

¹ **Toward an integrated view of ionospheric plasma
2 instabilities: 3. Explicit growth rate and oscillation
3 frequency for arbitrary altitude**

Roman A. Makarevich¹

R. A. Makarevich, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive,
PO Box 757320, Fairbanks, AK, 99775-7320, USA. (rmakarevich@alaska.edu)

¹Geophysical Institute and Department of
Physics, University of Alaska Fairbanks,
Fairbanks, AK, USA.

4 Abstract. General analytic expressions are derived for the growth rate
 5 γ and oscillation frequency in the ion frame ω'_r of unstable plasma waves gen-
 6 erated by ionospheric plasma instabilities including the Farley-Buneman in-
 7 stability (FBI) and the gradient-drift instability (GDI). The explicit expres-
 8 sions are developed for arbitrary altitude and scales in the local approxima-
 9 tion. Limits of applicability are carefully considered focusing on the depen-
 10 dence on the electron density gradients $\mathbf{G} = \nabla n/n$ and wavelengths λ . It
 11 is shown that the key parameter that controls the applicability is the growth
 12 rate γ normalized to the ion collision frequency ν_i , with the developed ex-
 13 pressions being valid for slow growths $\gamma/\nu_i < 0.1$. It is also shown that
 14 the commonly used assumption about the equivalency of the wave phase ve-
 15 locity V_{ph} and the plasma drift velocity V_d fails in the *F* region at gradients
 16 as weak as $G = 10^{-5} \text{ m}^{-1}$. The developed analytic expressions for arbi-
 17 trary altitude/scale offer a straightforward way of reconciling various altitude-
 18 and scale-specific cases (e.g. FBI/GDI modes in the *E* region), with the often-
 19 neglected ion inertia shown to play a critical role in the reconciliation. The
 20 new ion inertia effect is found to be represented by the quantity $(\nu_i^2 + \omega'^2_r)^{-1}$
 21 in the growth rate expression. The effect is found to reduce the standard FBI
 22 factor and amplify the GDI factor and, due to the inverse relationship with
 23 the ion inertia, the effect becomes progressively stronger at larger altitudes
 24 and/or wavelengths.

1. Introduction

25 Greater physical insight is often obtained when seemingly different processes are consid-
26 ered within the same formalism. Formation of plasma waves or irregularities in the Earth's
27 ionosphere is no exception, with successful theoretical efforts including integration with
28 respect to different plasma instabilities such as the Farley-Buneman instability (FBI) and
29 the gradient-drift instability (GDI) in the ionospheric *E* region [Rogister and D'Angelo,
30 1970; Sudan *et al.*, 1973; Fejer *et al.*, 1975] as well as integration with respect to different
31 altitudes [Fejer *et al.*, 1984; Dimant and Oppenheim, 2011b; Makarevich, 2014, 2016a, b].

32 Integrated or unified formalism of ionospheric plasma instabilities allows to derive a
33 general dispersion relation which can be solved for the instability growth rate and wave
34 oscillation frequency. Analytic expressions are particularly useful since they allow to
35 analyze different destabilizing and stabilizing factors, thereby providing greater physical
36 insight [e.g. Dimant and Oppenheim, 2011b]. Such expressions remain, however, difficult
37 to develop for most general cases. Thus Dimant and Oppenheim [2011b] considered both
38 FBI and GDI at an arbitrary altitude, but limited their consideration to long wavelengths.
39 Makarevich [2016a, b] considered more arbitrary scales, but failed to obtain analytic
40 expressions since dispersion relation was cubic in complex wave frequency.

41 In the current study, approximate explicit expressions for the growth rate and oscilla-
42 tion frequency are developed based on the theory by Makarevich [2016a, b] that provide
43 greater insight into various destabilizing and stabilizing factors at various altitudes. The
44 approximations employed and applicability limits are carefully considered and the devel-
45 oped expressions are reconciled with various limiting cases.

