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Abstract. General analytic expressions are derived for the growth rate4

γ and oscillation frequency in the ion frame ω′
r of unstable plasma waves gen-5

erated by ionospheric plasma instabilities including the Farley-Buneman in-6

stability (FBI) and the gradient-drift instability (GDI). The explicit expres-7

sions are developed for arbitrary altitude and scales in the local approxima-8

tion. Limits of applicability are carefully considered focusing on the depen-9

dence on the electron density gradients G = ∇n/n and wavelengths λ. It10

is shown that the key parameter that controls the applicability is the growth11

rate γ normalized to the ion collision frequency νi, with the developed ex-12

pressions being valid for slow growths γ/νi < 0.1. It is also shown that13

the commonly used assumption about the equivalency of the wave phase ve-14

locity Vph and the plasma drift velocity Vd fails in the F region at gradients15

as weak as G = 10−5 m−1. The developed analytic expressions for arbi-16

trary altitude/scale offer a straightforward way of reconciling various altitude-17

and scale-specific cases (e.g. FBI/GDI modes in the E region), with the often-18

neglected ion inertia shown to play a critical role in the reconciliation. The19

new ion inertia effect is found to be represented by the quantity (ν2i + ω′2
r )

−1
20

in the growth rate expression. The effect is found to reduce the standard FBI21

factor and amplify the GDI factor and, due to the inverse relationship with22

the ion inertia, the effect becomes progressively stronger at larger altitudes23

and/or wavelengths.24
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1. Introduction

Greater physical insight is often obtained when seemingly different processes are consid-25

ered within the same formalism. Formation of plasma waves or irregularities in the Earth’s26

ionosphere is no exception, with successful theoretical efforts including integration with27

respect to different plasma instabilities such as the Farley-Buneman instability (FBI) and28

the gradient-drift instability (GDI) in the ionospheric E region [Rogister and D’Angelo,29

1970; Sudan et al., 1973; Fejer et al., 1975] as well as integration with respect to different30

altitudes [Fejer et al., 1984; Dimant and Oppenheim, 2011b; Makarevich, 2014, 2016a, b].31

Integrated or unified formalism of ionospheric plasma instabilities allows to derive a32

general dispersion relation which can be solved for the instability growth rate and wave33

oscillation frequency. Analytic expressions are particularly useful since they allow to34

analyze different destabilizing and stabilizing factors, thereby providing greater physical35

insight [e.g. Dimant and Oppenheim, 2011b]. Such expressions remain, however, difficult36

to develop for most general cases. Thus Dimant and Oppenheim [2011b] considered both37

FBI and GDI at an arbitrary altitude, but limited their consideration to long wavelengths.38

Makarevich [2016a, b] considered more arbitrary scales, but failed to obtain analytic39

expressions since dispersion relation was cubic in complex wave frequency.40

In the current study, approximate explicit expressions for the growth rate and oscilla-41

tion frequency are developed based on the theory by Makarevich [2016a, b] that provide42

greater insight into various destabilizing and stabilizing factors at various altitudes. The43

approximations employed and applicability limits are carefully considered and the devel-44

oped expressions are reconciled with various limiting cases.45
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The paper is organized as follows. In Section 2, different forms of a general dispersion46

relation are presented. In Section 3, the adopted vector geometry is introduced and expres-47

sions for zeroth-order oscillation frequency are derived. In Section 4, explicit approximate48

expressions for the growth rate are derived from the general dispersion relation, while in49

Section 5 these expressions are demonstrated to be consistent with the previously consid-50

ered limiting cases. Section 6 considers limits of applicability of the explicit expressions51

for the growth rate in terms of density gradients and wavelengths. In Section 7, explicit52

expressions for the oscillation frequency are derived, while their limits of applicability are53

considered in Section 8. Finally, in Section 9, the underlying physics of inertial effects in54

the instability growth rate is discussed, focusing on altitude and wavelength dependence.55

2. Forms of General Dispersion Relation

In this section, four forms of a general dispersion relation that was previously derived56

by Makarevich [2016a, b] are introduced. A version of general dispersion relation that57

describes fundamental ionospheric plasma instabilities including FBI and GDI for arbi-58

trary altitude in the ion frame and for nearly field-aligned irregularities (NFAI) has been59

derived by Makarevich [2016b, equation 3] as60

(iDi + aDi − b) (ω′ −Vd · k)− P̂
[(
1 +D2

i

)
ω′ + Ck2⊥ (iDi + aDi − b)

]
= 0. (1)

This equation hereinafter is referred to as the standard form of the dispersion equation.61

Here Vd = Ve0−Vi0 is the plasma drift velocity or the difference between the background62

drift velocities of electrons and ions, ω′ = ω−k ·Vi0 is the complex wave frequency in the63

ion frame, rα = να/Ωα is the ratio between the collision frequency να and gyrofrequency64

Ωα = qαB/mα of a plasma species α = (i, e), and other quantities are defined through65
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Di = −iΩ−1
i ω′ + ri, C =

Ti + Te
|e|B

=
C2

s

Ωi

, a = G · k⊥/k
2
⊥,

b = −G · k× b̂/k2⊥, b̂ = B/B, G = ∇n/n.
(2)

The quantityDi defined byMakarevich [2016a] is a Fourier representation of the convec-66

tive derivative plus collisional term ∂/∂t+Vi0 ·∇+νi, normalized to the ion gyrofrequency67

Ωi, C is a thermal diffusion term related to the ion-acoustic speed Cs, a and b are gradient-68

related quantities that are defined in that way to be small in the local approximation since69

they are both proportional to G/k, and G is a gradient strength vector. The quantity P̂70

in Eq. (1) has been defined by Makarevich [2016b] through71

P̂ ≡ −iψ̂r−1
i + are − b. (3)

under an implicit assumption of no parallel density gradients G∥ = 0. Here ψ̂ is the

anisotropy factor that depends on the ratios ri, re and the aspect angle α′ through

ψ̂ ≡ ψ
(
1 + r−2

e y2
)
, ψ ≡ −rire, y ≡ k∥/k⊥ ≡ tanα′. (4)

In order to maintain exact numerical equivalence between Eq. (1) and the following72

equivalent forms of the dispersion relation, the assumption G∥ = 0 is lifted in the present73

study, with the following generalization of the quantity P̂74

P̂ ≡ −iψ̂r−1
i − aψ′r−1

i − b, ψ′ ≡ ψ
(
1 + r−2

e y2c/a
)
, c ≡ G · k∥/k∥/k⊥. (5)

Following Makarevich [2016b], Eq. (1) is rewritten purely in terms of frequency-75

dependent quantity Di by substituting Di = −iΩ−1
i ω′ + ri from Eq. (2), multiplying76

by i− a and simplifying77
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ÂD3
i + B̂D2

i + ĈDi + D̂ = 0, [cubic form] (6)

with78

Â ≡ (i− a) P̂ , B̂ ≡ 1 + a2 − riÂ, Ĉ ≡
(
iŴ − ri

) (
1 + a2

)
−
(
iψ̂ + aψ′

)
r−1
i (i− a) ,

D̂ ≡
(
ibŴ + iψ̂ + aψ′

)
(i− a) , Ŵ ≡ Ω−1

i

(
Vd · k+ P̂Ck2⊥

)
.

(7)

Equation (6) hereinafter is referred to as the cubic form of the dispersion equation. Even79

though aψ′r−1
i ≪ b and can therefore often be neglected in P̂ = −iψ̂r−1

i − aψ′r−1
i − b,80

when working with the standard form (1) [e.g. Makarevich, 2016a, equation (21)], it is81

useful to maintain numerical equivalency between the two forms (1) and (6), which allows82

for easy numerical tests of the explicit expressions to be derived in the following sections.83

One should also note that in deriving a similar cubic equation Makarevich [2016b]84

employed two additional restrictions: the local approximation a2 ≪ 1 and no parallel85

gradients c = 0. For that case, they approximated Â ≈ ab − ib + ψ̂r−1
i , while Ŵ had86

a slightly less general quantity P̂ = −iψ̂r−1
i + are − b. Employing c = 0 in Eq. (6) is87

equivalent to substituting ψ′ → ψ, while employing a2 ≪ 1 results in88

ÂD3
i+D

2
i

(
1− riÂ

)
+Di

[
iŴ − ri + ψ̂r−1

i + ia
(
ψ̂ − ψ

)
r−1
i

]
−(1 + ia) bŴ−ψ̂+ia

(
ψ − ψ̂

)
= 0.

