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This paper studies inference for the mean vector of a high-dimensional
U-statistic. In the era of Big Data, the dimension d of the U-statistic
and the sample size n of the observations tend to be both large, and
the computation of the U-statistic is prohibitively demanding. Data-
dependent inferential procedures such as the empirical bootstrap for
U-statistics is even more computationally expensive. To overcome
such computational bottleneck, incomplete U-statistics obtained by
sampling fewer terms of the U-statistic are attractive alternatives.
In this paper, we introduce randomized incomplete U-statistics with
sparse weights whose computational cost can be made independent of
the order of the U-statistic. We derive non-asymptotic Gaussian ap-
proximation error bounds for the randomized incomplete U-statistics
in high dimensions, namely in cases where the dimension d is possi-
bly much larger than the sample size n, for both non-degenerate and
degenerate kernels. In addition, we propose generic bootstrap meth-
ods for the incomplete U-statistics that are computationally much
less-demanding than existing bootstrap methods, and establish finite
sample validity of the proposed bootstrap methods. Our methods are
illustrated on the application to nonparametric testing for the pair-
wise independence of a high-dimensional random vector under weaker
assumptions than those appearing in the literature.

1. Introduction. Let Xi,..., X, be independent and identically dis-
tributed (i.i.d.) random variables taking values in a measurable space (.5, S)
with common distribution P. Let r > 2 and d > 1 be given positive integers,
and let b = (hy,...,hg)T : ST — R? be a fixed and jointly measurable func-
tion that is symmetric in its arguments, i.e., h(x,...,z,) = h(x;, ..., ;)
for every permutation iy, ..., 7. of 1,...,r. Suppose that E[|h;(X1,...,X;)|] <
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2 CHEN AND KATO

oo for all j = 1,...,d, and consider inference on the mean vector 6 =
(01,...,00)7 = E[h(X1,...,X,)]. To this end, a commonly used statistic is
the U-statistic with kernel h, i.e., the sample average of h(X;,,..., X, ) over
all distinct r-tuples (iy,...,4,) from {1,...,n}

1

1.1 Uy :=U"(h) = —— h(Xi, ... Xi),

( ) ( ) ‘In7r| ( z;el ( 19 ) 7‘)
115.05lr n,r

where I, , = {(i1,...,4) : 1 <1 <--- <4, <n}and |I,,| =n!/{r(n—7)!}
denotes the cardinality of I, ,.

U-statistics are an important and general class of statistics, and applied in
a wide variety of statistical problems; we refer to [30] as an excellent mono-
graph on U-statistics. For univariate U-statistics (d = 1), the asymptotic
distributions are derived in the seminal paper [23] for the non-degenerate
case and in [38] for the degenerate case. There is also a large literature on
bootstrap methods for univariate U-statistics [4, 6, 1, 26, 27, 15, 44]. A more
recent interest lies in the high-dimensional case where d is much larger than
n. [8] develops Gaussian and bootstrap approximations for non-degenerate
U-statistics of order two in high dimensions, which extends the work [10, 12]
from sample averages to U-statistics; see also [20].

However, a major obstacle of inference using the complete U-statistic
(1.1) is its computational intractability. Namely, the computation of the
complete U-statistic (1.1) requires O(n"d) operations, and its computational
cost can be prohibitively demanding even when n and d are moderately
large, especially when the order of the U-statistic » > 3. For instance, the
computation of a complete U-statistic with order 3 and dimension d = 5000
when the sample size is n = 1000 requires (}) x d ~ 0.8 - 102 (0.8 trillion)
operations. In addition, the naive application of the empirical bootstrap
for the U-statistic (1.1) requires even more operations, namely, O(Bn"d)
operations, where B is the number of bootstrap repetitions.

This motivates us to study inference using randomized incomplete U -
statistics with sparse weights instead of complete U-statistics. Specifically,
we consider the Bernoulli sampling and sampling with replacement to con-
struct random weights in Section 2. For a pre-specified computational budget
parameter N < |I, ,|, these sampling schemes randomly choose (on average)
N indices from I,, ,, and the resulting incomplete U-statistics Ur’z, N are de-
fined as the sample averages of h(Xj,,...,X;.) taken over the subset of
chosen indices (i1,. .., ). Hence the computational cost of the incomplete
U-statistics is reduced to O(Nd), which can be much smaller than n"d as
long as N < n" and can be made independent of the order of the U-statistic
provided that N does not depend on r.
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The goal of this paper is to develop computationally scalable and sta-
tistically correct inferential methods for the incomplete U-statistics with
high-dimensional kernels and massive data, where d is possibly much larger
than n but n can be also large. Specifically, we study distributional approx-
imations to the randomized incomplete U-statistics in high dimensions. Our
first main contribution is to derive Gaussian approximation error bounds
for the incomplete U-statistics on the hyperrectangles in R¢ for both non-
degenerate and degenerate kernels. In Section 3, we show that the derived
Gaussian approximation results display an interesting computational and
statistical trade-off for non-degenerate kernels (see Remark 3.1), and reveal
a fundamental difference between complete and randomized incomplete U-
statistics for degenerate kernels (see Remark 3.2). The mathematical insight
of introducing the random weights is to create the (conditional) indepen-
dence for the terms in the U-statistic sum in order to obtain a Gaussian
limit. The Gaussian approximation results are, however, often not directly
applicable since the covariance matrices of the approximating Gaussian dis-
tributions depend on the underlying distribution P that is unknown in prac-
tice. Our second contribution is to propose fully data-dependent bootstrap
methods for incomplete U-statistics that are computationally (much) less
demanding than existing bootstrap methods for U-statistics [1, 8, 9]. Specif-
ically, we introduce generic bootstraps for incomplete U-statistics in Section
4.1. Our generic bootstrap constructions are flexible enough to cover both
non-degenerate and degenerate kernels, and meanwhile they take the compu-
tational concern into account for estimating the associated (and unobserved)
H&jek projection in the non-degenerate case. In particular, we propose two
concrete estimation procedures for the Hajek projection: one is a determin-
istic construction based on the divide and conquer algorithm (Section 4.2),
and another is a random construction based on a second randomization
independent of everything else (Section 4.3). For both constructions, the
overall computational complexity of the bootstrap methods can be made
independent of the U-statistic order r.

As a leading example to illustrate the usefulness of the inferential meth-
ods developed in the present paper, we consider testing for the pairwise
independence of a high-dimensional random vector X = (XM, ... X®)HT
i.e., testing for the hypothesis that

(1.2) Hy: XM . X® are pairwise independent.

Let X1,..., X, beii.d. copies of X. Several dependence measures are pro-
posed in the literature, including: Kendall’s 7, Spearman’s p, Hoeffding’s D
[24], Bergsma and Dassios’ t* [2], and the distance covariance [40, 45], all
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of which can be estimated by U-statistics. So various nonparametric tests
for Hy can be constructed based on those U-statistics. To compute the test
statistics, we have to compute U-statistics with dimension d = p(p — 1)/2,
which corresponds to the number of upper triangular entries in the p x p
dependence matrix and can be quite large. In addition, the orders of the
U-statistics are at least 3 (except for Kendall’s 7 which is of order 2).
So the computation of the test statistics is prohibitively demanding, not
to mention the empirical bootstrap or subsampling for those U-statistics.
It should be noted that there are efficient algorithms to reduce the com-
putational costs for computing some of those U-statistics [cf. 32, Section
6.1], but such computational simplifications are case-by-case and not gener-
ically applicable, and more importantly they do not yield computationally
tractable methods to approximate or estimate the sampling distributions of
the U-statistics. The Gaussian and bootstrap approximation theorems de-
veloped in the present paper can be applicable to calibrating critical values
for test statistics based upon incomplete versions of those U-statistics. De-
tailed comparisons and discussions of nonparametric pairwise independence
test statistics are presented in Section 5. In addition to pairwise indepen-
dence testing, values of the dependence measures are also interesting per se
in some applications. For instance, Spearman’s p is related to the copula
correlation if the marginal distributions are continuous [16, Chapter 8], and
our bootstrap methods can be used to construct simultaneous confidence
intervals for the copula correlations uniformly over many pairs of variables.

To verify the finite sample performance of the proposed bootstrap meth-
ods for randomized incomplete U-statistics, we conduct simulation exper-
iments in Section 5 on the leading example for nonparametric testing for
the pairwise independence hypothesis in (1.2). Specifically, we consider to
approximate the null distributions of the incomplete versions of the (lead-
ing term of) Spearman p and Bergsma-Dassios’ t* test statistics, and ex-
amine the cases where n = 300,500, 1000 and p = 30,50,100 (and hence
d =p(p—1)/2 = 435,1225,4950). Statistically, we observe that the Gaus-
sian approximation of the test statistics is quite accurate and the empirical
rejection probability of the null hypothesis with the critical values calibrated
by our bootstrap methods is very close to the nominal size for (almost) all
setups. Computationally, we find that the (log-)running time for our boot-
strap methods scales linearly with the (log-)sample size, and in addition,
the slope coefficient matches very well with the computational complexity
of the bootstrap methods. Therefore, the simulation results demonstrate a
promising agreement between the empirical evidences and our theoretical
analysis.
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1.1. Existing literature. Incomplete U-statistics are first considered in
[5], and the asymptotic distributions of incomplete U-statistics (for fixed
d) are derived in [7] and [28]; see also Section 4.3 in [30] for a review on
incomplete U-statistics. Closely related to the present paper is [28], which
establishes the asymptotic properties of univariate incomplete U-statistics
based on sampling with and without replacement and Bernoulli sampling.
To the best of our knowledge, the present paper is the first paper that estab-
lishes approximation theorems for the distributions of randomized incom-
plete U-statistics in high dimensions. See also Remark 3.4 for more detailed
comparisons with [28]. Incomplete U-statistics can be viewed as a special
case of weighted U-statistics, and there is a large literature on limit the-
orems for weighted U-statistics; see [39, 36, 33, 37, 25, 22] and references
therein. These references focus on the univariate case and do not cover the
high-dimensional case. There are few references that study data-dependent
inferential procedures for incomplete U-statistics that take computational
considerations into account. An exception is [3], which proposes several in-
ferential methods for univariate (generalized) incomplete U-statistics, but do
not develop formal asymptotic justifications for these methods. It is also in-
teresting to note that incomplete U-statistics have gained renewed interests
in the recent statistics and machine learning literatures [13, 34], although
the focuses of these references are substantially different from ours.

From a technical point of view, this paper builds on recent development
of Gaussian and bootstrap approximation theorems for averages of inde-
pendent high-dimensional random vectors [10, 12] and for high-dimensional
U-statistics of order two [8]. Importantly, however, developing Gaussian ap-
proximations for the randomized incomplete U-statistics in high dimensions
requires a novel proof-strategy that combines iterative conditioning argu-
ments and applications of Berry-Esseen type bounds, and extends some of
results in [8] to cover general order incomplete U-statistics. In addition, these
references do not consider bootstrap methods for incomplete U-statistics
that take computational considerations into account.

1.2. Organization. The rest of the paper is organized as follows. In Sec-
tion 2, we introduce randomized incomplete U-statistics with sparse weights
generated from the Bernoulli sampling and sampling with replacement. In
Section 3, we derive non-asymptotic Gaussian approximation error bounds
for the randomized incomplete U-statistics in high dimensions for both non-
degenerate and degenerate kernels. In Section 4, we first propose generic
bootstrap methods for the incomplete U-statistics and then incorporate the
computational budget constraint by two concrete estimates of the Héjek
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projection: one deterministic estimate by the divide and conquer, and one
randomized estimate by incomplete U-statistics of a lower order. Simula-
tion examples are provided in Section 5 and in the Supplementary Material
(SM). All the technical proofs are gathered in Appendix C in the SM. We

conclude the paper in Section 6 with a brief discussion on some extensions.

1.3. Notation. For a hyperrectangle R = H?Zl[aj, b;] in R?, a constant
c >0, and a vector y = (y1,...,%4)" € R we use the notation [cR + y] =
H;l:l[caj +yj, cbj+y;]. For vectors y = (y1,...,vya)", 2= (21,...,24)" € R,
the notation y < z means that y; < z; for all j = 1,...,d. For a,b € R, let
aVb=max{a,b} and a A b = min{a,b}. For a finite set J, |J| denotes the
cardinality of J. Let |- | denote the max-norm for vectors and matrices,
i.e., for a matrix A = (a;5), |A|oc = max; j |ai;|. “Constants” refer to finite,
positive, and non-random numbers.

For 0 < 8 < oo, let 13 be the function on [0,00) defined by ¢g(z) =
e — 1, and for a real-valued random variable &, define [€]]s = inf{C >
0 : E[y(|¢]/C)] < 1}. For B € [1,00), || - |ly, is an Orlicz norm, while for
B € (0,1), [|+][4, is not a norm but a quasi-norm, i.e., there exists a constant
Cs depending only on 8 such that [[& + &lls, < Calllrlu, + €]ls,):
(Indeed, there is a norm equivalent to || - ||, obtained by linearizing 15 in
a neighborhood of the origin; cf. Lemma C.2 in the SM.)

For a generic random variable Y, let Py (-) and Ey[-] denote the condi-
tional probability and expectation given Y, respectively. For a given proba-
bility space (X, A, Q) and a measurable function f on X', we use the notation
Qf = [ fdQ whenever the latter integral is well-defined. For a jointly mea-
surable symmetric function f on S” and k= 1,...,7, let P"%f denote the
function on S* defined by

Pr_kf(xl,...,:nk):/---/f(ml,...,xk,$k+1,...,xr)dp(xk+1)~--dP($T)

whenever the integral exists and is finite for every (x1,...,z;) € S*. For
given 1 < k < £ < n, we use the notation X,g = (Xg,...,Xy). Throughout
the paper, we assume that n > 4V r and d > 3.

2. Randomized incomplete U-statistics. In this paper, to construct
sparsely weighted U-statistics, we shall use random sparse weights. For « =
(i1,...,1) € Iy, let us write X, = (X;,,...,X;,), and observe that the
complete U-statistic (1.1) can be written as

Uy = —— 3 n(x.).

|In,r | Leln,r




RANDOMIZED INCOMPLETE U-STATISTICS IN HIGH DIMENSIONS 7

Now, let N := N,, be an integer such that 0 < N < |I,,|, and let p, =
N/|I,r|. Instead of taking the average over all possible ¢ in I, ,, we will
take the average over a subset of about N indices chosen randomly from
I, . In the present paper, we study Bernoulli sampling and sampling with
replacement.

2.1. Bernoulli sampling. Generate i.i.d. Ber(p,) random variables {Z, :
v € I, } with success probability py, i.e., Z,,. € I, are i.i.d. with P(Z, =
1) =1—-P(Z, = 0) = p,. Consider the following weighted U-statistic with
random weights

1
(2.1) Uyn== Y Zh(X),
N
LGIn,'r
where N = > er, . Zo is the number of non-zero weights. We call U],  the

randomized incomplete U-statistic based on the Bernoulli sampling. The
variable N follows Bin(|1,+|,pn), the binomial distribution with parame-
ters (|Inr|, pn). Hence E[N] = \I,r|pn = N and the computation of the
incomplete U-statistic (2.1) only requires O(Nd) operations on average. In

addition, by Bernstein’s inequality (cf. Lemma 2.2.9 in [42]),
(2.2) IP(]]V/N— 1] > \/Qt/N+2t/(3N)> < 2t

for every t > 0, and hence N concentrates around its mean N. Therefore,
we can view N as a computational budget parameter and p, as a sparsity
design parameter for the incomplete U-statistic.

The reader may wonder that generating |I,, | ~ n" Bernoulli random
variables is computationally demanding, but there is no need to do so. In
fact, we can equivalently compute the randomized incomplete U-statistic in
(2.1) as follows.

1. Generate N ~ Bin(|Zp,+|, pn)-
2. Choose indices t1, ..., 5 randomly without replacement from I, ;.

3. Compute U, y = N1 Zjvzl h(X.,).
In fact, define Z, = 1 if tisone of ¢y, ..., 15, and Z, = 0 otherwise; then, it is
not difficult to see that {Z, : v € I,, .} are i.i.d. Ber(p,) random variables. So,

we can think of the Bernoulli sampling as a sampling without replacement
with a random sample size.

REMARK 2.1 (Comments on the random normalization). Interestingly,
changing the normalization in (2.1) does affect approximating distributions
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to the resulting incomplete U-statistic. Namely, if we change N to N in (2.1),
ie., UY’L’N =N"1 >er, . Zh(X,), then we have different approximating dis-

tributions unless § = 0. In general, changing N to N in (2.1) results in the
approximating Gaussian distributions with larger covariance matrices, and
hence it is recommended to use UA y Trather than UT’% N See also Remark 3.3
ahead.

2.2. Sampling with replacement. Conditionally on X" = (X1,...,X,),
let X,j=1,..., N beii.d. draws from the empirical distribution | Lo 7t >er,, 0x,
(0x, denotes the point mass at X,). Let

N
1 *
(23) Ut =~ D (X))
7=1

be the incomplete U-statistic obtained by sampling with replacement. We
call U;z, n the randomized incomplete U-statistic based on sampling with
replacement. Observe that U{l’ y in (2.3) can be efficiently computed by
sampling r distinct terms from {X7,...,X,} independently for N times.
The statistic UT’l, N can be written as a weighted U-statistic. Indeed, for each
v € I r, let Z, denote the number of times that X, is redrawn in the sample
(X7, X }. Then the vector Z = (Z,).er1,, (ordered in an arbitrary
way) follows a multinomial distribution with parameters N and probabilities

1zl -+ 1/|In,y| independent of X7, and U;, y can be written as
1
(2.4) U, N = ~ > Zn(X,).
Le[n,'r
Hence we can think of U/  as a statistic of Xi,...,X,, and Z,,¢ € I,

but we will use both representations (2.3) and (2.4) interchangeably in the
subsequent analysis.

REMARK 2.2. All the theoretical results presented below apply to in-
complete U-statistics based on either the Bernoulli sampling or sampling
with replacement. Both sampling schemes will be covered in a unified way.

3. Gaussian approximations. In this section, we will derive Gaussian
approximation results for the incomplete U-statistics (2.1) and (2.3) on the
hyperrectangles in R?. Let R denote the class of (closed) hyperrectangles in
R9, i.e., R consists sets of the form H;l:l[aj, b;] where —oo < a; < b; < 00
for j = 1,...,d with the convention that [a;, b;] = (—00, b;] for a; = —oco and
[aj,bj] = [a;,00) for bj = co. For the expository purpose, we mainly focus
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on the non-degenerate case where min;;j<q Var(E[h;j(X1,...,X;) | Xi]) is
bounded away from zero in the following discussion. However, our Gaussian
approximation results also cover the degenerate case (cf. Theorem 3.3). The
intuition behind and the proof sketch for the Gaussian approximation results
are given in Section C.2 in the SM.

To state the formal Gaussian approximation results, we assume the fol-
lowing conditions. Let ¢ > 0 and D,, > 1 be given constants, and define
g:=(g1,...,94)" := P""h. Suppose that

(C1) Pr|hj|*** < DEforallj=1,...,d and k = 1,2.
(C2) [[hj(XT)||gy < Dy forall j=1,...,d.

In addition, suppose that either one of the following conditions holds:

(C3-ND) P(g; —0;)>>c?forall j=1,...,d.
(C3-D) P"(hj—0j)> >0 forall j=1,...,d.

Conditions (C1) and (C2) are adapted from [12] and [8]. Condition (C2)
assumes the kernel h to be sub-exponential, which in particular covers
bounded kernels. In principle, it is possible to extend our analysis under
milder moment conditions on the kernel h, but this would result in more
involved error bounds. For the sake of clear presentation, we mainly work
with Condition (C2) and point out the differences when the kernel satis-
fies a polynomial moment condition in Remark 3.5. By Jensen’s inequal-
ity, Conditions (C1) and (C2) imply that P|g;|>** < DE for all j and for
k = 1,2, and ||gj(X1)[ly; < Dy for all j. Here we allow the exponential
moment bound D,, to depend on n since the distribution P may depend on
n in the high-dimensional setting. In addition, Condition (C1) implies that
P"hjz < 1+ P|h;|? <14 D, for all j. Condition (C3-ND) implies that the
kernel h is non-degenerate. In the degenerate case, we will require Condition
(C3-D) to derive Gaussian approximations.

In all what follows, we assume that

Pn=N/Iny| <1/2

without further mentioning. The value 1/2 has no special meaning; we can
allow p, < ¢ for any constant ¢ € (0,1), and in that case, the constants
appearing in the following theorems depend in addition on ¢. Since we are
using randomization for the purpose of computational reduction, we are
mainly interested in the case where N < |I,, »|, and the assumption that py,
is bounded away from 1 is immaterial.

The following theorem derives bounds on the Gaussian approximation
to the randomized incomplete U-statistics on the hyperrectangles in the
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case where the kernel h is non-degenerate. Recall that a,, = n/N,p, =
N/|I,|,0 = Ph = Pg,T, = P(g—0)(9—0)", and T'), = P"(h—0)(h—0)T.

THEOREM 3.1 (Gaussian approximation under non-degeneracy). Sup-
pose that Conditions (C1), (C2), and (C3-ND) hold. Then there exists a

constant C depending only on o and r such that

(3.1)
sup [P {v/n(U;, v — 6) € R} —P(Y € R)|
ReR
21057 1/6
= sup ]P{JMU;N —0) € R} — P(a; /%Y € R>( <C (Dlog(dn)> 7
RER ’ nAN

where Y ~ N(0,7°Ty + a,T).

Theorem 3.1 shows that the distribution of \/H(UA N — 0) can be approx-
imated by the Gaussian distribution N (0, TQFQ + a,I'y) on the hyperrect-
angles provided that D2 log”(dn) < n A N, from which we deduce that the
Gaussian approximation on the hyperrectangles holds for U] , even when
d > n. Asymptotically, if e.g. D,, is bounded in n and N 72 n, then as
n — 0o,

sup [P{vn(U, y —0) € R} —P(Y € R)| = 0

ReR
whenever d = d,, satisfies that logd = o(n'/7), so that the high-dimensional
CLT on the hyperrectangles holds for the incomplete U-statistics even in
ultra-high dimensional cases where d is much larger than n. Similar com-
ments apply to all the other results we will derive.

For complete and non-degenerate U-statistics (a special case of incomplete
U-statistics with the complete design and N = |I,,|), it has been argued
in [12] (r = 1) and [8] (r = 2) that the rate of convergence in Theorem 3.1
is nearly optimal in the regime where d grows sub-exponentially fast in n.
On the other hand, the rate of convergence can be improved to n—1/4 (up
to logarithmic factors) if d = O(n'/7), namely if the dimension increases at
most polynomially fast with the sample size.

In the cases where N > n (i.e., o, < 1) and N < n (i.e, oy > 1), the
approximating distribution can be simplified to N(0,72T';) and N(0,T}),
respectively.