46 The paper is organized as follows. In Section 2, different forms of a general dispersion
 47 relation are presented. In Section 3, the adopted vector geometry is introduced and expres-
 48 sions for zeroth-order oscillation frequency are derived. In Section 4, explicit approximate
 49 expressions for the growth rate are derived from the general dispersion relation, while in
 50 Section 5 these expressions are demonstrated to be consistent with the previously consid-
 51 ered limiting cases. Section 6 considers limits of applicability of the explicit expressions
 52 for the growth rate in terms of density gradients and wavelengths. In Section 7, explicit
 53 expressions for the oscillation frequency are derived, while their limits of applicability are
 54 considered in Section 8. Finally, in Section 9, the underlying physics of inertial effects in
 55 the instability growth rate is discussed, focusing on altitude and wavelength dependence.

2. Forms of General Dispersion Relation

56 In this section, four forms of a general dispersion relation that was previously derived
 57 by *Makarevich* [2016a, b] are introduced. A version of general dispersion relation that
 58 describes fundamental ionospheric plasma instabilities including FBI and GDI for arbi-
 59 trary altitude in the ion frame and for nearly field-aligned irregularities (NFAI) has been
 60 derived by *Makarevich* [2016b, equation 3] as

$$(iD_i + aD_i - b)(\omega' - \mathbf{V}_d \cdot \mathbf{k}) - \hat{P} [(1 + D_i^2) \omega' + Ck_{\perp}^2 (iD_i + aD_i - b)] = 0. \quad (1)$$

61 This equation hereinafter is referred to as the **standard form** of the dispersion equation.
 62 Here $\mathbf{V}_d = \mathbf{V}_{e0} - \mathbf{V}_{i0}$ is the plasma drift velocity or the difference between the background
 63 drift velocities of electrons and ions, $\omega' = \omega - \mathbf{k} \cdot \mathbf{V}_{i0}$ is the complex wave frequency in the
 64 ion frame, $r_{\alpha} = \nu_{\alpha}/\Omega_{\alpha}$ is the ratio between the collision frequency ν_{α} and gyrofrequency
 65 $\Omega_{\alpha} = q_{\alpha}B/m_{\alpha}$ of a plasma species $\alpha = (i, e)$, and other quantities are defined through

$$D_i = -i\Omega_i^{-1}\omega' + r_i, \quad C = \frac{T_i + T_e}{|e|B} = \frac{C_s^2}{\Omega_i}, \quad a = \mathbf{G} \cdot \mathbf{k}_\perp / k_\perp^2, \quad (2)$$

$$b = -\mathbf{G} \cdot \mathbf{k} \times \hat{\mathbf{b}} / k_\perp^2, \quad \hat{\mathbf{b}} = \mathbf{B} / B, \quad \mathbf{G} = \nabla n / n.$$

66 The quantity D_i defined by *Makarevich* [2016a] is a Fourier representation of the convec-
 67 tive derivative plus collisional term $\partial/\partial t + \mathbf{V}_{i0} \cdot \nabla + \nu_i$, normalized to the ion gyrofrequency
 68 Ω_i , C is a thermal diffusion term related to the ion-acoustic speed C_s , a and b are gradient-
 69 related quantities that are defined in that way to be small in the local approximation since
 70 they are both proportional to G/k , and \mathbf{G} is a gradient strength vector. The quantity \hat{P}
 71 in Eq. (1) has been defined by *Makarevich* [2016b] through

$$\hat{P} \equiv -i\hat{\psi}r_i^{-1} + ar_e - b. \quad (3)$$

under an implicit assumption of no parallel density gradients $G_{\parallel} = 0$. Here $\hat{\psi}$ is the anisotropy factor that depends on the ratios r_i, r_e and the aspect angle α' through

$$\hat{\psi} \equiv \psi (1 + r_e^{-2}y^2), \quad \psi \equiv -r_i r_e, \quad y \equiv k_{\parallel}/k_{\perp} \equiv \tan \alpha'. \quad (4)$$