(8)

This differs from Eq. (9) of Makarevich [2016b] by small factors proportional to ψ − ψ̂89

which reduce to zero for purely perpendicular propagation k∥ = 0. In the following90

analysis, a more general and accurate cubic equation (6) will be used to obtain exact91

D R A F T May 9, 2019, 12:35pm D R A F T



MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X - 7

numerical solutions in Di and therefore in ω′ from Eq. (2). These solutions will be, in92

turn, used to test explicit expressions for ω′ that are developed in the following sections.93

For further analysis it is also convenient to divide the standard form (1) by iDi+aDi−b94

and rewrite using a new frequency-dependent quantity Z as95

ω′ = Vd · k−
(
Zω′ + iCk2⊥

) (
ψ̂r−1

i − ib− iaψ′r−1
i

)
[iterative form], (9)

Z ≡ 1 +D2
i

Di − iaDi + ib
. (10)

This form hereinafter is referred to as the iterative form of the dispersion equation,96

since it has the form ω′ = f (ω′) and can be solved iteratively as ω′
n+1 = f (ω′

n), similar97

to Makarevich [2016a].98

The fourth and final form of the dispersion relation is obtained by taking ℜ and ℑ of99

Eq. (9) and writing out explicitly all terms in the growth rate γ = ℑω′. The detailed100

derivation is given in Appendix A, with resulting equations for the oscillation frequency101

ω′
r and the growth rate γ being quadric in γ102

ω′
rD0 =

(
X0 +X1γ +X2γ

2
)
ω′
r0 − γΩ1 − γ2Ω2 − γ3Ω3 − γ4Ω4. (11)

γ4Γ4 + γ3Γ3 + γ2Γ2 + γΓ1 = Γ0 [quadric form]. (12)

Here quantitiesD0, Xj,Ωj,Γj depend on the oscillation frequency ω′
r, as given in Appendix103

A. Together, Eqs. (11–12) are referred to as the quadric form (in γ) of the dispersion104

relation.105

One should note that all four forms (1), (6), (9), and (11–12) are equivalent. While106

finding solutions is numerically preferable from the cubic form (6) [Makarevich, 2016b],107
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in the following sections the quadric form (11–12) is approximated to obtain explicit108

expressions for ω′
r and γ.109

3. Vector Geometry and Zeroth-Order Oscillation Frequency ω′
r0

In this section, vector geometry and angle definitions are introduced and several pa-110

rameters of interest are evaluated for arbitrary altitude, with a particular focus on the111

differential drift speed Vd and zeroth-order oscillation frequency that has been defined in112

Appendix A as113

ω′
r0 ≡ Vd · k−

(
b+ aψ′r−1

i

)
Ck2⊥. (13)

In the present study, the same vector geometry and model ionospheric parameters (i.e.114

νi,Ωi, νe,Ωe, Cs) are adopted as in Makarevich [2016b, 2017]. Figure 1 illustrates the115

adopted geometry. This geometry is completely general since the choice of the coordinate116

system with the x axis along the background electric field E preserves generality. The117

angle definitions are also the same as in Makarevich [2017], with an additional angle β118

defined as119

β ≡ tan−1 ri. (14)

The exact vector directions in Figure 1 refer to an E-region altitude of 110 km where120

ri ≈ 5. For the F region, ri ≪ 1 and β ≈ 0. The flow angle θ is defined as the angle121

between the wavevector k and Vd or, in terms of the new “phase” angle β, Figure 1, as122

θ = π − α− β. (15)
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From Appendix B, the zeroth-order oscillation frequency can be written as123

ω′
r0 ≈ siri

(
riVE − E0⊥

B

)
· k+ r−1

e k∥
E0∥

B
, si =

(
1 + r2i

)−1
. (16)

This equation can be simplified by substituting ri = tan β from Eq. (14) into the124

second ri factor and employing the coordinate system of Figure 1 with E0⊥/B = VE êx,125

VE = VE êy, and k = k⊥ (cosαêx + sinαêy)− k∥êz to become126

ω′
r0 ≈ −s1/2i riVEk⊥ cos (α+ β) + r−1

e k∥
E0∥

B
. (17)

From the above form, it is easy to see that β represents a phase factor as it is added127

to α in the argument of the cosine function. Eq. (17) is also useful in demonstrating the128

importance of two special cases: θ = 0 and α = 0. In the first case, the differential plasma129

flow Vd is parallel to the direction of propagation k, Figure 1. In this case ω′
r0 reaches its130

maximum value since cos (α+ β) = cos π = −1 and131

ω′
r0,max ≈ s

1/2
i riVEk. (18)

In the case of α = 0, it is the electric field that is parallel to the propagation direction,132

Figure 1, and in this case expression for ω′
r0 also simplifies since cos β = cos tan−1 ri =133

(1 + r2i )
−1/2

= s
1/2
i . A similar simplification also occurs for α = π so that134

ω′
r0 (α = 0, π) ≈ ∓siriVEk. (19)

A similar analysis can be carried out in terms of the differential drift speed Vd ∼ s
1/2
i riVE135

from Eq. (B6) and the flow angle θ from Eq. (15) as136
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ω′
r0 ∼ Vdk cos θ. (20)

The end result of ω′
r0 ∼ Vd ·k is a well-familiar expression, but it is important to under-137

stand that this is an approximation. In particular, it does not contain any gradient terms;138

these can be neglected for most gradient conditions, as discussed in Appendix B. In the139

following analytic derivations, Eqs. (18) and (19) will be used in the order-of-magnitude140

(OOM) analysis. In this analysis, magnitudes of different terms are compared and ap-141

proximate expressions (18)–(20) are substituted into terms containing ω′
r0 to determine142

which terms can be neglected, e.g. Appendix C. For all numerical calculations, however,143

the original exact definition for ω′
r0 (13) will be used.144

4. Explicit Expression for the Growth Rate

In this section, an explicit approximate expression is developed for the growth rate γ.145

We start from the quadric equation (12) and employ the following approximations:146

G≪ k, [local approximation] (21)

|γ| ≪ νi. [slow growth approximation] (22)

The physical meaning of these approximations is as follows. In the local approximation,147

the gradient strength is much smaller than the wavenumber or, alternatively, the gradient148

scale length is much larger than the wavelength, and the dispersion relation is valid at any149

point in the plasma, using the local values of the plasma parameters. In the slow growth150

approximation, the instability growth rate is much smaller than collision frequency, and151
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only lower-order terms in γ from convective derivative and related quantity Di contribute152

to the dispersion relation and equation on γ.153

The local approximation allows to neglect all terms quadratic in G2, i.e. a2, b2, ab, in154

expressions for Γj (A18). In notations of Appendix A, Γj = Γj,0 +Γj,1 +Γj,2 ≈ Γj,0 +Γj,1,155

where the first term Γj,0 is gradient-free, while the second term Γj,1 has parts proportional156

to b and a. The slow growth approximation allows to neglect two higher-order terms in γ157

in Eq. (12) which becomes quadratic158

γ̄2Γ2 + γ̄Γ1 = Γ0, (23)

with the bar notation introduced to specify that this is an exact solution of the quadratic159

equation which approximates a solution of the quadric equation γ. From Eq. (A18), the160

coefficients Γj are given by161

Γ0 = ψ̂r−1
i

[
ω′2
r Ω

−1
i (I − 1)− Ck2⊥I

]
+ bω′

rri

[
1 + 2ψ̂ + I + ψ̂r−2

i

(
1− I + 2Ck2⊥Ω

−1
i

)]
+ aω′

r

(
ψ′ − ψ̂

)
(1 + I) ,

Γ1 = I + ψ̂
(
1 + I − 2ω′2

r Ω
−2
i + 2Ck2⊥Ω

−1
i

)
− 2bω′

rΩ
−1
i

(
1 + 2ψ̂ + r2i + I

)
+ 2a

(
ψ̂ − ψ′

)
r−1
i ω′

rΩ
−1
i

(
I + r2i

)
,

Γ2 = riΩ
−1
i

[
2 + 3ψ̂ + ψ̂r−2

i

(
1 + Ck2⊥Ω

−1
i

)]
+ ω′

rΩ
−2
i

[
5a
(
ψ̂ − ψ′

)
− bri

(
5 + 3ψ̂r−2

i

)]
,

(24)

with162

I ≡ r2i + ω′2
r Ω

−2
i =

(
ν2i + ω′2

r

)
Ω−2

i . (25)

A solution of Eq. (23) is given by163

γ̄ =
2Γ0Γ

−1
1

1 +
√
1− 4ρ

, (26)
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where we used an alternative expression for the quadratic equation root [Press et al., 1992,164

equation (5.6.5)] and introduced a new definition165

ρ ≡ −Γ2Γ0Γ
−2
1 . (27)

