interference to other tasks
running on the same node if not well handled. Pufferfish addresses
this issue by reducing the container CPU usage to a low level and
confining the container’s CPUSET to one core.

The experiment provides following insights on our proposed
container-based memory management:

e By reducing the CPU usage, the disk swapping activities are
successfully throttled.

o Task is still alive by keeping a low CPU footprint of 1%.

e Swapping during suspension still triggers full GC, which
effectively reduces the committed memory.

4 PUFFERFISH DESIGN AND
IMPLEMENTATION

4.1 FLEX container

Pufferfish is built on top of Apache Yarn. To leverage our proposed
functionalities, We define a new type of container, FLEX, whose
size can be dynamically adjusted during execution by Pufferfish. In
contrast, a REGULAR container is Yarn’s default container, whose
size is static and determined at request time. FLEX containers are
designed for the long-running data-intensive applications with
large memory demands. We derive the property of FLEX containers
as follows:

e To avoid OOM, task running in a FLEX container is set with
the same large heap size MAX_HEAP, representing the max-
imum memory demand among all application tasks. Since
each container at most holds memory of an entire node,
MAX_HEAP value is capped by memory capacity of a node.

e To avoid memory waste, all FLEX containers should be
started with the same small memory size (MIN_CONT) , repre-
senting the minimum memory demand among all application
tasks.

Currently, users need to specify the values of MAX_HEAP and
MIN_CONT for FLEX containers. Cluster operators may apply their
previously used over-provisioned task memory size for MAX_HEAP.
The difference lies in that both the container size and the JVM
heap size are over-provisioned in Yarn, while only the heap size is
over-provisioned in Pufferfish.

4.2 System Components

We implement Pufferfish by extending Apache Yarn. Yarn is a gen-
eral resource management framework that allows applications to
negotiate resources on a shared cluster. Yarn uses container, a logi-
cal bundle of resources (e.g., (1 CPU, 2GB RAM)), as the resource
allocation unit. In Yarn, the ResourceManager, one per cluster, is
responsible for allocating containers to each node. The Applica-
tionMaster, one per application, submits requests for containers
to ResourceManager. The NodeManager, one per node, monitors
node status and updates ResourceManager with resource availabil-
ity. The key components of Pufferfish include one node memory

Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications

Resource [scheduling
Manager | Plugin

N
A .
Heartbeat
.

Request

||l Application
Master

} Node Manager

Launch

Figure 4: Architecture of Pufferfish.

manager per NodeManager, one container monitor per container,
and a scheduling plugin in ResourceManager. The architecture of
Pufferfish is shown in Figure 4.

Node Memory Manager, implemented in NodeManager, is re-
sponsible for monitoring node memory usage and instructing Con-
tainer Monitor to resize a container. In the Node Memory Manager,
we define two functions, puff() and reclaim(), shown as PR in
Figure 4. Function puff () periodically selects FLEX containers un-
der OCM and computes the amount of memory that can be added
to them. Function puff() is invoked every two seconds which
equals to the heartbeat interval between ResourceManager and
NodeManager since containers might be released or launched dur-
ing this interval. The puff() stops puffing when either all FLEX
task memory demands are satisfied, i.e., no more OCM contain-
ers are detected, or the node memory is almost run out. Function
reclaim() is called whenever a new container is to be launched
on the node. At that moment, the Node Memory Manager needs
to check if the node has enough memory. If not, it chooses one of
the FLEX containers and computes how much memory belonging
to this container to reclaim. We describe how the Node Memory
Manager chooses containers in Section 4.3.1.

Container Monitor is a per-container daemon implemented in
NodeManager that is responsible for memory monitoring and ad-
justing. It is instructed by the Node Memory Manager to increase
or decrease container memory through the interface provided by
cgroup. It also maintains container state and its corresponding
action. For example, when a container is detected under OCM,
its Container Monitor immediately suspends the container by set-
ting its CPU allocation to 1% and limiting its CPUSET to a single
core. In contrast, if a suspended container is under OCM, which
means the memory demand of this container is satisfied after puff-
ing, Container Monitor resumes its CPU and CPUSET. Pufferfish
is built at the resource management layer of Yarn and is trans-
parent to applications. We have open-sourced Pufferfish at: https:
//github.com/yncxcw/pufferfish.

4.3 Elastic Memory Management

For elastic memory management in clusters, Pufferfish develops two
node-level mechanisms, one cluster scheduler plugin, and adopts
two prioritization polices.

4.3.1 Two Node-level Mechanisms.
Puff. Given a set of OCM containers, function puff () determines
the amount of memory that can be added to these containers. We

RIGHTS 1 L)
263

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

() I Container 4 10% I
Container2 40%
I Container 3 10% I
. "\ J
| Container 2 20%A

f o
Container 1 40% Container 1 40%

(a) (b)

Figure 5: Demonstration of memory contentions.

present a simple method to quickly adapt the container sizes to their
actual demands. Consider a container with size M that is currently
suspended due to OCM and has been selected to puff. In the next
round with puff ratio ¢, the container size will be M X (¢ + 1). The
container size keeps increasing in each round until its demand is
satisfied.

Determining an optimal ratio ¢ for all applications is non-trivial.
A large ¢ causes waste, while a small ¢ causes significant overhead
because of frequent suspension and puffing. A practical method is
to profile representative data-intensive applications and express the
memory usage as a function of time M(t). Its memory growth rate
can be represented as M(t + §)/M(t). If we set § as the Container
Monitor interval, M(t+8)/M(t) represents the growth rate between
two consecutive puffing rounds. Generally, ¢ can be set by choosing
a relatively large growth rate from all profiled applications. By this
setting, there is little overhead on the containers caused by memory
insufficiency. The additional unused memory can later be reclaimed.