72 In order to maintain exact numerical equivalence between Eq. (1) and the following
 73 equivalent forms of the dispersion relation, the assumption $G_{\parallel} = 0$ is lifted in the present
 74 study, with the following generalization of the quantity \hat{P}

$$\hat{P} \equiv -i\hat{\psi}r_i^{-1} - a\psi'r_i^{-1} - b, \quad \psi' \equiv \psi (1 + r_e^{-2}y^2c/a), \quad c \equiv \mathbf{G} \cdot \mathbf{k}_{\parallel}/k_{\parallel}/k_{\perp}. \quad (5)$$

75 Following *Makarevich* [2016b], Eq. (1) is rewritten purely in terms of frequency-
 76 dependent quantity D_i by substituting $D_i = -i\Omega_i^{-1}\omega' + r_i$ from Eq. (2), multiplying
 77 by $i - a$ and simplifying

$$\hat{A}D_i^3 + \hat{B}D_i^2 + \hat{C}D_i + \hat{D} = 0, \quad [\text{cubic form}] \quad (6)$$

78 with

$$\begin{aligned} \hat{A} &\equiv (i - a) \hat{P}, \quad \hat{B} \equiv 1 + a^2 - r_i \hat{A}, \quad \hat{C} \equiv (i \hat{W} - r_i) (1 + a^2) - (i \hat{\psi} + a \psi') r_i^{-1} (i - a), \\ \hat{D} &\equiv (i b \hat{W} + i \hat{\psi} + a \psi') (i - a), \quad \hat{W} \equiv \Omega_i^{-1} (\mathbf{V}_d \cdot \mathbf{k} + \hat{P} C k_{\perp}^2). \end{aligned} \quad (7)$$

79 Equation (6) hereinafter is referred to as the cubic form of the dispersion equation. Even
80 though $a \psi' r_i^{-1} \ll b$ and can therefore often be neglected in $\hat{P} = -i \hat{\psi} r_i^{-1} - a \psi' r_i^{-1} - b$,
81 when working with the standard form (1) [e.g. *Makarevich*, 2016a, equation (21)], it is
82 useful to maintain numerical equivalency between the two forms (1) and (6), which allows
83 for easy numerical tests of the explicit expressions to be derived in the following sections.

84 One should also note that in deriving a similar cubic equation *Makarevich* [2016b]
85 employed two additional restrictions: the local approximation $a^2 \ll 1$ and no parallel
86 gradients $c = 0$. For that case, they approximated $\hat{A} \approx ab - ib + \hat{\psi} r_i^{-1}$, while \hat{W} had
87 a slightly less general quantity $\hat{P} = -i \hat{\psi} r_i^{-1} + ar_e - b$. Employing $c = 0$ in Eq. (6) is
88 equivalent to substituting $\psi' \rightarrow \psi$, while employing $a^2 \ll 1$ results in

$$\hat{A}D_i^3 + D_i^2 (1 - r_i \hat{A}) + D_i [i \hat{W} - r_i + \hat{\psi} r_i^{-1} + ia (\hat{\psi} - \psi) r_i^{-1}] - (1 + ia) b \hat{W} - \hat{\psi} + ia (\psi - \hat{\psi}) = 0. \quad (8)$$

89 This differs from Eq. (9) of *Makarevich* [2016b] by small factors proportional to $\psi - \hat{\psi}$
90 which reduce to zero for purely perpendicular propagation $k_{\parallel} = 0$. In the following
91 analysis, a more general and accurate cubic equation (6) will be used to obtain exact

numerical solutions in D_i and therefore in ω' from Eq. (2). These solutions will be, in turn, used to test explicit expressions for ω' that are developed in the following sections.

For further analysis it is also convenient to divide the standard form (1) by $iD_i + aD_i - b$ and rewrite using a new frequency-dependent quantity Z as

$$\omega' = \mathbf{V}_d \cdot \mathbf{k} - (Z\omega' + iCk_{\perp}^2) \left(\hat{\psi}r_i^{-1} - ib - ia\psi'r_i^{-1} \right) \quad [\text{iterative form}], \quad (9)$$

$$Z \equiv \frac{1 + D_i^2}{D_i - iaD_i + ib}. \quad (10)$$

This form hereinafter is referred to as the iterative form of the dispersion equation, since it has the form $\omega' = f(\omega')$ and can be solved iteratively as $\omega'_{n+1} = f(\omega'_n)$, similar to *Makarevich* [2016a].