In principle, one can also consider a linear solution Γ0Γ
−1
1 (essentially a case of ρ = 0),166

but an important (quadratic) correction can also be obtained analytically by expanding167

the square root for |ρ| < 1168

γ̄ ≈ 2Γ0Γ
−1
1

1 + 1− 2ρ
=

Γ0

Γ1 − ρΓ1

. (28)

Here the second term in the denominator represents a quadratic correction to the linear169

solution Γ0/Γ1. Further simplification can be obtained by factoring out the typically170

dominant term I from the denominator Γ1 − ρΓ1 ≡ I [1 + ϵ− ρ (1 + ϵ)] and treating both171

ρ and ϵ as small corrections, with the resulting approximate expression being172

γ̃ =
ψ̂r−1

i

[
ω′2
r Ω

−1
i (1− I−1)− Ck2⊥

]
+ bω′

rri

(
1 + I−1 + 2ψ̂r−2

i I−1Ck2⊥Ω
−1
i

)
+ aω′

r

(
ψ′ − ψ̂

)
(1 + I−1)

1 + ψ̂ (1 + I−1)
,

(29)

where a notation γ̃ is introduced to distinguish this approximate solution from their173

quadric γ or quadratic γ̄ counterparts. This expression can be further simplified by174

neglecting the last two terms in the numerator. The OOM analysis of these terms carried175

out in Appendix C shows that losses in applicability associated with these terms are176

relatively small.177

If both of the last two terms in Eq. (29) can be neglected, the growth rate takes a178

relatively simple form179
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γ̃ =
ψ̂r−1

i Ω−1
i [ω′2

r (1− I−1)− C2
sk

2
⊥] + bω′

rri (1 + I−1)

1 + ψ̂ (1 + I−1)
, (30)

where we used the identity C = C2
sΩ

−1
i from Eq. (2).180

The final approximate form of the growth rate is obtained by substituting ω′
r from Eq.181

(17) and rewriting the gradient term b in terms of angles α and χ defined in Section 3 as182

b = −G · k× b̂/k2⊥ = Gk−1
⊥ sin (α− χ) . (31)

For the case of the purely field-aligned irregularities (PFAI), the growth rate becomes183

γ̃ ≈ ψ̂ν−1
i k2⊥ [sir

2
i V

2
E cos2 (α + β) (1− I−1)− C2

s ] +GVEfsir
2
i (1 + I−1)

1 + ψ̂ (1 + I−1)
, (32)

where a new function f has been defined as184

f (α, β, χ) ≡ −s−1/2
i cos (α + β) sin (α− χ) . (33)

The function f describes a directional dependence of the gradient term. Since185

cos β = s
1/2
i , it simplifies for a representative configuration with χ = π/2, α = 0, π186

as f (0, β, π/2) = f (π, β, π/2) = 1. Similarly, f = 1 when cos (α + β) = −1 or, in terms187

of the flow angle defined through Eq. (15), when θ = 0.188

5. Limiting Cases for the Growth Rate Expression

5.1. Limiting Case 1: E region

In the E region, r2i ≫ 1 and therefore I−1 ≪ 1 from its definition (25). In this case,189

Eq. (30) becomes190
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γE =
ψ̂r−1

i Ω−1
i (ω′2

r − C2
sk

2
⊥) + bω′

rri

1 + ψ̂
, (34)

which is is exact agreement with the standard FBI/GDI expression in the E region, e.g.191

Eq. (22) of Makarevich [2016a].192

5.2. Limiting Case 2: Long Wavelengths for Arbitrary Altitude

In this case, ω′
r ≪ νi or ω

′
rΩ

−1
i ≪ ri. Hence from definition of I (25), I−1 ≈ r−2

i and193

γLW =
ψ̂r−1

i

[
ω′2
r Ω

−1
i

(
1− r−2

i

)
− Ck2⊥

]
+ bω′

rri
(
1 + r−2

i

)
1 + ψ̂

(
1 + r−2

i

) , (35)

where a subscript LW indicates long wavelengths. This is an arbitrary-altitude expression194

applicable in the long-wavelength limit. It is demonstrated below that it is consistent with195

the growth rate expression derived by Dimant and Oppenheim [2011b]. We first make the196

following identifications between their and our notations197

κα = r−1
α ,

ψk⃗ = ψ
[
1 +

(
1 + r−2

i

) (
1 + r−2

e

)
y2
]
≈ ψ

[
1 +

(
1 + r−2

i

)
r−2
e y2

]
= ψ̂

(
1 + r−2

i

)
− ψr−2

i ,

Ω
(i)

k⃗1
=

k ·Vd

1 + ψk⃗

≈ ω′
r0

1 + ψk⃗

≡ ω′
rk⃗
.

(36)

Here the approximation |re| ≫ 1 was used and a shorthand ω′
rk⃗

was introduced for the198

frequency. It will be demonstrated in Section 7 that ω′
rk⃗

is a better approximation to ω′
r199

than ω′
r0 which we have previously used in our OOM analysis.200

Eqs. (A30)–(A32) of Dimant and Oppenheim [2011b] are next rewritten in our present201

notations and a case of fully-magnetized electrons is considered |re| ≪ 1. In this case, Eqs.202
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(A30)–(A32) of Dimant and Oppenheim [2011b], when combined into a single growth rate203

expression, become204

γD&O =
ψ̂r−1

i

[
ω′2
rk⃗
Ω−1

i

(
1− r−2

i

)
− Ck2⊥

]
+ ω′

rk⃗
ri
(
1 + r−2

i

)
[b− r−1

e yc+ r−1
e ay2]

1 + ψ̂
(
1 + r−2

i

)
− ψr−2

i

, (37)

where a subscript D&O is introduced to indicate that these results are by Dimant and Op-205

penheim [2011b]. One should note that Eq. (37) contains one extra term of r−1
e ay2 which206

is missing from their Eqs. (A34)–(A35) which are also written for the fully-magnetized207

electrons case. This term, together with another term −r−1
e yc, are not present in our208

expression (35). Both are present, however, if a more general Eq. (29) is written in the209

long-wavelength limit. Thus the growth rate from Dimant and Oppenheim [2011b] rep-210

resented by Eq. (37) is fully consistent with the long-wavelength limit of expression (29)211

except for an additional term −ψr−2
i in the denominator.212

It has been previously noted that for arbitrary ion magnetization ratio ri (i.e. arbitrary-213

altitude case), the generalized anisotropy parameter ψk⃗ replaces the product ψ̂
(
1 + r−2

i

)
214

but the difference is of the order of ψr−2
i and therefore small [Dimant and Oppenheim,215

2011a, Eqs. (34a,b) and Section 3.1]. However, the factor ψ̂
(
1 + r−2

i

)
is already appro-216

priate for any ri and it can be approximated as ψk⃗ only for r−2
i ≪ 1. This is also the217

factor that appears in the growth rate from Dimant and Milikh [2003] (their equation 5)218

which was written for the gradient-free case and is equivalent to219

γk =
ψ̂r−1

i

[
ω′2
rk⃗
Ω−1

i

(
1− r−2

i

)
− Ck2⊥

]
1 + ψ̂

(
1 + r−2

i

) . (38)

This expression is fully consistent with our Eq. (35) since b = 0 for the gradient-free case.220
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5.3. Limiting Case 3: Long Wavelengths in the F region

A particular case of interest in the long-wavelength limit is in the F region where221

r−2
i ≫ 1 and where Eq. (35) becomes222

γFLW =
bω′

rr
−1
i

1 + ψ̂r−2
i

−
ψ̂r−1

i k2⊥
(
C + ω′2

r k
−2
⊥ Ω−1

i r−2
i

)
1 + ψ̂r−2

i

. (39)

One can rewrite Eq. (39) by using identities ψ̂r−1
i = −re + ψ−1riy

2, 1 + ψ̂r−2
i =223

ψ−1 (ψ + y2) and ω′
r ≈ ω′F

r0 from Eq. (B9) as224

γFLW = − b

ψ + y2

(
ψ
E0⊥

B
· k+

E0∥k∥
B

)
+

(
rek

2
⊥ −

rik
2
∥

ψ + y2

)(
C + ω′2

r k
−2
⊥ Ω−1

i r−2
i

)
. (40)

This agrees with Eq. (27) of Makarevich [2016a] except for the term ω′2
r k

−2
⊥ Ω−1

i r−2
i that225

is added to C.226

The first term in Eq. (39) is gradient-dependent but wavelength-independent to zeroth227

order, since b ∝ G/k and ω′
r ∝ k to zeroth order, Section 3. The second term in Eq. (39),228

on the other hand, decreases with the wavelength as λ−2 = k2. If it is neglected as well229

as the typically small term ψ̂r−2
i in the denominator, Eq. (39) takes a simple form230

γFLW ≈ bω′
rr

−1
i . (41)