We find that applying the same puff ratio for all containers on the
same node can cause memory contention. As shown in Figure 5-(a),
after a few rounds of puffing, each container might hold 40% of the
memory on the node machine but is still demanding more memory.
In this case, both containers are suspended with OCM state and
cannot make further progress, because the node has almost run
out of its memory. To resolve memory contention, we develop a
backoff-based puffing algorithm. It works by sorting the containers
on the same node by their priorities and giving the default ratio
to the container with the highest priority and backing off for the
rest. For example, if there are multiple OCM containers on a node,
the container with highest priority gets the default puff ratio ¢, the
second gets ratio ¢/N¢, the third gets ratio ¢/(N,)?, and so on. By
enforcing the priorities, memory contention is avoided by giving
more puffing chances to high priority containers and suspending
low priority containers. The priority is defined by the cluster-level
policy in section 4.3.3.

Avoiding memory contention is not effective when a node mem-
ory is about to be used up, however. As shown in Figure 5-(b),
container-1 with the highest priority is under OCM and demanding
more memory while the node cannot satisfy the request. To avoid
OOM of the node, puff () kills the container with the lowest prior-
ity because killing and relaunching it incurs the least performance
loss.

https://github.com/yncxcw/pufferfish
https://github.com/yncxcw/pufferfish

RIGHTS

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

Algorithm 1 Memory puff function: puff ().

1: Variables: Memory puff ratio ¢, Set of sorted OCM containers
C, Node allocated memory A, Node total memory M.

2: /* Cis sorted by container priority */
3. N, = C.size();
4 if A > M then
5 if C.get_first().is_ocm() then
6: kill(C.get_last());
7: end if
8: return;
9: end if
10: for each container ¢ in C do
11 if A > M then
12: break
13: end if
14: if !c.is_ocm() then
15: continue
16: end if
17: /* Avoid one container to dominate available M — A */
18: bm = min(c.get_memory() X @, #);
19: c.add_memory(bm);
20: A+ = bm;
21: d)/: N¢;
22: end for

Details of the puff () function are shown in Algorithms 1. Func-

tion is_ocm() implements the heuristic of identifying OCM. In line
14, we skip containers whose memory demands are satisfied. Lines
10 to 21 implement the backoff-based puffing. Lines 4 to 9 kill the
container with the lowest priority if the memory demand from the
container with the highest priority cannot be satisfied. To track
the set of OCM containers (C), each container is augmented with
a timestamp. If a container is detected as OCM, it is put in set C
with a timer bound. If a container is not detected as OCM for more
than a time threshold (e.g., 2 minutes), which means its container
size is sufficient for its memory demand, it will be removed from
set C by Node Memory Manager. Container Monitor also shrinks
the container size if memory slack is detected. For instance, if a
container is puffed from 50GB to 70GB while its actual demand
is 60GB, then 10GB is not actively used. Thus, to avoid memory
fragmentation, the puff mechanism shrinks the container size to
62GB (2GB overhead by default).
Reclaim. Before Pufferfish launches a container on a node, it
checks if the node has enough memory. If not, function reclaim()
is called to reclaim memory based on memory availability and
memory demand. For example, if a REGULAR container requests
5GB memory, Pufferfish ensures there is 5GB free memory. But
for a FLEX container, Pufferfish only needs to ensure free space
of MIN_CONT. Reclaiming starts from the OCM container with the
lowest priority to avoid overhead on REGULAR containers. Once
containers exit and release their occupied memory, reclaimed con-
tainers are puffed immediately. Note that containers under reclaim
are suspended. To reduce the overhead, Pufferfish uses a lazy ap-
proach that delays the memory reclaim until the node memory
cannot satisfy a newly scheduled container.

Ay

264

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou

4.3.2 Cluster Scheduler Plugin. When Pufferfish applies puff and
reclaim mechanisms for cluster memory management, there ex-
ists one major issue. The risk of task killing on some nodes would
be significantly high due to memory contention on those nodes
if the memory utilization is unbalanced across the cluster. The
cause is that the cluster scheduler is unaware of the actual puffed
memory usage of containers on individual nodes. Yarn ResourceM-
anager keeps track of cluster-wide resource allocation based on job
resource requests. However, the requested memory for a FLEX con-
tainer (MIN_CONT) is always smaller than the actually used memory,
which makes it difficult for ResourceManager to identify a suitable
node for container allocation.

We develop one cluster scheduler plugin to address the issue.
First, we augment the heartbeat between ResourceManager and
NodeManager to convey the actual memory usage of each node.
Second, to avoid FLEX containers overwhelming one node, we
develop a memory-aware heuristic to direct container allocation in
the cluster. When scheduling a FLEX container, Pufferfish delays
the request if it cannot be satisfied due to insufficient memory of
a node, to avoid meaningless memory reclaim. The heuristic also
tries to balance the memory usage of FLEX containers on each
node because they likely dominate one node. To this end, when
choosing a node for container placement in the cluster, Pufferfish
prioritizes the node with the most amount of available memory. If
several nodes have the same amount of available memory, Pufferfish
chooses the node with data locality. The heuristic implementation
requires less than 20 lines of code. It can be easily ported to any
Yarn compatible scheduler. The plugin enables the existing cluster
schedulers to be memory-elasticity aware.

4.3.3 Prioritization Policies. Pufferfish can be coupled with differ-
ent cluster-level policies so as to achieve various memory manage-
ment objectives. In this paper, we aim to maximize cluster memory
utilization and improve job runtime. We adopt two prioritization
policies that determine the order of puffing for containers on the
same node upon memory pressure.

e Earliest Job First (EJF) policy prioritizes containers based
on the arrival time of the job that the containers belong to.
This is the default policy in Pufferfish. Its rationale is that
the oldest job may release memory first.

o Shortest Job First (SJF) policy sorts containers based on
the expected job completion time, giving the shortest job
the highest priority. This policy requires estimation of job
duration which can be inferred from historical logs. Its ratio-
nale is that long jobs should be penalized as short jobs may
release memory sooner. Note that the actual job completion
time may vary due to various factors.