COROLLARY 3.2. Suppose that Conditions (C1), (C2), and (C3-ND)
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hold. Then there exists a constant C' depending only on o and r such that

sup P {vn(Uy, y —0) € R} —va(R)|
RER

{ (nDn log? d) 13 <D72L log7(dn)>1/6}
<C |l —~— + (= 7
N nAN

where y4 = N(0,7°T), and

sup [P {VN(Uj,x —0) € R} = 15(R)|
ReR

<o J (NDulog?d 1/3 | (DilogTd 1/6
h n n AN ’
where yg = N(0,I';).

REMARK 3.1 (Comments on the computational and statistical trade-off
for the randomized incomplete U-statistics with non-degenerate kernels).
Theorem 3.1 and Corollary 3.2 reveal an interesting phase transition phe-
nomenon between the computational complexity and the statistical effi-
ciency for the randomized incomplete U-statistics. Suppose that n A N >
D2 log"(dn) and ¢ is bounded away from zero. First, if the computational
budget parameter N is superlinearin the sample size n (i.e., N > nD,, log? d),
then both the incomplete U-statistic /n(U], y — ) and its complete ver-
sion y/n(U,, — ) can be approximated by the same Gaussian distribution
¥4 = N(0,7°Ty) (cf. [8] for = 2 case). Second, if N is of the same order
as n, then the scaling factor of U], y, remains the same as for U,, namely,
v/n. However, the approximating Gaussian distribution for ViU, y —0)
has covariance matrix r?T'g + a;,I'y,, which is larger than the the correspond-
ing covariance matrix 72", for \/n(U,, — 6) in the sense that their difference
a,I'y, is positive semi-definite. In this case, we sacrifice the statistical effi-
ciency for the sake of keeping the computational cost linear in n. Third, if
we further reduce the computational budget parameter N to be sublinear
in n (ie., N < n/(D,log?d)), then the scaling factor of U, n changes from
Vv/n to VN, and the distribution of Uq’%N is approximated by N (0, N~'T;)
on the hyperrectangles. Hence, the decay rate of the covariance matrix of
the approximating Gaussian distribution is now N !, which is slower than
the n~! rate for the previous two cases.

Next, we consider the case where the kernel h is degenerate, i.e., P(g; —
Gj)2 =0forall j =1,...,d. We consider the case where the kernel & is degen-
erate of order k — 1 for some k = 2,...,r, i.e., PP " h(xy,...,2p_1) = P"h
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for all (z1,...,2x_1) € S*~1. Even in such cases, a Gaussian approximation
holds for v N( T/L N — 0) on the hyperrectangles provided that N < n* up
to logarithmic factors. More precisely, we obtain the following theorem.

THEOREM 3.3 (Gaussian approximation under degeneracy). Suppose the
kernel h is degenerate of order k — 1 for some k = 2,...,r. In addition,
suppose that Conditions (C1), (C2), and (C3-D) hold. Then there exists a
constant C depending only on o and r such that

(3.2)
sup |P{VN(U,x —0) € R} —15(R)|
ReR
1/4
ND?2logh*3 d / D2 (logn) log®(dn) 1/6 D2 log” (dn) 1/6
<o |7+ + (= :
n n N

where yp = N(0,I';).

REMARK 3.2 (Comments on the Gaussian approximation under degen-
eracy). In the degenerate case, for the Gaussian approximation to hold,
we must have N < nF (more precisely, N < n*/(D?log"*3 d)), which is
an indispensable condition even for the d = 1 case. To see this, consider
the Bernoulli sampling case (similar arguments apply to the sampling with
replacement case) and observe that v/N( W —0) = (N/N) - VNW,, =

(N/N)(VN A, + /N1 = pn)By), where Ay, = Uy — 0 and By, = U, , — Un.
According to Theorem 12.10 in [41], n*/2A,, converges in distribution to a
Gaussian chaos of order k. Hence, in order to approximate v N (U;L N—0)~

VN W, by a Gaussian distribution, it is necessary that VN A,, is stochasti-
cally vanishing, which leads to the condition N < nF.

It is worth noting that Theorem 3.3 reveals a fundamental difference be-
tween complete and randomized incomplete U-statistics with the degenerate
kernel. Namely, in the degenerate case, the complete U-statistic n*/ 2(U,—-9)
is known to have a non-Gaussian limiting distribution when d is fixed, while
thanks to the randomizations, our incomplete U-statistics v N (U;l N —0) can
be approximated by the Gaussian distribution, and in addition the Gaussian
approximation can hold even when d > n. On one hand, the rate of conver-
gence of the incomplete U-statistics is N~1/2 and is slower than that of the
complete U-statistic, namely, n~%/2. So in that sense we are sacrificing the
rate of convergence by using the incomplete U-statistics instead of the com-
plete U-statistic, although the rate N—1/2 can be arbitrarily close to n—*/2
up to logarithmic factors. On the other hand, the approximating Gaussian
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distribution for the incomplete U-statistics is easy to estimate by using a
multiplier bootstrap developed in Section 4. The multiplier bootstrap de-
veloped in Section 4 is computationally much less demanding than e.g., the
empirical bootstraps for complete (degenerate) U-statistics [cf. 6, 1], and
can consistently estimate the approximating Gaussian distribution yp on
the hyperrectangles even when d > n; see Theorem 4.1. To the best of our
knowledge, there is no existing work that formally derives Gaussian chaos
approximations to degenerate U-statistics in high dimensions where d >> n,
and in addition such non-Gaussian approximating distributions appear to
be more difficult to estimate in high dimensions. Hence, in the degenerate
case, the randomizations not only reduce the computational cost but also
provide more tractable alternatives to make statistical inference on 6 in high
dimensions.

REMARK 3.3 (Effect of deterministic normalization in the Bernoulli sam-
pling case). In the Bernoulli sampling case, consider the deterministic
normalization, i.e., VT’I’N = N! > e, ZM(X,), instead of the random
one, i.e., T’L’N = N-! ZLHM Z,h(X,). Then, in the non-degenerate case,
the distribution of \/ﬁ(ﬁr’”\, — 0) can be approximated by N(0,7T, +
a, P'hRT), and in the degenerate case, \/N( v,’%N — 0) can be approxi-
mated by N (0, P"hhT) (provided that N < nF for the degenerate case).
To see this, observe that U}, y — 6 = (U, —0) + N~ >ietn, (Zo—pn)h(X,),
and the distribution of N~* > et (Zo—pn)h(X,) can be approximated by
N(0, (1 — p,)P"hhT). Since PranT s larger than I'j, unless § = 0 (in the
sense that P"hhT — T, = 00T is positive semi-definite), the approximating
Gaussian distributions have larger covariance matrices for Uqlz, n than those
for UA n» and hence it is in general recommended to use the random normal-

ization rather than the deterministic one. A numerical comparison between
these normalizations can be found in Section E of the SM.

REMARK 3.4 (Comparisons with [28] for d = 1). The Gaussian approx-
imation results established in Theorems 3.1, 3.3, and Corollary 3.2 can be
considered as (partial) extensions of Theorem 1 and Corollary 1 in [2§]
to high dimensions. [28] focuses on the univariate case (d = 1) and de-
rives the asymptotic distributions of randomized incomplete U-statistics
based on sampling without replacement, sampling with replacement, and
Bernoulli sampling ([28] considers the deterministic normalization for the
Bernoulli sampling case). For the illustrative purpose, consider sampling
with replacement. Suppose that p, — p € [0,1] and the kernel h is de-
generate of order k — 1 for some £k = 1,...,r (the k = 1 case corre-
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sponds to a non-degenerate kernel). Then Theorem 1 in [28] shows that
(n*/?(U, — 9),N1/2(UT’L,N —U,)) 4 (V,W), where V is a Gaussian chaos
of order k (in particular, V. ~ N(0,72P(g — 6)?) if k = 1) and W ~
N(0,P"(h — 6)?) such that V and W are independent. Hence, provided
that n*/N — a € [0,00], nk/Q(U;LN —0) 4V 4 aW if @ < oo and

VN( ;L’N —0) % W if @ = oo. The present paper focuses on the cases
where the approximating distributions are Gaussian (i.e., the cases where
k =1 and « is finite, or £ > 2 and a = o0), but covers high-dimensional
kernels and derives explicit and non-asymptotic Gaussian approximation
error bounds that are not obtained in [28]. In addition, the proof strat-
egy of our Gaussian approximation results differs substantially from that
of [28]. [28] shows the convergence of the joint characteristic function of
(n*/2(U, —0), NV/2(U! —U,)) to obtain his Theorem 1, but the character-
istic function approacl{ is not very useful to derive explicit error bounds on
distributional approximations in high dimensions. Instead, our proofs itera-
tively use conditioning arguments combined with Berry-Esseen type bounds.

Finally, we expect that the results of the present paper can be extended
to the case where £k > 2 and « is finite; in that case, the approximating
distribution to n*/ Q(Ur’“ N —0) will be non-Gaussian and the technical analysis
will be more involved in high dimensions. We leave the analysis of this case
as a future research topic.

REMARK 3.5 (Relaxation of sub-exponential moment Condition (C2)).
It is possible to relax the sub-exponential moment Condition (C2) to a
polynomial moment condition. Suppose that
(C2’) (P"|h|%)"? < D, for some q € [4, 00).

Condition (C2’) covers a kernel with bounded polynomial moment of a finite
degree q.

THEOREM 3.4 (Gaussian approximation under polynomial moment con-
dition). () If Conditions (C1), (C2’), and (C3-ND) hold, then there exists
a constant C' depending only on a,r, and q such that

sup [P{v/n(U, y —0) € R} —P(Y € R)|
ReR

(3.3) . (Dg log7(dn)>1/6 . (Dgn%/q logS(dn)>1/ ’

nAN (n A N)1=2/q

where Y ~ N(0,7°Ty + ay,I'p).
(ii) Suppose the kernel h is degenerate of order k —1 for some k =2,...,r.
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If Conditions (C1), (C2’), and (C3-D) hold, then there erists a constant C
depending only on o,r, and q such that

sup [P {VN(U,x — 0) € R} — 15(R)|
ReR

1/4
. (NDglongd) / . <D310g5(dn)>1/6

N

nk n

1/3
n D2log" d 1/6 D2n?/1log3d /
N (n A N)1=2/a ’

where yg = N(0,I';).

Comparing Theorem 3.4 with Theorems 3.1 and 3.3, we see that the
same approximating Gaussian distributions under the sub-exponential mo-
ment condition (C2) are valid under the polynomial moment condition (C2’)
as well. The rates of convergence to the Gaussian distributions under (C2’)
involve an extra Nagaev-type term similarly to the sample average and com-
plete U-statistic cases (cf. [12, 8]), and so the rates may be slower than those
obtained under the sub-exponential moment condition (C2). In particular,
the rates in (3.3) and (3.4) now depend on the order r through the term
n?/4. Still, the leading orders in (3.3) and (3.4) coincide with those un-
der the sub-exponential moment condition (C2) as long as ¢ is sufficiently
large compared with r. For example, if D,, is bounded in n, N > n, and
q > 4(r 4 1), then the leading order of (3.3) is (n~'log”(dn))Y/¢, which
coincides with that in the sub-exponential case.

4. Bootstrap approximations. The Gaussian approximation results
developed in the previous section are often not directly applicable in statis-
tical applications since the covariance matrix of the approximating Gaussian
distribution, 7“2Fg+anf n (or T'y, in the degenerate case), is unknown to us. In
this section, we develop data-dependent procedures to further approximate
or estimate the N (0, 7T, +a,,I';) distribution (or the N(0,T'),) distribution
in the degenerate case) that are computationally (much) less-demanding
than existing bootstrap methods for U-statistics such as the empirical boot-
strap.

4.1. Generic bootstraps for incomplete U -statistics. Let D, = {X1,..., X, }U
{Z, : v € I, }. For the illustrative purpose, consider to estimate the N (0, r2I+
apl'y) distribution and let Y ~ N(O,TQFg + a,I'y). The basic idea of our
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approach is as follows. Since Y < Y + a}/ 2YB where Y4 ~ N (O,T’QFQ)
and Yp ~ N(0,T}) are independent, to approximate the distribution of Y,
it is enough to construct data-dependent random vectors Ufl’ 4 and Ui? B
such that, conditionally on D, (i) UE’ 4 and Uﬁ, p are independent, and (ii)
the conditional distributions of UfL 4 and UfL p are computable and “close”
enough to N(0,7%I';) and N(0, Fh)7 respecti\;ely Then, the conditional dis-
tribution of U} = Ujj AT al/ Ut 5.5 should be close to N (0, r?Ty+a,'y) and
hence to the distribution of Vn (UT’L N — 0). Of course, if the target distribu-
tion is N(0,72T'y) or N (0 I',), then it is enough to simulate the conditional
distribution of U} s A Or U _p alone, respectively.

Construction of Uﬁh g is straightforward; in fact, it is enough to apply the
(Gaussian) multiplier bootstrap to v/Z,h(X,),t € I, ;.

Construction of Unti B

1. Generate i.i.d. N(0,1) variables {¢] : ¢ € I, ,} independent of the data
D,.
2. Construct

f
Un,B

\/> Z é-L\/i{h UT/L,N}a
1E€In

where N is replaced by N for the sampling with replacement case.
In the Bernoulli sampling case, UfL’B reduces to UiB = N-1/2 Zjvzl &, {n(
Ul N} while in the sampling with replacement case, simulating U} ; B can

be equivalently implemented by simulating U, 5 Eo= NTL2 Z 1 ni{h(X; )
U, ntform, ..., 77N ~ N(0,1)iid. mdependent of X; X* in fact the

L1 " LN
distribution of Uan in the latter definition (condltlonally on X ,....X[" )
is Gaussian with mean zero and covariance matrix N1 ijl{h( Xr) —

U, nHI(X) = U; N}T, which is identical to the conditional distribution

of U? »,p 10 the original definition. In either case, in practice, we only need to
generate (on average) N multiplier variables. The following theorem estab-
lishes conditions under which the conditional distribution of U B 1S able to
consistently estimate the N(0,T;) (= vp) distribution on the hyperrectan—
gles with polynomial error rates.

THEOREM 4.1 (Validity of UE,B)' Suppose that (C1), (C2), and (C3-D)

X,;)—
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hold. If

D2 (log? n) log®(dn)

<Cin~¢
nAN !

(4.1)

for some constants 0 < Cy < oo and ¢ € (0,1), then there exists a constant
C depending only on o,r, and Cy such that

(4.2) sup P‘Dn(UE g €R)—vB(R)| < Cn=¢/6
ReR '

with probability at least 1 — Cn~!.

REMARK 4.1 (Bootstrap validity under the polynomial moment condi-
tion). Analogous bootstrap validity results for UﬁL p in Theorem 4.1, as

well as those for Uﬁ and Uqg 4 in Theorem 4.2, 4.3 and Proposition 4.4, 4.5
ahead, can be obtained under the polynomial moment Condition (C2’). Due
to the space concern, detailed results can be found in Section B of the SM.

In the degenerate case, the approximating distribution is yg = N(0,I';).
So, in that case, we can approximate the distribution of v N ( T’L N —0) on

the hyperrectangles by the conditional distribution of UfL p» Which can be
simulated by drawing multiplier variables many times. We call the simulation
of Ug 5 the multiplier bootstrap under degeneracy (MB-DG). On average, the
computational cost of the MB-DG is O(BNd) (where B denotes the number
of bootstrap iterations), which can be independent of the order of the U-
statistic provided that IV is so. In the remainder of this section, we will focus
on the non-degenerate case.

In contrast to UE} g construction of UE, 4 1s more involved. We might be
tempted to apply the multiplier bootstrap to the Hajek projection, rn~! > o1 9(Xi),
but the function ¢ = P"~'h is unknown so the direct application of the
multiplier bootstrap to the Héjek projection is infeasible. Instead, we shall
construct estimates of g(X;,) for i; € {1,...,n} or a subset of {1,...,n},
and then apply the multiplier bootstrap to the estimated Héjek projection.
Generically, construction of Uﬁ” 4 is as follows.

Generic construction of Uﬁ A

1. Choose a subset S7 of {1,...,n} and generate i.i.d. N(0,1) variables
{&, : i1 € Si} independent of the data D, and {§ : ¢ € I,,}. Let
ny = |Sl| '

2. For each i1 € Sy, construct an estimate §(*) of g based on XT.
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3. Construct

{7 (XG,) — g,

7

1165'1
where § = ny' 33 ¢, 9 (Xi,).

Step 1 chooses a subset S7 to reduce the computational cost of the re-
sulting bootstrap. Construction of estimates §\),4i; € S can be flexible.
For instance, the estimates §\1),4; € S; may depend on another randomiza-
tion independent of everything else. In Sections 4.2 and 4.3, we will consider
deterministic and random constructions of §(V), i, € Sy, respectively.

It is worth noting that the jackknife multiplier bootstrap (JMB) devel-
oped in [8] (for the » = 2 case) and [9] (for the general r case) is a special
case of Ufl’A where S; = {1,...,n} and g0 (X}, ) is realized by its jackknife
estimate, i.e., by the U-statistic with kernel (z2, ..., z,) — h(X;,, 22, ..., 2y)
for the sample without the i;-th observation. Nevertheless, the bottleneck
is that the computation of the jackknife estimates of g(Xj;,),i1 = 1,...,n
requires O(n"d) operations and hence implementing the JMB can be com-
putationally demanding.

Now, consider Urﬁl = U! nA T ozl/2Uﬂ . We call the simulation of Uﬁ the
multiplier bootstrap under non- degenemcy (MB-NDG). The following theo-
rem establishes conditions under which the conditional distribution of UE
is able to consistently estimate the N (O,TQFg + «a,I'y) distribution on the
hyperrectangles with polynomial error rates. Define

Auq = max — Z{A“ —g;(X:))2,

1<y<dn
SIS 1 11 €51

which quantifies the errors of the estimates §(i1),i1 € S1. In addition, let
7 i= maxigj<d /P95 — ;)%

THEOREM 4.2 (Generic bootstrap validity under non-degeneracy). Let
Ul = Uﬁ 4+ ar/? Uﬁ7B. Suppose that Conditions (C1), (C2), and (C3-ND)
hold. In addmon suppose that

D2 (log? n) log®(dn)
(4.3) ni AN
P (E?JKAJ log*d > C’ln_@) < Cin~t

<Cin~  and

for some constants 0 < C; < oo and (1,(2 € (0,1). Then there exists a
constant C depending only on o,r, and Cq such that

(4.4) sup ‘IP’mn(U}i €R)-P(Y ¢ R)‘ < On~(GAG)/6
ReR
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with probability at least 1 — Cn~1, where Y ~ N(0,7°Ty + a,I',). If the
estimates g(il), i1 € S1 depend on an additional randomization independent
of Dp,{&, i1 € Si}, and {& : v € I,,,}, then the result (4.4), with Dy
replaced by the augmentation of D, with variables used in the additional
randomization, holds with probability at least 1 — Cn~1.

The second part of Condition (4.3) is a high-level condition on the esti-
mation accuracy of g i; € S;. In Sections 4.2 and 4.3, we will verify the
second part of Condition (4.3) for deterministic and random constructions
of §(i1) ,71 € S1. The bootstrap distribution is taken with respect to the mul-
tiplier variables {§;, : i1 € S1} and {¢] : ¢ € I}, and so if the estimation
step for g depends on an additional randomization, then the variables used
in the additional randomization have to be generated outside the bootstrap
iterations.

When the approximating distribution can be simplified to v4 = N (0, r%Ty),
then it suffices to estimate N (0, 72T',) by the conditional distribution of Ufl, A

COROLLARY 4.3 (Validity of Ui 4)-  Suppose that all the conditions in
Theorem 4.2 hold. Then there exists a constant C' depending only on o,r,
and C1 such that

(4.5) sup ]P’mn(UgA € R)—v4(R)| < COn—(C1AC)/6
RER ’

with probability at least 1 — Cn~t. If the estimates ¢g'"), iy € S; depend
on an additional randomization independent of Dp,{&;, : i1 € Si}, and
{& v e I,,}, then the result (4.5), with D,, replaced by the augmentation of
D,, with variables used in the additional randomization, holds with probability
at least 1 —Cn~1.

REMARK 4.2 (Comments on the partial bootstrap simplification under
non-degeneracy). When the approximating distribution of v/N Wy —0)
can be simplified to vy = N(0,T'p), it is also possible to use the partial boot-
strap UiB to estimate N (0,I'). In this case, we must take IV to be sublinear
inn (i.e., N < n/(D,log?d)) to ensure the Gaussian approximation validity
(cf. Remark 3.1). However, we do not recommend this simplification because
the decay rate of the covariance matrix of the approximating Gaussian dis-
tribution N (0, N~'T'g) to U/, \ is N1, which is slower than the n™! rate
for the linear and superlinear’cases. In particular, this implies a power loss
in the testing problems if the critical values are calibrated by Ufl’ B
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The rest of this section is devoted to concrete constructions of the esti-
mates ﬁ(“), 11 € 5.

4.2. Diwide and conquer estimation. We first propose a deterministic
construction of g i; € S via the divide and conquer (DC) algorithm
(cf. [46]).

1. For each i; € 51, choose K disjoint subsets Sg}g), k=1,...,K with
common size L > r —1 from {1,...,n}\ {i1}.

2. For each i; € Si, estimate g by computing U-statistics with kernel
(x2,...,zy) — h(z,x9,...,2,) applied to the subsamples {X; : i €
Séf,i)}, k =1,...,K, and taking the average of those U-statistics of
order r — 1, i.e.,

K
» 1 1
g(n)(gj) - ?Z TP Z Mz, Xy, ..o, Xi,).
k=127 iz, ireSy L)

G < by

The DC algorithm can be viewed as an estimation procedure for g via
incomplete U-statistics of order r — 1 with a block diagonal sampling scheme
(up to a permutation on the indices). We call the simulation of U} with the
DC algorithm the MB-NDG-DC. In Section 4.3, we will propose a different
estimation procedure for g via randomized incomplete U-statistics of order
r — 1 based on an additional Bernoulli sampling. As a practical guidance
to implement the DC algorithm, we suggest to choose S1 = {1,...,n},L =
r—1, and K = |(n — 1)/L] consecutive blocks, which are the parameter
values used in our simulation examples in Section 5. In this case, the DC
algorithm turns out to be calculating Hoeffding’s averages of the U-statistics
of order r — 1, which requires O(nd) operations for each i;. In contrast, the
JMB constructs /g\(il) by complete U-statistics of order r — 1, which requires
O(n"~'d) operations for each i;. Since the estimation step for g can be
done outside the bootstrap iterations, the overall computational cost of the
MB-NDG-DC is O((BN + n1 KL + Bny)d) = O(n?d + B(N + n)d) (where
B denotes the number of bootstrap iterations), which is independent of the
order of the U-statistic. In addition, if we choose to only simulate Ufa 4, then
the computational cost is O(n?d + Bnd), since the O(BNd) computations
come from simulating Ufly - We can certainly make the computational cost
even smaller by taking n; and K smaller than n. For instance, if we choose
ni and K in such a way that n1 K = O(n) and L = r — 1, then the overall
computational cost is reduced to O(nd + B(N + n)d) = O(B(N + n)d)
(or O(Bnd) if we only simulate Ufl, 4)- In general, choosing smaller n; and
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K would sacrifice the statistical accuracy of the resulting bootstrap, but if
O(n?d) computations are difficult to implement, then choosing smaller n4
and K would be a reasonable option.