The fourth and final form of the dispersion relation is obtained by taking \Re and \Im of Eq. (9) and writing out explicitly all terms in the growth rate $\gamma = \Im\omega'$. The detailed derivation is given in Appendix A, with resulting equations for the oscillation frequency ω'_r and the growth rate γ being quadric in γ

$$\omega'_r D_0 = (X_0 + X_1\gamma + X_2\gamma^2) \omega'_{r0} - \gamma\Omega_1 - \gamma^2\Omega_2 - \gamma^3\Omega_3 - \gamma^4\Omega_4. \quad (11)$$

$$\gamma^4\Gamma_4 + \gamma^3\Gamma_3 + \gamma^2\Gamma_2 + \gamma\Gamma_1 = \Gamma_0 \quad [\text{quadric form}]. \quad (12)$$

Here quantities $D_0, X_j, \Omega_j, \Gamma_j$ depend on the oscillation frequency ω'_r , as given in Appendix A. Together, Eqs. (11–12) are referred to as the **quadric form** (in γ) of the dispersion relation.

One should note that all four forms (1), (6), (9), and (11–12) are equivalent. While finding solutions is numerically preferable from the cubic form (6) [*Makarevich*, 2016b],

¹⁰⁸ in the following sections the quadric form (11–12) is approximated to obtain explicit
¹⁰⁹ expressions for ω'_r and γ .

3. Vector Geometry and Zeroth-Order Oscillation Frequency ω'_{r0}

¹¹⁰ In this section, vector geometry and angle definitions are introduced and several pa-
¹¹¹ rameters of interest are evaluated for arbitrary altitude, with a particular focus on the
¹¹² differential drift speed V_d and zeroth-order oscillation frequency that has been defined in
¹¹³ Appendix A as

$$\omega'_{r0} \equiv \mathbf{V}_d \cdot \mathbf{k} - (b + a\psi'r_i^{-1}) Ck_{\perp}^2. \quad (13)$$

¹¹⁴ In the present study, the same vector geometry and model ionospheric parameters (i.e.
¹¹⁵ $\nu_i, \Omega_i, \nu_e, \Omega_e, C_s$) are adopted as in *Makarevich* [2016b, 2017]. Figure 1 illustrates the
¹¹⁶ adopted geometry. This geometry is completely general since the choice of the coordinate
¹¹⁷ system with the x axis along the background electric field \mathbf{E} preserves generality. The
¹¹⁸ angle definitions are also the same as in *Makarevich* [2017], with an additional angle β
¹¹⁹ defined as

$$\beta \equiv \tan^{-1} r_i. \quad (14)$$

¹²⁰ The exact vector directions in Figure 1 refer to an E -region altitude of 110 km where
¹²¹ $r_i \approx 5$. For the F region, $r_i \ll 1$ and $\beta \approx 0$. The flow angle θ is defined as the angle
¹²² between the wavevector \mathbf{k} and \mathbf{V}_d or, in terms of the new “phase” angle β , Figure 1, as

$$\theta = \pi - \alpha - \beta. \quad (15)$$

123 From Appendix B, the zeroth-order oscillation frequency can be written as

$$\omega'_{r0} \approx s_i r_i \left(r_i \mathbf{V}_E - \frac{\mathbf{E}_{0\perp}}{B} \right) \cdot \mathbf{k} + r_e^{-1} k_{\parallel} \frac{E_{0\parallel}}{B}, \quad s_i = (1 + r_i^2)^{-1}. \quad (16)$$