Evaluating ω′
r from Eq. (16) and using si ≈ 1 as is appropriate in the F region, one231

obtains232

γFLW ≈ b

(
riVE − E0⊥

B

)
· k, (42)

which is in agreement with Eq. (28) from Makarevich [2016a]233
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γ =
b

1 + ψ

(
RVE − E0⊥

B

)
· k (43)

considering that R = (ri + re) / (1 + ψ) ≈ ri and ψ ≪ 1 in the F region.234

6. Limits of Applicability: Growth Rate

In this section, limits of applicability of the developed expressions for the growth rate235

are considered. Figure 2 shows a dependence on the wavelength λ and gradient strength236

G of (a) the exact quadric values γ, Eq. (12), (b) the quadratic values γ̄, Eq. (26) and (c)237

the approximate values γ̃, Eq. (29) at an altitude of 300 km, representative combination238

of gradient and propagation directions χ = π/2, α = 0, and the PFAI case α′ = 0. In239

Figure 2a, the normalized growth rate itself is shown γ/νi, while in Figures 2b and 2c, the240

differences with respect to the exact values γ are shown, i.e. (γ̄ − γ) /νi and (γ̃ − γ) /νi,241

respectively. Figures 2d–2f show the same, but for an E-region altitude of 110 km. The242

exact values γ were obtained by numerically solving the cubic form of the dispersion243

relation (6) as described by Makarevich [2016b], while the γ̄ and γ̃ values were obtained244

by numerically solving exact quadratic Eq. (26) and finding its approximate solution from245

Eq. (29), respectively. In these calculations of the quadratic γ̄ and approximate γ̃ values,246

we used the exact frequencies ω′
r which were also obtained from numerical solutions of247

Eq. (6).248

Also shown in Figure 2 are contours of γ = 0 (grey-white dashed line), γ/νi = 0.5 (pink249

dashed), and γ̄ = γ or γ̃ = γ (white dotted) from the above described numerical analysis.250

In addition, the pink solid lines show critical gradients Gκ (λ) , κ = ±0.001, 0.01, 0.1 from251

analytic expressions (D4) derived in Appendix D, and the red solid lines show G = κk. In252

the corners defined by the last set of lines the local approximation G≪ k or Gλ≪ 1, Eq.253
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(21), becomes progressively less applicable since G/k = 0.001 on the leftmost red line,254

G/k = 0.01 on the middle red line, and G/k = 0.1 on the rightmost red line. Similarly,255

the slow growth approximation |γ| ≪ νi, Eq. (22), becomes less applicable further away256

from the γ = 0 line.257

From Figures 2a and 2d, the analytic expressions for gradients Gκ work well to describe258

the growth rate magnitudes for the slow growth case, i.e. they follow the contours of259

constant γ/νi. This is fully expected since they were derived under this approximation.260

From Figure 2a, the growth in the F region is slow |γ|/νi ≤ 0.1 (between outmost pink261

lines) except at short scales (λ ≤ 2 m) or strong gradients G ≥ 2× 10−5. In the E region,262

the growth is slow for most gradients and wavelengths of interest.263

From Figure 2b and 2e, solutions of the quadratic equation γ̄ agree well with exact264

values γ except at large positive growth rates (blue color). As a rough guide, Figure265

2b shows the value of γ/νi = 0.5 by the dashed pink line and large disagreements start266

above it. In the E-region, there are no significant disagreements in the domain of interest,267

since lines of γ/νi = 0.5 and even γ/νi = 0.1 are not located within the domain. The268

contour patterns are slightly different for the approximate values γ̃, Figures 2c and 2f, as269

compared to their quadratic counterparts γ̄, Figures 2b and 2e, but the same feature is270

observed, i.e. good agreement except for large growth rates above the dashed pink line of271

γ/νi = 0.5.272

From this analysis, a conservative estimate is that one can use approximate expressions273

as long as growth is slow |γ| ≤ 0.1. This includes all marginal growth cases γ = 0.274

Moreover, numerical analysis presented in Figure 2 shows that one can relax this condition275

to γ ≤ 0.5. This includes all E region cases of interest, Figures 2d–2f, and F -region cases276
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with G < 2× 10−4 m−1, Figures 2b and 2c. The reason why the approximate expression277

(29) works at large negative values of γ is as follows. This expression is an approximation278

to the solution of quadratic equation (23) in which higher-order terms γ3Γ3 and γ4Γ4279

have been neglected. They can become important, i.e. comparable with the dominant,280

linear term γΓ1, but only at very short scales. A simple OOM estimate shows that in the281

F -region, they are comparable near λ = 0.05 m, which is outside the wavelength range of282

interest (details are not presented here for brevity).283

7. Explicit Expressions for the Oscillation Frequency

In this section, a set of approximate explicit expressions for the oscillation frequency284

and phase velocity is derived. We start from the quadric equation (11) and neglect higher-285

order terms γ3Ω3 and γ4Ω4, which results in the quadratic equation (in γ) of the form286

ω′
rD0 = Xω′

r0 − γΩ1 − γ2Ω2, (44)

where frequency-dependent quantities D0, X, and Ωj have been defined in Appendix A.287

This is next rewritten into an equivalent form288

ω′
r = ω′

r0 + ω′
r (X −D0)X

−1 − γΩ1X
−1 − γ2Ω2X

−1. (45)

In terms with the growth rate γ in Eq. (45), we use the approximate expression (30)289

which is rewritten as290

γ ≈ γFB + bω′
rτ, (46)

with newly defined quantities291
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γFB ≡ ψ̂r−1
i Ω−1

i [ω′2
r (1− I−1)− C2

sk
2
⊥]

1 + ψ̂ (1 + I−1)
, τ ≡ ri

1 + I−1

1 + ψ̂ (1 + I−1)
. (47)

Here subscript FB is introduced to indicate that the first term in Eq. (46) refers to the292

pure Farley-Buneman instability case, while the second term is gradient-related through293

b ∝ G. We also neglect all small terms ∝ G2 in the local approximation to obtain294

D0 ≈ I + ψ̂ (1 + I)− bω′
rΩ

−1
i

(
1 + I + 2ψ̂

)
,

X ≈ I + 2bω′
rΩ

−1
i

(
τri − 1 + τΩ−1

i γFB
)
+ 2γFBΩ

−1
i ri + γ2FBΩ

−2
i ,

X −D0 ≈ bω′
rΩ

−1
i

(
2τri − 1 + I + 2ψ̂ + 2τΩ−1

i γFB

)
− ψ̂ (1 + I) + 2γFBΩ

−1
i ri + γ2FBΩ

−2
i ,

Ω1 ≈ 2riω
′
rΩ

−1
i

(
1 + 2ψ̂ + ψ̂κ2sc

)
+ bΩ1,b,

Ω2 ≈ ω′
rΩ

−2
i

(
1 + 5ψ̂

)
+ bΩ2,b,

(48)

where295

κsc ≡ ω′
rΩ

−1
i r−1

i , Ω1,b ≡ ri

[
1 + I − 2ω′2

r Ω
−2
i + ψ̂

(
1 + r−2

i − 3κ2sc
)]
, Ω2,b ≡ Ω−1

i

(
1 + 3r2i + 2ψ̂

)
(49)

The next step is to approximate terms γΩ1, γ
2Ω2 by using Eq. (46) for γ and expressions296

for Ωj from Eq. (48) and, again, neglecting terms quadratic in b ∝ G, with the resulting297

expression being298

ω′
r ≈ ω′

r0 − bω′2
r Ω

−1
i

[
1− I − 2ψ̂ + 2ψ̂τri

(
2 + κ2sc

)
+ 10ψ̂γFBΩ

−1
i τ
]
X−1,

− b
(
γFBΩ1,b + γ2FBΩ2,b

)
X−1 − ψ̂ω′

r

[
1 + I + 2γFBriΩ

−1
i

(
2 + κ2sc

)
+ 5γ2FBΩ

−2
i

]
X−1.