We introduce suspension tolerance as the maximum duration a
container can be suspended. A task will be killed if it is suspended
longer than the suspension tolerance. We expect the killed contain-
ers to be launched on another node with sufficient resources. By
default, suspension tolerance is set to half of the expected duration
of a job. This enhancement is useful for those FLEX containers that
are allocated with a huge amount of memory but suspended for
long time, which causes a lot of memory waste. Note that under
SJF policy long jobs can suffer from starvation when short jobs
keep arriving. Pufferfish increases a suspended job one priority

RIGHTS LI

Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications

(a) puff() function

100

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

(b) reclaim() function (c) TPC-H JCT

== Use-l wmm= Use-2 === Use-3 === (nt-l === cnt-2 == cnt-3

80 -

. |
|=——r shrinked 1
60 1 1

40 1

20 A

Memory usage(GB)

Memory usage(GB)

= cnt-FLEX
= cnt-REGULAR

100 -

80 -

= mix-PF
= mix-YARN

60 -

40 -

201

H & relaunched
750 1000 1250
Run time (s)

T
500 1500

T T T
300 400 500

JCT(s)

T T T T T T T
0 250 500 750 1000 100 200

Run time(s)

Figure 6: Efficacy of puff() and reclaim() functions in the single-node cluster. The solid line in (a) and in (b) shows the real
memory usage while the dashed line draws the container memory size.

level when the job has been suspended for half of the suspension
tolerance, and eventually starvation is avoided.

For producer-consumer scenario where consumer tasks wait on
producer tasks (e.g., reduce tasks wait on map tasks), as Pufferfish
assigns the same puf! ratio to tasks belonging to the same job, their
memory allocation can progress at a similar pace. However, it is
possible that a producer container demands much more memory
and gets suspended while the consumer container waits on it. In
this case, Pufferfish simply kills any container once it has been
suspended for too long in order to avoid deadlock.

5 EVALUATION

We evaluate Pufferfish by using representative MapReduce and
Spark workloads. We first evaluate Pufferfish on a single-node clus-
ter (the cluster only has one slave node) to validate efficacy of
node-level puff and reclaim mechanisms. We then evaluate Puffer-
fish in a multi-node cluster using the Google trace [38]. We finally
discuss Pufferfish overhead and parameter sensitivity.

5.1 Experimental Setup

Cluster setup The multi-node cluster in the experiment consists of
26 nodes. Each node has two 8-core Intel Xeon E5-2640 processors
with hyper-threading enabled, 128GB of RAM, and 5x1-TB hard
drives configured as RAID-5. The machines are interconnected
by 10Gbps Ethernet. Each machine is installed with Ubuntu-16.04.
Pufferfish implementation is based on Yarn-2.7.3. We use the same
Yarn version for comparison. We configure each node with 120GB
memory for Yarn (excluding OS and Yarn daemon usage). We use
Spark-2.0.1 for Spark applications. Docker-1.12.1 is used to create
OS containers. The image is downloaded from online Docker hub
sequenceiq/hadoop-docker.

Pufferfish setting Based on our initial application profiling, we
configure the puff ratio ¢ to 40%. For FLEX containers, we configure
MIN_CONT to 4GB and MAX_HEAP to 64GB to ensure Spark-PR and
Spark-NW do not run into OOM.

Workloads Several of our data-intensive workloads are chosen
from HiBench [22]. Table 1 lists their input size, number of execu-
tors for Spark workloads (e.g., 1 and 6 for small and large Spark-
Wordcount workloads, respectively), and number of reduce tasks
for MapReduce workloads. Wordcount (WC), Terasort (TS), and In-
vertedindex (II) are both memory intensive and I/O intensive batch
workloads. Kmeans (KM), Pagerank (PR), and Nweight (NW) are

Ay

265

Table 1: Inputs of the evaluated workloads.

Workloads (units) Small/Executor Large/Executor

Spark-WC(GB) 100/ 1 1000/ 6
Spark-KM(Samples) 1x108/1 5x108/6
Spark-PR(Pages) 5x10°/1 5x107 /8
Spark-NW (Edges) 1x107 /1 1x10%/8
MapReduce-TS(Records) 3.2 x 108 3.2x10%/25
MapReduce-II(GB) 10 X 10 10x30/6

representative machine learning workloads with long runtime and
excessive memory usage. We use the small dataset for the single-
node cluster evaluation. We use both small and large datasets for
the multi-node cluster evaluation. We follow the default configura-
tion of Spark and Hadoop, except we change the application heap
size in the evaluation. For evaluation of multi-tenant workloads, we
use TPC-H [2] running on Spark-SQL [6] as short jobs. The total
input size for TPC-H is 10GB.

We map jobs in Google trace to workloads in Table 1. The appli-
cation types and input scales are chosen based on the task memory
usage in the trace files. Specifically, we choose a 5-hour interval
from Google trace and group all jobs in that interval. We compute
the memory usage of each job. The top 1% is mapped to Inverte-
dIndex. The top 10% is mapped to TeraSort and NWeight, and the
top 70% is mapped to KMeans and PageRank. The rest is mapped
to WorkCount. Each job is submitted according to the timestamp
in the trace.

5.2 Pufferfish in the Single-Node Cluster

We evaluate Pufferfish (‘PF’ for short in figures) on the single-node
cluster to assess the puff and reclaim mechanisms as well as the
adaptive parallelism of elastic memory management.