124 This equation can be simplified by substituting $r_i = \tan \beta$ from Eq. (14) into the
 125 second r_i factor and employing the coordinate system of Figure 1 with $\mathbf{E}_{0\perp}/B = V_E \hat{\mathbf{e}}_x$,
 126 $\mathbf{V}_E = V_E \hat{\mathbf{e}}_y$, and $\mathbf{k} = k_{\perp} (\cos \alpha \hat{\mathbf{e}}_x + \sin \alpha \hat{\mathbf{e}}_y) - k_{\parallel} \hat{\mathbf{e}}_z$ to become

$$\omega'_{r0} \approx -s_i^{1/2} r_i V_E k_{\perp} \cos(\alpha + \beta) + r_e^{-1} k_{\parallel} \frac{E_{0\parallel}}{B}. \quad (17)$$

127 From the above form, it is easy to see that β represents a phase factor as it is added
 128 to α in the argument of the cosine function. Eq. (17) is also useful in demonstrating the
 129 importance of two special cases: $\theta = 0$ and $\alpha = 0$. In the first case, the differential plasma
 130 flow \mathbf{V}_d is parallel to the direction of propagation \mathbf{k} , Figure 1. In this case ω'_{r0} reaches its
 131 maximum value since $\cos(\alpha + \beta) = \cos \pi = -1$ and

$$\omega'_{r0,\max} \approx s_i^{1/2} r_i V_E k. \quad (18)$$

132 In the case of $\alpha = 0$, it is the electric field that is parallel to the propagation direction,
 133 Figure 1, and in this case expression for ω'_{r0} also simplifies since $\cos \beta = \cos \tan^{-1} r_i =$
 134 $(1 + r_i^2)^{-1/2} = s_i^{1/2}$. A similar simplification also occurs for $\alpha = \pi$ so that

$$\omega'_{r0} (\alpha = 0, \pi) \approx \mp s_i r_i V_E k. \quad (19)$$

135 A similar analysis can be carried out in terms of the differential drift speed $V_d \sim s_i^{1/2} r_i V_E$
 136 from Eq. (B6) and the flow angle θ from Eq. (15) as

$$\omega'_{r0} \sim V_d k \cos \theta. \quad (20)$$

137 The end result of $\omega'_{r0} \sim \mathbf{V}_d \cdot \mathbf{k}$ is a well-familiar expression, but it is important to under-
 138 stand that this is an approximation. In particular, it does not contain any gradient terms;
 139 these can be neglected for most gradient conditions, as discussed in Appendix B. In the
 140 following analytic derivations, Eqs. (18) and (19) will be used in the order-of-magnitude
 141 (OOM) analysis. In this analysis, magnitudes of different terms are compared and ap-
 142 proximate expressions (18)–(20) are substituted into terms containing ω'_{r0} to determine
 143 which terms can be neglected, e.g. Appendix C. For all numerical calculations, however,
 144 the original exact definition for ω'_{r0} (13) will be used.

4. Explicit Expression for the Growth Rate

145 In this section, an explicit approximate expression is developed for the growth rate γ .
 146 We start from the quadric equation (12) and employ the following approximations:

$$G \ll k, \quad [\text{local approximation}] \quad (21)$$

$$|\gamma| \ll \nu_i. \quad [\text{slow growth approximation}] \quad (22)$$

147 The physical meaning of these approximations is as follows. In the local approximation,
 148 the gradient strength is much smaller than the wavenumber or, alternatively, the gradient
 149 scale length is much larger than the wavelength, and the dispersion relation is valid at any
 150 point in the plasma, using the local values of the plasma parameters. In the slow growth
 151 approximation, the instability growth rate is much smaller than collision frequency, and

₁₅₂ only lower-order terms in γ from convective derivative and related quantity D_i contribute
₁₅₃ to the dispersion relation and equation on γ .