Our MB-NDG-DC substantially differs from the the Bag of Little Boot-
straps (BLB) proposed in [29], which is another generically scalable boot-
strap method for large datasets based on the DC algorithm. Due to the
space concern, we defer the comparison of our MB-NDG-DC with the BLB
in Section A.1 of the SM.

The following proposition provides conditions for the validity of the mul-
tiplier bootstrap equipped with the DC estimation (MB-NDG-DC).

PROPOSITION 4.4 (Validity of bootstrap with DC estimation). Suppose
that Conditions (C1), (C2), and (C3-ND) hold. In addition, suppose that

D? (log2 n) 10g5(dn) 72D2log" d log? d
4. n g n 142 = < —¢
(4.6) S VA R 7 < TR ) Cin

for some constants 0 < C; < 00,¢ € (0,1), and v € (1/¢,00). Then, there
exists a constant C depending only on o,r,v, and C1 such that each of the
results (4.4) and (4.5) with (C1,¢2) = (¢, ¢ — 1/v) holds with probability at
least 1 — Cn~1.

For instance, consider to take N = n,S; = {1,...,n},L = r — 1, and
K = |(n —1)/L], and suppose that D2 log”(dn) < n'~¢ for some ¢ € (0,1).
Then, by Theorem 3.1 and Proposition 4.4, for arbitrarily large v € (1/(, 00),
there exists a constant C' depending only on 74, 0,7, and v such that

(4.7) sup [P(vn(U, x —0) € R) = Ppp (U € R)| < Cn= (716
ReR

with probability at least 1 — Cn~!. Hence, the conditional distribution of
the MB-NDG-DC approaches uniformly on the hyperrectangles in R to the
distribution of the randomized incomplete U-statistic at a polynomial rate
in the sample size.

4.3. Random sampling estimation. Next, we propose a random construc-
tion of §(1),i; € S; based on an additional Bernoulli sampling. For each
i1 =1,...,n, let In_17r_1(i1) = {(iz,...,ir) 1< <o <y < n,ij 75
i1 Vj # 1}. In addition, define oy, : {1,...,n — 1} — {1,...,n} \ {i1} as
follows: if {1,...,n} \ {i1} = {j1,---,Jn-1} with j; < -+ < jp—1, then
oi,(£) = jg for £ = 1,...,n — 1. For the notational convenience, for // =
(ig, ey ir) S In_177«_1, we write Oiy (L/) = (0’1‘1 (ig), ey 04y (Zr)) S In—l,r—l(h)-
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Now, consider the following randomized procedure to construct §(),i; €

Si.

1. Let 0 < M = M, < |I,—1,-1] be a positive integer, and generate
iid. Ber(d,) random variables {Z!, : /' = (i2,...,iy) € In—1,-1}
independent of Dy, {&, : i1 € Si}, and {{ : ¢ € I,,}, where 9, =
M/|In71,r71|-

2. Foreach i; € Sy, construct () (z) = M~! D el 1y Zyh(z, Xo, (1))

The resulting bootstrap method is called the multiplier bootstrap under non-
degeneracy with random sampling (MB-NDG-RS). Equivalently, the above
procedure can be implemented as follows:

1. Generate M ~ Bin(|Ipn—1,r—1|, ).

2. Sample ¢},..., L’]\? randomly without replacement from I,,_1 ,_;.

3. Construct g (z) = M~ Zj\il h(w,Xgil(Lg)) for each i1 € 5.
So, on average, the computational cost to construct E(il),il € S1 by the
random sampling estimation is O(n; M d), and the overall computational cost
of the MB-NDG-RS is O(n1 M d+B(N+nq)d) (or O(nyMd+Bnid) if we only
simulate Ufl 4)- As a practical guidance to implement the random sampling
estimation, We suggest to choose S1 = {1,...,n} and M proportional to
n — 1, which are the parameter values used in our simulation examples
in Section 5. Then the overall computational cost of the MB-NDG-RS is
O(n%d + B(N + n)d) (or O(n2d 4+ Bnd) if we only simulate U’ ,), which is
independent of the order of the U-statistic. In addition, the co}nputational
cost can be made even smaller, e.g., can be reduced to O(B(N + n)d) by
choosing n; and M in such a way that n1M = O(n) (or O(Bnd) if we only
simulate Ug 1), which would be a reasonable option if O(n?d) computations
are difficult to implement.

PROPOSITION 4.5 (Validity of bootstrap with Bernoulli sampling estima-
tion).  Suppose that Conditions (C1), (C2), and (C3-ND) hold. In addition,
suppose that

D2 (log? n)log®(dn) \ , o2D%log’ (dn)
ni AN n A M

(4.8) ¢

<Cin

for some constants 0 < C1 < oo and ¢ € (0,1). Then, for arbitrarily large
v € (1/¢,0), there exists a constant C depending only on o,r,v, and Cy
such that each of the results (4.4) and (4.5), with D,, replaced by D), = D, U
{Z, /€ I—1,-1} and with (¢1,(2) = ((,¢ — 1/v), holds with probability
at least 1 —Cn~1.
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For instance, consider to take N = n, S; = {1,...,n}, and M proportional
to n — 1, and suppose that D2 log”(dn) < n'~¢ for some ¢ € (0,1). Then, by
Theorem 3.1 and Proposition 4.5, for arbitrarily large v € (1/(, 00), there
exists a constant C' depending only on 74, 0,7, and v such that the result
(4.7) holds with probability at least 1 — Cn~1.

REMARK 4.3 (Alternative options for random sampling estimation). In
construction of §(), instead | of normalization by M, we may use normaliza-

tion by M, namely, M~ Z]Ail h(z, X,, () for G (z). In view of the con-

J
centration inequality for M (cf. equation (2.2)), it is not difficult to see that
the same conclusion of Proposition 4.5 holds for () (z) = M1 Z;‘il h(z, X, (L;_)).
Next, alternatively to the Bernoulli sampling, we may use sampling with
replacement to construct §(i1), which can be implemented as follows: 1)
sample ¢}, ...}, randomly with replacement from I,,_; ,_; (independently
of everything else); and 2) construct g{')(z) = M~ Zj\il h(z, X%(L;,)) for

i1 € Sy. For each i; € 51, conditionally on X7, ,j=1,...,M are

aiq (¢5)
ii.d. draws from the empirical distribution \In,m,l\_1JZL,€IR7LT71(ZA1) 0x,-
Mimicking the proof of Proposition 4.5, it is not difficult to see that the
conclusion of the proposition holds for the estimation of g via sampling with
replacement under the condition (4.8) (here Z/, is the number of times that

// is redrawn in the sample {¢}, ..., ¢}, }, for which g()(z) can be expressed
as Z]\(“)(.ﬁ) =M1 ZL’EIn—l,r—l ZZ,h(.’L‘, Xail (L’)))

5. Numerical examples. In this section, we provide some numerical
examples to verify the validity of our Gaussian approximation results and the
proposed bootstrap algorithms (i.e., MB-DG, MB-NDG-DC, MB-NDG-RS)
for approximating the distributions of incomplete U-statistics. In particular,
we examine the statistical accuracy and computational running time of the
Gaussian approximation and bootstrap algorithms in the leading example
of testing for the pairwise independence of a high-dimensional vector.

5.1. Test statistics. In this section, we discuss several nonparametric
statistics in the literature for the testing problem of the pairwise indepen-
dence.

EXAMPLE 5.1 (Spearman’s p). Let II, be the collection of all possible

permutations on {1,...,7}. [23] shows that Spearman’s rank correlation
coefficient matrix p can be written as
n—2__ 3
p +

R L
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where p = UT(ZS)(hS ) is the p x p matrix-valued U-statistic associated with
the kernel

hS(X17X27X3) = (hs (X17X27X3))1<j7k<p

5 Z Slgn m(l) — 7T(2))(X7T(1) - XW(S))T} )

7TEH3

and 7 = (Tj)1<jh<p = Uf)(hK) is the p x p Kendall 7 matrix with the
kernel
R (X1, Xo) = sign { (X1 — Xo) (X1 — X2)7} .

Here, for a matrix A = (a;x)1<jk<p, sign{ A} is the matrix of the same size as
A whose (j, k)-th element is sign(a; ;) = 1(ajx > 0) — 1(ajr < 0). It is seen
that the leading term in Spearman’s p is p, and so it is reasonable to reject
the null hypothesis (1.2) if maxi<j<r<p |9j, this
test is testing for a weaker hypothesis that

k)

Hj : E[sign(X; x XQ(j))sign(Xf - Xék))] =0forall<j<k<p.

EXAMPLE 5.2 (Bergsma and Dassios’ t*). [2] propose a U-statistic t* =
(67 phi<ihsp = U15,4)(hBD) of order 4 with the kernel

1
hBD(le cee 7X4) = ﬂ Z ¢(X7r(1)7 s 7X7T(4))¢(X7T(1)7 s 7X7r(4))T7
welly

where ¢(X1, v 7Xv4) = (¢j(X17 N ?X4))1]?:1 and

d’j(Xl, sy X4)
=1xVvxY < xP AxP)r1x?) A xP > xP v xP)
11X v x§ < XA xP) —1(x A xF > xP v x P,
Under the assumption that (X©), X(®)) has a bivariate distribution that
is discrete or (absolutely) continuous, or a mixture of both, [2] show that
E[t;,] = 0 if and only if X () and X are independent, and so it is rea-

sonable to reject the null hypothesis (1.2) if maxij<p<p[t] ;| is large (or
maxi<j<k<p ;) i large, since in general E[t} ] > 0).

ExAMPLE 5.3 (Hoeffding’s D). [24] proposes a U-statistic D = (Dj i )1<jk<p =

U (hP) of order 5 with the kernel

hD(le <. 5 120 Z ¢ m(1)s ( ))¢(Xﬂ(1)7 s X7r(5))T7

wells
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where ¢(X1,..., X5) = (¢;(X1,..., X ) _, and ¢,(Xq, .. ,X5):[1(X§j)>

5)

X9y —1(xY > xnx? > xPy - 1(x9 > x19)]/4. Under the as-
sumption that the joint distribution of (X0), x )) has continuous joint and
marginal densities, [24] shows that E[D; ;] = 0 if and only if X&) and X *)
are independent, and so it is reasonable to reject the null hypothesis (1.2)
if maxi<jcr<p|Djk| is large (or maxi<jcr<p Djk is large, since in general
E[D;x] > 0). It is worth noting that Bergsma and Dassios’ t* is an im-
provement on Hoeffding’s D since the former can characterize the pairwise
independence under weaker assumptions on the distribution of X than the
latter.

Here h° is non-degenerate, while h®P and hP are degenerate of order 1
under Hjy. The above testing problem is motivated from recent papers by
[32] and [21], which study testing for the null hypothesis

H{ - X(l), e ,X(p) are mutually independent,

and develop tests based on functions of the U-statistics appearing in Exam-
ples 5.1-5.3. Note that H{ is a stronger hypothesis than Hy. Specifically,
[32] consider tests statistics such as, e.g., S5 = > 1 rep ﬁ?k — 3pp with

15 = E[p7 5] under Hy and show that nSﬁ/(ng‘f) 4 N(0,1) under H{ as
(n,p) — oo where C; = Var(E[th(Xl,Xg,Xg] | X1]). On the other hand,

[21] consider test statistics such as, e.g., L, = maxi<j<r<p |Pjkx| and show
that L2 /Var(p12) — 4logp + loglog p converges in distribution to a Gumbel
distribution as n — oo and p = p, — oo under H provided that logp =
o(n'/?) (precisely speaking, [21] rule out degenerate kernels). Importantly,
compared with the tests developed in [32] and [21] based on analytical critical
values, our bootstrap-based tests can directly detect the pairwise dependence
for some pair of coordinates (or E[s1gn(X(]) (J))51gn(X(k) )] #0
for some 1 < j < k < p for Spearman’s p) rather than the non- mutual—
1ndependence and also work for non-continuous random vectors (see, e.g.,
[18] for interesting examples of pairwise independent but jointly dependent
random variables; in particular, their examples include continuous random
variables). In contrast, the derivations of the asymptotic null distributions
in [32] and [21] critically depend on the mutual independence between the
coordinates of X. In addition, they both assume that X is continuously
distributed so that there are no ties in Xl(j ), . ,XT(Lj ) for each coordinate
j, thereby ruling out discrete components. It is worth noting that the U-
statistics appearing Examples 5.1-5.3 are rank-based, and so if X is con-
tinuous and H{] is true, then those U-statistics are pivotal, i.e., they have
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known (but difficult-to-compute) distributions, which is also a critical factor
in their analysis; however, that is not the case under the weaker hypothesis
of pairwise independence and without the continuity assumption on X [35].
In our simulation studies, we consider two test statistics: Spearman’s p
and Bergsma-Dassios’ t*. Under Hj in (1.2), the leading term p of Spear-
man’s p is non-degenerate while Bergsma-Dassios’ t* is degenerate of order
1, both having zero mean. Slightly abusing notation, we will use p as Spear-
man’s p statistic throughout this section. We consider tests of the forms
| nax |0 k| > ¢ = reject Hy and | Jnax \t;lk] > ¢ = reject Hy,
where ﬁ;k and t;‘,k are incomplete versions of p; ;, and t;k, respectively, and
their critical values are calibrated by the bootstrap methods. In particular,
for any nominal size a € (0, 1), the value of ¢ := c(a) can be chosen as
the (1 — a)-th quantile of an appropriate bootstrap conditional distribution
given D,,. For Spearman’s p, we use U}, for MB-NDG-DC and MB-NDG-RS.
For Bergsma-Dassios’ t*, we use Uﬁ g for MB-DG. In addition, we also test
the performance of the partial versions of MB-NDG-DC and MB-NDG-RS
(i.e., Ufl’A; cf. Corollary 4.3) for Spearman’s p statistic when its distribution
can be approximated by v4 = N(0,7°T,) (cf. Corollary 3.2).

5.2. Simulation setup. We simulate i.i.d. data from the non-central ¢-
distribution with 3 degrees of freedom and non-centrality parameter 2. This
data generating process implies Hy. We consider n = 300, 500,1000 and
p = 30,50,100 (so the number of the free parameters is d = p(p — 1)/2 =
435,1225,4950). For each setup (n, p), we fix the bootstrap sample size B =
200 and report the empirical rejection probabilities of the bootstrap tests
averaged over 2,000 simulations. For Spearman’s p, we apply the MB-NDG-
DC and MB-NDG-RS (full version U}) and set the computational budget
parameter value N = 2n. In addition, we implement the MB-NDG-DC with
the parameter values suggested in Section 4.2 (i.e., 1 = {1,...,n}, L =r—1,
and K = |(n —1)/L]), and the MB-NDG-RS with the parameter values
suggested in Section 4.3 (i.e., S1 = {1,...,n} and M = 2(n — 1)). For
Bergsma-Dassios’ t*, we apply the MB-DG Ui’ p With N = n*/3. Moreover,
we also apply the partial versions of MB-NDG-DC and MB-NDG-RS UE’ A

with N = 4n3/2. These computational budget parameter values are chosen
to minimize the rate in the error bounds of the corresponding Gaussian and
bootstrap approximations. We only report the simulation results for the
randomized incomplete U-statistic with the Bernoulli sampling since the
simulation results for the sampling with replacement case are qualitatively
similar.
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5.3. Simulation results. We first examine the statistical accuracy of the
bootstrap tests in terms of size for Ug for the incomplete versions of Spear-
man’s p and UfL,B for Bergsma-Dassios’ t*. For each nominal size o € (0, 1),
we denote by ﬁ(a) the empirical rejection probability of the null hypothesis,
where the critical values are calibrated by our bootstrap methods. The uni-
form errors-in-size on « € [0.01,0.10] of our bootstrap tests are summarized
in Table 1. We observe that the bootstrap approximations become more ac-
curate as n increases, and they work quite well for small values of «, which
are relevant in the testing application. Due to the space concern, we defer
the empirical size graph {(a, R(a)) : o € (0,1)} of the bootstrap tests for
MB-NDG-DC (Spearman’s p), MB-NDG-RS (Spearman’s p), and MB-DG
(Bergsma-Dassios’ t*) to Appendix D in the SM. In addition, we also re-
port the simulation results of the partial bootstrap Uqg 4 for Spearman’s p
in Appendix D in the SM. ,

Setup Spearman’s p Spearman’s p  Bergsma-Dassios’ t*
(MB-NDG-DC) (MB-NDG-RS) (MB-DG)
p=30,n =300 0.0080 0.0110 0.0280
p = 30,n = 500 0.0065 0.0130 0.0225
p =30,n = 1000 0.0060 0.0055 0.0095
p =50,n =300 0.0250 0.0135 0.0385
p = 50,n = 500 0.0105 0.0035 0.0260
p =50,n = 1000 0.0145 0.0095 0.0235
p =100,n = 300 0.0180 0.0125 0.0660
p =100,n = 500 0.0135 0.0100 0.0290
p = 100, n = 1000 0.0075 0.0020 0.0170
TABLE 1

Uniform error-in-size sup,eo.01.0.10] |R(a) — a| of the bootstrap tests, where o is the
nominal size.

We also report the empirical performance of the Gaussian approximation
for the test statistics. The P-P plots for Spearman’s p (i.e., \/ﬁUAN Versus
N(0,7*Ty+a,I'1)) and Bergsma-Dassios’ t* (i.e., VVNU’ , versus N(0,T}))
are shown in Figure 1 and 2, respectively. Similarly as the bootstrap approx-
imations, Gaussian approximations become more accurate as n increases.

Next, we report the computer running time of the bootstrap tests. Figure
3 displays the computer running time versus the sample size, both on the
log-scale. It is observed that the (log-)running time for the bootstrap meth-
ods scales linearly with the (log-)sample size. We further fit a linear model
of the (log-)running time against the (log-)sample size (with the intercept
term) for each p. For Spearman’s p, the slope coefficient for p = (30, 50, 100)
is (1.820,1.863,1.819) in the case MB-NDG-DC, and (1.987,1.874,1.918)
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FIG 1. P-P plots for the Gaussian approzimation N(0,7°Ty+a,I's) of VnU,, y for Spear-
man’s p test statistic with the Bernoulli sampling.

in the case MB-NDG-RS. In both cases, the slope coefficients are close to
the theoretic value 2. Recall that the computational complexity for MB-
NDG-DC and MB-NDG-RS is the same as O((n + B)nd) for the suggested
parameter values. For n larger than B, the computational cost is approxi-
mately quadratic in n for each p. For Bergsma-Dassios’ t*, the slope coeffi-
cient for p = (30,50, 100) is (1.314, 1.318,1.316), which matches very well to
the exponent 4/3 of the computational budget parameter value N = n?/3.
In addition, the running time lines are in parallel with each other. This also
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Fic 2. P-P plots for the Gaussian approzimation N(0,I'n) of VNU,, y for Bergsma-
Dassios’ t* test statistic with the Bernoulli sampling.

makes sense because the computational costs of all the bootstrap methods
are linear in d (and thus quadratic in p) and the increase of p only affects
the intercept on the log-scale.

6. Discussions. In this paper, we have derived the Gaussian and boot-
strap approximation results for incomplete U-statistics with random and
sparse weights in high dimensions. Specifically, we have considered two sam-
pling schemes: Bernoulli sampling and sampling with replacement, both sub-
ject to a computational budget parameter to construct the random weights.
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Fic 3. Computer running time of the bootstrap versus the sample size on the log-scale.
Left: bootstrap U} for Spearman’s p with the divide and conquer estimation (MB-NDG-
DC). Middle: bootstrap U} for Spearman’s p with the random sampling estimation (MB-
NDG-RS). Right: bootstrap Uth for Bergsma-Dassios’ t* (MB-DG).

On one hand, the sparsity in the design makes the computation of the in-
complete U-statistics tractable. On the other hand, the randomness of the
weights opens the possibility for us to obtain unified Central Limit Theorem
(CLT) type behaviors for both non-degenerate and degenerate kernels, thus
revealing the fundamental difference between complete and randomized in-
complete U-statistics. Building upon the Gaussian approximation results,
we have developed novel bootstrap methods for incomplete U-statistics that
take computational considerations into account, and established finite sam-
ple error bounds for the proposed bootstrap methods. Additional discussions
on two extensions (extensions to normalized U-statistics and incomplete U-
statistics with increasing orders) can be found in Section A of the SM.
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(). The Supplementary Material contains the proofs and additional discus-
sions, simulation results, and applications of the main paper.

References.

[1] ArconEes, M. and GINE, E. (1992). On the bootstrap of U- and V-statistics. Annals
of Statistics 20 655-674.

[2] BErasMA, W. and Dass1os, A. (2014). A consistent test of independence based on
a sign covariance related to Kendall’s tau. Bernoulli 20 1006-1028.



RANDOMIZED INCOMPLETE U-STATISTICS IN HIGH DIMENSIONS 31

BERTAIL, P. and TRESsoU, J. (2006). Incomplete generalized U-statistics for food
risk assessment. Biometrics 62 66-74.

BICKEL, P. J. and FREEDMAN, D. A. (1981). Some asymptotic theory for the boot-
strap. Annals of Statistics 9 1196-1217.

BLoM, G. (1976). Some properties of incomplete U-statistics. Biometrika 63 573-580.
BRETAGNOLLE, J. (1983). Lois limits du Bootstrap de certaines functionnelles. An-
nales de UInstitut Henri Poincaré Section B XIX 281-296.

BrowN, B. M. and KILDEA, D. G. (1978). Reduced U-statistics and the Hodges-
Lehmann estimator. Annals of Statistics 6 828-835.

CHEN, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-
statistics and their applications. Annals of Statistics 46 642-678.

CHEN, X. and KaTo, K. (2017). Jackknife multiplier bootstrap: finite sample ap-
proximations to the U-process supremum with applications. arXiv:1708.02705.
CHERNOZHUKOV, V., CHETVERIKOV, D. and KaTo, K. (2013). Gaussian approxi-
mations and multiplier bootstrap for maxima of sums of high-dimensional random
vectors. Annals of Statistics 41 2786-2819.

CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2015). Comparison and anti-
concentration bounds for maxima of Gaussian random vectors. Probability Theory and
Related Fields 162 47-70.