Puff function evaluation. In this experiment, we create a con-
trolled environment by submitting one Pagerank job (container-1)
and two Kmeans jobs (container-2 and container-3) one by one.
As shown in Figure 6-(a), with default EJF container-1 is given the
highest priority, while container-2 and container-3 are suppressed
at the beginning. Container-3 is killed by Pufferfish at around the
600" second because of the aggressive demand of container-1.
However, the failover request for container-3 is blocked from the

RIGHTS

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

(a) Kmeans

(b) Wordcount

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou

(c) Mixed jobs

Concurrent runs

c C

® ® 30 300 2
o 61 4G =3 166G 64G | @ 4G 3 16G B9 64G | = 1 Makespan 1006
9 1 8G mm 32G - PF 0251 s mm 326 - rF = 250 BN Makespan w/o OOM jois > ls g
© T © 20 = 200 F] b7
€ 41 € | [# of 6 0
o - 151 ®© 150 L successful 1]
[(0] | jobs 8
N B 1.01 I ! : 2
© © | | | H

£ || | £ | i] I] 5
— —_ i ! i i

S o- S 0.0+ ‘ ; ‘ ‘ 3
=2 1 2 4 =2 8 8G 16G 326 64G PF

Concu rrent ru ns

Heap size

Figure 7: Performance comparison between Pufferfish and Yarn under various heap sizes. We report the median makespan over
5 runs of each experiment. A job is submitted 120s later than the previous one. In (a), Kmeans fails with the 4GB heap. With
the 4GB heap, only Wordcount can finish in (c). We use normalized runtime to report the execution time for an individual job
since the runtime of different jobs may vary widely. We use the absolute time in Fig 6-(c) since it is a makespan. The makespans

in (a) and (b) are normalized to a single run of Pufferfish.

6004" second to the 1050¢% second, as node memory is not available.
After the memory demand is satisfied, the size of container-1 drops
at the 880" second because Pufferfish detects a memory slack in
container-1 and shrinks its size. As a result, the released slack is
immediately allocated to container-3.

Reclaim function evaluation We submit a Kmeans job (in a FLEX
container) along with a set of TPC-H workloads (in REGULAR
containers). Figure 6-(b) shows the memory usage of the FLEX
container and all REGULAR containers, respectively. The FLEX-
container is forced to reclaim memory by swapping memory pages
to the disk when facing TPC-H jobs. Thus, the FLEX-container
memory is reclaimed from 58GB to 40GB at around the 400" sec-
ond and further reduced to 32GB at around the 670" second. As a
result, we observe a 1.2x slowdown in the Kmeans job. However,
the timely released memory ensures that REGULAR containers do
not suffer from memory insufficiency. As shown in Figure 6-(c),
under Yarn’s static memory allocation, the performance of TPC-H
is severely affected by queuing delay due to head-of-line blocking.
With memory reclaim, Pufferfish (mix-PF) achieves an 80% improve-
ment over Yarn (mix-YARN) for the 994/ percentile job completion
time.

Container parallelism and performance. To show the benefits
of memory elasticity, we compare Pufferfish with Yarn. In Yarn, ap-
plications are set with different heap sizes so that different degrees
of container parallelism (the number of concurrently running con-
tainers) on a node are achieved. The trade-off is that less memory
offers higher parallelism but suffers from suboptimal performance.
We submit two sets of jobs. One only consists of Kmeans jobs and
the other only consists of Wordcount jobs. Kmeans is a memory-
intensive and CPU-intensive workload with a maximum profiled
memory demand of 61GB per container with 64GB heap size. Fig-
ure 7-(a) shows the performance of Kmeans is significant degraded
under suboptimal heap sizes because of GC activities and data
spilling. However, the 64GB-heap still achieves shorter makespan
than those with higher container parallelism. For 2 and 4 concurrent
runs, the makespan of Pufferfish is better than that of the 64GB-
heap by 33.6% and 35.6%, because Pufferfish enables a container
parallelism of 2 during most of the application runtime while Yarn
only admits one job (two 64GB Kmeans would exceed 120GB node
capacity). However, Wordcount has a different behavior. Wordcount

Ay

266

is an I/O intensive workload and has a maximum profiled memory
usage of 24GB per container under 64GB heap size. Unlike iterative
Kmeans whose cached data can be immediately used in the next
stage, Wordcount only has two stages (one map and one reduce). As
a result, a large memory pool, although it decreases the frequency
of data spilling, does not gain obvious performance improvement.
In this case, the benefit of higher container parallelism outweighs
the benefit of a large heap. Pufferfish enables Wordcount to have the
maximum container parallelism of 4. Thus, as shown in Figure 7-(b),
it outperforms the 64GB heap by 1.75x-2.5x for concurrent runs.
Due to high container parallelism, 8GB heap and 16GB heap outper-
form Pufferfish in the makespan. The reason is that Wordcount is
an I/O intensive application without iterative execution. Oversub-
scribing I/0 by increasing the parallelism outperforms Pufferfish.
However, there does not exist one heap size for all workload sce-
narios. Relying on a larger heap or higher container parallelism
does not necessarily improve performance. Pufferfish adaptively
sets the container size at runtime to improve cluster utilization and
job performance.

We conduct another experiment with mixed workloads and show
it in Figure 7-(c). The mixed workloads contain two Wordcount, two
Kmeans, two Pagerank and two NWeight jobs. We use the Spark
default failover retry number (4). Only the 64GB-heap and Pufferfish
successfully finish all of the jobs. Through adaptive parallelism,
Pufferfish outperforms the 64GB-heap by 26%.

This experiment illustrates that Pufferfish exploits more memory
elasticity in an environment with more memory heterogeneity
(Figure 7-(b) vs. Figure 7-(c)). The reason is that Pufferfish can adjust
container memory on the fly. In particular, it shrinks container sizes
of less demanding jobs (e.g., Wordcount) for high demanding jobs
(e.g., Kmeans) to improve overall concurrency. We also observe that
the makespan excluding OOM jobs is 1.2x-2.2x shorter, implying
that OOM causes substantial. We further find that it is difficult to
detect OOM. First, failover execution launches several retries for
a failed task. Second, the default garbage collector is conservative
in throwing OOM until it takes 98% of CPU time but releases less
than 2% of heap memory [23]. For a heap close to the size that is
just enough to avoid OOM, JVM spends a lot of time on useless GC.
It also explains why the 32GB heap has a longer makespan than
the 16GB heap. In contrast, by allocating a large heap, Pufferfish

Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications

(a) Synthetic

(b) Production

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

(c) Production

120

€ 400 Small | G32 small 8 7 1.0

c Large N Large 100 © -4 o1

~ 300 80 C et

S o w T —— 8g L 0.6

5 200 % 8 -- 169 8 0.4

$ 40 Q - 329

< 100 € 649 0.21

1} 20 & e

z ., o © : : : : : T T 001 I I I I T
8G 16G 326 64G PF 00 25 50 75 100 125 150 0 10 20 30 40 50

Heap size

Normalized runtime

Usage (%)

Figure 8: Experiment results of the multi-node cluster.