₁₅₄ The local approximation allows to neglect all terms quadratic in G^2 , i.e. a^2, b^2, ab , in
₁₅₅ expressions for Γ_j (A18). In notations of Appendix A, $\Gamma_j = \Gamma_{j,0} + \Gamma_{j,1} + \Gamma_{j,2} \approx \Gamma_{j,0} + \Gamma_{j,1}$,
₁₅₆ where the first term $\Gamma_{j,0}$ is gradient-free, while the second term $\Gamma_{j,1}$ has parts proportional
₁₅₇ to b and a . The slow growth approximation allows to neglect two higher-order terms in γ
₁₅₈ in Eq. (12) which becomes quadratic

$$\bar{\gamma}^2 \Gamma_2 + \bar{\gamma} \Gamma_1 = \Gamma_0, \quad (23)$$

₁₅₉ with the bar notation introduced to specify that this is an exact solution of the quadratic
₁₆₀ equation which approximates a solution of the quadric equation γ . From Eq. (A18), the
₁₆₁ coefficients Γ_j are given by

$$\begin{aligned} \Gamma_0 &= \hat{\psi} r_i^{-1} [\omega_r'^2 \Omega_i^{-1} (I - 1) - C k_{\perp}^2 I] + b \omega_r' r_i [1 + 2\hat{\psi} + I + \hat{\psi} r_i^{-2} (1 - I + 2C k_{\perp}^2 \Omega_i^{-1})] + a \omega_r' (\psi' - \hat{\psi}) (1 + I) \\ \Gamma_1 &= I + \hat{\psi} (1 + I - 2\omega_r'^2 \Omega_i^{-2} + 2C k_{\perp}^2 \Omega_i^{-1}) - 2b \omega_r' \Omega_i^{-1} (1 + 2\hat{\psi} + r_i^2 + I) + 2a (\hat{\psi} - \psi') r_i^{-1} \omega_r' \Omega_i^{-1} (I + r_i^2), \\ \Gamma_2 &= r_i \Omega_i^{-1} [2 + 3\hat{\psi} + \hat{\psi} r_i^{-2} (1 + C k_{\perp}^2 \Omega_i^{-1})] + \omega_r' \Omega_i^{-2} [5a (\hat{\psi} - \psi') - br_i (5 + 3\hat{\psi} r_i^{-2})], \end{aligned} \quad (24)$$

₁₆₂ with

$$I \equiv r_i^2 + \omega_r'^2 \Omega_i^{-2} = (\nu_i^2 + \omega_r'^2) \Omega_i^{-2}. \quad (25)$$

₁₆₃ A solution of Eq. (23) is given by

$$\bar{\gamma} = \frac{2\Gamma_0 \Gamma_1^{-1}}{1 + \sqrt{1 - 4\rho}}, \quad (26)$$

₁₆₄ where we used an alternative expression for the quadratic equation root [Press *et al.*, 1992,
₁₆₅ equation (5.6.5)] and introduced a new definition

$$\rho \equiv -\Gamma_2 \Gamma_0 \Gamma_1^{-2}. \quad (27)$$

₁₆₆ In principle, one can also consider a linear solution $\Gamma_0 \Gamma_1^{-1}$ (essentially a case of $\rho = 0$),
₁₆₇ but an important (quadratic) correction can also be obtained analytically by expanding
₁₆₈ the square root for $|\rho| < 1$

$$\bar{\gamma} \approx \frac{2\Gamma_0 \Gamma_1^{-1}}{1 + 1 - 2\rho} = \frac{\Gamma_0}{\Gamma_1 - \rho \Gamma_1}. \quad (28)$$

₁₆₉ Here the second term in the denominator represents a quadratic correction to the linear
₁₇₀ solution Γ_0 / Γ_1 . Further simplification can be obtained by factoring out the typically
₁₇₁ dominant term I from the denominator $\Gamma_1 - \rho \Gamma_1 \equiv I [1 + \epsilon - \rho (1 + \epsilon)]$ and treating both
₁₇₂ ρ and ϵ as small corrections, with the resulting approximate expression being

$$\tilde{\gamma} = \frac{\hat{\psi} r_i^{-1} [\omega_r'^2 \Omega_i^{-1} (1 - I^{-1}) - C k_\perp^2] + b \omega_r' r_i (1 + I^{-1} + 2 \hat{\psi} r_i^{-2} I^{-1} C k_\perp^2 \Omega_i^{-1}) + a \omega_r' (\psi' - \hat{\psi}) (1 + I^{-1})}{1 + \hat{\psi} (1 + I^{-1})}, \quad (29)$$