(50)
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The terms proportional to γFB and γ2FB can be neglected in Eq. (50) and X, since299

γFB ≪ νi (slow growth approximation) or, equivalently, γFBΩ
−1
i ≪ ri, γ

2
FBΩ

−2
i ≪ r2i < I,300

γFBΩ
−1
i ri ≪ r2i < I. In addition, we neglect small terms ∝ ψ̂ in the second term in Eq.301

(50), with the resulting expression being302

ω′
r ≈ ω′

r0 −
bω′2

r Ω
−1
i (1− I) + ψ̂ω′

r (1 + I)

I + 2bω′
rΩ

−1
i (τri − 1)

. (51)

The OOM analysis shows that the second term in the denominator is considerable only303

in the F region at strong gradients G > 10−3 m−1 and for most of cases of interest can be304

neglected. After rearranging Eq. (51), the final expression for the oscillation frequency is305

ω′
r ≈ ω̃′

r =
ω′
r0 + bω̃′2

r Ω
−1
i

(
1− Ĩ−1

)
1 + ψ̂

(
1 + Ĩ−1

) , Ĩ ≡ r2i + ω̃′2
r Ω

−2
i . (52)

Here we introduced a new notation ω̃′
r to differentiate from the exact value ω′

r and a306

corresponding quantity Ĩ. One can see from Eq. (52) that, generally, ω′
r ̸= ω′

r0. In the E307

region, I−1 ≪ 1, and considering inequality (D6), Eq. (52) reduces to the expected value308

ω′E
r ≈ ω′

r0

1 + ψ̂
. (53)

This is also consistent with ω′
rk⃗

from Eq. (36). In a general case, Eq. (52) is a quadric309

equation on ω′
r since I = r2i + ω′2

r Ω
−2
i which can be solved numerically. Alternatively, it310

can be solved iteratively and the first-order solution is311

ω′
r1 =

ω′
r0 + bω′2

r0Ω
−1
i

(
1− I−1

0

)
1 + ψ̂

(
1 + I−1

0

) , I0 ≡ r2i + ω′2
r0Ω

−2
i . (54)
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8. Limits of Applicability: Oscillation Frequency and Phase Velocity

The differences between frequencies calculated in the three approaches (zeroth-order312

ω′
r0 using Eq. (13), approximate ω̃′

r using Eq. (52), and first-order ω′
r1 using Eq. (54))313

are presented in Figure 3. It has the same format as Figure 2 except that the differences314

with respect to the exact values ω′
r normalized to ω′

r0 are shown in all three columns,315

e.g. Figure 3a shows (ω′
r0 − ω′

r) /ω
′
r0, Figure 3b shows (ω̃′

r − ω′
r) /ω

′
r0, and Figure 3c shows316

(ω′
r1 − ω′

r) /ω
′
r0. Since ω′

r/ω
′
r0 = Vph/Vph0, each panel also shows normalized differences317

between phase velocities. Since Vph0 is largely independent of G and λ, Figures 3a and 3d318

also show behavior of Vph versus G and λ, e.g. green color refers to area where Vph = Vph0,319

while dark red contours of 0.1 refers to the line where 1 − Vph/Vph0 = 0.1 and hence320

where Vph = 0.9Vph0. In other words, green color shows areas where two approaches give321

the same result, while red color shows areas where zeroth-order values exceed exact ones322

significantly.323

The first important feature in Figure 3a is that, in the F region, the zeroth-order result324

of ω′
r0 considered in Section 3 generally applies only at weak gradients G < 10−5 m−1

325

(green color). For stronger gradients, zeroth-order frequencies overestimate exact values326

ω′
r0 > ω′

r. From Section 3, the zeroth-order phase velocity is approximately the plasma327

drift speed, Vph0 ∼ Vd, and the above result means that Vph < Vd. The ratio Vph0/Vd is328

below 0.9 (red color) at G = 10−4 m−1.329

Ideally, however, one would want to develop a method whose results differ not too much330

from the exact ones in a larger subset of the domain of interest. By solving Eq. (52) which331

is a quadric equation in ω̃′
r, one can largely achieve this goal, Figure 3b. Thus at long332

wavelengths λ > 100 m, small differences are now seen up to G = 10−4 m−1, while at 10333
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m they extend almost to G = 10−3 m−1. Interestingly, even the first-order results that334

are obtained by a simple substitution using Eq. (54), rather than solving a fourth-order335

equation (52), achieve similar results, Figure 3c. Here the blue area shift downwards as336

compared with Figure 3b, but overall the domain of applicability is much larger than in337

Figure 3a. An important subset is the area near γ = 0 (dashed line) where differences338

are small except for very short scales. This is expected since expressions for both ω̃′
r and339

ω′
r1 were developed for the slow-growth case. In the E region, the patterns are different,340

Figures 3d–3f, with the only area of large differences being where the local approximation341

fails (red corners and lines). This is also expected since the wave growth is slow in the342

domain of interest in the E region, while local approximation was also used in Section 7.343

Finally, from the point of view of potential experimental signatures and verifications,344

it is important to consider how the applicability range in G changes versus wavelength345

λ. From Figure 3b, it is more extended at shorter scales than at longer scales. For346

example, this range in the F region is G < 10−3 m−1 at λ = 10 m versus G < 10−4 m−1
347

at λ = 100–1000 m. A similar feature is seen in the growth rate, Figure 2. Waves near348

λ = 10 m refer to the decameter-scale irregularities observed by coherent HF radars such349

as Super Dual Auroral Radar Network (SuperDARN) [e.g. Chisham et al., 2007], while350

waves near 1000 m are thought to be responsible for scintillation of the radio signal in351

the Global Navigation Satellite System (GNSS) [e.g. Basu et al., 1998; Keskinen, 2006].352

This means that, under the strong gradient conditions, one has to be more careful in353

interpreting GNSS observations than those with SuperDARN. Unlike observations with354

coherent radars and GNSS receivers, numerical simulations provide information across355
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a wide range of scales [e.g. recent studies by Hassan et al., 2015, 2016; Young et al.,356

2017, 2019], which is useful in considering wavelength dependence.357

9. Stability Analysis and Role of Inertia

In this last section, we discuss various destabilizing and stabilizing factors and the role358

that the ion inertia plays in instability development for various altitudes. The approximate359

expression for the growth rate was derived in Section 4 as360

γ ≈ ψ̂ν−1
i k2 [sir

2
i V

2
E cos2 (α + β) (1− I−1)− C2

s ] +GVEfsir
2
i (1 + I−1)

1 + ψ̂ (1 + I−1)
. (55)

Generally, a quantity in the expression for the growth rate is considered destabilizing361

when it is positive and stabilizing if it is negative. For example, the diffusion term −C2
s362

in Eq. (55) is always negative and therefore stabilizing. Some factors may be either363

destabilizing or stabilizing, depending, for example, on vector orientation. For example,364

the second, GDI-related term in the numerator contains information about orientation in365

the angular function f ; it is destabilizing for f > 0.366

Eq. (55) is more suitable for such an analysis for arbitrary altitude than similar ex-367

pressions that are written in terms of ω′
r or Vd since both are altitude-dependent, while368

factor VE = E0/B is not. One example is the long-wavelength limit of the growth rate369

given by Eq. (55). In this case, the quantity I−1 simplifies to r−2
i and the GDI term in370

Eq. (55) simplifies to GVEf since sir
2
i

(
1 + r−2

i

)
= 1. For the important special case of371

θ = 0 (Vd ∥ k), Section 2, f = 1 and the growth rate is independent of altitude in the372

long-wavelength limit.373

Figure 4 illustrates the growth rate behavior with the wavelength λ for various altitudes.374

From Figure 4, the growth rate approaches the same value at large λ, when it is normalized375
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to GVE. At short scales, the behavior is determined by the first term in the numerator376

∝ k2. Depending whether the quantity in brackets is positive (110 and 120 km) or negative377

(altitudes ≥ 130 km), it increases or decreases with λ.378

An important new result of this study is that the ion inertia plays a key role in the379

growth rate behavior by modifying other factors as discussed below. The dashed lines380

show dimensionless quantities 1 ± I−1 that appear in Eq. (55) that deviate significantly381

from unity at long wavelengths. This deviation is important since the limit of I−1 → 0382

refers to the standard FBI/GDI mode, Eq. (34). Thus, Eqs. (30) and (55) may be383

regarded as a generalization of the standard FBI/GDI case for arbitrary altitude.384

Another new result is that the ion inertia always amplifies the gradient effects. This is385

easy to see since the quantity I−1 is always positive and since 1+ I−1 > 1 is multiplied by386

the gradient term GVEf in Eq. (55). As discussed above, when f > 0, this amplifies the387

destabilizing effects of gradients and when f < 0 their stabilizing effects are amplified.388