CHERNOZHUKOV, V., CHETVERIKOV, D. and KaTo, K. (2017). Central limit theo-
rems and bootstrap in high dimensions. Annals of Probability 45 2309-2352.
CLEMENGON, S., CoLIN, I. and BELLET, A. (2016). Scaling-up empirical risk mini-
mization: optimization of incomplete U-statistics. Journal of Machine Learning Re-
search 17 1-36.

DE LA PENA, V. and GINE, E. (1999). Decoupling: From Dependence to Independence.
Springer.

DEHLING, H. and MikoscH, T. (1994). Random quadratic forms and the bootstrap
for U-statistics. Journal of Multivariate Analysis 51 392-413.

EMBRECHTS, P., LINDSKOG, F. and MCNEIL, A. (2003). Modelling dependence with
copulas and applications to risk management. In Handbook of Heavy Tailed Distribu-
tions in Finance (S. T. Rachev, ed.) 8 North Holland.

FrEES, E. W. (1989). Infinite order U-statistics. Scandinavian Journal of Statistics
16.

GEISSER, S. and MANTEL, N. (1962). Pairwise independence of jointly dependent
random variables. Annals of Mathematical Statistics 33 290-291.

GINE, E. and NickL, R. (2016). Mathematical Foundations of Infinite-Dimensional
Statistical Models. Cambridge University Press.

Gu, Q., Cao, Y., NING, Y. and Liu, H. (2015). Local and global inference for high
dimensional nonparanormal graphical models. arXiv:1502.02347.

HaN, F., CHEN, S. and Liu, H. (2017, to appear). Distribution-free tests of indepen-
dence in high dimensions. Biometrika.

HaN, F. and Qian, T. (2016). Asymptotics for asymmetric weighted U-statistics:
Central limit theorem and bootstrap under data heterogeneity. Preprint.
HOEFFDING, W. (1948). A class of statistics with asymptotically normal distributions.
Annals of Mathematical Statistics 19 293-325.

HOEFFDING, W. (1948). A nonparametric test of independence. Annals of Mathe-
matical Statistics 19 546-557.

HsiNG, T. and Wu, W. B. (2004). On weighted U-statistics for stationary processes.
Annals of Probability 32 1600-1631.

HuSkovA, M. and JANSSEN, P. (1993). Consistency of the generalized bootstrap for



32

CHEN AND KATO

degenerate U-statistics. Annals of Statistics 21 1811-1823.

HuskovA, M. and JANSSEN, P. (1993). Generalized bootstrap for studentized U-
statistics: a rank statistic approach. Statistics and Probability Letters 16 225-233.
JANSON, S. (1984). The asymptotic distributions of incomplete U-statistics. Z,
Wahrscheinlichkeitstheorie verw. Gebiete 66 495-505.

KLEINER, A., TALWALKAR, A., SARKAR, P. and JORDAN, M. I. (2014). A scalable
bootstrap for massive data. J. R. Stat. Soc. Ser. B Stat. Methodol. 76 795-816.
LEE, A. J. (1990). U-Statistics: Theory and Practice. Statistics: A Series of Textbooks
and Monographs (Book 110). CRC Press.

LEHMANN, E. L. (1998). Elements of Large-Sample Theory. Springer Texts in Statis-
tics.

LEUNG, D. and DRTON, M. (2017, to appear). Testing independence in high dimen-
sions with sums of rank correlations. Annals of Statistics.

MAJOR, P. (1994). Asymptotic distributions for weighted U-statistics. Annals of
Probability 21 1514-1535.

MENTCH, L. and HOOKER, G. (2016). Quantifying Uncertainty in Random Forests
via Confidence Intervals and Hypothesis Tests. Journal of Machine Learning Research
17 1-41.

NaNDY, P., WEIHS, L. and DRTON, M. (2016). Large-sample theory for the Bergsma-
Dassios sign covariance. Electronic Journal of Statistics 10 2287-2311.

O’NEIiL, K. A. and REDNER, R. A. (1993). Asymptotic distributions of weighted
U-statistics of degree 2. Annals of Probability 21 1159-1169.

Ri1r1, M. and UTZET, F. (2000). On the asymptotic behavior of weighted U-statistics.
Journal of Theoretical Probability 13 141-167.

RuBIN, H. and VITALE, R. A. (1980). Asymptotic distribution of symmetric statis-
tics. Annals of Statistics 8 165-170.

SHAPIRO, C. P. and HUBERT, L. (1979). Asymptotic normality of permutation statis-
tics derived from weighted sums of bivariate functions. Annals of Statistics 7 788-794.
SzEKELY, G., Rizzo, M. L. and Bakirov, N. K. (2007). Measuring and testing
dependence by correlation of distances. Annals of Statistics 35 2769-2794.

VAN DER VAART, A. (1998). Asymptotic Statistics. Cambridge University Press.
VAN DER VAART, A. and WELLNER, J. A. (1996). Weak Convergence and Empirical
Processes: With Applications to Statistics. Springer.

WAGER, S. and ATHEY, S. (2017, to appear). Estimation and Inference of Hetero-
geneous Treatment Effects using Random Forests. Journal of American Statistical
Association. arXiv:1510:04342.

WaNG, Q. and JING, B.-Y. (2004). Weighted bootstrap for U-statistics. Journal of
Multivariate Analysis 91 177-198.

Yao, S., ZHANG, X. and SHAO, X. (2017, to appear). Testing mutual independence
in high dimension via distance covariance. J. R. Stat. Soc. Ser. B Stat. Methodol.
ZHANG, Y., DucHl, J. and WAINWRIGHT, M. J. (2015). Divide and conquer kernel
ridge regression: a distributed algorithm with minimax optimal rates. Journal of
Machine Learning Research 16 3299-3340.



Submitted to the Annals of Statistics
arXiv: arXiv:1712.00771

SUPPLEMENTARY MATERIAL TO “RANDOMIZED
INCOMPLETE U-STATISTICS IN HIGH DIMENSIONS”!

By Xi1aonut CHEN** AND KENGO KaTOfT

University of Illinois at Urbana-Champaign®™ and Cornell University'T

This Supplementary Material contains the additional discussions,
bootstrap validity under the polynomial moment condition, proofs
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A. Additional discussions.

A.1. Comparison of MB-NDG-DC with BLB. Our MB-NDG-DC in Sec-
tion 4.2 differs from the Bag of Little Bootstraps (BLB) proposed in [29],
which is another generically scalable bootstrap method for large datasets
based on the divide and conquer (DC) algorithm. Specifically, tailored to
the U-statistic U, := U\ (h) with kernel h, let Q, := Qu(P) be the distri-
bution of U, and A(Qn(P)) = AMQn(P), P) be a quality assessment of U,
(cf. Chapter 6.5 in [31]). For instance, A\(Q,(P)) can be the 95%-quantile of
the distribution of maxi<j<qv/n(Un,j —6;). A natural estimate of A(Q,(P))
is the plug-in estimate A\(Qn(Py)), where P,, = n=! 3" | dx, is the empiri-
cal distribution of X7, ..., X,,. Typically, A(Q,(P,)) is difficult to compute,
even for a moderate sample size n. The BLB first divides the original sam-
ple {Xi,..., X, } into K subsets Z1,...,Zk of size L uniformly at random.
Denote by IP’S% = L1 ZiEIk dx, the empirical distribution of {X;}iez, .
Then, on each subset Zy,k = 1,..., K, the BLB repeatedly resamples n
points i.i.d. from PST)L, computes the U-statistic with kernel h for each re-

sample, forms the empirical distribution Q7 , of the computed U-statistics,

and approximates )\(Qn(IP’SC)L)) by A(Q;, ;). Finally the BLB takes the av-

erage K~1 K AMQy, 1) as an estimate of A(Q(P)). The computational
cost of the BLB is O(BKL"d) = O(BnL"~!d). Note that the asymptotic
validity of the BLB requires that L — oo (cf. Theorem 1 of [29]), so that
ng)L is close enough to P. Therefore, in order for the BLB to approach the
pdpulation quality assessment value A\(Q,(P)), its computational complex-
ity has to depend on the order r of the U-statistic. On the contrary, our

IThis version: January 29, 2019.
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MB-NDG-DC applies the DC algorithm to estimation of the Héajek projec-
tion and the overall computational cost is O(n?d + B(N +n)d), which does
not depend on r. In particular, the computational cost of the MB-NDG-DC
is O(n?d + Bnd) if we choose N to be of the same order as n.

A.2. Eaxtension to normalized U -statistics. In applications to, e.g., test-
ing problems, if the variances of the coordinates of U;L, n are heterogeneous, it
would be natural to normalize the incomplete U-statistic UT’L” n in such a way
that all the coordinates have approximately unit variance, and use a max-
type test statistic of U/ . Often, the coordinatewise variances are unknown
and have to be estlmated From Theorems 3.1 and 3.3, in the non- degenerate

case the approximate variance of the j-th coordinate of /n(Uj, y — 0) is

03 = JIQM + ana%d, where 012” :=r2P(g; — 0;)* and O'QBJ = P"(h; — 6;)?,
while in the degenerate case, the approximate variance of the j-th coordi-
nate of \/N(UAN —0)is 012373-. So, the problem boils down to estimating 0124,]-
and 0123’ ;- To this end, we propose the following estimators: recall the setup

in Section 4.1 and define

JA,]: — Z {A(“ )—g;}? and 01233 = N Z Zithi(X ’/T’N’j}Q’

7/1651 Leln T

where N is replaced by N in the definition of & O‘B for the sampling with
replacement case. These estimators are the (7, j)- elements of the conditional
covariance matrices of Ufh 4 and Uf% p» respectively. Note that the compu-

tational cost to construct 3]237]-,]' =1,...,d is (on average) O(Nd), while

that of 31247]-,3' =1,...,d is O(n%d) if the DC estimation with the parame-

ter values suggested in Section 4.2 is used for estimation of g. Now, let Ay =
diag{ail, .. ,0'1247d}, A = diag{o’él, - ,U%’d}, Ay = diag{&\il, e 78,24,51}7 Ap =
diag{6% 1, ...,0% 4}, A = diag{o},...,03} = As+a,Ap, and A = diag{5?,...,53} =
A A—i—anK B. We consider to approximate the distributions of \/ﬁxfl/ 2 (UT’L N—

6) in the non-degenerate case and \/NJAX;/Q( 5, v —0) in the degenerate case.
Recall the setup in Section 4.1.

COROLLARY A.l (Gaussian and bootstrap approximations to normal-
ized incomplete U-statistics). (i) Suppose that Conditions (C1), (C2), and
(C3-ND) hold, and in addition suppose that Condition (4.3) together with
D2(log"(dn))/(n A N) < Cin~@"2) hold for some constants 0 < Cy < oo
and (1,C2 € (0,1). Then there exists a constant C' depending only on o,r,
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and C1 such that

sup |P(vnA~Y2(U} v — 0) € R) —P(A™1%Y ¢ R)‘ < On~(OAR)/6 gng
ReR

P{sup ‘P‘Dn(f\_l/QU}i € R)—P(A 2y ¢ R)) > Cn—@lA@)/G} <Ont,
ReER

where Y ~ N(0,7°Ty + a,T).

(ii) Suppose that Conditions (C1), (C2), and (C3-D) hold, and in addition
suppose that Condition (4.1) holds for some constants 0 < C; < oo and
¢ € (0,1). Then there exists a constant C' depending only on o,r, and C;
such that

sup |Pp, (K;mUE,B €R) - %TB(R) < Cn~¢/0
ReR

. . -1 o ~1/2 —-1/2 .
with probability at least 1 — Cn™", where vz = N(0,Az " "TpAg""). If, in
addition, the kernel h is degenerate of order k—1 for some k =2,...,r, and
if ND2(log"™3 d) /n* < C1n=%/3 and D2(log"(dn))/N < Cin=¢, then there
exists a constant C' depending only on o,r, and Cy such that

sup |P(VNAL2(U, y — 0) € R) —v5(R)| < C'n=¢/5,
ReR

A.3. Incomplete U-statistics with increasing orders. Finally, it is inter-
esting to note a connection of incomplete U-statistics with machine learning.
The recent paper by [34] studies asymptotic theory for one-dimensional in-
complete U-statistics with increasing orders (i.e., r = r, — 00). Specifically,
they use sampling with replacement and establish asymptotic normality for
the non-degenerate case. Their motivation is coming from uncertainty quan-
tification for subbagging and (subsampled) random forests, which, from a
mathematical point of view, are defined as infinite order U-statistics [17]
where the order of the U-statistics corresponds to the subsample size for a
single tree and so r = r,, — 00. Since exact computation of subbagging and
random forests is in most cases intractable, a common practice is to choose
a smaller number of subsamples randomly. Building on the asymptotic nor-
mality result, [34] develop pointwise confidence intervals for subbagging and
random forests; see also [43] for related results. Extending the results of [34]
to high dimensions enables us to develop methods to construct simultaneous
confidence bands for subbagging and random forests and hence would be an
interesting venue for future research. Such extension is by no means trivial
since the constants appearing in the error bounds developed in the present
paper depend on the order r in complicated ways.
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B. Bootstrap validity under the polynomial moment condition.
In this section, we present the bootstrap validity under the polynomial mo-
ment condition (C2’). Recall the assumption

(C2") (P|h|%)Y < D, for some ¢ € [4,00),
and the definition AA,I = maxigd nl_1 Zi1651 {/g\J(ll)(Xn) — Gj (Xu)}2

THEOREM B.1 (Validity of UiB). Suppose that (C1), (C2’°), and (C3-D)
hold. If

D2 log®(dn) << and D2p2max(r+14)/a 1663 (dp)

<C —¢/2
nAN nAN m

(B.1)

for some constants 0 < Cy < oo and ¢ € (0,1), then there exists a constant
C depending only on o,r,q, and Cy such that

sup |Pp, (U 5 € R) — yp(R)| < Cn=¢/
ReR ’

with probability at least 1 — Cn~!.

THEOREM B.2 (Generic bootstrap validity under non-degeneracy). Let
Ul = Uﬂ,A + a}lmUﬁyB. Suppose that Conditions (C1), (C2’°), and (C3-ND)
hold. In addition, suppose that

(B.2)
D2 log®(dn) D2p2max(r+1,4)/4 1663 (dn)
n AN ni AN
P (EEKAJ log4 d > Cln*@) < Clnfl

< On~ %, < Cln7<1/2, and

for some constants 0 < Cy < oo and (1,¢2 € (0,1), where Ty := maxi<j<q /P(g; — 0;)>.
Then there exists a constant C depending only on o,r,q, and C1 such that

(B.3) sup ‘IP’mn(U,Q € R)—P(Y € R)| < Cn~(@1&)/6
RER

with probability at least 1 — Cn~t, where Y ~ N(0,7°Ty + a,,I'y). If the
estimates g(il), i1 € S1 depend on an additional randomization independent
of Dn,{&, : 11 € S1}, and {& : v € I,,,}, then the result (B.3), with Dy,

replaced by the augmentation of D, with variables used in the additional
randomization, holds with probability at least 1 — Cn~'.
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The following two propositions are concerned with extensions of Proposi-
tions 4.4 and 4.5 under the polynomial moment condition (C2’).

PropPOSITION B.3 (Validity of bootstrap with DC estimation).  Consider
the MB-NDG-DC' defined in Section 4.2. Suppose that Conditions (C1),
(C2°), and (C3-ND) hold. In addition, suppose that

2 2 5 72D2 1 5d 2
D (log” n)log (dn)\/{o’g 108 <1+ log_ d )} <O and

ny AN KL

D%TLQ max(r+1,4)/q 10g3 (dn)

<C —(/2
ni AN 1

for some constants 0 < C; < oo and ¢ € (2/q,1). Then there ezists a
constant C' depending only on o,r,q, and C1 such that the result (B.3) with
(¢1,¢2) = (¢, ¢ —2/q) holds with probability at least 1 — Cn~".

ProPOSITION B.4 (Validity of bootstrap with Bernoulli sampling esti-
mation). Consider the MB-NDG-RS defined in Section 4.3. Suppose that
Conditions (C1), (C2’), and (C3-ND) hold. In addition, suppose that

D2 (log? n)log®(dn) \ ,02D2log?d | , 52 Din*"~V/(logd)>T%/4  F2D2n*"/log® d
(Og ’I’l Og TL \/ g \/ g ( g ) \/ g g gclnfg and
ni AN M?
D?L 2 max(r+1, 4)/qlog (dn)

< Cln—C/2

ni AN

for some constants 0 < C; < oo and ( € (2/q,1). Then there exists a
constant C' depending only on o,r,q, and Cy such that result (B.3), with D,
replaced by D;, = D, U{Z!, : // € I,_1,—1} and with (¢1,¢2) = (¢, ¢ —2/q),
holds with probability at least 1 — Cn~1.

C. Proofs.

C.1. Preliminary lemmas. This section collects some useful lemmas that
will be used in the subsequent proofs. We will freely use the following max-
imal inequalities for the 1g-norms.

LeEMMA C.1 (Maximal inequalities for the ig-norms). Let &;,...,&, be
real-valued random variables such that |||y, < oo for alli =1,... k for
some 0 < 8 < 0o, where k > 2. Then

max |&i]

< Cp(log k)7 max [l

Y3

where Cg is a constant that depends only on (.
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PrROOF OF LEMMA C.1. For 8 > 1, the lemma follows from Lemma 2.2.2
n [42]. For 8 € (0,1), ¥3 is not convex and so we can not directly apply
Lemma 2.2.2 in [42], but apply the lemma for the norm equivalent to || - ||,
obtained by linearizing 13 in a neighborhood of the origin; see Lemma C.2
below. O

LemMA C.2 (Norm equivalent to [|-||y,). Let 8 € (0,1), and take x5 > 0
large enough so that the function

{/; (w) _ KZJB(I) ifCE 2 xg
b L)Bx(jﬁ)x if 0 <z < g

is convex. Then there exists a constant 1 < Cg < oo depending only on 3
such that

5 el7, < lll, < Collel,

for every real-valued random variable &.

ProoOF OoF LEMMA C.2. This seems to be well-known, but we include a
proof of the lemma since we could not find a right reference. In this proof,
the notation < signifies that the left hand side is bounded by the right hand
side up to a constant that depends only on 5. We first show that ||£]| s <
€]l To this end, we may assume that [[{][y, = 1, ie., E[¢s(|¢])] = 1,
and show that H‘SH"ZB < 1. By Taylor’s theorem, we have ¢g(x) 2 = and

Ys(z/C) < CPypg(x) for C > 1, so that

E[$5(1¢/C))] S E(IE/CIl +E[gs(1¢/C)] S C°.

This implies that ”5”% < 1. Next, suppose that H&HJB = 1 and we show

that [|€]|y, < 1. By convexity of ¢, we have E[¢3(|¢/C])] < O~ for C' > 1.
Combining the fact that 15(x/C) < C~Pipg(xg) for 0 < < 25 and C > 1,
we have

E[ys(I¢/C1)] < C~Pp(as) + Elp(€/CN) S C7,

which implies that |||y, < 1. This completes the proof. O

LEMMA C.3 (Useful maximal inequalities for U-statistics: sub-exponential
moment). Let Xq,..., X, be i.i.d. random variables taking values in a mea-
surable space (S,S) with common distribution P, and let h = (hy, ..., hqg)T :

S™ — R% be a symmetric and jointly measurable function such that ||h; (XD s <
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oo forallj=1,...,d for some B € (0,1]. Consider the associated U -statistic
Un(h) = Ly |7t 3 e, B(X,) with kernel h, and let Z = maxi < j<q |Un(hj)—
P"hj|. In addition, let

— . ! — Th .
M = max fg?é{de(X(z—l)r—i-l) Prhyl,
where m = |n/r] is the integer part of n/r. Then, for every n € (0,1] and
0 > 0, there exists a constant C depending only on B,n, and § such that

2 t ’
P (mZ > (1+nE[Z] +1) < eXP( (1+5)mg2> Faexp )~ (CHMHw)
B

for every t > 0, where 0? = max;<;<q P"(h;j — P"hj)%.

Proor orF LEMMA C.3. The proof essentially follows from that of Lemma
E.1 in [8], and so we only point out required modifications. The difference
is that in Lemma E.1 in [8], Z is defined as
maxi<j<d | D1 {h; (X(Z;” 1)T+1) — P"h;}| where h is to be defined below.
Without loss of generality, we may assume that ¢ > C1|[M[|y, for some suf-
ficiently large constant C that depends only on 3,7 and §. For 7 = 8E[M],
let A(x1,...,20) = h(x1,. ., 2)1(JA(21, .., Zr)]oo < 7) and h = h — h. In
addition, define Vyp(x1,...,2y), Ty, £ = 1,2 as in the proof of Lemma E.1 in
8]. Then, Z < Ti + T, and since h = h+ h and hence h =h+(=h), we
have E[|[W1(X7)|so] < E[Z]+E[[Wa(X])|oo], s0 that E[Z] > E[|[W1(X7)|eo] —

E[|[W2(X7)|so]. Hence, for every n > 0 and ¢ € (0, 1),

P (Z > (14 n)E[Z] + t)
<SP = (14 n)(E[Wi(XT)|oo] — E[[W2(XT)|oo]) + (1 = €)t) + P(T2 > et).

Choose ¢ = () < 1/2 small enough so that (1 —2¢)"2(1+§/2) < 1+6.
From the proof of Lemma E.1 in [8], we have E[|[W2(XT)|x] < C2|[M|y, for
some constant C that depends only on . By choosing C sufficiently large,
we have (1 + 1)Ca|[M|[y, < et, so that

P(Z> (14 0EZ)+1) <P(Tr > (14 nE[WA(XP)]a] + (1~ 20)0)+B(T5 > et).

The rest of the proof is analogous to the proof of Lemma E.1 in [8] and
hence omitted. O
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LEMMA C.4 (Useful maximal inequalities for U-statistics: polynomial mo-
ment). Let Xi,...,X, be i.i.d. random variables taking values in a mea-
surable space (S,S) with common distribution P, and let h = (hy, ..., hqg)T :
S” — R? be a symmetric and jointly measurable function such that PTlh;l9 <
oo for all j = 1,...,d for some q € [1,00). Consider the associated U -
statistic Up(h) = [In,| ™' >,c;  h(X,) with kernel h. Let Z, Z, and M have
the same definition as in Lemma C.3. Then, for every n € (0,1] and § > 0,
there exists a constant C' depending only on q,n, and § such that

t2 CE[MY]
(1+ 5)m02> t4

P (mZ > (14 n)E[Z] + t) < exp (—2
for every t > 0, where 0> = maxigj<d P’ (hj — P’”hj)Q.