Table 2: Number of each application mapped in trace.

wC
23/26

KM PR
31/20 41/24 3/5

NW TS
3

I
2

App
Small/Large

Table 3: OOM rate under various heap size.

16GB 8GB

34.1%

Heap 64GB/pf 32GB 4GB

0

Failure 5.1% 17.3% > 60%

ensures successful execution for all applications and shifts unused
heap quota to others to improve overall performance.

5.3 Pufferfish in the Multi-Node Cluster

Synthetic workloads. We then evaluate Pufferfish using the syn-
thetic workloads on the 26-node cluster. We build the synthetic
workloads by replicating the mixed workloads in Figure 7-(c) by 20x.
We run both small workloads and large workloads (corresponding
to Table 1) to study the impact of job size on elastic memory man-
agement. In this experiment, each task is only allowed to fail once
to exclude the overhead caused by failover. As shown in Figure 8-(a),
Pufferfish achieves the best performance with large workloads as
Pufferfish is configured with optimal heap and higher parallelism.
For small workloads, Pufferfish is a little bit slower than 32-GB heap
(42 mins vs. 52 mins) as the overhead of puff () is more pronounced
when the job is short. However, most importantly, Pufferfish yields
no application failure.

Production data-intensive workloads. We replay subsets of the
Google trace on our 26-node cluster. The trace contains 178 data-
intensive workloads, all of which are configured with FLEX con-
tainers. The number of each application with small and large input
datasets is listed in Table 2 (e.g., WC stands for Wordcount). The job
runtime is normalized to that when running the job in an isolated
environment with a 64GB heap.

As shown in Table 3, Pufferfish does not cause OOM. Figure 8-(b)
plots the runtime distribution of successfully finished applications.
It shows Pufferfish outperforms Yarn with the 32GB heap and the
64GB heap by 3.2x and 5.5x respectively for the median job runtime
because of memory elasticity. We further notice that the degraded
performance with 32GB and 64GB heaps by Yarn is caused by
significant queuing delay at ResourceManager. For Yarn with 8GB
and 16GB, the job failures caused by OOM and intensive GC caused
by suboptimal heap size ruin performance. Pufferfish automatically

RIGHTS L
267

777777777777777777

Normalized runtime

EF
Policy

KILL

Figure 9: Normalized runtime under various policies.

adjusts the memory allocation and container parallelism on each
node, avoiding queuing delay and OOM.

Figure 8-(c) shows the cluster memory utilization reported by
Docker. Pufferfish achieves the highest memory utilization. In par-
ticular, Pufferfish improves the median memory utilization over
Yarn with 64G heap by 2.7x. Note that Yarn with 16GB heap and
8GB heap represent a relatively high memory utilization. However,
as suboptimal heap size causes OOM, the high memory utilization
is the result of useless failover and does not contribute to better job
performance. The improved utilization in Pufferfish with elastic
memory, on the other hand, is used to host more jobs, increasing
the overall parallelism, reducing queuing delay and job runtime.
Policy evaluation. We evaluate the impact of policy discussed
in section 4.3.3 using the same production trace. Figure 9 shows
the median and 90" percentile job runtimes. For comparison, we
also implement a variant of Pufferfish in which elastic memory
management is not implemented. In this variant, which we denote
as KILL in the figure, each container will puff on its own without
any coordination with the containers on the same node, and will
be killed when its increased memory cannot be met in one puff.
We also implement EJF with suspension tolerance and denote it
as EJF+S. Note that SJF is enabled with suspension tolerance by
default to avoid starvation.

For the 904" percentile job runtime, SJF achieve the best perfor-
mance (23% faster than EJF) because (1) it avoids the situation where
short jobs are blocked by long jobs, and (2) the completed short jobs
soon release enough memory for long jobs. EJF+S improves the
performance of EJF by killing a task which is suspended too long so
that the relaunched task might be placed on a less intensive node,
partially resolving the issue that short jobs are blocked by long jobs.
Without coordination of memory management, KILL achieves the

RIGHTS LI

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

(a) TPC-H jobs

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou

(b) Data-intensive jobs

~
0.8 1
L 0.6
[a]
O 0.4
0.2 1 — 649
— PF
0.0 : : : : : ;
1 2 3 4 5 6

Normalized time

Figure 10: Results of mixed workloads. (a) TPC-H workloads. (b) Data-intensive workloads.

1.0
0.8 1
w 0.64
[a]
U 0 4 4
0.2 —— allone-run
= PF-run
0.0 T T T T T T
20 40 60 80 100 120
Time (s)
[Small EEE Large
20
S
15
el
©
[}
£ 109
o
>
O 54

o

wcC

KM PG

Applications

NwW Ts 1

Figure 11: The overhead of different workloads.

worst performance. The drawback of SJF is that it requires prior

knowledge of job duration.

Production mixed workloads. This experiment shows that Puffer-
fish can preserve fairness in the presence of low-latency workloads.

The trace contains 38 data-intensive workloads and 576 TPC-H
workloads. We first compare Pufferfish where mixed workloads
are used against Yarn where TPC-H runs alone, to examine the
memory reclaim overhead. As shown in Figure 10, since Pufferfish
reclaims memory from FLEX containers in a timely manner, Puffer-
fish achieves similar performance to that of Yarn for TPC-H jobs.
However, we also observe a 1.74x slowdown in the 99% percentile
latency for Pufferfish due to memory reclaim overhead.

We then run the mixed workloads with both Pufferfish and Yarn.
For data-intensive workloads, Pufferfish improves the 8oth per-
centile job runtime over Yarn by 2x due to elastic memory alloca-
tion. However, Pufferfish incurs as much as 8x slowdown for the
95th percentile job runtime compared to the fastest (15¢ percentile)
job runtime by Pufferfish. This is due to the fact that Pufferfish re-
claims memory from FLEX containers to avoid memory allocation
delays for REGULAR containers. This experiment shows Pufferfish
achieves global fair-share for REGULAR containers by reclaiming
over-provisioned memory from FLEX containers. Due to the longer
tail latency, we recommend that users only use FLEX containers
for jobs without strict SLOs.