In contrast, the quantity 1 − I−1 is always smaller than unity. Moreover, it can be389

negative, as for short scales λ < 20 m at 130 km and for all scales of interest at higher390

altitudes in Figure 4. The quantity 1− I−1 is multiplied by the term sir
2
i V

2
E cos2 θ in Eq.391

(55) which is also due to the ion inertia and in the E region, where sir
2
i ≈ 1, is traditionally392

associated with FBI. Thus additional inertial effects considered in the present study reduce393

this FBI factor and can even change a destabilizing FBI factor to a stabilizing one. The394

quantity 1− I−1 reduces to 1− r−2
i at long wavelengths, which is consistent with Dimant395

and Oppenheim [2011b], Section 5.2, who also attributed this additional factor to the ion396

inertia. The current study thus may be regarded as an extension of the theory by Dimant397

and Oppenheim [2011b] to shorter scales.398
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The origin of the additional ion inertia effect is the higher-order terms in the dispersion399

relation. The quantity I = r2i + ω′2
r Ω

−2
i can be traced back to quantity Di = −iΩ−1

i ω′ +400

ri that appears in the cubic dispersion relation (6). The standard FBI/GDI case can401

be obtained from an approximate version of the dispersion relation which is quadratic402

in Di [Makarevich, 2016b], while consideration of the full cubic version for arbitrary403

altitude leads to our general case. As defined in Section 2, the quantity Di is a Fourier404

representation of the convective derivative plus collisional term, while the cubic term D3
i405

can be traced back to the momentum equation whose solution for velocity includes both406

linear and nonlinear terms in Di [Makarevich, 2016a, and their equations (11) and (12)].407

In this sense one can regard additional inertial effects considered in the current study as408

“nonlinear”, although one should not confuse those with nonlinear effects that are due to409

nonlinear terms in perturbations.410

Finally, it is important to differentiate between the ion inertia itself that is represented411

by the quantity I = r2i + ω′2
r Ω

−2
i = (ν2i + ω′2

r ) Ω
−2
i and the effect considered here that is412

represented by its inverse I−1 = Ω2
i (ν

2
i + ω′2

r )
−1
. The often-used assumption of negligible413

inertia (e.g. at long wavelengths in the F region) results in small I, but large I−1 and hence414

large modification of the growth rate as compared to the standard FBI/GDI expression.415

In this limit, the modification actually results in the well-known simple F -region GDI416

expression GVE. The quantity I−1 that appears in the arbitrary-altitude expressions417

(29),(30), and (55) thus facilitates a transparent reconciliation between different limiting418

cases.419
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10. Summary and Conclusions

1. The growth rate and oscillation frequency of unstable plasma waves generated420

by ionospheric plasma instabilities such the Farley-Buneman instability (FBI) and the421

gradient-drift instability (GDI) can be found from explicit expressions that are valid422

throughout the lower ionosphere including the ionospheric E and F regions.423

2. The domains of applicability for the explicit expressions in terms of the plasma424

density gradient G = ∇n/n and wavelength λ are controlled by the limits imposed by the425

local and slow growth approximations. In the E region, the expressions work for all scales426

of interest (G, λ), except at strong gradients and long wavelengths. In the F region, the427

applicability range in G changes with the wavelength λ; it is more extended at shorter428

scales than at longer scales. The obtained expressions apply for G < 10−3 m−1 at λ = 10429

m versus G < 10−4 m−1 at λ = 100–1000 m. The commonly used assumption about the430

equivalency of the wave phase velocity Vph and the plasma drift velocity Vd fails in the F431

region at gradients as weak as G = 10−5 m−1. A more careful treatment results in the432

ratio Vph/Vd ≈ 0.9 at G = 10−4 m−1 which decreases even further for stronger gradients.433

3. The general explicit expressions represent a generalization of the standard FBI/GDI434

expressions in the E region to all altitudes, with previously-unreported additional effects435

due to the ion inertia represented by the factor (ν2i + ω′2
r )

−1
. The additional inertial effect436

modifies the growth rate factors traditionally associated with FBI and GDI, with the FBI437

factor being reduced and the GDI factor being amplified. Progressively stronger effects438

are seen at larger altitudes and/or wavelengths. The previously-considered limiting cases439

(e.g. standard FBI/GDI mode) fall out transparently from the general expressions by440

considering magnitude of the additional inertial factor.441
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Appendix A: From Iterative to Quadric Form of Dispersion Relation

In this section, the iterative form of the dispersion relation (9) is rewritten into an442

alternative form with the growth rate γ = ℑω′ given explicitly everywhere. The alternative443

form is shown to be a quadric equation in γ that can be approximated into a linear or444

quadratic form in γ. By taking real and imaginary parts of Eq. (9), the following equations445

on the oscillation frequency ω′
r and the growth rate γ are obtained446

ω′
r = ℜω′ =

ω′
r0 + γ

[
ψ̂r−1

i ℑZ −
(
b+ aψ′r−1

i

)
ℜZ
]

1 + ψ̂r−1
i ℜZ +

(
b+ aψ′r−1

i

)
ℑZ

, (A1)

γ = ℑω′ =
ψ̂r−1

i (−ω′
rℑZ − Ck2⊥) +

(
b+ aψ′r−1

i

)
ω′
rℜZ

1 + ψ̂r−1
i ℜZ +

(
b+ aψ′r−1

i

)
ℑZ

, (A2)

where

ω′
r0 ≡ Vd · k−

(
b+ aψ′r−1

i

)
Ck2⊥. (A3)

Eqs. (A1) and (A2) are further rewritten as

ω′
r =

Xω′
r0 + γ

[
ψ̂r−1

i XℑZ −
(
b+ aψ′r−1

i

)
XℜZ

]
X + ψ̂r−1

i XℜZ +
(
b+ aψ′r−1

i

)
XℑZ

, (A4)

γ =
ψ̂r−1

i (−ω′
rXℑZ −XCk2⊥) +

(
b+ aψ′r−1

i

)
ω′
rXℜZ

X + ψ̂r−1
i XℜZ +

(
b+ aψ′r−1

i

)
XℑZ

, (A5)

where a new real quantity has been introduced447

X ≡ |Di − iaDi + ib|2 = X2γ
2 +X1γ +X0, (A6)

with

X2 ≡ Ω−2
i

(
1 + a2

)
, X1 ≡ 2Ω−1

i

(
ri + a2ri − ab

)
, X0 ≡ I

(
1 + a2

)
+b2−2abri−2bω′

rΩ
−1
i ,

(A7)

I ≡ r2i + ω′2
r Ω

−2
i . (A8)
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Quantities XℜZ and XℑZ are found from Eq. (10) using definition of Di in terms of448

ω′ from Eq. (2)449

XℜZ = R3γ
3 +R2γ

2 +R1γ +R0, (A9)

XℑZ = I3γ
3 + I2γ

2 + I1γ + I0, (A10)

with

R3 ≡ Ω−3
i , R2 ≡ Ω−2

i

(
3ri + aω′

rΩ
−1
i

)
, R1 ≡ Ω−1

i

[
1 + I + 2r2i + 2 (ari − b)ω′

rΩ
−1
i

]
,

R0 ≡ (1 + I) ri − aω′
rΩ

−1
i (1− I)− 2briω

′
rΩ

−1
i ,

(A11)

I3 ≡ aΩ−3
i , I2 ≡ Ω−2

i

(
3ari − b− ω′

rΩ
−1
i

)
, I1 ≡ −2riΩ

−1
i

(
b+ ω′

rΩ
−1
i

)
+ aΩ−1

i

(
1 + I + 2r2i

)
,

I0 ≡ ω′
rΩ

−1
i (1− I) + ari (1 + I)− b

(
1 + r2i − ω′2

r Ω
−2
i

)
.

(A12)

Since both XℜZ and XℑZ are cubic in γ, both equations (A4) and (A5) are quadric450

in γ. After tedious but straightforward algebra, these can be rewritten into a form that451

is explicitly quadric452

ω′
rD0 =

(
X0 +X1γ +X2γ

2
)
ω′
r0 − γΩ1 − γ2Ω2 − γ3Ω3 − γ4Ω4. (A13)

γ4Γ4 + γ3Γ3 + γ2Γ2 + γΓ1 = Γ0, (A14)

where quantities D0,Ωj,Γj are defined below and most are explicitly separated into parts453

proportional to different gradient powers, e.g.454

D0 ≡ D0,0 +D0,1 +D0,2, (A15)

with D0,0 ∝ G0 being a gradient-free term, D0,1 ∝ G (terms ∝ b ∝ G and a ∝ G),455

D0,2 ∝ G2 (terms ∝ b2, a2, ab). The complete set of definitions is456
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D0,0 ≡ I + ψ̂ (1 + I) , D0,1 ≡ −b
(
1 + I + 2ψ̂

)
+ a

(
ψ′ − ψ̂

)
r−1
i ω′

rΩ
−1
i (1− I) ,

D0,2 ≡ a2 [I + ψ′ (1 + I)] + abri (−1 + I)− abψ′r−1
i

(
1 + r2i − ω′2

r Ω
−2
i

)
+ b2

(
ω′2
r Ω

−2
i − r2i

)
,

(A16)