Proor or LEMMA C.4. The proof follows from that of Lemma E.2 in [§]
and a similar modification argument of Lemma C.3. Details are omitted. [

LEMMA C.5 (Gaussian comparison on hyperrectangles). Let Y, W be
centered Gaussian random vectors in R with covariance matrices ¥¥ =
(E}jk)lgj,kgd,zw = (E%)1<j7k<d, respectively, and let A = |EY — EW|OO.
Suppose that mini¢j<q E}fj V mini¢j<q Z% > o2 for some constant ¢ > 0.
Then

sup [P(Y € R) —P(W € R)| < CAY310g?/3 4,
ReER
where C' is a constant that depends only on o.

Proor orF LEMMA C.5. The proof is implicit in the proof of Theorem
4.1 in [12]. O

C.2. Proof sketch of Theorem 3.1. Before we formally prove Theorem
3.1, we first sketch the proof for the Bernoulli sampling case. Similar argu-
ments carry through the sampling with replacement case as well. The rig-
orous proof of Theorem 3.1 is given in Section C.3. Let C' denote a generic
constant that depends only on ¢ and r. Decompose the difference U,’L’ N—0
as

N 1 N
UTII —6:77 ZLhXL —9 :714”+ 1_pB 3
where A,, and B,, are defined by
(ZL _pn)

1
Ap=Up—0 and By = > {h(X,) - 6}.

Leln,'r

Vl_pn
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For the notational convenience, we write W,, = A, + /1 — p,B,. For any

hyperrectangle R € R, observe that
b g Nl
an(1—py) 1 —pn

where a,, = n/N. Since A, is o(X7])-measurable, conditionally on X7, A4,
can be treated as a constant. On the other hand, conditionally on X7,
VNB,, = (N(l_pn))_1/2 ZLelnyr(ZL_pn){h(XL)_e} = |In,r’_1/2 Zbeln,r (pn(1—
)" Y2(Z, —pp){h(X,) — 6} is the sum of independent random vectors with
mean zero whose (conditional) covariance matrix is given by

i‘\h - ‘In,r|_1 Z {h(XJ - 9}{h(XL) - Q}T'

LEIn,r

P(v/nW, € R) =P (JNBn €

Subject to the moment conditions (C1) and (C2), Lemma C.3 in the SM
and Lemma 8 in [11] yield that with probability at least 1 — Cn~!,

(C.1)  |Th = Thloe < C{n 2D, log"?(dn) + n~' D, (log n)log®(dn)},

where Ty, = P"(h — 0)(h — ). Under the non-degeneracy condition (C3-
ND), by the Gaussian approximation result (cf. Theorem 2.1 in [12]) applied
conditionally on X', we can show that with probability at least 1 — Cn~1,

(C.2) p&?(\/ﬁBn,?) = ;1617% qub(\/NBn € R) —Pxn (Y € R)| < Cwy,

where @, = {D2 log"(dn)/(n A N)}/6 and Y is a random vector in R such
that Y | X1 ~ N (O,fh). This step is involved and we defer the details
of deriving (C.2) to Appendix C in the SM. Then, in view of (C.1), the
Gaussian comparison inequality (Lemma C.5 in the SM) yields that

(C.3) sup |Pxp (Y € R) —5(R)| < Coon
ReR

with probability at least 1 — Cn~!, where v = N(0,T). Since 4, is a
mean-zero complete U-statistic, the high-dimensional CLT for the H&jek
projection term (cf. Proposition 2.1 in [12]), the maximal inequality for
the higher-order degenerate terms (cf. Corollary 5.6 in [9]), and Nazarov’s
inequality (cf. Lemma A.1 in [12]) together yield that

(C.4) sup [P(v/ndy € R) —va(R)| < Cwoy,
ReR
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where 74 = N(0,7°T'y) and I'y = P(g —0)(g — 0)T with g = P"~'h. For any
hyperrectangle R € R, observe that
1 N
P(vnW, € R) =E |Pxn | VNB, € | ———=R— | —A4,
! an (1 —pp) 1—pn
1 | N
» E ——R— | —— A, + Cw,
(%) [’73( o= ) 1=, >

=P (V1= paY5 € [0 2R = VNA,]) + Ca,
(fA €[R- \/ﬁYB)‘FCWm

where Yp ~ N(0,I'},) = vp independent of X7', and the inequality (x) follows
from (C.2) and (C.3). Now we freeze the random variable Yp. Since Yp is
independent of X7, (C.4) yields that

Py, (\fA € [R— an(l—pn) YB> <4 ([R— Van( —pn)YB]>+Cwn.

By Fubini, we conclude that

P(v/aW, € R) <E [7,4 ([R ~ V(1 —pn)YB]>] + Cwon
—IP’(YAER v a 1—pnYB>—|—C'wn
=P(Ya+ Van(1—p,)Ys € R) 4+ Cwoy,

where Y4 ~ N(O r2T g) =74 is independent of Yg. Since anp, = n/|l | <
Cn~ "1 < On~! and |T'y|eo < OD,, a second application of the Gaussian
comparison inequality (Lemma C.5) yields that

N

Dy log2d\*/?
P(Ya + /an(l — pn)V5 € R) < P(Y4 +al/?Yg € R) + C <Zg> ,

and the second term on the right hand side is bounded from above by C'w,,.
Likewise, we have P(y/nW,, € R) > P(Y4 + e = R) — Cw,. Hence, for
Y =Y+ a,ll/QYB ~ N (0, r2Fg + a,, '), we have

(C.5) sup [P(vnW, € R) —P(Y € R)| < Cwy.
ReR

In the last step of the proof, using Bernstein’s inequality (cf. Lemma 2.2.9 in
[42]), we can verify that the inequality (C.5) holds with /nW,, replaced by
Vn(U;, y — 0). This leads to the conclusion of Theorem 3.1 in the Bernoulli
sampling case. O



RANDOMIZED INCOMPLETE U-STATISTICS IN HIGH DIMENSIONS 43

C.3. Proofs for Section 3. Observe that PT|h; — 0;>TF < 22+kDk by
Jensen’s inequality for all j and k = 1,2, and ||h;(X])—0;]|y, < (1+log2)D,
for all j. So, in view of the identity U, y — = N3, Z,{h(X,) — 0}

where N is replaced by N for the sampling with replacement case, it is
without loss of generality to assume that

=P h=0

by replacing h with h — 6.

Throughout this section, the notation < signifies that the left hand side
is bounded by the right hand side up to a constant that depends only on
o, under (C2) and only on g,r, g under (C2’). In addition, let C' denote a
generic constant that depends only on o, under (C2) and only on o,r,q
under (C2’); its value may change from place to place.

PROOF OF THEOREM 3.1. It is not difficult to see that the equality of
the first two terms in (3.1) holds since n = Nay,. So it suffices to prove the
second line in (3.1). In this proof, without loss of generality, we may assume
that

(C.6) D2 log"(dn) < ¢1(n A N)

for some sufficiently small constant ¢; € (0,1) depending only on ¢ and r,
since otherwise the conclusion of the theorem is trivial by taking C' in (3.1)
sufficiently large. In addition, for the notational convenience, let

2717 1/6
S (Dlog<dn>> <1
nAN

Bernoulli sampling case. First, consider the Bernoulli sampling. The proof
is divided into several steps. R

Step 1. Recall the decomposition W;, = (N/N)U;, = Up+N—1 er, (4=
pn)h(X,) = Ap++/1 — pp By, and observe that VNB,, = ]I,w\_l/? ZLGIM (pn(1—
)" Y2(2, — pn)(X,). Let Y be a random vector in R? such that Y |
X ~ N(0,T),) where Ty, = |I,,| 7} > el h(X,)h(X,)T. In this step, we
shall show that with probability at least 1 _ Cn—t,

plp(VNB,Y) :=sup [Pxp(VNB, € R) = Pixp(Y € R)| < Cmy.
ReR

The proof of Step 1 is lengthy and divided into six sub-steps.
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Step 1.1. We first derive a generic upper bound on p&?(\/ﬁ B, )A/) Let

17“ ¢ € I, be random vectors in R4 independent conditionally on X' such
that Y, | X2 ~ N(0,h(X,)h(X,)T) for ¢ € I,,,. Observe that conditionally
on X" Y 4 | I | /2 doel, Y,. Define

(C.7) L, = max !

1<5<d | L |

Z (pn(1 = pn))73/2|hj(XL)’3E[|ZL - pn|3]-

LEIn,r
Further, for ¢ > 1, define
(C.8)

(Z, — pn)hj (X,)
pn(l - pn)

(ZL - pn)hj (XL)
pn(l - pn)

— 1
M, x(¢) = > Ejxp | max

1<j<d

4¢logd

.y

3
1| max
1<j<d

My (6) = 77 22 By | i ¥, (‘?axdn,jl > W)]

1<j<d 1<5< 4¢logd

and J/W\n(cb) = ]/\4\”7)(((;5)4—]/\4\”’}/(@). Let L,, and M,, be constants whose values
will be determined later.

Then, Theorem 2.1 in [12] (applied conditionally on X7") yields that there
exists a constant C depending only on ¢ such that for

o, N\ L6
L log™d
on=Co | =15 :
[ Ln,r|

we have that

. 1/6 _
L2 log’d 31,
|In,r| Zn

€9 (R <C (

on the event &, := {M(¢n) < Mp}N{L, < Ly {minj<;<q T ; > 02/2}.
In Steps 1.2-1.4, we will bound L, andA]\/Zn(qﬁn), and in Step 1.5, we will
evaluate the probability that mini<jcqls j; > c?/2. In Step 1.6, we will
derive an explicit bound on p&?(\/ﬁ By, 57) that holds with probability at
least 1 — Cn 1. R
Step 1.2: Bounding L,. Since p, < 1/2 and E[|Z, — p,|’] = pa(1 —
p){P2 + (1 — pp)?} < Cpn, Ly is bounded from above by C’p;l/2 times
maxicjca s ™ Xiep,, 11 (X F =1 Z1. Let m = [n/r], Zy = maxicjca S0 [y (X7,
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and M; = maxic<i<m maX1<j<d|hj(X(iZ—1)r+1)|' Then, Lemma E.3 in [§]
yields that

P (mZy > 2E[Z1] + C|M |y, ,t°) < 3¢

for every t > 0. Further, since the blocks Xg_l)rﬂ,i =1,...,m are i.i.d.,
Lemma 9 in [11] yields that
m
E[Z1] £ S jmax, ) B (13 (X{2_ 1)) | + EIM{]log d S mD,, + E[M] log d.

Since EM3] S [IM3 ], = M]3, S D3 log?(dn), we have
P <fn > Cp, V2D, {14+ n~' D2 log*(dn) + t>n "' D? log3(dn)}) < 3e
Since D?1log”(dn) < cin, by choosing L, = C’pﬁl/QDn and t = logn, we

conclude that P(En >L,) <3n %L
Step 1.3: Bounding M,, x (¢,). We begin with noting that

M, x ’an max |hj( L)|31<max|h( )| > VN )

| el 1<5<d 1<;5<d 4¢logd

Since || max,ez, , maxi<j<d |h;(X,)|[l¢; S Dnlog(dn), we have that

max max |hj(X,)| < CD,log?(dn)

1€ln » 1<j<d
with probability at least 1 — 2n~!. Now, since

a2 (B)

1/3
Dy, log?(d
dpplogd ~ \logd og*(dn),

by choosing ¢ in (C.6) sufficiently small. In addition, ¢, } = 05101/3 (N"1D21og*d)"/¢ <
027101/361/6 < 1 for a sufficiently small ¢;. Hence we have that M\n,x(qﬁn) =
0 with probability at least 1 — 2n~L,

Step 1.4: Bounding M,, y (¢,,). Suppose that

max max |h;(X,)| < CD, log?(dn),

1€Dn,r 1<5<d

which holds with probability at least 1 — 2n~! by Step 1.3. Recall that
€11y < (14 €)]|€]ly, for every real-valued random variable. (For complete-
ness, we provide its proof: assume ||¢]|y4, = 1, and observe that E[elé]] <
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e+E[ef’] < e+2, so that E[tb1(|¢])] < 1+ e. The desired result follows from
the observation that ¢1(z/C) < C~ 141 (x) for C > 1 and = > 0.) Condi-
tionally on X7, since Y, ; | X7 ~ N(0, h?(XL)) for every ¢ € I, ,, we have

| maxi<jea |Yojllly, < (14e)]| maxicjea |Yollly, S maxicjcq |hi(X,)|log?d,
so that

=~ t
C.10) Pixn | max |V, ;| >t) <2exp| —
(C-10) Py (1<j<d’ il ) ( cmaxlgjgdmj(xb)logl/?d)

for every ¢t > 0. Hence, it follows from Lemma C.1 in [12] that

o~ AN I
By [max 701 <max Tyl > e )]

Ll1gj<d 1<5<d 4¢, logd

———r 3 ———r
,s( o |hj<xb>rlog”2d) exp (‘ e )

¢nlogd = 1<j<d C'éy maxi<jeq |hj(X,)] log®? d

I |1/3
< (072 + Dy log2(dn))P exp [ ——dnr
C' D 10g'7/5(dn)

2/3 1/3
<3 2exp [ — 2/3” < ¥ exp _"1#
CD;/” 1og!™/5(dn) C'log"/?(dn)

< n3r/2 exp(—n11/42/0) < n3r/267n1/4/07

where we have used the assumption (C.6). Therefore, we conclude that
My (én) < Cn3r/2e=n*/C with probability at least 1 — 2n 1.
Step 1.5: Bounding [I'y, — 'y |oo. Let Zo = |T'j, — I'y |0, and observe that

max [ (X)he(Xo) |, , < max 115 (X.)/2 + B (X) /21y,

1<4,k<d <Jsk<d
S max (15X o, + IR ) S e, 175X s
= max [, (X) I3, < D2
and maxi<jr<q P (hjhi)? = maxicjcq P’“h;l» < D2. Hence, Lemma C.3

yields that

P (mZs > 2B[Z] + ) < e/ OmPR) 4 3exp{—(t/(CMaly, ,) '/},
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where m = |n/r|, and Zs and My are defined by

/9 = max and

1< k<d Z{h (i— 1)r+1)hk( (z l)r—i—l) Prh]hk}

M, = max max ’h e DX ) P’“hjhk‘.

1<5,k<d 1<i<m

Observe that [|Mal|y, ,
that

< D?2log?(dn). In addition, Lemma 8 in [11] yields

~

E[Zy] < /mD2logd + \/E[MZ]logd < D,v/nlogd + D2 log®(dn).

Hence,

P (22 > O{nY2D, log"? d + n~ D2 log®(dn)} + t)

<e nt? +3e (nt)'/2
<exp| — xp| ——"—— .
P 3rD? P CDy, log(dn)

Choosing t = Cn~'/2D,,(logn)/?\/ Cn~'D2 (log n)? log?(dn) for large enough
C leads to
(C.11)

P (22 > C{n"2D,log"?(dn) + n~'D?(logn) 10g3(dn)}) <Cn L.

Choosing c; in (C.6) small enough, we conclude that |fh —Thloo < 0%/2 and
hence miny<j<q s j; = 0?/2 with probability at least 1 — Cn ™!

Step 1.6. In view of Steps 1.1-1.5, choosing L,, = C’pﬁlmDn and M, =
Cn®/2e=7"""/C  we have P(&,) =1 — Cn~!. Hence,

- D2 los’ d 1/6 711/2
R (VN B, T) < { e

with probability at least 1 — Cn~1.
Step 2: Gaussian comparison. In this step, we shall show that

sup ’P'Xn (YeR) - 'yB(R)’ < Cwy,

with probability at least 1—Cn~!, where yg = N(0,T}). First, the Gaussian
comparison inequality (Lemma C.5) yields that the left hand side is bounded

by cAY? log?/3d on the event {\fh — Thleo < A}. From Step 1.5, |fh —
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Thloo < C{n=Y2D, log"/?(dn) +n~'D2(logn)log?(dn)} with probability at
least 1 — Cn~!, so that

_ D210g%(dn)\® [ D2(10g n)log®(dn)\ /*
sup P|X?(Y€R)—VB(R)‘ < C{( 7 log”( n)) + < 5 (logn) log®( n)) < @,
ReR n n

with probability at least 1 — Cn~1.
Step 3: Gaussian approximation to A,. Recall that I'y = Pgg" since
6 = 0. In this step, we shall show that

(C.12) sup |P(\/ﬁAn €R)— WA(R)’ < Cwoy,
ReR

where y74 = N (0, 7“2I‘g). The Hoeffding decomposition yields that

r

T " T
An=2 <k> U (mih) = rUD (mb) + ) <k) U (myh),
k=2

k=1

=R,

where (mh)(x1, ..., 21) = (0z, — P) -+ (84, — P)P""*h is the Hoeffding pro-
jection at level k; see, e.g., [14], p.137. Since rUr(Ll)(mh) =rn 130 g(X;)is
the average of centered independent random vectors with covariance matrix
72T, Proposition 2.1 in [12] yields that

sup [P(ry/nUW (mh) € R) — 'yA(R)‘ < Cwy,
RER

under our assumption. It remains to bound the effect of the remainder term
R;,. To this end, we make use of Corollary 5.6 in [9], which yields that

(k) | < k210" r 2\ <, —k/2 k/2+1
E fg?gd U (thy)|] Sn Y (log™ d)y | P <112?<Xd h]> <n k2D, log d
for every k = 2,...,7. Hence,
,
E[[Rn|oc] < Dn Z n~k/2logh/?+1 4 <n 'D,log?d.

k=2

Now, for R = H?Zl[aj,bj], let a = (ay,...,aq)" and b= (by,...,bg)T, and
for ¢t > 0, we use the convention that b+t = (by +¢,...,bg 4+ t)T. Observe
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that
P(vnAn € R) = P({—vnA, < —a} N {v/nA, <b})
<P ({—vnAn < —a} N {vnAn <0} N {[VnRuloo < t}) + P (|v/nRnloo > 1)
< P{—rv/nUWM (m1h) < —a+t} N {ry/aUW (m1h) < b+t}) + Ct~'n~/2D,, log? d
<y eRy: —y < —a+t,y<b+1t}) + Cw,+ Ct 'n~ 2D, log?d
< v4(R) 4+ Ct\/logd + Cw, + Ct~'n~1/2D,, log? d

for every t > 0, where the last inequality follows from Nazarov’s inequality
stated in Lemma A.1 in [12]. Choosing t = (n~'D2log® d)'/*, we conclude
that

D2 log®d
n

1/4

because of the assumption (C.6). Likewise, we have P(y/nA,, € R) = va(R)—
Cwy,. Therefore, we obtain the conclusion (C.12).

Step 4: Gaussian approximation to W,. Pick any hyperrectangle R € R.
Recall that o, = n/N, and observe that

1
IR A
an (1 —py) L=pn

Now, we freeze the random variables X7'. From Steps 1 and 2, the conditional

1 B N
Gt ) )

P(v/nW, € R)=E

P xp <\/NBn €

probability inside the expectation is bounded from above by v5 < [

Cw, with probability at least 1 — Cn~!. Since the probability is bounded

1 N
PV, € ) SE g { | el =[5 A,
e

by 1 and n~! < @, we have
1—pp) 1—pn )

=P (V1= paVs € [0; PR = VNAW)) + oy = P (VinAn € [R = vau (L= pa) V3] ) + Con,

where Yp ~ N(0,I',) = vp independent of X}'. Next, we freeze the random
variable Yp. Since Yp is independent of X', Step 3 yields that

Py, (\fA €[R—van(1—pn)Y5| > <74 <[R— Vap(l —pn)YB])—i—Cwn.

By Fubini, we conclude that

P(v/aW, € R) <E [VA <[R ~ Van(l = pn)YBD] + Cooy
_p (YA € [R— Van(l—pn)Y5 ) + Coon = P(Ya + \/an(l — pn)Yi € R) + Coon,

+ Cwy,




50 CHEN AND KATO

where Y ~ N(0, rQI‘g) = 74 is independent of Yp. Since anpn, = n/|In,| S
n~" < n7! and [Thlee < Dy, using the Gaussian comparison inequality
(Lemma C.5), we have

D, log? d> 1/3

n

P(Ya + Van(l —pa)Yp € R) <P(Ya +a/?Yg € R) + C (

and the second term on the right hand side is bounded from above by C'w,,.
Likewise, we have P(y/nW,, € R) > P(Y4 + a*yp e R) — Cw,,. Hence, for
Y =Y, + a,ll/QYB ~ N(0, 7"2Fg + a,, '), we have

(C.13) sup [P(vnW, € R) —P(Y € R)| < Cwy.
ReR

Step 5: Gaussian approximation to U’ . We shall verify that the in-

equality (C.13) holds with \/nW, replaced by \/nU), . Since Y is cen-
tered Gaussian and max;j<q Var(Y;) < Dp(1 + o), we have E[|Y|] <

/Dn(1 + ay)logd. By the Borell-Sudakov-Tsirel’son inequality (cf. Theo-
rem 2.5.8 in [19]), we have

P <|a;1/2Y|OO > C’\/Dn(l +apt) log(dn)> <2nh

Combining this estimate with (C.13), we have

P <|\/NI/Vn|OO > C\/Dn(l + agl)log(dn)> < Cwp,.

Next, since N = Yoer,, Zoand Z,, 1 € I, are iid. Ber(p,) with p, =
N/|I,.»|, by Bernstein’s inequality (cf. Lemma 2.2.9 in [42]), we have

i (W — N| > V2Nt + 2t/3> <2t

for every t > 0. Choosing t = logn and choosing ¢; sufficiently small in

(C.6) such that y/(logn)/N < 1/4, we have
P (|N/N 1> m/W) <on .
Since |z71 — 1] < 2|z — 1] for |z — 1] < 1/2, we have that
IN/N — 1| < 2|N/N — 1| < 4y/(logn)/N

with probability at least 1 — 2n 1.
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Now, observe that \/NU/LN = VNW, + (N/N — 1)¥/NW,, and with
probability at least 1 — Cwy,

(N/N — VN W|oo < C\/ D,,(log n) log(dn)

nAN

Arguing as in Step 3 and noting that min; ;<4 Var(os, 1/QYJ) > minj¢j<q Prh? pe
1, we conclude that for every R € R,

D,,(logn) log?(dn)
nAN

P(VNU), y € R) <P(a,"?Y € R) + Cwm,, + C\/
< P(a,; %Y € R) + Cw,.

Likewise, we have P(vV/NU’ y € R) > P(« e R) — Cw,,. This leads to
the conclusion of the theorem in the Bernoulli sampling case.