5.4 Overhead and Parameter Sensitivity

This section evaluates the overhead of Pufferfish and its parameter
sensitivity. The job runtime and overhead are both normalized to
those with a 64 GB heap.

Ay

268

(a) Parameter ¢

@ Ko
30 = Wordcount 20

(b) Parameter MIN_CONT

@ Kmeans
= Wordcount

Overhead (%)
Overhead (%)

08 16 1 2 4
o MIN_CONT GB

Figure 12: Parameter sensitivity.

Overhead. The overhead caused by Pufferfish comes from the
application start phase when application containers are puffed
from MIN_CONT. During this period, the container is consecutively
suspended and puffed. Figure 11 shows that the overhead during
the start phase is less than 10% across various applications.

It is also important to evaluate the latency of memory reclaim,
since some latency critical applications with REGULAR containers
cannot wait too long during memory reclaim. Our experiment
shows it takes about 0.5 seconds to reclaim 1 GB memory on our
SSD-backed swap partition. We also expect that future fast storage
will further reduce the latency.

Parameter sensitivity. We evaluate Pufferfish’s overhead under
various parameters ¢ and MIN_CONT. We run CPU-intensive Kmeans
and I/O-intensive Wordcount applications. As shown in Figures 12-
(a) and (b), respectively, increasing ¢ and MIN_CONT both result
in lower overhead because fewer numbers of puff operations are
required. Another observation is that this overhead can be amor-
tized with increasing of job runtime, since the overhead mainly
occurs during the task start phase. To reduce puff overhead, we
recommend users use a large ¢. A large ¢ does not cause memory
waste as Pufferfish will finally shrink the unused memory.
Spilling vs. Paging. A recently proposed spilling-based approach [24]
also aims to achieve memory elasticity for data paralleled work-
loads. In the spilling approach, applications proactively store data
from memory into disks and release memory. We run Spark Pager-
ank with the spilling approach and Pufferfish’s paging approach.
For paging, we limit the container size to force swapping but set the
64GB optimal heap size. For spilling, we limit the JVM heap size but
enable spilling by using persist() function on RDDs [48]. Thus,
we provide a fair performance comparison because the physical
memory usage is the same. We scale up the memory allocation

RIGHTS

Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications

g 104 @~ soilling
S =&~ paging
C
8<
=]
—
o 6
3 6
N
© 4
£
o 21
2

T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mem allocated as fraction of optimal

0.9

Figure 13: Paging vs. spilling.

(container size for paging and heap size for spilling) as fractions
of the optimal 64GB heap. Figure 13 shows that both approaches
achieve ideal performance when the allocated memory gets close
to the optimal heap (0.5 or more). The spilling approach wins when
less memory is allocated (0.3-0.5) because spilling uses LRU to
evict data and follows the data usage pattern. However, when the
allocated memory is less than 30% of the optimal, the spilling ap-
proach throws OOM while the paging approach still completes the
execution, though at the cost of a 10x slowdown.

The spilling approach can achieve better performance for non-
iterative applications with very few execution stages, such as Word-
count or Sort. But for in-memory iterative applications, e.g. Spark
Kmeans and Pagerank, the spilling approach still suffers from in-
tensive I/O traffic or even OOM, because the data that is just spilled
may be needed immediately in the next stage. Thus, the spilling ap-
proach does not provide an advantage over paging for in-memory
iterative applications. In addition, we note there are two challenges
to apply spilling practically, as spilling is an application-aware ap-
proach: (1) Users have to identify which data blocks (RDDs in Spark)
to spill; (2) Users have to figure out an proper heap size that is small
enough to achieve high parallelism but large enough to avoid OOM.
Pufferfish is transparent to applications and thus does not suffer
from these problems.

5.5 Discussion

REGULAR container vs. FLEX container. Pufferfish allows users
to enforce fairness between FLEX containers and REGULAR con-
tainers in a multi-tenant cluster. In particular, users can launch
REGULAR containers for applications that require a fixed mem-
ory budget, while launching FLEX containers for jobs that can run
under a flexible memory budget.

Application-assisted container resizing. A recent improvement [3]

to Apache Yarn enables resizing the container size. However, con-
tainer resizing requires the applications (e.g, Spark Driver) to specify
the amount of memory to be added or reclaimed, which requires
intrusive modification to applications. Pufferfish, on the other hand,
relies on puff and reclaim which are transparent to applications.

Container approach vs. OS approach. Another alternative solu-
tion is to make modifications to the OS and implement elastic mem-
ory management in the OS level (e.g., in OS memory management).
However, this approach is not practical as current data-intensive ap-
plication software stacks contain multiple hierarchies for memory