Ω1,0 ≡ 2riω
′
rΩ

−1
i

(
1 + 2ψ̂ + ψ̂r−2

i ω′2
r Ω

−2
i

)
,

Ω1,1 ≡ bri
(
1 + r2i − ω′2

r Ω
−2
i

)
+ bψ̂r−1

i

(
1 + r2i − 3ω′2

r Ω
−2
i

)
+ a

(
ψ′ − ψ̂

) (
1 + r2i − ω′2

r Ω
−2
i

)
,

Ω1,2 ≡ 2ω′
rΩ

−1
i

[
a2ri + a2ψ′r−1

i

(
I + r2i

)
− 2b2ri + ab

(
−1 + I + r2i − 2ψ′)] ,

Ω2,0 ≡ ω′
rΩ

−2
i

(
1 + 5ψ̂

)
, Ω2,1 ≡ bΩ−1

i

(
1 + 3r2i + 2ψ̂

)
+ aΩ−1

i

(
ψ′ − ψ̂

)
r−1
i

(
1 + 3r2i

)
,

Ω2,2 ≡ ω′
rΩ

−2
i

(
a2 + 5a2ψ′ − 3b2 + 5abri − 3abψ′r−1

i

)
,

Ω3 ≡ 2ω′
rΩ

−3
i

(
ψ̂r−1

i + ab+ a2ψ′r−1
i

)
+ bΩ−1

i

(
ψ̂r−1

i + 3ri

)
+ 3aΩ−1

i

(
ψ′ − ψ̂

)
,

Ω4 ≡ Ω−3
i

[
b+ a

(
ψ′ − ψ̂

)
r−1
i

]
,

(A17)
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Γ0,0 ≡ ψ̂r−1
i

[
ω′2
r Ω

−1
i (I − 1)− Ck2⊥I

]
,

Γ0,1 ≡ bω′
rri

[
1 + 2ψ̂ + I + ψ̂r−2

i

(
1− I + 2Ck2⊥Ω

−1
i

)]
+ aω′

r

(
ψ′ − ψ̂

)
(1 + I) ,

Γ0,2 ≡ ω′2
r Ω

−1
i

[
2b2ri + a2ψ′r−1

i (1− I) + ab (1− I + 2ψ′)
]
− ψ̂r−1

i Ck2⊥
(
a2I + b2 − 2abri

)
,

Γ1,0 ≡ I + ψ̂
(
1 + I − 2ω′2

r Ω
−2
i + 2Ck2⊥Ω

−1
i

)
,

Γ1,1 ≡ −2bω′
rΩ

−1
i

(
1 + 2ψ̂ + r2i + I

)
+ 2a

(
ψ̂ − ψ′

)
r−1
i ω′

rΩ
−1
i

(
I + r2i

)
,

Γ1,2 ≡ a2
[
I + ψ′ (1 + I − 2ω′2

r Ω
−2
i

)
+ 2ψ̂Ck2⊥Ω

−1
i

]
+ b2

(
3ω′2

r Ω
−2
i − r2i

)
,

+ abri
(
−1 + I − 2ω′2

r Ω
−2
i

)
− abψ′r−1

i

(
1 + r2i − 3ω′2

r Ω
−2
i

)
− 2abψ̂r−1

i Ck2⊥Ω
−1
i ,

Γ2,0 ≡ riΩ
−1
i

[
2 + 3ψ̂ + ψ̂r−2

i

(
1 + Ck2⊥Ω

−1
i

)]
, Γ2,1 ≡ ω′

rΩ
−2
i

[
5a
(
ψ̂ − ψ′

)
− bri

(
5 + 3ψ̂r−2

i

)]
,

Γ2,2 ≡ 2riΩ
−1
i

(
a2 − b2

)
+ abΩ−1

i

(
1 + 3r2i − 2ψ′ − 2

)
+ a2ψ′r−1

i Ω−1
i

(
1 + 3r2i

)
+ a2ψ̂r−1

i Ck2⊥Ω
−2
i ,

Γ3 ≡ Ω−2
i

(
1 + 3ψ̂

)
+ 2ω′

rΩ
−3
i

[
ar−1

i

(
ψ̂ − ψ′

)
− b
]
+ Ω−2

i

[
a2 (1 + 3ψ′)− b2 + ab

(
3ri − ψ′r−1

i

)]
,

Γ4 ≡ Ω−3
i

[
ψ̂r−1

i + a2ψ′r−1
i + ab

]
.

(A18)

The correctness of the quadric form expressions (A13) and (A14) has been verified by457

substituting numerical solutions of the cubic form (6) and determining that equations458

(A13) and (A14) hold to double precision (not presented here). It is for this reason that459

all terms including small ones were kept in Eqs. (A16)–(A18).460

Appendix B: Differential Drift Velocity and Zeroth-Order Frequency

In this section, we evaluate Vd and ω′
r0 for arbitrary altitude and vector directions.461

The previously derived general expressions for the drift velocities are [Makarevich, 2016a,462

equation (5)]463
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Vα0 = sα

(
E0

B
− CαG

)
× b̂+ sαrα

(
E0⊥

B
− CαG⊥

)
+ r−1

α

(
E0∥

B
− CαG∥

)
b̂, (B1)

where E0 is the background electric field, G = ∇n/n is the gradient strength vector, and464

rα = να/Ωα, sα =
(
1 + r2α

)−1
, Cα = Tα/ (qαB) . (B2)

The differential drift velocity is found by subtracting the ion drift velocity from the465

electron drift velocity and rewriting466

Vd = sesi (ri − re) (1 + ψ)

(
RVE − E0⊥

B

)
− ψ−1 (ri − re)

E0∥

B
b̂+

+sesi (1 + ψ)
[
(C −RL)G× b̂+ (RC + L)G⊥

]
+ ψ−1LG∥b̂.

(B3)

where

R ≡ ri + re
1 + ψ

, L ≡ riCe − reCi, C = Ci − Ce. (B4)

This can be approximated for the case of fully-magnetized electrons |re| ≪ 1 and se ≈ 1467

and for the ionospheric applications where |re| ≪ ri, ψ ≪ 1. In this case, R ≈ ri,468

C −RL ≈ C − Cer
2
i , RC + L ≈ riCi, ψ

−1L ≈ −r−1
e Ce, and469

Vd ≈ siri

(
riVE − E0⊥

B

)
+ r−1

e

E0∥

B
b̂+ si

[(
C − Cer

2
i

)
G× b̂+ riCiG⊥

]
− r−1

e CeG∥b̂,

(B5)

A simple OOM analysis of Vd can be carried out by neglecting all terms except for the470

first one which includes two perpendicular components parallel to VE and E0⊥/B. From471

these and definition of si from Eq. (B2),472

Vd ∼ siriVE
(
r2i + 1

)1/2
= s

1/2
i riVE. (B6)
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The zeroth-order oscillation frequency defined by Eq. (13) is evaluated by approximat-473

ing aψ′r−1
i ≪ b, substituting Eq. (B5) and definitions of gradient terms a and b from Eq.474

(2), and simplifying475

ω′
r0 ≈ siri

[
ri

(
VE − CiG× b̂

)
−
(
E0⊥

B
− CiG⊥

)]
· k+ r−1

e k∥

(
E0∥

B
− CeG∥

)
. (B7)

For realistic gradients CαG ≪ E0/B and all gradient terms are negligible as compared476

to their electric field counterparts477

ω′
r0 ≈ siri

(
riVE − E0⊥

B

)
· k+ r−1

e k∥
E0∥

B
. (B8)

One should note that the last step is only possible because both termsVd ·k and bCk2⊥ in

ω′
r0 contain gradient-dependent terms, but these partially cancel leaving only terms that

can be neglected. A similar cancelation has been previously demonstrated by Makarevich

[2016b] for the F -region case and purely perpendicular propagation k∥ = 0. For a more

general case in the F region, ri ≪ 1, si ≈ 1 and

ω′F
r0 ≈ −ri

(
E0⊥

B
· k+ ψ−1E0∥k∥

B

)
. (B9)

Appendix C: Growth Rate Expression: Order-of-Magnitude Analysis

In this section, we carry out an order-of-magnitude (OOM) analysis of two specific478

terms in the expression for the growth rate. It is demonstrated that the first term is479

important only at short wavelengths λ < 10 m in the F region, while the second term can480

be neglected for purely field-aligned irregularities (PFAI).481
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The explicit expression for the growth rate derived in Section 4 was as follows

γ̃ =
ψ̂r−1

i

[
ω′2
r Ω

−1
i (1− I−1)− Ck2⊥

]
+ bω′

rri

(
1 + I−1 + 2ψ̂r−2

i I−1Ck2⊥Ω
−1
i

)
+ aω′

r

(
ψ′ − ψ̂

)
(1 + I−1)

1 + ψ̂ (1 + I−1)
.