₁₇₃ where a notation $\tilde{\gamma}$ is introduced to distinguish this approximate solution from their
₁₇₄ quadric γ or quadratic $\bar{\gamma}$ counterparts. This expression can be further simplified by
₁₇₅ neglecting the last two terms in the numerator. The OOM analysis of these terms carried
₁₇₆ out in Appendix C shows that losses in applicability associated with these terms are
₁₇₇ relatively small.

₁₇₈ If both of the last two terms in Eq. (29) can be neglected, the growth rate takes a
₁₇₉ relatively simple form

$$\tilde{\gamma} = \frac{\hat{\psi} r_i^{-1} \Omega_i^{-1} [\omega_r'^2 (1 - I^{-1}) - C_s^2 k_{\perp}^2] + b \omega_r' r_i (1 + I^{-1})}{1 + \hat{\psi} (1 + I^{-1})}, \quad (30)$$

180 where we used the identity $C = C_s^2 \Omega_i^{-1}$ from Eq. (2).

181 The final approximate form of the growth rate is obtained by substituting ω_r' from Eq.
182 (17) and rewriting the gradient term b in terms of angles α and χ defined in Section 3 as

$$b = -\mathbf{G} \cdot \mathbf{k} \times \hat{\mathbf{b}}/k_{\perp}^2 = G k_{\perp}^{-1} \sin(\alpha - \chi). \quad (31)$$

183 For the case of the purely field-aligned irregularities (PFAI), the growth rate becomes

$$\tilde{\gamma} \approx \frac{\hat{\psi} \nu_i^{-1} k_{\perp}^2 [s_i r_i^2 V_E^2 \cos^2(\alpha + \beta) (1 - I^{-1}) - C_s^2] + G V_E f s_i r_i^2 (1 + I^{-1})}{1 + \hat{\psi} (1 + I^{-1})}, \quad (32)$$

184 where a new function f has been defined as

$$f(\alpha, \beta, \chi) \equiv -s_i^{-1/2} \cos(\alpha + \beta) \sin(\alpha - \chi). \quad (33)$$

185 The function f describes a directional dependence of the gradient term. Since
186 $\cos \beta = s_i^{1/2}$, it simplifies for a representative configuration with $\chi = \pi/2$, $\alpha = 0, \pi$
187 as $f(0, \beta, \pi/2) = f(\pi, \beta, \pi/2) = 1$. Similarly, $f = 1$ when $\cos(\alpha + \beta) = -1$ or, in terms
188 of the flow angle defined through Eq. (15), when $\theta = 0$.

5. Limiting Cases for the Growth Rate Expression

5.1. Limiting Case 1: E region

189 In the E region, $r_i^2 \gg 1$ and therefore $I^{-1} \ll 1$ from its definition (25). In this case,
190 Eq. (30) becomes

$$\gamma^E = \frac{\hat{\psi} r_i^{-1} \Omega_i^{-1} (\omega_r'^2 - C_s^2 k_\perp^2) + b \omega_r' r_i}{1 + \hat{\psi}}, \quad (34)$$

which is exact agreement with the standard FBI/GDI expression in the E region, e.g.

Eq. (22) of *Makarevich* [2016a].

5.2. Limiting Case 2: Long Wavelengths for Arbitrary Altitude

In this case, $\omega_r' \ll \nu_i$ or $\omega_r' \Omega_i^{-1} \ll r_i$. Hence from definition of I (25), $I^{-1} \approx r_i^{-2}$ and

$$\gamma_{\text{LW}} = \frac{\hat{\psi} r_i^{-1} [\omega_r'^2 \Omega_i^{-1} (1 - r_i^{-2}) - C k_\perp^2] + b \omega_r' r_i (1 + r_i^{-2})}{1 + \hat{\psi} (1 + r_i^{-2})}, \quad (35)$$