Sampling with replacement case. Next, consider sampling with replace-
ment. The proof is similar to the Bernoulli sampling case, so we only point
out the differences. Recall that we assume # = 0. Observe that Uf% N =

Up + NP {WX) = Un} =0 Ay + By, Since X,,..., X}, are iid.
draws from the empirical distribution |I,, |~ >

Vel dx, conditionally on

X1, VNB, is VN times the average of i.i.d. random vectors with mean
zero and covariance matrix I'y, — U,U! conditionally on X7', where I', =
L7t Dol h(X,)h(X,)T. Let Y be a random vector in R? such that

Y | X'~ N(0,T), — U,UT). We first verify that
iy (VNB,,Y) < Coon,
with probability at least 1 — Cn_l Define

14 L, = sk
(C.14) 1<J<d |1, ‘LEEI: ‘h —U ’]’

By Jensen’s inequality, En < 8Z1, where Z; is defined in Step 1.2 for the
Bernoulli sampling case. By Step 1.2, we have P(L,, > CD,,) < 3n~! under

the assumption (C.6). So we can take L,, = C'D,, and ¢,, = CQ(Ni]‘Zi log*d)~1/6 >
1 by choosing ¢; in (C.6) sufficiently small. For ¢ > 1, define

(C.15)
7 U P Xy _os YN
Mn’X Z lllgaéxd |h ) U”?]’ 1 <1n<1‘7a<xd ’h] (XL) Unv]‘ > 4¢ lOg d)] )

\nrl <

M,y (¢) =Ejxp [max V;[*1 (max Y| > VN >]

1<5<d 1<5<d 4¢logd




52 CHEN AND KATO

—

and ]\/Zn(cb) = M, x(¢) + ]\/In,y(qb). Observe that

max max |h;(X,) — Uy |

€l 1<5<d S max max [|h;(X,) — Un |y, log(dn)

d)l LEI’nr 1<_]<d

< <
S Jax max ||k (X.) [l log(dn) < Dn log(dn),

and hence

hj - CD,,log=(d
S 125 0 = Ungl < CDnlog" ()

with probability at least 1— 2n 1. Using similar calculations to those in Step
1.3, we have that M, x(¢,) = 0 with probability at least 1 —2n~!. Step 1.4
needs a modification. Since Yj | X7 ~ N(0, [L |71 3, c;  (hj(X,) = Unj)?),
we have | maxi<jca |Vl S [l maxi<jcalY)llly, S v/Valogd conditionally
on X7 where V,, = maxi<j<q | In,| ™" D oel, h?(XL), from which we have

t
1 Pixn Y; <2 Ea— P
0 o (g 1) <200 ()
Let m = |n/r| and V,, = maxj<jcqg S0 1h§(XZ: 1)r41)- Then, Lemma E.3

n [8] yields that

P (mVn > 9E[V,] + C||M%\|¢l/2t2> < 3et

for every ¢ > 0, where M; = max<;<m maxigj<a |hj( X/ (Z L 7"+1)’ Further,
Lemma 9 in [11] yields that
YRS 2 2 < 2
E[V,] < S a3 E [h (Xi1)41)| + EIM3)logd < mD,, + E[M?] log d.

Since EM3] < M2, = [Mu[2, $ D?log?(dn), we have
P (V;,, > CDu{1 4+ n D, log(dn) + t*n~"D, log*(dn)}) < 3e~".
Since D,, > 1 and D2 log7(dn) < c1n, by choosing t = logn, we conclude

that P(V,, > CD,,) < 3n~!. Now, suppose that V;, < C'D,,, which holds with
probability at least 1 — 3n~!. Then, since

t
n < —_—_—
Fix; <f?a<x Vil > > S 26Xp< C Dnlogd)’
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it follows from Lemma C.1 in [12] that

~ ~ N
E|xn [max Y;%1 <max Y;| > f)]

1 ligi<d 1<j<d 4¢, logd
3

N N

< L—k Dylogd| exp| — VN
4¢pn log d CénD?log®? d
N1/3
S N¥2exp EE vyl I N3 exp(-N6/C),
CDy/ °log® % d

where we have used the assumption (C.6). Therefore, we conclude that
]\//.Tn,y(gbn) < ON3/2 exp(—N'/6/C) with probability at least 1 — 3n ="

Step 1.5 also needs a modification. Note that \fh — UpUl —Thleo <
\fh —Thloo + |Un|?%. In the Bernoulli sampling case, we have shown in Step
1.5 that |fh — I'h|oo < 0?/4 with probability at least 1 — Cn~! (changing
the constant from 1/2 to 1/4 does not affect the proof). So we only need to
show that |U,|%, < o2/4 with probability at least 1 —Cn~!. By Lemma C.3,

B (mlUnl > 28{Z5] + ) < /0P 4 3ep{—1/(CMillu,)},

. " ,
where Z3 = maxicjcq| Doy by (XEZ.T_l)H_1

In addition, Lemma 8 in [11] yields that

E[Z3] < /mDylogd + /E[M2]logd < /nD,logd + D, log?(dn).

Hence,

)|. Observe that |M ||y, < Dy, log(dn).

i (\Un\oo > O{n V2D 10gY2 d + n~1 D, log?(dn)} + t)

< nt? 43 nt
<exp|-— exp| ———=——++].
P 3rD, P CD,, log(dn)

Choosing t = Cn~1/2D}/? (logn)'/?2\/ Cn~='D, (log n) log(dn) for large enough
C leads to

P (|Un|OO > C{n"2D}?10g?(dn) + n' D, logQ(dn)}> <Cn 7l

Choosing ¢; in (C.6) small enough, we conclude that |Un|?% < o?/4 and
hence mini<;j<a{ln j; — Ug’j} > ¢%/2 with probability at least 1 — Cn~!.
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Therefore, the overall bound in Step 1 for the sampling with replacement
case is given by

. D2los” d 1/6 N3/2 —N$/C
s (V8,5 < of () T RO

with probability at least 1 — Cn~".

Step 2 in the Bernoulli sampling case goes through under the assumption
(C.6). Step 3 remains exactly the same as the Bernoulli sampling case. Step
4 follows similarly as the Bernoulli sampling case with p,, = 0. Step 5 is not
needed in the sampling with replacement case. This completes the proof. [J

PROOF OF COROLLARY 3.2. In view of Theorem 3.1, the corollary fol-
lows from the Gaussian comparison inequality (Lemma C.5) and the fact
that |I'gloo < |T'hloc < CDy,. O]

ProoOF OF THEOREM 3.3. We shall follow the notation used in the proof
of Theorem 3.1. In this proof, without loss generality, we may assume that
(C.17)

ND2log"*3d < epn®,  DZX(logn)log®(dn) < con, and D2 log”(dn) < coN

for some sufficiently small constant ¢y depending only on ¢ and 7, since oth-
erwise the conclusion of the theorem is trivial by taking C' in (3.2) sufficiently
large.

Bernoulli sampling case. We first verify that

- 21,57 7\ 1/6 /2 B
(C.18) p@F(WBn,y)gc{(an’gd) e 1/10/0}

N D,

with probability at least 1 — Cn~1.
It is not difficult to verify from Step 1.2 in the proof of Theorem 3.1 that
P(En > Cp;1/2Dn) < 3n~! under the assumption that D2 (logn)log®(dn) <
con, and so take L, = Cpﬁl/QDn. Step 1.3 goes through as it is. Step 1.4
needs a modification. From Step 1.4, we have that on the event max, ¢y, , maxi<;<a |hj(X,)| <

CD,,log?(dn),
. N Vi 2/3
By | max (7,071 ( max 7,50 > L) | < onprt2 e (- " |
1<j<d 1<j<d 4¢y logd CD;/? 1og'"/%(dn)

and the assumption that D2 (logn)log®(dn) < can yields that the right hand
side is bounded from above by

1/3
n3r/2 exp | — (nlogn) / < n3r/2e—n'/10/C
C'log™®(dn)
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Since max,eg, , maxi<j<q [h;(X,)| < CDy log®(dn) with probability at least
1 — 2n~!, we have that M\n,y(qbn) < On?/2e=m°/C with probability at
least 1 —2n~1.

Step 1.5 holds under the present assumption. Hence, the inequality (C.18)
holds with probability at least 1 — Cn~!. In addition, Step 2 in the proof of
Theorem 3.1 goes through under the present assumption (C.17), so that

sup |Pxn (Y € R) — (R)‘ <C { <D?Lk’g5(d”)>1/6 N (D%(logn) 10g5(dn)>1/3}

ReER n n

<
n

C (Dﬁ(bg n) log®(dn) > 1/6

with probability at least 1 — Cn~!. Therefore, we have that

sup P|X"(\/>B €R)-— (R)‘ <C { (D%(logn) 10g5(nd)>1/6 . <D72z1%357(d”))1/6} s

ReR n N

with probability at least 1 — Cn~!, and in view of the fact that n=! < &,
we conclude that

sup [P(VNB, € R) — ’yB(R)‘ < Coo.
RER

Since h is degenerate of order k — 1, we have
Ap = Z <Z> U?SK) (ﬂ-ﬂh)a
l=k
and Step 3 in the proof of Theorem 3.1 yields that
(C19)  E[|Anlee] CDn Y n "?1log"**!d < CDuyn " logh**1d.
o=k

Hence, for R = H aj, bjl,a = (a1,...,a0)T,b = (b1,...,bg)T, and t > 0,

we have
P(VNW, € R) = P({—VNW, < —a} N {VNW, < b})
i ({—\/JVWH < —a}n{VNW, <b} N {|\/NAn|oo < t}) 4P (\\/NAn|oo > t)

P ({—\/N (1—pu)Bpn < —a+t}N{/N(1 —pn)B, <b+ t}) + Ct™ " Nn=*2D, logh/**1 d

N

<vs{y eRY: —\/1—ppy < —a+t,\/1 — ppy < b+t}) + Oy, + Ct IV Nn~ k2D, logk/Q'Hd
<s([(1 = pa)"V2R]) + Ct\/logd + Coy, + Ct~'WNn=*2D,, logh/*1 4,
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where the last inequality follows from Nazarov’s inequality ([12], Lemma
A.1). Choosing t = (Nn~%D2logh*1 d)'/4, we conclude that

nk

ND2loght3d A
P(VNW, € R) <yp([(1 —pn) V2R +C | —2—2——] +Cu,.

Finally, since p, < N/n", the Gaussian comparison inequality (Lemma C.5)

yields that

N D, log? d) 1/3

n

5([(1 = p)"V2R)) < y5(R) + C (

and the second term on the right hand side is bounded from above by
c (ND,% 1ogk+3d) 1/4

e . Hence,

ND2logh3d VA
P(VNW, € R) < y(R) + C — | +Con

Likewise, we have

P(VNW, € R) > v5(R) — C ("

Finally, arguing as in Step 5 in the proof of Theorem 3.1, we obtain the
conclusion of Theorem 3.3 for the Bernoulli sampling case.

Sampling with replacement case. This case is similar to but easier than
the Bernoulli sampling case under degeneracy. Recall that UA N = An+ By,

where A, = U, and B, = N~! Z;V:r{h(XL*J) — U, }. Under the assumptions
that D2 (logn)log®(dn) < con and D2 log”(dn) < coN, all the sub-steps of
Step 1 in the proof of Theorem 3.1 carry over to the degenerate case, i.e.,
we have that

N D21 7d 1/6 N3/2 —N$/C
R

with probability at least 1 — Cn~!. In addition, the error bound in Step 2
remains the same as the Bernoulli sampling case under degeneracy. Hence,
we have that

sup )P‘X{l(\/NBn € R) — v5(R)| < 0,
RER
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with probability at least 1 — Cn~!. Now, using the estimate (C.19), for
R= H?Zl[aj,bj],a = (a1,...,aq)T,b=(by,...,bg)T, and ¢t > 0, we have

P(VNU, y € R) = P{—VNU,, y < —a} N{VNU}, 5y <b})
<P ({-VNU,y < ~a} N {VNU, v <8} N {|VNAulow < t}) + P (VN Aploc > 1)

N

P({-VNBy < —a+ 1} 0 {[VNB, <b+1}) + O VN0 2D, logh/> d
<y eRY: —y < —a+t,y <b+1}) + Oy + Ot 'WNn 2D, logh/?+ 1 d
< 8(R) + Ct\/logd + C, + Ct~'VNn~*/2D,, logh/?1 4,

where the last inequality follows from Nazarov’s inequality ([12], Lemma
A.1). Choosing t = (Nn~*D?2 logh*1 d)'/4, we conclude that

nk

1/4
, ND2logh*3d / .
P(VNU, y € R) <vB(R)+C | —22—| +Ccy.

Likewise, we have the reverse inequality and the conclusion of Theorem 3.3
for the sampling with replacement case follows. O

PROOF OF THEOREM 3.4. We first prove Part (i). We shall follow the
notation used in the proof of Theorem 3.1. In addition to assuming (C.6),
we may also assume that

(C.20) D2n?/110g3(dn) < ¢1(n A N)'=2/4,

for some sufficiently small constant ¢; € (0,1) depending only on o, r, and
. In this proof, the constant ¢; in (C.6) may also depend on g, r, and q. Let

1/3

o D2n?/410g3(dn) / <1

Pn = — SEE
(n A N)1=2/a

Without loss of generality, we may assume ¢ > 2(r + 1) since otherwise
¢n > 1 and the bound (3.3) holds trivially.

Bernoulli sampling case. Recall that Y | X7~ N(0,T}), where T), =
[ In |7t el h(X,)h(X,)T. We first verify that

Pp (VNB,Y) < Clwn + on)

with probability at least 1 — C(n A N)~!. Step 1.1 in the proof of Theorem
3.1 goes through, namely that there exists a constant Cs depending only on
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o and ¢ such that the bound (C.9) holds for

o 4 N\ -L/6
L log™d
on=Co | =15
[,
on the event &, := {My(¢y) < My} {Ly < Ln}N{mini<jeq T j; > 0?/2},
where L,, and M,,(¢) are defined in (C.7) and (C.8), respectively. Step 1.2—

Step 1.5 need modifications due to the polynomial moment condition (C2’).
Observe that (E[M])3/7 < m3/9D3 | and by Lemma 9 in [11], we have

< 3 < 3/q 3
E[Z,] < 1r£1]a,<xd > E [|h (X{iz 1)T+1)‘ ] + E[Ms]logd < mD,, + m*/9D; logd.

Applying Lemma E.4 in [8] and recalling that Ln < Cpn 1 221, we have
P (En > Cp, V2D, {1 4 D2n~1*6/1)0g d}) <n b

Choose

_ D2p3"/110g d
_ —1/2 n g
L, =Cp, D”{1+(nAN)1—3/Q}’

Then IP’(EH > L,) < n~ ! since r > 2. Now for our choice of L,, and ¢,,, we
observe that

LR T <1+1W‘%gcl>”3
4Dy éplogd  4Cy \ D2Zlogd (n A N)I-3/4

cl/3  NU3pr/a Cc1/3

> 4Cy (n A N)V/3=1/a 2 4Cs

n/aNa.

Then Markov’s inequality and Condition (C2’) yield that

max e [hy (X > e Na/? S GiBN

P( VN ) _ 14Dy logd)? _ (4C,)1

In addition, similar calculations under the assumptions (C.6) and (C.20)
1

.20
show that ¢! < 1 for a sufficiently small ¢;. Indeed, since w, < c 1/ <
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and ¢, < 01/3 < 1 under (C.20), we have

1/3
c1/3 (D?Llog‘ld>1/6 (1 D%n‘%/qlogd) /

b =
" TG N (n A N)I=3/4

_ 3 [ D2ogta\""® [ D2n?/alog?d 2
e ( N > (n A N)1=2/a

< C(wy, + @3/2) C(wp + ¢n) < C’c}/6 <1
Hence we have IP’(]\/Z,LX(@J =0)>1-CN~L. For ]\/Zmy(@, suppose that

max max |h;(X,)] < Dynt" /4]
Lelnr 1<]<d

which holds with probability at least 1 —n~! under (C2’). Observe that

cl/3 D,n"/%logd
Co ‘In,r|1/6(n A N)I/S—l/q'

Then in view of (C.10) and Lemma C.1 in [12], we have

\/|Inr|
Eixp llrgjag ’YLJ‘ 1 <max ’K]‘ >

on' >

1<j<d 4¢n

3
\V In"' \V ITLT
S ( o | + max |j(X,)|log!/? d) exp (— [ nr|

Pnlogd  1<j<d Cpp maxy<jcq |hj(X,)|log®/? d>

r/3
< (0% 4 D"/ 110g /2 d)3 exp [ — n

1/3

n
g n3r/2 exp (_

— | < Pexp(—n'V22)C <n3r/26*"1/4/c,
Clog1/2 d) p( / )

where we have used the assumption (C.6) and ¢ > 2(r + 1). Therefore, we
conclude that M, y (¢y,) < Cn3r/2e=n*/C with probability at least 1 —n~t

Now we can choose M,, = Cn3/2e™" Y*/C such that IF’( n(Pn) > M,) <
C(n A N)~L For Step 1.5, we note that

i
g max [y (X )b (X yp0)| < g amax b5 (X( 1)

which implies that

EM$?] < E[ max max |h;(X7_y,,1)| < mD;

1<i<m 1<j<d
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ie., (E[Mgﬂ])Q/q < m?4D2. Lemma 9 in [11] yields that

E[Z5] < /mD2logd + /E[My]logd < D,v/mlogd + D>m?/logd.

Now Lemma C.4 yields that
(C21) P (22 > C{n~Y2D, log"?(dn) + n~+1D2 log d}) <Cn™t

Then under the assumptions (C.6) and (C.20), we conclude that Ty, —
Ihloo < 0?/2 and hence minjcj<ql's;; = 02/2 with probability at least
1 — Cn~L Step 1.6 is similar to that step in Theorem 3.1, namely we have

with probability at least 1 — C'(n A N)~! that

=~ D?log" d 1/6 DSnb/110g° d P . 1/4
R" < n n n 3r/2 —nt/*/C
Pixp (VN B, Y) <C ( N ) N\Nwavzoa) T,
1/2 »
<C {wn + 3% pl;—n?”ﬂe‘” / /C} < C(wy + ¢n).

n

Step 2 is also similar to that step in Theorem 3.1. Indeed, by the Gaussian
comparison inequality (Lemma C.5) and (C.21), we have

_ D2log?(dn)\ /® [ D210g?a\"?
sup’IP]XIz(YER)—yB(R)‘gC{("Og(n)> +<nl_04g/> < wnton
ReR n n q

with probability at least 1 — Cn~!. Next, Proposition 2.1 in [12] yields that

sup |P(ry/nUY (m1h) € R) — WA(R)) < C(wn + ¢n)
ReR

under our assumptions. Following the argument in Step 3 of Theorem 3.1,
we have

D2 log’ d

1/4
- ) + C(wp + ¢on) < Clwn + n).

P(viA, € R) —va(R) < c(

Likewise, we have the reverse inequality and therefore suppcr [P(v/nA, €
R) — ya(R)| < C(wy + ¢n). Since (n A N)™! < @, Steps 4 and 5 follow
similar lines with w,, being replaced by w,, + ¢, verbatim. This leads to the
conclusion of the theorem in the Bernoulli sampling case.

Sampling with replacement case. Next, consider sampling with replace-
ment. The proof is similar to the Bernoulli sampling case, so we only point
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out the differences. In this case, recall that ¥ | X7 ~ N(0,T — U,UL). We
first verify that N
P&f( VNB,,Y) < C(wn + ¢n)

with probability at least 1 — C(n A N)~L. Let L, and ]/\Z@\((f)) be defined in
(C.14) and (C.15), respectively. By Jensen’s inequality, L, < 8Z; and by
the calculations of Step 1 in the Bernoulli sampling case, we have P(L,, >
L,) <n~!, where

— D%ngr/ Tlogd

Let ¢, = Cg(N‘lfi log*d)~1/%. Then ¢, > 1 by choosing ¢; in (C.6) and
(C.20) sufficiently small. By Markov’s and Jensen’s inequalities together
with Condition (C2’), we have

vN (4¢n log d)q
. _ . S I . _ Jaf 2P T
g <LI£1T§ 15524 1R (Xe) = Unl > d¢plogd | " [Eﬁx 12524 1h5(X0) = Un, Na/2
(4pnlogd)? 1 . . n' (8¢n log d)?
< W2 (n"DI +E[|U,|L]) < N2z

By the calculations in Step 1.3, we have

q
P (max max |h;(X,) — Up ;| > VN ) < (8C%)

L€l 1<j<d 4¢plogd | ~ CaBN’

For Step 1.4, recall that V,, = maxi<j<d | Ins| 71 Y
E.4 in [8] and Lemma 9 in [11] yield that

h?(XL). Then Lemma

el

i (Vn > O{D, + n~ D2 log d}) <OnL.

Under (C.20) and using D,, > 1, we have that V,, < CD,, with probability at
least 1—Cn~t. Now in view of (C.16) and following the lines of Step 1.4 in the
proof of Theorem 3.1, we conclude that ]\/Zny(gbn) < ON3/2exp(=NY6/C)
with probability at least 1 — Cn~1. Hence we have P(My(¢n) > M) <
C(n A N)7L, where M, = CN3/2¢=N"°/C Since E[M{] < mD} < nDj,
Lemma 8 in [11] yields that

E[Z3] < /mDylogd + /E[M2]logd < \/nD, logd + n'/1D,, log d.
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Then using Lemma C.4, we have

1 1
P <|Un|oo > O{ D log(dn) | D Ogd}) <onL,

n nl—2/4

so that |Uy,|%, < ¢?/4 with probability at least 1 — Cn~! by choosing c;
sufficiently small in (C.6) and (C.20). As in Step 1.5 in the Bernoulli sam-
pling case, we have shown that |fh —T'h|oeo < 02/4 with probability at least
1—Cn~'. Hence [Ty — UnUT — Thloo < ¢2/2 and miny<jeg{Thy; — U2} >
o?/2 with probability at least 1 — Cn~!. Then we have with probability at
least 1 — C(n A N)~! that

D? log” d> 1/6 ( Dgnﬁ"/q log” d ) V6 N3/2—NY8/C

R ~

N3/2o-NVS/C

<C{wn+<pf’/2+ 5
n

} < Clwn + ¢n).

Step 2 goes through in view of the current Step 1.5 and Step 3 is exactly
the same as in the Bernoulli sampling case. Step 4 follows similarly as the
Bernoulli sampling case with p,, = 0 and Step 5 is not needed in the sampling
with replacement case. This completes the proof of Part (i).