(C1)

The first term of interest is the term 2ψ̂r−2
i I−1Ck2⊥Ω

−1
i in the numerator. It is compared482

to the remaining terms 1+I−1 in the second term in the numerator in Eq. (29) by equating483

2ψ̂r−2
i I−1Ck2⊥Ω

−1
i = κ

(
1 + I−1

)
, (C2)

where κ is assumed to represent a smallness parameter, e.g. 0.01 or 0.1. From Eq. (C2),484

the wavelengths that refer to different κ levels are found by using an OOM estimate485

for ω′
r from Eq. (19) and a corresponding factor I ∼ r2i + Ω−2

i s2i r
2
i V

2
Ek

2. Under these486

approximations, Eq. (C2) becomes487

2ψ̂r−2
i Ck2Ω−1

i = κ
(
1 + r2i + Ω−2

i s2i r
2
i V

2
Ek

2
)
. (C3)

When κΩ−2
i s2i r

2
i V

2
E > 2ψ̂r−2

i CΩ−1
i , there is no real solutions in k, which means that the488

left-hand-side is small for any k. This is the case for the E region. When κΩ−2
i s2i r

2
i V

2
E <489

2ψ̂r−2
i CΩ−1

i , a solution is k2κ = κs−1
i /

(
2ψ̂r−2

i CΩ−1
i − κΩ−2

i s2i r
2
i V

2
E

)
, from which λκ=0.01 =490

14 m and λκ=0.1 = 4.5 m for the F region. This means that at scales near λ ∼ 10 m and491

shorter, the term in question is important, but at longer wavelengths it quickly becomes492

negligible.493

The second term is aω′
r

(
ψ′ − ψ̂

)
(1 + I−1), where a = G·k⊥/k

2
⊥ from Eq. (2). It is zero494

for purely perpendicular propagation k∥ = 0, since ψ̂ = ψ′ = ψ in this case from Eqs. (4)495

and (5). More generally, it can be neglected when a
(
ψ′ − ψ̂

)
≪ bri. Since both gradient496

terms a and b are of the same magnitude and since ψ′ − ψ̂ ≈ −rir−1
e y2, this condition497
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can be rewritten as y2 ≪ −re. This is significantly more restrictive than the condition498

of nearly field-aligned irregularities (NFAI) under which the general dispersion relation is499

valid. For arbitrary altitude, the NFAI condition is y2 ≪ sir
2
i < 1, which in the F region500

can be written as y2 ≪ r2i ≪ 1, since si ≈ 1 there. Thus the last term in Eq. (29) can be501

neglected close to purely perpendicular propagation or purely field-aligned irregularities502

(PFAI) when y2 ≪ −re.503

In addition, this term is typically much smaller than the gradient-free term Γ0,0I
−1 =504

ψ̂r−1
i

[
ω′2
r Ω

−1
i (1− I−1)− Ck2⊥

]
. A simple OOM analysis is to equate aω′

r

(
ψ′ − ψ̂

)
=505

ψ̂r−1
i ω′2

r Ω
−1
i and to find the wavelength where the contributions are equal by utilizing506

OOM estimates y2 ∼ −re, ψ′ − ψ̂ ≈ −rir−1
e y2 ∼ ri, ψ̂ = ψ (1 + r−2

e y2) ∼ ψ (1− r−1
e ) ∼ ri,507

a ∼ b ∼ G/k, as well as Eq. (19) for ω′
r. With these estimates, the wavelength is found as508

λ = 2π
√
siVE/G/Ωi, which for moderate gradients G = 10−5 m−1 and strong convection509

VE = 1000 m is λ ∼ 1000 m for the E region and λ ∼ 3650 m for the F region. This510

means that the term in question is small as compared to the gradient-free term Γ0,0I
−1

511

except at long wavelengths in the E region.512

Appendix D: Critical Gradients

The expressions for the growth rate can be analyzed analytically using various ap-513

proaches, including analysis of the marginal instability growth condition γ = 0 and pa-514

rameters such as electric field E and density gradients G that satisfy it [e.g. Makarevich,515

2017]. In this section, a more general analysis is carried out in which gradient strengths516

Gκ are evaluated that are required to achieve a particular growth rate level κ, when517

normalized to the ion collision frequency νi518
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γ (Gκ) /νi = κ, (D1)

including critical gradients G0 that lead to zero growth γ (G0) = 0. It is useful to consider519

this more general case of Gκ rather than just G0, since in developing expressions for the520

growth rate, the slow growth approximation was employed, Eq. (22). In this section, we521

will develop expressions for Gκ and then use these expressions in Section 6 to analyze522

limits of applicability of the developed expressions for the growth rate.523

We start from Eq. (29), consider a case of the purely field-aligned irregularities (PFAI)524

where the last term in the numerator can be neglected, Appendix C, and substitute into525

Eq. (D1)526

κ =
ψ̂r−2

i

[
ω′2
r Ω

−2
i (1− I−1)− Ck2⊥Ω

−1
i

]
+ bω′

rΩ
−1
i

(
1 + I−1 + 2ψ̂r−2

i I−1Ck2⊥Ω
−1
i

)
1 + ψ̂ (1 + I−1)

. (D2)

By substituting Eq. (31) into Eq. (D2) and rearranging, the exact expression for Gκ is527

Gκ =
ψ̂r−2

i

[
ω′2
r Ω

−2
i (1− I−1)− Ck2⊥Ω

−1
i

]
− κ

[
1 + ψ̂ (1 + I−1)

]
−ω′

rΩ
−1
i k−1

⊥ sin (α− χ)
(
1 + I−1 + 2ψ̂r−2

i I−1Ck2⊥Ω
−1
i

) . (D3)

The above expression can be approximated for the PFAI case by using Eq. (17) as528

Gκ ≈ −G∗f
−1 (α, β, χ)

ψ̂ν−2
i k2⊥ [sir

2
i V

2
E cos2 (α + β) (1− I−1)− C2

s ]− κ
[
1 + ψ̂ (1 + I−1)

]
1 + I−1 + 2ψ̂r−2

i I−1Ck2⊥Ω
−1
i

,

(D4)

where function f has been previously defined by Eq. (33) and a new parameter G∗ has529

been introduced as530
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G∗ ≡ s−1
i r−1

i ΩiV
−1
E . (D5)

The G∗ parameter is a characteristic gradient strength which for our model parameters531

and strong convection case of VE = 1000 m/s is 312 m at 300 km and 0.78 m at 110 km.532

For a weaker convection, it becomes smaller but still much larger than gradients within533

the range of interest G = 10−8–10−2 m−1 so that G≪ G∗.534

For future reference, it is also convenient to rewrite the combination bω′
rΩ

−1
i by using535

the same notations as536

bω′
rΩ

−1
i ≈ GG−1

∗ f (α, β, χ) ≪ 1, (D6)

where in the last inequality we used the previously obtained estimate G≪ G∗.537
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Figure 1. Vector geometry and angle definitions. Shown are the directions of the field-

perpendicular components of the differential plasma drift velocity Vd, the E × B drift

velocity VE, gradient G = ∇n/n, wavevector k, and the electric field E. The definitions

of six angles of interest are also shown. All angles are positive ccw from the x axis, except

for β which is positive from the negative x axis cw.
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Figure 2. The growth rate dependence on the wavelength λ and gradient strength G

for the gradient angle χ = π/2, propagation angle α = 0, and zero aspect angle α′ = 0.

Shown are (a) the exact values γ normalized to νi, (b) differences between the quadratic

values γ̄/νi and the exact values γ/νi, and (c) differences between the approximate values

γ̃/νi and the exact values γ/νi at an F -region altitude of 300 km. Figures 2d–2f show the

same but for an E-region altitude of 110 km. Also shown are the limits of applicability

of the local (G ≪ k; red lines) and slow-growth (|γ| ≪ νi; pink lines) approximations, as

well as marginal instability conditions γ = 0 (grey-white dashed line), see text for details.
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Figure 3. The same as Figure 2 but for the oscillation frequency. Shown are differences

between (a) zeroth-order values ω′
r0 and exact values ω′

r, (b) approximate quadratic values

ω̃′
r and exact values ω′

r, and (c) first-order values ω′
r1 and exact values ω′

r at an altitude

of 300 km normalized to ω′
r0. Figures 3d–3f show the same but at an altitude of 110 km.

Since ω′
r/ω

′
r0 = Vph/Vph0, each panel also shows normalized differences between phase

velocities.
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Figure 4. Normalized maximum growth rates γ/ (GVEf) versus wavelength λ for

G = 105 m−1 and VE = 1000 m/s for 5 selected altitudes. Also shown by the dashed lines

are dimensionless functions 1± I−1.
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