Ay

269

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

management. As a result, the OS approach lacks contextual infor-
mation about the JVM layer or the application layer. Our proposed
container approach utilizes both the OS interfaces through cgroup
and the application context information in user space through Yarn,
while requiring no modification to the OS source code.
Container approach vs. application approach. It is intuitive to
optimize memory management in the application layer because an
application understands its memory demands [29, 37]. Although
users can specify the memory size of containers upon job submis-
sion, dynamically adjusting container size without application’s
instruction is not supported during runtime. It is also challenging
to achieve memory elasticity across different application frame-
works at the application level. For example, it is hard to coordinate
memory allocation between Spark tasks and Hadoop tasks when
using an application approach. Checkpoint-based techniques (e.g.,
CRIU) requires an intrusive modification to applications. Pufferfish
aims to dynamically resize the containers during job runtime.
Container approach vs. JVM approach. Another intuition is to
build memory elasticity into the JVM. [45] proposes dynamically
adjusting the JVM heap size to achieve memory elasticity for data
queries. However, this approach relies on the estimation of future
memory usage to determine the target heap size after resizing. It
has two major drawbacks. First, the estimation requires application
runtime information (e.g, column size of a database table), which is
hard to (1) generalize to all applications and (2) couple with cluster
schedulers. Second, if the estimation is not right, the JVMs runing
on the same node collide with each other due to memory contention.
Our approach, on the other hand, adjusts the container size based
on the JVM memory demand, which is transparent to applications.
Further, our approach avoids memory contention through (1) guar-
anteed memory isolation between containers; (2) dedicated memory
control through puff and reclaim function. Further, tasks running
in FLEX containers inherently have a large heap size. Overall, this
benefits the applications as less GC and less spilling are triggered.
Container approach vs. virtual machine monitor. Memory
management in virtual machines often employs memory ballooning
techniques. Since it is difficult for a virtual machine monitor (VMM)
to obtain the actual memory demand directly from the guest OS,
ballooning is a mechanism that allows the VMM to reclaim memory
from a guest OS based on information provided by a ballooning
driver installed on the guest OS [40, 44]. Pufferfish works in an
different way. It obtains the memory demand through OCM heuris-
tics, which is not available in memory ballooning. It improves job
performance by flexibly puffing OS containers so as to accelerate
individual tasks when node memory is available.

6 RELATED WORK

Cluster scheduling. Yarn [42] and Mesos [21] are two widely
used open-source centralized schedulers. Sparrow [35] is a fully
distributed scheduler based on random sampling. Hawk [12] and
Mercury [26] both implement a hybrid scheduler to avoid infe-
rior scheduling decisions and balance the trade-off of scheduling
quality and scalability. CARBYNE [19] allows applications to altru-
istically yield their allocated resources to achieve secondary goals.
GRAPHENE [20] discusses task dependency in cluster scheduling.

RIGHTS LI

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

3sigma [36] proposes scheduling jobs based on their runtime distri-
bution. Medea [16] develops a framework to manage long running
applications. Gandiva [46] proposes a scheduler tailored for deep
learning applications. BIG-C [10] is a preemptive-based framework
that improves the performance for latency-critical applications in a
shared cluster. Elassecutor [29] schedules Spark executors in an elas-
tic manner according to predicted time-varying resource demands.
Pufferfish can be implemented on these representative schedulers.
Memory management. Pufferfish is closely related to studies
that address memory pressure. ROLP [8], FACADE [33], Yak [32]
and Broom [17] optimize GC overhead by allocating data items
in regions. iTask [14] forcibly suspends tasks and performs an
external GC to reduce memory demand. These approaches either
require users to implement memory management-related code,
which requires expertise or mainly focus on GC overhead, which
still leaves memory pressure as a threat. Recent studies [24, 45]
aim for memory elasticity to improve cluster memory utilization.
Both approaches need application assistance to achieve memory
elasticity.
Cluster utilization. To improve resource utilization, several stud-
ies [30, 31, 47] propose consolidating applications on shared re-
sources and managing interference at the node level so that appli-
cation quality-of-service can be met. Other studies [11, 50] improve
resource management at the datacenter level and achieve higher
utilization. SDChecker [9] profiles and analyzes the causes of la-
tency in a multi-stack scheduling environment (e.g. Spark on Yarn).
Pufferfish exploits memory elasticity for higher memory utilization.
There are efforts that estimate resource usage for long-running
workloads, which have limitations because they either require
domain-specific knowledge [43] or a static profiling approach [5].
Relying on estimation by profiling may still results in with OOM
errors [1]. Pufferfish is a general-purpose framework that tackles
these issues without any assumption about the underlying frame-
works or how memory is managed in these frameworks.
Data-parallel Frameworks. Many data-parallel processing frame-
works have been developed to help people facilitate data analysis,
model data, and understand data. Hadoop [4] is for massive data
processing on commodity PCs. Spark [49] leverages in-memory
computing to speed up data processing. Shark [13] and Hive [41]
provide an SQL interface to access data based on Hadoop and Spark.
Tez [39] and Dryad [25] enhance parallel data processing with
strong expression through a DAG of tasks. GraphX [18] enables
users to build and deploy graphs and graph-parallel computation.
Pufferfish is application-agnostic and can help these application
frameworks survive from memory pressure and achieve better per-
formance.

7 CONCLUSION

In this paper, we advocate Pufferfish, an elastic memory manager
for data-intensive applications. It tackles both memory pressure
and low cluster utilization. The core idea is to run a big JVM in a
small OS container to avoid OOM and realize cluster memory elas-
ticity with the puff and reclaim mechanisms. We have implemented
Pufferfish as an independent module in Yarn. Experimental results
show Pufferfish is able to help applications with large memory

Ay

270

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou

demands survive from memory pressure, increase task parallelism,
and significantly improve job performance and cluster utilization.

8 ACKNOWLEDGMENT

We thank our shepherd Siddhartha Sen and the anonymous review-
ers for the valuable feedback. This research was supported in part
by U.S. NSF grant SHF-1816850.

REFERENCES

[1] Spark-19371. https://issues.apache.org/jira/browse/SPARK-19371.
[2] Tpch standard specification. http://www.tpch.org/tpcc/spec/tpec.
[3] Yarn-1645. https://issues.apache.org/jira/browse/SPARK-19371/.

[4] Hadoop. http://hadoop.apache.org, 2009.

[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. Cher-
rypick: Adaptively unearthing the best cloud configurations for big data analytics.
In Proc. of USENIX NSDI, 2017.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liy, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data processing in spark. In
Pro. of ACM SIGMOD, 2015.

V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A flexible and
extensible foundation for data-intensive computing. In Proc. of IEEE ICDE, 2011.
R. Bruno, D. Patricio, J. Siméo, L. Veiga, and P. Ferreira. Runtime object lifetime
profiler for latency sensitive big data applications. In Proc. of ACM Eurosys, 2019.
W. Chen, A. Pi, S. Wang, and X. Zhou. Characterizing scheduling delay for
low-latency data analytics workloads. In Proc. of IEEE IPDPS, 2018.