We next prove Part (ii). We may assume that

ND2logh*3d < eynk,  D?log®(dn)

n con,
D2logTd < eoN,  D2n®/1logd (dn)

<
C.22
( ) < CQ(N/\n)l_2/q,

for some sufficiently small constant ¢y depending only on ¢, r, and q.
Bernoulli sampling case. We first verify that
(C.23)

1/6 1/2
p&?(\/ﬁBn,Y) <C ("Og) + Lpn Tl a + ]?LTLP)T/26_" 1/10 /¢

N N(n A N)2-6/a Dy,

with probability at least 1 — Cn~!. It is not difficult to verify from Step 1.2
in the proof of Theorem 3.1 that under the present assumptions P(L,, >
L,) <n~ ', where

. D2 37‘/(]1

(n A N)1=3/a
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—

Step 1.3 goes through as in Part (i), namely P(M, x(¢,) = 0) > 1 —
CN~!. Step 1.4 needs a modification. From Step 1.4, we have on the event
max, ey, , Maxi<j<d |hj(X,)| < CD,n"t1/4 that,

Vo3 v V| 3r/2 n'/?
" . ) v imnrl < -
4 L@%W ! (12%’““‘ 7 1gnlog d) SO e g

< nSr/Q exp(—n7/30/C),

under the assumption that D2 log®(dn) < can. Thus J/\4\my(¢n) < On3r/2e—n"*/C

with probability at least 1 — n™!, so that

PR (VN B, V) <C (

N N(n A N)2-6/a D,

N

<c{<Dv%10g7d>l/6 Dyn"l9l0g¥?d | pi/*n¥r/2en" /0

(n A N)/2-1/q D,

with probability at least 1 — C(n A N)~1. Step 2 remains exactly the same
as in Part (i). Under (C.22), we have

sup |P(VNB,, € R) — ’YB(R)’
ReR

N

N n

The rest of the proof follows similar lines as in the proof of Theorem 3.3.
This leads to the conclusion (3.4) in the Bernoulli sampling case.

Sampling with replacement case. The proof is similar to the Bernoulli
sampling case under degeneracy. Recall that U;z, N = Ap+By, where A, = U,

and B, = N~} Zjvzl{h(XL*J) — U,}. Under the assumptions in (C.22), the
overall bound for Step 1 in the sampling with replacement case becomes

R D2 log7d 1/6 D.nr/a 1Ogs/Qd N3/26_N1/6/C
R n -
P (VN B V) < € { (P5) G 5,

with probability at least 1—C(nAN)~!. The Gaussian comparison inequality
of Step 2 in the Bernouli sampling case remains exactly the same under
degeneracy. The rest of the proof goes through as in the proof of Theorem
3.3. O

Dilog?d)”ﬁ (Dﬁnﬁ"/ﬂog%)”ﬁ /21 0

}

o <D% log’ d) 1/6 N <D721 log®(dn) > 1/6 (D%n%/q log®d

(n A N)I=2/a

)1/3
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C.4. Proofs of Theorems /.1 and 4.2. As before, we will assume that
0 = P"h = 0. Throughout this section, the notation < signifies that the
left hand side is bounded by the right hand side up to a constant that
depends only on ¢, r, and C7. Let C denote a generic constant that depends
only on o, r, and Cq; its value may change from place to place. Recall that
Ya ~ N(0,7°T,) = 4 and Yg ~ N(0,T}) = 7B, and Y4 and Yp are
independent. Define

o, (UL, Y,) == sup (Pmn(Ug,* €R)-P(Y,cR)|, x=A,B.
RER

PROOF OF THEOREM 4.1. Bernoulli sampling case. Conditionally on D,,,

the vector Ufz g is Gaussian with mean zero and covariance matrix
,

= 3 ZH(X) ~ U HR(X) = Uy

tE€ln r

On the other hand, Yp ~ N(0,I';) and minicj<q Prhg > o2 Hence, the
Gaussian comparison inequality (Lemma C.5) yields that

(C.24) Pl (U 5, V) S (Aplog®d)'/?,

n

where A B is defined by
KB = ‘N_IZLEITL,TZL{}L(XL) - U;L,N}{h(XL) — Urlz,N}T — I‘h‘oo )

Observe that

(C.25)
Bp <IN/N|- (N8, (20— pR(X)R(X)T|_+ T = Taloo)
+IN/N = 1] [Phloo + U7 v %
=t |N/N|(Ap1 + Ap2) + Aps+ Apa,

where Ty = Ly [T Y, cp  h(X)h(X,)T.

From Step 5 in the proof of Theorem 3.1, [N/N —1| < C(N~/210g!/? n+
N-llogn) < CN~1/2 logl/2 n < Cn~%/2 with probability at least 1 — 2n~1.
Choose the smallest ng such that Cn=%2 < 1 /2 for all n > ng. Clearly,
ng depends only on ¢, Cy, and (, and since for n < ng, the conclusion of
the theorem is trivial by taking the constant C' in (4.1) sufficiently large
(the constant C in (4.1) can be taken independent of (), we may assume in
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what follows that n > nog. Then IN/N — 1| < CN~Y210g"/?n < 1/2 with
probability at least 1 — 2n~!, and hence using the inequality \z* -1 <
2|z — 1] for |z — 1] < 1/2, we have that ]N/N—1| CN~1210g'/? n with
probability at least 1 — 2n~!. In particular, | N/ N | < C with probability at
least 1 — 2n~!. In addition, since |I';|o0 < D, we have that

~

33,3 log?d < C’DnN_l/Q(log n)1/2 log?d < Cn=¢/?

with probability at least 1 —2n~!. For 3372, (C.11) in Step 1.5 in the proof
of Theorem 3.1 yields that

P <AB,2 > C{n"2D,log"?(dn) + n~'D?(log n) log3(dn)}) <Cn L.
Then under Condition (4.1), we have that
Apalog?d < Cn~'2D, 1og??(dn) < Cn=¢/?
with probability at least 1 — Cn~!. Next we deal with A B,1. Let

— 1 2 2
B 1?}%’%‘[“’ Z hil (X.) and My = el 1I£f<xdh7( )
LEIn ™
Since |Z, — pn| < 1 and Var(Z, — p,) < pn, = N/|I,;|, by Lemma E.2 in [12]
(applied conditionally on X7'), we have
(C.26)

~ t2 t

By Lemma 8 in [11] (applied again conditionally on X7'), we have

Exp[NAg1] < v/NVylogd + M logd.

Then we have

(C27) Py (N&B,1 > O{/NV, log(dn) + Mllog(dn)}) <On

Next we shall find an upper bound for V,, and M; with probability at least 1—
Cn~L. Since M1y, ,, S D2 log?(dn), we have M; < CD2(log?n)log?(dn)

~

with probability at least 1 —2n~!. Let m = |n/r|. By Lemma E.3 in [8], we

have for all ¢t > 0 that
£1/4
+t] <3exp| ——+—7—1,
ClIMY [,

P (mVn > 2

2 2
1g%§dzh (i— 1r+1 h ( (z 1)r+1)
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where M} = max;<j<m maxi<j<q |h; (X (Z 1 7n+1)| Clearly, |M} ||y, S Dplog(dn).
In addition, Lemma 9 in [11] yields that

2 2
1£?%§d§£:fl (1) DR (X1 Ur+1{

< max E[h2< (l 1)T+1)h2( (l 1)r+1>]+E [max max hi (X¢ (l 1)%1)} logd
=1

1<icmi<j<d ’
< nD,% - Di log® (dn).

Hence we have P(V,, > CD2{1 + n~'D2(log®n)log®(dn)}) < 3n~1, so that
V,, < CD? with probability at least 1 — 3n~! under Condition (4.1). Then
it follows from (C.27) that

Pixp (NA31 C{\/ND2log(dn) + D?(log? n) log (dn)}) <cn!
with probability at least 1 — 5n~!. Then Fubini yields that
P <3B,1 > C{N~Y2D, log"/?(dn) + N~' D2 (log?n) log?’(dn)}) <Cn 7l
Under Condition (4.1), we have that
3311 log? d < C{N'D?(log? n) log® (dn)}'/? < Cn=¢/?
with probability at least 1 — Cn~!. Finally, for A B4, observe that
Apa = IN/NPIWal <2AN/NP(|AnfZ +1BalZ),

h(X

where A, = U,, = |_Tn,,ﬂ|_1 ZLGI" ) and B,, = |In,7n]_1 Zbeln,r N (Z, —
pn)h(X,) = N1 Zbelm(ZL — pn)h(X,). Note that bounding |B,, | is sim-
ilar to bounding 33,1. Here, for completeness and later usage of similar
k) ! ZLGI’)’L»T‘ hi(XL) and
M1 = max,cr, , maxici<d |hx(X,)|. By Lemma E.2 in [12] (applied condi-

tionally on X7'), we have
(C.28)

t? t
P n<NBnoo O [|N By —i—t) exp< _ >—|—3exp<— " )
x| | Pedl | o] ANV, v

argument, we give the proof. Let \~/n = maxj<i<q |1

By Lemma 8 in [11] (applied again conditionally on X7'), we have B xn[|N Bp|oo] <
\/ NV, logd + M, log d, which together with (C.28) implies that

(C.29)  Pixp <|NBn|oo > C{\/ NV, log(dn) + My log(dn)}> <Cn ™l
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Since |||\~/|1H¢1 < Dy, log(dn) so that My < Dy, (logn)log(dn) with probability
at least 1 — 2n~!. By Lemma E.3 in [8], we have for all ¢ > 0 that

~ $1/2
P mV, > 2E RA(XT t] <3 _— ],
(m " [&%Z G-vr+) *) eXp( cuManwl)

where we recall that M| = maxi<i<m maxi<j<q | (X} ( |. Clearly, [[M] ||y, S
Dy, log(dn). In addition, Lemma 9 in [11] yields that

i—1 r+1)

m

E [max h] (X(Z 1)r+1)] < max E[hZ(X(Z )] HE [max max h; (Xgl)rﬂ)] log d

1<j<d <= 1<ismi<j<d ?
SnDy, + DZ log3(dn).

Hence we have P(V,, = CD,{1 + n'D,log*(dn)}) < 3n~, so that V,, <
CD,, with probability at least 1—3n "' under Condition (4.1). Then it follows
from (C.29) that

Pixp (|NBn|Oo > O{/ND,log(dn) + D, (logn) 1og2(dn)}) < On~?
with probability at least 1 — 5n~!. Then Fubini yields that
P (]Bn\oo > C{(N~'Dy,log(dn))*? + N~'D,(logn) logz(dn)}> <Cnt,

which implies that | By | < C{N 1D, log(dn)}'/? with probability at least
1 — Cn~! under Condition (4.1). In addition, Lemma C.3 and Lemma 8
in [11] yield that |A,|e < C{n 1D, log(dn)}*/? with probability at least
1 — Cn~!. Hence we have that

(|An|go + ’Bnﬁo) 10g2 d< Cn~¢/?

with probability at least 1 — Cn~1.
In conclusion, we have shown that A glog?d < Cn~%/% with probability
at least 1 —Cn ™!, and in view of (C.24), this leads to the desired conclusion.
Sampling with replacement case. Conditionally on D,,, the vector UfL B is
Gaussian with mean zero and covariance matrix 7

N
SR~ U HR(XE) U}
j=1

In view of the previous proof, it suffices to prove that A glog?d < Cn=¢/2
with probability at least 1 — Cn~!, where Ap is now defined by

Rp = [N R = Un xHB(XS) = Unw =T
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Observe that

N —1 N * s \T - - / 2
AB < N Zj:lh(XLj)h(XLj) - Fh oo + |Fh - I‘h|00 + |Un,N|oo

(C.30) R R R
=: ABJ + AB,Q + AB,g.

We have shown that 33’2 log?d < Cn~1/2D,, 10g5/2(dn) < COn~%/? with
probability at least 1 — Cn~!. Since X L*j, j=1,...,N are (conditionally on
X7 ii.d. draws from the empirical distribution |I,, |~ > et 0x,, we have

E xn [h(XL*j)h(XL*j)T] = fh. In addition, by Jensen’s inequality, we have

N
~ 2
2 * 2 *
lgz’deE\xn [( Xo (X)) = Fh,kﬁ) } < 13{%(121@)@ {hk(XLj)he(XLj)]
]:

=N Loy hi(X,)h3(X,) = NV
1gllca€)éd’ nr| ; k( L) Z( L) ns
LtCin,r

h X* h < h ho(X h M
max, max | (X;Dhe(X)| < max max he(X,)he(X.)] < max max hi(X.) = M,

and maxy <y ¢<d |Thke| < max,cr, , maxicp e<q |he(X,)he(X,)| < M1. By Lemma
E.2 in [12] (applied conditionally on X7"), we deduce that (C.26) continues to
hold for every ¢t > 0 for the sampling with replacement case. Then following
the argument in the previous proof, we have

Apilog?d < C{N"'D2(log? n)log®(dn)}'/? < Cn=¢/?

with probability at least 1—Cn~L. Finally, A 3 < 2(|An|% +|Bnl?,) where

A, =U, and B, = N} zjzl{h(Xj‘j) Uy,}. We have shown that |A,|%, <
Cn~'D, log(dn) With probability at least 1 — Cn~!. Next, since h(XL*],),j =
1,..., N areii.d. with mean U, conditionally on X7', we have

N
2,2 By (me(x2) - V) ] < 1@3§dZElxn )]

—Nmax [ Lr) ™" E hi(X
1<k<
Leln,'r

In addition, max<j<ny maxXi<i<d |hk(XL*J)| < max,er, , Mmaxi<p<d |hi(X,)| =

M; and maxi<k<d |Uni| < M;. By Lemma E.2 in [12] (applied condition-
ally on X7'), we deduce that (C.28) continues to hold for every ¢ > 0
for the sampling with replacement case. Then following the argument in
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the previous proof, we have |B,|oo < C{N~'D,log(dn)}'/? with prob-
ability at least 1 — Cn~! under Condition (4.1). Now we conclude that
(JAn|% + |Bnl%) log? d < Cn~¢/? and hence Aplog?d < Cn~¢/2 with prob-
ability at least 1 — Cn~1. O

PrOOF OF THEOREM 4.2. The proof is divided into three steps.
Step 1: Bounding p?%”(Ujj 5, YB). Since Condition (C3-ND) implies Con-

n

dition (C3-D), and n; < n by definition, by Theorem 4.1, we have that

Pl (UE 5, Yp) < Cn~41/0

with probability at least 1 — Cn~".
Step 2: Bounding pf%, (Uf, 5 Ya). In this step, we shall show that

pl%n (Uﬁ,Aa Ya) < Cn~(QAG2)/6

with probability at least 1 — Cn~1.
Without loss of generality, we may assume S; = {1,...,n;}. Conditionally
on D,,, the vector U ; A is Gaussian with mean zero and covariance matrix
P2 M
771 > GG, - gHe™ (X)) - g3

i1=1

On the other hand, Y4 ~ N(0,7°I'y) and min;<;<q ng2. > o2. Hence, the
Gaussian comparison inequality (Lemma C.5) yields that

Pl (U 4.Ya) S (Aalog?d)'/?,

where

N —1 i1) _ 3 _ .
Ap= 1I<I;a£)<{d 4 zZ:l{gj 9]}{ ( 1) — et — Pgjge -
1
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Observe that for every 1 < j,¢ < d,

12{%“ — 5 Ha™ () - g

i1=1

—n;! Z 3 (X)) (Xay) — G54
i1=1
ni )

=7 S (G (X)) - g5 (X ) HE (X)) — ge(Xi,)}
ilfl
12{91“ — g;(Xi)}ge(Xs) +n112{*“ — gu(Xiy)}g; (Xiy)
i1=1 i1=1

+nllzgj i1 .gf 11)_§j§€7

i1=1

so that by the Cauchy-Schwarz inequality,

N -1 i1) 2 / -1
A< max g Z{gj 9;(Xi,)}? +24 max Zgj
i1=1 i1=1
=Aan
+ max [ny' Y {g;(Xi,)ge(Xi,) — Pgjge}| + max |g;].
1<j,6<d J ! 1 J 1<5< J

i1=1
For the notational convenience, define

AA2 = max

n1
1<5,6<d n Z{gj(Xil)W(Xil) — Pgjge}|-

i1=1
Then, since ny ' Y7, ¢7(Xi,) < Pgi +ny ' >opn 1{9J2( )~ Pgi} <o+
AAQ,and 9j —”112“ 1{9311)( 1) —95( zl)}+n1 Zzl 1 95(Xi, ), so that

ni
ny Z 9j (Xiy)

i1=1

max |g;|* §3A,1+£1243, with AA3 = max

1<5<d ’ 1<j<d ’

we have

(C.31) Ar ST AN+ Apy+ Aaa + A%,
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where we have used the inequality 2ab < a? + b? for a,b € R.
Now, by assumption, EQAX ? log?d < Cn~%/2 with probability at least
1—CnL. For 3,4)2, Lemma 8 in [11] yields that

1<y, £<d 1<i1<ny 1<j<d

E[AA,Q] <nyt, | (logd) max Z Eg] )92 (Xi))] —i—nl_l\/IE [ max max g; 4(X; )] log d

< nl_l/ Dy log'/?d + nl_lDfL log3(dn).

By Lemma E.2 in [12], we have for every t > 0

~ nyt? nit 2
P(Aa2 > 2E[A < - “\oD2100%(dn) '
(A [Aa2] +1) < exp ( 3Dg> +3exp { <C’D,2L logQ(dn)>

Choosing t = {Cny ' D2 logn}'/?\/{Cn; ' D2 (log?n)log3(dn)}, we have

P (3,472 > C{(ny D% log(dn))*? + ny D2 (log? n) logg(dn)}) <Cnt
Now, using the first part of Condition (4.3), we deduce that
Ay log?d < C{n7' D2 (logn)?log®(dn)}'/? < O~/

with probability at least 1 — Cn~!. The term 331’3 can be similarly dealt
with. In particular, using 63 < 1+ max; Plg;|? < Dy, we have

(C.32) E[AA,;;,] < (n7tDylogd)Y? + nytD, log?(dn).
Then using Lemma 8 in [11] and Lemma E.2 in [12], we can show that
A2 3log? d < C{ny' Dy log®(dn) + ny2D2 1og%(dn)} < Cn~™¢ < On~4/?

with probability at least 1 — Cn~!. Hence KA log?d < Cn~(G17)/2 with
probability at least 1 — Cn~!, which leads to the conclusion of this step.

Step 3: Conclusion. Let = = {&;, : 41 € Si} and Z' = {¢] : v € I,,,}. Recall
that Z,Z’, and D,, are mutually independent. Suppose that

P|D (UnAaYA \/pm nB, Yp) < Cn—(Cl/\Cz)/6’

which holds with probability at least 1 — Cn~'. Pick any hyperrectangle
R € R. Observe that

Pip, (U € R) = Epp, [m(pmg) (Uﬂ 5 €lorV/?R - a;1/2UfL’A])] .

n,
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The conditional probability on the right hand side is bounded from above
by ’YB([Oé;leR — Oérizl/QUfl’A]) + Cn~(@12)/6 and hence

Pmn(Ug S R) < E\Dn [’yB ([a;lﬂR — a;l/szL’AD] + Cn*(ﬁ/\CQ)/G

=Pip, (Y/B € [04;1/2}{ — a;1/2U27A]) + On~(G1AG2)/6 — Pip, (UE,A €[R- O‘rlz/Q?B]> + C'n_(C1/\C2)/6,

where Y ~ N(0,T) independent of D,, and Z. The first term on the far
right hand side can be written as Ep, [IP’KD” YfB)(UfLA € [R - ai/Q}v/B])],

and the inner conditional probability is bounded from above by vy ([R —
0471/2173]) + Cn~(C112)/6 Hence,

Pip, (UL € R) <Epp, [WA ([R - a}L/WB])] +COn~(@1Q)/6 — p(y € R)+Cn~(©162)/6,

Likewise, we have P|Dn(U£ € R) >P(Y € R) — Cn~(Q12)/6,

Finally, the last statement of the theorem is trivial since the bootstrap
distribution is taken only with respect to {§;, : i1 € S1} and {§ : v € I,,,}.
This completes the proof. O

PROOF OF COROLLARY 4.3. This follows from Step 2 in the proof of
Theorem 4.2. O

C.5. Proofs of Theorem B.1 and B.2. As before, we will assume that
6 = P"h = 0. Throughout this section, the notation < signifies that the left
hand side is bounded by the right hand side up to a constant that depends
only on g,r,q, and C;. Let C' denote a generic constant that depends only

on o,r,q, and Cq; its value may change from place to place. Recall that
Pl (U1, Ya) = suppeg [P, (Ul « € R) — P(Y; € R)| for x = A, B.

ProoF OoF THEOREM B.1. We shall follow the notation used in the proof
of Theorem 4.1.

Bernoulli sampling case. We consider the decomposition of Ap in (C.25).
First note that A B3 log? d < Cn~¢/? with probability at least 1—2n~" since
the randomness of A B,3 only comes from N which is independent of X7'.
For 3372, by (C.21), we have

P (33,2 > C{n"Y2D,log"?(dn) + n~ 102 log d}) <Cnl.

Since r > 2, under Condition (B.1), we have 3372 log?d < Cn~¢/? with
probability at least 1 — Cn~!. For Ap;, note that, under (C2’), (C.27)
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continues to hold and we only need to find an upper bound for V,, and
M; with probability at least 1 — Cn~!. Note that (E[M?/Q])Q/q < n?/ap2,
so that by Markov’s inequality we have P(M; > D2n?(0t1/4) < n=1, Let
m = |n/r|. By Lemma E.4 in [8], we have for all ¢ > 0 that

19
+t> < CEM] ].

m

max h3 (X(z 1)r+1)h2(X(z 1)r+1)

1<y, k<d

P <mVn > 2E -8

Now (E[M}9)'/4 < nl/4D,, and Lemma 9 in [11] yields that

2 2
llgﬁgdzh (i—1yr D) PR (X (i 1)r+1)]

< max E[hQ( 0 1)7«+1)hk( (l yr+0)] T E [max max hi(X} (l 1)r+1)} logd

1<i<mi<j<d 7

< nD,QL + 714/qu log d.