W. Chen, J. Rao, and X. Zhou. Preemptive, low latency datacenter scheduling via
lightweight virtualization. In Proc. of USENIX ATC, 2017.

E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini.
Resource central: Understanding and predicting workloads for improved resource
management in large cloud platforms. In Proc. of the ACM SOSP, 2017.

P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid data-
center scheduling. In Proc. of USENIX ATC, 2015.

C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica.
Shark: fast data analysis using coarse-grained distributed memory. In Proc. of
ACM SIGMOD, 2012.

L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptible tasks: Treating
memory pressure as interrupts for highly scalable data-parallel programs. In
Proc. of ACM SOSP, 2015.

R. Gandhi, D. Xie, and Y. C. Hu. Pikachu: How to rebalance load in optimizing
MapReduce on heterogeneous clusters. In Proc. of USENIX ATC, 2013.

P. Garefalakis, K. Karanasos, P. R. Pietzuch, A. Suresh, and S. Rao. Medea:
scheduling of long running applications in shared production clusters. In Proc.
of the ACM EuroSys, 2018.

I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ramalingam,
M. Costa, D. G. Murray, S. Hand, and M. Isard. Broom: Sweeping out garbage
collection from big data systems. In Proc. of USENIX HotOS, 2015.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and L. Stoica.
Graphx: Graph processing in a distributed dataflow framework. In Proc. of USENIX
OSDI, 2014.

R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altruistic
scheduling in multi-resource clusters. In Proc. of USENIX OSDI, 2016.

R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. Graphene: Packing and
dependency-aware scheduling for data-parallel clusters. In Proc. of the USENIX
OSDI, 2016.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In Proc. of USENIX NSDI, 2011.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench benchmark suite:
Characterization of the mapreduce-based data analysis. In Proc. of IEEE Data
Engineering Workshops (ICDEW), 2010.

C. Hunt and B. John. Java performance. Prentice Hall Press, 2011.

C.Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel. Don’t cry over
spilled records: Memory elasticity of data-parallel applications and its application
to cluster scheduling. In Proc. of USENIX ATC, 2017.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In Proc. of ACM SOSP, 2007.

K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M. Fumarola,
S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury: Hybrid centralized
and distributed scheduling in large shared clusters. In Proc. of USENIX ATC, 2015.
Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: mitigating skew in
MapReduce applications. In Proc. of ACM SIGMOD, 2012.

Y. Kwon, K. Ren, M. Balazinska, B. Howe, and J. Rolia. Managing skew in hadoop.
Proc. of IEEE Data Eng. Bull., 2013.

[6]

[9]

[10

[11

[12

(13]

=
&

[15

[16

(17

(18]

=
)

[20]

[21]

[22

[23
[24]

™~
2

[26]

[27]

(28]

https://issues.apache.org/jira/browse/SPARK-19371
http://www.tpch.org/tpcc/spec/tpcc
https://issues.apache.org/jira/browse/SPARK-19371/
http://hadoop.apache.org

Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications

[29]

[30]

L. Liu and H. Xu. Elasecutor: Elastic executor scheduling in data analytics systems.
In Proc. of the ACM SoCC, 2018.

D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. Heracles:
improving resource efficiency at scale. In Proc. of ACM ISCA, 2015.

[31] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increasing

[32]

[33]

[34]

[35]

utilization in modern warehouse scale computers via sensible co-locations. In
Proc. of IEEE/ACM MICRO, 2011.

K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and O. Mutlu. Yak: A
high-performance big-data-friendly garbage collector. In Proc. of USENIX OSDI,
2016.

K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu. Facade: A compiler and
runtime for (almost) object-bounded big data applications. In Proc. of ACM SOSP,
2015.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and V. ICSI. Making
sense of performance in data analytics frameworks. In Proc. of USENIX NSDI,
2015.

K. Ousterhout, P. Wendell, M. Zaharia, and L. Stoica. Sparrow: distributed, low
latency scheduling. In Proc. of ACM SOSP, 2013.

[36] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger. 3sigma:

[37]

[38]

[39]

RIGHTS

distribution-based cluster scheduling for runtime uncertainty. In Proc. of the
ACM EuroSys, 2018.

A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson, and E. P. Xing. Litz:
Elastic framework for high-performance distributed machine learning. In Proc.
of the USENIX ATC), 2018.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In Proc. of ACM SoCC,
2012.

B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino. Apache
tez: A unifying framework for modeling and building data processing applications.
In Proc. of ACM SIGMOD, 2015.

271

[40

[41

[42

[43

[44
[45

[46

[47

[48

[49

[50

]
]

]

]

]
]
]

]

]

]

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

T.-1. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone. Application level bal-
looning for efficient server consolidation. In Proc. of ACM Eurosys, 2013.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,
and R. Murthy. Hive: a warehousing solution over a map-reduce framework.
Proc. of VLDB Endowment, 2009.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop YARN: Yet another
resource negotiator. In Proc. of ACM SoCC, 2013.

S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and L. Stoica. Ernest: efficient
performance prediction for large-scale advanced analytics. In Proc. of USENIX
NSDI, 2016.

C. A. Waldspurger. Memory resource management in vimware esx server. ACM
SIGOPS Operating Systems Review, 2002.

J. Wang and M. Balazinska. Elastic memory management for cloud data analytics.
In Proc. of USENIX ATC, 2017.

W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel,
X. Peng, H. Zhao, Q. Zhang, et al. Gandiva: introspective cluster scheduling for
deep learning. In Proc. of the USENIX OSDI, 2018.

H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online qos man-
agement for increased utilization in warehouse scale computers. In Proc. of ACM
ISCA, 2013.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proc. of USENIX NSDI, 2012.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. Apache spark: a unified engine for big
data processing. Communications of the ACM, 59(11):56-65, 2016.

Z.Zhang, L. Cherkasova, and B. T. Loo. Exploiting cloud heterogeneity to optimize
performance and cost of MapReduce processing. In Proc. of ACM SIGMETRICS,
2015.