Hence we have P(V,, > CD2{1 + n~"*4D2logd + n~'*8/4D2}) < Cn~ 1,
so that V,, < C'D? with probability at least 1 — Cn~! under Condition (B.1)
because r > 2. Then it follows from (C.27) and Fubini that

(C.33)

P (ﬁBJ > C{N"Y2D, log"/?(dn) + N~'D2p2r+1)/a log(dn)}> <Con 't
which in turn implies that
3371 log?d < C{N~Y2D,, 1og®?(dn) + N1 D2n2+V/110g%(dn)} < Cn=¢/?

with probability at least 1 — Cn~!. For 33,4, by similar calculations to
those in bounding 83,1 (cf. the details for bouding the term 3374 in the
proof of Theorem 4.1), we can show that |By|eo < C{(N 1D, log(dn))'/? +
N='D,n(rt1)/410g(dn)} with probability at least 1 — Cn~'. In addition,
Lemma C.4 and Lemma 8 in [11] yield that | A,|ec < C{(n 1D, log(dn))"/>+
n~2/4D, log d} with probability at least 1 — Cn~!. Hence we have that

(|An|go + ‘Bnﬁo) 10g2 d < n=¢/2

with probability at least 1 — Cn~". R

Combining the above bounds, we have Aglog?d < Cn~¢/2 with prob-
ability at least 1 — Cn~!, and in view of (C.24), this leads to the desired
conclusion.
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Sampling with replacement case. We consider the decomposition of A B in
(C.30). We have shown that 3372 log?d < C{n~12D, log®/?(dn)+n"1144D2 log® d} <
Cn~¢/2? with probability at least 1 — Cn~'. Note that the bound (C.33) on
A B,1 holds exactly as in the Bernoulli sampling case in view of (C.27) and
the proof of sampling with replacement case in Theorem 4.1; that is, we have
AB 1log?d < C{N~12D, 10g"?(dn) + N1 D2n2(r+1)/410g3(dn)} < Cn=¢/2
with probability at least 1—Cn~L. Finally, A 3 < 2(|An|% +|Bnl?,) where
A, =U, and B, = N} Zj:l{h(X:;) Upn}. We have shown that |A,|s <
c{(n"'D, log(dn))l/Q—i—n*l”/an log d} with probability at least 1—Cn~!
Similarly, |Bp|eo < C{(N~'D,log(dn))'/? + N=1D,n("+D/?1og(dn)} with
probability at least 1 — Cn~! in view of (C.29) and the proof of sampling
with replacement case in Theorem 4.1. ]

PROOF OF THEOREM B.2. We shall follow the notation and the proof
structure in the proof of Theorem 4.2. In Step 1, it follows from Theorem
B.1 that pf%, (U} 5,Y) < Cn~4/% with probability at least 1 — Cn~! in
view that (C3-ND) implies Condition (C3-D) and n; < n. Step 2 in Theo-
rem 4.2 needs modifications. In particular, we shall show in this step that

p%n(UE’A, Y,) < Cn~(@A)/6 holds with probability at least 1 — Cn~! un-

der (C2°) and (B.2). Consider the decomposition of A 4 in (C.31). For AAQ,
Lemma 8 in [11] yields that

1<y, £<d 1<ii<ng 1<y<d

E[Aas] Sny', | (logd) max ZEg] )97 (X )]+nfl\/E[ max max g4(X;)|logd

1/ D log1/2d+ 1+2/(ID21 gd

By Lemma E.2 in [12], we have for every t > 0

nit? CD¥
P(Ayz2 > E[AA o] +t) <exp <— ! )

2 21,9
3Dn ng/ +a/2
Choosing t = {Cny ' D2 logn}!/? V{Cn;1+2/qn2/qD,%}, we have

(AM C{(n7 D2 log(dn))*? + ny 1024 D2 log d}) < On~!

Now, using Condition (B.2), we deduce that

Aaszlog?d < C{(n7 D2 log(dn))/? + ny 021 D2 log? d} < Cn=1/2
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with probability at least 1 — Cn~'. The term 33173 can be similarly dealt
with. In particular, using Eg < 1+ max; Plg;|> < Dy, we have

(C.34) E[A 3] < (n]'Dylogd)/2 + ny ™D, log d.
Then using Lemma 8 in [11] and Lemma E.2 in [12], we can show that
3124,3 log?d < C{n;'D, logg(dn)+n1_2+2/qn2/qD,21 log d} < On~% < Cn~“1/2

with probability at least 1 — Cn~!. Hence KA log?d < Cn~(G17¢)/2 with
probability at least 1 —Cn ™!, which leads to the conclusion of this step. [

C.6. Proofs of Proposition 4.4 and 4.5. For the notational convenience,
let H = maxj<j<q|h;|. For each fixed x € S, denote by d,h the function of
(r — 1) variables, (d;h)(z2,...,z,) = h(z,x2,...,2;).

PROOF OF PROPOSITION 4.4. In this proof, the notation < signifies that
the left hand side is bounded by the right hand side up to a constant that
depends only on r,v, and Cy. We will bound E[ﬁiﬂ To this end, we begin
with observing that

A (X
A < Z 1rgf<xd 3 () — 9;(Xa)Y,

and by Jensen’s inequality, we have

~ 1
E[AY ] < — E
[ A,l] n Z [max

. 1<y<d
i1€51

3 (Xe,) — g(Xi,)

1

, 1
guhk)(x):m y o Gl (Xiy, ., Xy,
" iz,...,irésg}g)
i< <ip

Foreach iy € Sy and k=1,..., K, let

which is the U-statistic with kernel d,h for the sample {X; : i € Sg,lc)}.
Recall that the size of each block Séi,lf) is L, \Séz;g)\ = L. Then, g (z) is the
average of g/®)(z), k=1,... K,

K

(i il JC)
7 1) K kz (i1
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For each i; € S, since the blocks Séillﬁ), k=1,...
Xi ) k=1,...

contain 1, the vectors g(ilvk)(

CHEN AND KATO

, K are disjoint and do not

inequality [42, Proposition A.1.6] conditionally on X;,, we have

37X - g5(Xa)

.

S <1E|Xi1 [max 3 (Xa,) - g5(Xa)

1<j<d

Eiy. | max
X | {2550

2v
2
+K VE|Xz'
1| 1<k<K 1<5<d

max

aX|

Applying Hoeffiding’s averaging and Theorem 2.14.1 in [42], we have

R (X) = gy (X))

E/yv. | max
Xy 1<]a<d|

SLT

Further, applying Lemma 8 in [11] conditionally on X;,, we have

(log d)” P"~6x, H|*.

IE|Xz‘1 I:lrggagxd /g\J('“)(Xil) - gj(Xil) ]
-1
KT ez d) &f@ZElxn {

30X, - 91<X“>}2]

_ i1,k
+ Kt E|x, | max max \g(ll’ )
1 1<k<K 1<i<d Y

From the variance formula for U-statistics (cf. [30

) S0

E\Xh [{ZJ\J(“

V) - 9,060} | <

(.

< L_lpr_l((SXil hj)Q.

It remains to bound

(C.35)

. max max
Xy |:1<l~c<K1<j<d J

9P (X) — g, (Xh)ﬂ .

Observe that the term (C.35) is bounded from above by

K
Eiy. | max
; ‘X” 1<5<d |

1/v
) (x,) —gj<Xi1>|2”D ,

—r+1
r—1-—/¢

(Xi) — g;(X0) } log .

|, Theorem 3), we have

, K are independent with mean
9(Xi,) conditionally on X;,. Hence, applying first the Hoffmann-Jgrgensen

]

R

)P’"*(axilhj)?

=g (Xi)*| -
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which is bounded from above by K'/*L~!(log d)(PT’_1|5Xi1H|2”)1/” up to a
constant that depends only on r and v.
By Fubini and Jensen’s inequality, we have

2ll:|
S (KL)™(logd)E [(P"ox, H?)"| + K~*1L7" (log d)E [ P"~|ox, HI*|
5 (KL)_V(IOg d)z/PrH21/ + K—21/+1L—1/(10g d)3yPrH21/

S (KL)™Dy (logd)™ + K=" L™ D} (log d)™

< {(KL)’lD?L(log?’ d)(1 + K11/ og? d)}” ,

E [max

1<j<d

3 (X0,) — 9;(Xa)

from which we conclude that E[(Egﬁ A1log? d)] < n¢, so that by Markov’s
inequality,

P <533A,1 log*d > n_C'H/”) <n L
In view of Theorem 4.2 and Corollary 4.3, this leads to the conclusion of the
proposition. ]

PROOF OF PROPOSITION 4.5. In this proof, the notation < signifies that
the left hand side is bounded by the right hand side up to a constant that
depends only on r,v, and C;. Observe that

§(i1)(Xz'1) - g(Xil) = M_l Z (ZL,/ - 19”)(5)(11 h)(Xail (L’))

Llelnfl,rfl

L™ YD {0x, D) (Xoy, () — (X))}

Llelnfl,rfl

Conditionally on X7, the first term is the sum of centered independent
random vectors, and hence the Hoffmann-Jgrgensen inequality yields that

2v
E\Xf 1I2jagxd Z (ZZ’_ﬁn)(dxilh)(Xail(L’))
Llelnfl,rfl
2v
S| Exp [max | > (20— 00)(6x, 1) (Xo, () + max max |(

boligssd

Vel —1.0-1 1<j<d
Lleln—l,r—l e SIS

5Xi1 hj)(Xcril (L/))|2V‘
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By Lemma 8 in [11],

E|X{L 1@;2([1 Z (ZL//_ﬁn)(éxilh)(XO'il(L/))
L,EInfl,rfl
- )2
S \/Maogd) ma Lot~ 37 (6, 1) (Ko, )

L/eIn—l,r—l

+ (logd) max  max [(dx, h;)(Xo, (1)

LIEIn—l,r—l 1<j<d
Observe that

Chai) (X < h:(X,))| = H(X,).
pemax  max [(0x;, h)(Xoy, ()] < max max) [h;(X,)] = max H(X.)

Hence, using Jensen’s inequality, we have

2v

!
By || 30 (2= 00, W (Ko, )
L n—1,r—1

-1 2 2v 2
5 MV(IOg d)V lrg?é(d ‘In—l,r—l‘ ,GIZ (5Xi1 hj) V(Xail (L’)) + (IOg d) Eg&i H V(XL)'
L n—1,r—1

In addition, applying the Hoeffding averaging and Lemma 9 in [11] condi-
tionally on Xj;,, we have

-1 2
E‘Xil 112;2{(1 |In71’rfl| Z (5Xi1 hj) V(Xoil(u))

Lleln—l,r—l

< max PT_l((SX hj)2y+n_1(10gd)E|Xi1 |: max  max |(5Xi1 hj)(XUil(L’))|2V )

1<j<d i1 O R e
Hence,
2v
E o M1 D (2= ) (0, 1) (Xory )

L/e[n—l,'r—l

< M~ V(logd)” {PTHQ” +n"'(logd)E [max H2”(XL)] } + M~ (log d)*E [max H2”(XL)}

Leln,r Leln,r

< M ™" (log d)"{D;" (log d)* + n™' D (log(dn))**'} + M~ D} (log(dn))*
< M™"Dy (log(dn))™
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where we have used the fact that (n A M)~!log(dn) < 1.
On the other hand, applying Hoeffding averaging and Theorem 2.14.1 in
[42] conditionally on X, we have

2v
—1
B, || max [l IEIZ {(6x;, ) (Xo,, (1)) — 9(Xay) }
L n—1,r—1

<n " (logd)’ P |ox, H|™.

The expectation of the left hand side is bounded by < n~"(logd)”PTH* <
n~v D2 (logd)®”.
Therefore, using Condition (4.8), we conclude that

~ 1/v
<E[(E§AA71 log? d)”]) < 53 {M~DZlog"(dn) + n 'D2log" d} < n=¢.
By Markov’s inequality, we conclude that
P (EgﬁA’l log*d > n_(c_l/”)) < n~ L.

In view of Theorem 4.2 and Corollary 4.3, this leads to the conclusion of the
proposition. O

C.7. Proofs of Propositions B.3 and B.4. 'The proofs are almost the same
as those of Propositions 4.4 and 4.5. The required modifications are to take
v = ¢/2, and to bound P"HY and E[max,cr,, HY(X,)] by D} and n"Df,
respectively. We omit the detail for brevity. ]

C.8. Proofs for Section A.2.

LEMMA C.6 (Variance estimation). (i) Suppose that Conditions (C1),
(C2), and (C3-ND) hold, and in addition suppose that Condition (4.3) holds
for some constants 0 < C7; < oo and (1,(a € (0,1). Then there exists a
constant C' depending only on o,r, and Cy such that max;<j<q |31247j/01247j -
1] < Cn~(AR)/1210g2 d with probability at least 1 — Cn~7.

(i1) Suppose that Conditions (C1), (C2), and (C3-D) hold, and in addition
suppose that Condition (4.1) holds for some constants 0 < C7 < oo and
¢ € (0,1). Then there exists a constant C' depending only on o,r, and C}
such thcut1 mMax;<j<d ‘3129,j/0123,j — 1| < Cn=¢/2/log? d with probability at least
1-Cn™".
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PrROOF OF LEMMA C.6. The proofs of Theorems 4.1 and 4.2 immedi-
ately imply the lemma. Recall the notation used in the proofs of Theorems
4.1 and 4.2. Then we have maxi ;<4 |5124j—aij| < r2A4 and max; <<y |3]23j—

2 A ; ; 2 2.2 : : 2 2
op ;| < Ap. Since minigj<qg07% ; > r°c” in Case (i) and minigjc40p,; = o

in Case (ii), the conclusion of the lemma follows from the bounds on Ap
and A 4 established in the proofs of Theorems 4.1 and 4.2, respectively. [

PRrROOF OF COROLLARY A.1. We only prove Case (i) since the proof for
Case (ii) is analogous. As before, we will assume that § = P"h = 0. In this
proof, let C' denote a generic constant that depends only on ¢, r, and C7; its
value may change from place to place. In addition, without loss of generality,
we may assume that n=(€1/¢)/6 < ¢; for some sufficiently small constant ¢;
depending only on g,r and (1, since otherwise the conclusion of Case (i)
is trivial by taking C' in the bounds sufficiently large (say, C > 1/c¢1). We
begin with noting that
3124,3‘ - 0,24,3‘ + Oén((ATfZB,j - ‘7129,]')

-1
2 2
0aj T an0p

qto ‘ uqﬁ»

.

so that by Lemma C.6, we have that maxi<j<q |3]2-/o]2-—1| < Cn~(@1G2)/2 [ 10g2 d
with probability at least 1 — Cn~'. Choosing ¢; sufficiently small so that
Cn~(QA2)/2 /10g? d < 1/2, and using the inequalities that [z — 1] < |22 — 1]
for 2 >0 and [z7! — 1] < 2|z — 1| for |z — 1| < 1/2, we have that

e —1] < C —(GN€2)/2 /1002 d
1217313 ~ 1< O log

with probability at least 1 — Cn~'. Now, by Theorem 3.1, we have

sup |P(v/nA~'2U;, v € R) —P(A™2Y € R)‘ < On~ (@16,
ReR

Since A1/2Y is Gaussian with mean zero and covariance matrix whose
diagonal elements are 1, by the Borell-Sudakov-Tsirel’son inequality to-
gether with the bound E[|[A~'/2Y|o] < Cv/Iogd, we have P(|A~1/2Y |y >
C+/log(dn)) < 2n~!. Hence, P(|\/71A_1/2UT’Z7N]OO > C'y/log(dn)) < Cn~(Q/)/6,
. —(C1nC2)/ —(€1AC2)/
Since % x y/log(dn) < %, we have
]Py(‘\/ﬁ(]iil/2 - Ail/z)Ur/L,N’oo > tn) < Cn*(Cl/\Q)/Ga

where t,, = Cn*(C1/\Cz)/6/10g3/2 d.
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Now, for R = H aj,bil,a = (a1,...,aq)7, and b = (by,...,bg)T, we
have

P(vnA~V2U, € R) < P({—vnA™Y2U. v < —a+t,} N {V/nA™Y2UL y <b+1,})
+P(’f( 2 1/2)U/ Nloo > tn)
P{—A"Y2Y < —a+t,} N{ATY2Y < b+1t,}) + Cn~(12)/8

<
< P(AY2Y € R) + Cto/logd + Cn~(G1)/6,

where the last inequality follows from Nazarov’s inequality. Since t,,1/log d <
Cn~(AR)/6/1ogd < Cn~(©12)/6 we conclude that }P’(\/ﬁ[A\_lﬁUT’Z’N €
R) < P(A™Y2Y € R) + On~(Q1"2)/6, Likewise, we have P(\/ﬁ//{_l/QU;LN €
R) > P(A~Y2Y € R) — Cn~(G"&)/6 Hence we have shown that

sup ]P’(\/ﬁjfi_anq’z’N € R) —P(A~'2Y € R)| < Cn~(©1)/6,
ReR

Similarly, using Theorem 4.2, we have that
Pip, (A2 — ATV UE| o > t,) < O~ (C1162)/6

with probability at least 1 — Cn~!. Following arguments similar to those
above, we conclude that

sup [Pip, (A"Y2U% € R) —P(A~'/%Y € R)| < Cn~(G1G2)/6
Rer | ! "

with probability at least 1 — Cn~!. This completes the proof. O

D. Additional simulation results. In Section D.1, we first examine
the statistical accuracy of the bootstrap test statistic U}}L in terms of the
size for MB-NDG-DC (Spearman’s p), MB-NDG-RS (Spearman’s p), and
the bootstrap test statistic U}; g for MB-DG (Bergsma-Dassios’ t*). In Sec-

tion D.2, we report the simulation results of the partial bootstrap Ug 4 for
Spearman’s p.

D.1. Empirical performance of the bootstrap tests. Recall that, for each
nominal size a € (0,1), ﬁ(a) is the empirical rejection probability of the
null hypothesis, where the critical values are calibrated by our bootstrap
methods. Figures 4, 5, and 6 display the plots of the empirical size graphs
{(a,R(c)) : a € (0,1)} for MB-NDG-DC (Spearman’s p), MB-NDG-RS
(Spearman’s p), and MB-DG (Bergsma-Dassios’ t*), respectively. Clearly,
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FIG 4. Bootstrap approzimation U} for Spearman’s p test statistic with the divide and con-
quer estimation (MB-NDG-DC). Plot of the nominal size o versus the empirical rejection

probability R(c).

the bootstrap approximations becomes more accurate as n increases. Qual-
itatively, it is worth noting that the bootstrap approximations work quite
well on the lower (left) tail, which is relevant in the testing application for
small values of a (say a < 0.10). Quantitatively, the uniform errors-in-size
on « € [0.01,0.10] of our bootstrap tests are summarized in Table 1 in the

main paper.
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FIG 5. Bootstrap approzimation UY for Spearman’s p test statistic with the random sam-
pling estimation (MB-NDG-RS). Plot of the nominal size o versus the empirical rejection

probability R(c).

D.2. Partial bootstrap Ug 4- We also provide additional results of the

partial bootstrap Uﬁ 4 for the non-degenerate Spearman’s p statistic. As in
Section 5, we test the performance of MB-NDG-DC and MB-NDG-RS. The
computational budget parameter value is set as N = 4n*/2 and other param-
eter values remain the same as the simulation examples in Section 5. The
exponent of n%/2 in N is chosen by minimizing the rate in the error bound
of the Gaussian approximation (cf. Corollary 3.2). We empirically observe
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test statistic (MB-DG).

Plot of the nominal size o versus the empirical rejection probability ﬁ(oz).

that the bootstrap approximation is sensitive to small constant values in
N = Cn®/? and we find that C' > 4 can produce reasonably accurate boot-
strap approximation quality (cf. Figure 8 and 9). Table 2 shows the uniform
errors-in-size on « € [0.01,0.10] of the partial bootstrap tests. We also show
the P-P plots of the (simplified) Gaussian approximation for Spearman’s p
(i.e., v/nU,, 5 versus N(0,7°Ty)) in Figure 7.

Plots of the computer running time of the partial bootstraps are shown
in Figure 10. Fitting a linear model with the (log-)running time for the
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FIG 7. P-P plots for the Gaussian approzimation N(0,r°T,) of VnU,, n for Spearman’s p
test statistic with the Bernoulli sampling.

bootstrap methods as the response variable and the (log-)sample size as
the covariate (with the intercept term), we find that the slope coefficient
for p = (30,50, 100) is (1.830,1.829,1.810) in the case MB-NDG-DC, and
(1.955,1.961,1.950) in the case MB-NDG-RS. In both cases, the slope coef-
ficients again match very well to the theoretic value 2.

E. Random versus deterministic normalization in the Bernoulli
sampling case. In this section, we report the empirical effect of the ran-
dom and deterministic normalization in the Bernoulli sample case on the
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F1G 8. Bootstrap approximation Uﬁ,A for Spearman’s p test statistic with the divide and
conquer estimation (MB-NDG-DC). Plot of the nominal size o versus the empirical rejec-
tion probability R(c).

inference of the copula dependence structures [16, Chapter 8]. Let F' be the
joint distribution of X = (XM ..., X®)) and F; be the marginal distribu-
tion of XU, j =1,...,p. Then it is easy to see that

0 := E[p;x] = 12Cov(Fj(X D), F(X*))) = Corr(F; (X)), Fp(X®)),

where pji, = Uég)(hfk),j, k=1,...,p,is defined in Example 5.1. Thus Spear-
man’s rank correlation coefficient p is equivalent to the copula correlation,
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F1G 9. Bootstrap approximation Ufl,A for Spearman’s p test statistic with the random sam-
pling estimation (MB-NDG-RS). Plot of the nominal size o versus the empirical rejection

probability R(c).

and a natural statistic to estimate the copula correlation is the U-statistic
associated with the kernel A°. To compare the empirical effect of normal-
ization of the incomplete U-statistic in the Bernoulli sampling, we simulate
., X, of X from the bivariate (i.e., p = 2) Gaus-
sian distribution with the following parameters:

n = 300 i.i.d. copies X7, ..

)

X:

1

(1) .
X, i.i.d.
@ | ~ N

((3)(24)) inm
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Setup Spearman’s p Spearman’s p

(MB-NDG-DC) (MB-NDG-RS)
p =30,n =300 0.0085 0.0080
p = 30,n = 500 0.0045 0.0095
p = 30,n = 1000 0.0160 0.0135
p =50,n = 300 0.0070 0.0070
p = 50,n = 500 0.0050 0.0045
p = 50,n = 1000 0.0120 0.0110
p = 100,n = 300 0.0175 0.0085
p = 100,n = 500 0.0080 0.0065
p = 100,n = 1000 0.0040 0.0070

TABLE 2

Uniform error-in-size SUp,c0.01.0.10] |R(c) —  of the partial bootstrap tests, where a is
the nominal size.

;

+ p=30 + p=30

4 p=50 4 p=s0

o © p=100 o o p=100
T T T T

T T
og(300) log(500) Tog(1000) Iogi300) 1og(500) log(1000)

log(sample size) log(sample size)

Fic 10. Computer running time of the bootstrap versus the sample size on the log-scale.
Left: bootstrap UfL’A for Spearman’s p with the divide and conquer estimation (MB-NDG-

DC). Right: bootstrap UE,A for Spearman’s p with the random sampling estimation (MB-
NDG-RS).

and a € (—1,1). In our simulation example, we choose a = 0.9 so that the
effect of the centering term in the Gaussian approximations can be clearly
seen. Histograms of \/n(U;, y—0) for the above Gaussian copula model under
the Bernoulli sampling are shown in Figure 11. Two empirical observations
can be drawn from Figure 11. First, the Gaussian approximation is quite
accurate for /n(U] y —6) under both random and deterministic normaliza-
tions. Second, the variance of the approximating Gaussian distribution in
the random normalization case is smaller than that in the deterministic case.
Both observations are consistent with our theory; cf. Theorem 3.1, Remark
2.1, and Remark 3.3 in the main paper.
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Fic 11. Histogram of \/n(U,, x —0) for the copula model in the Bernoulli sampling, where
0 is the copula correlation. Data are generate from a bivariate Gaussian distribution with
mean zero, unit variance, and covariance 0.9. The curve is the density of the approximating

Gaussian distribution for \/n(U,, n —0).
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