where a subscript LW indicates long wavelengths. This is an arbitrary-altitude expression applicable in the long-wavelength limit. It is demonstrated below that it is consistent with the growth rate expression derived by *Dimant and Oppenheim* [2011b]. We first make the following identifications between their and our notations

$$\begin{aligned} \kappa_\alpha &= r_\alpha^{-1}, \\ \psi_{\vec{k}} &= \psi [1 + (1 + r_i^{-2}) (1 + r_e^{-2}) y^2] \approx \psi [1 + (1 + r_i^{-2}) r_e^{-2} y^2] = \hat{\psi} (1 + r_i^{-2}) - \psi r_i^{-2}, \\ \Omega_{\vec{k}1}^{(i)} &= \frac{\mathbf{k} \cdot \mathbf{V}_d}{1 + \psi_{\vec{k}}} \approx \frac{\omega_{r0}'}{1 + \psi_{\vec{k}}} \equiv \omega_{r\vec{k}}'. \end{aligned} \quad (36)$$

Here the approximation $|r_e| \gg 1$ was used and a shorthand $\omega_{r\vec{k}}'$ was introduced for the frequency. It will be demonstrated in Section 7 that $\omega_{r\vec{k}}'$ is a better approximation to ω_r' than ω_{r0}' which we have previously used in our OOM analysis.

Eqs. (A30)–(A32) of *Dimant and Oppenheim* [2011b] are next rewritten in our present notations and a case of fully-magnetized electrons is considered $|r_e| \ll 1$. In this case, Eqs.

²⁰³ (A30)–(A32) of *Dimant and Oppenheim* [2011b], when combined into a single growth rate
²⁰⁴ expression, become

$$\gamma_{\text{D&O}} = \frac{\hat{\psi}r_i^{-1} \left[\omega_{r\vec{k}}'^2 \Omega_i^{-1} (1 - r_i^{-2}) - Ck_{\perp}^2 \right] + \omega_{r\vec{k}}' r_i (1 + r_i^{-2}) [b - r_e^{-1} yc + r_e^{-1} ay^2]}{1 + \hat{\psi} (1 + r_i^{-2}) - \psi r_i^{-2}}, \quad (37)$$

²⁰⁵ where a subscript D&O is introduced to indicate that these results are by *Dimant and Op-*
²⁰⁶ *penheim* [2011b]. One should note that Eq. (37) contains one extra term of $r_e^{-1} ay^2$ which
²⁰⁷ is missing from their Eqs. (A34)–(A35) which are also written for the fully-magnetized
²⁰⁸ electrons case. This term, together with another term $-r_e^{-1} yc$, are not present in our
²⁰⁹ expression (35). Both are present, however, if a more general Eq. (29) is written in the
²¹⁰ long-wavelength limit. Thus the growth rate from *Dimant and Oppenheim* [2011b] rep-
²¹¹ resented by Eq. (37) is fully consistent with the long-wavelength limit of expression (29)
²¹² except for an additional term $-\psi r_i^{-2}$ in the denominator.

²¹³ It has been previously noted that for arbitrary ion magnetization ratio r_i (i.e. arbitrary-
²¹⁴ altitude case), the generalized anisotropy parameter $\psi_{\vec{k}}$ replaces the product $\hat{\psi} (1 + r_i^{-2})$
²¹⁵ but the difference is of the order of ψr_i^{-2} and therefore small [*Dimant and Oppenheim*,
²¹⁶ 2011a, Eqs. (34a,b) and Section 3.1]. However, the factor $\hat{\psi} (1 + r_i^{-2})$ is already appro-
²¹⁷ priate for any r_i and it can be approximated as $\psi_{\vec{k}}$ only for $r_i^{-2} \ll 1$. This is also the
²¹⁸ factor that appears in the growth rate from *Dimant and Milikh* [2003] (their equation 5)
²¹⁹ which was written for the gradient-free case and is equivalent to

$$\gamma_{\mathbf{k}} = \frac{\hat{\psi}r_i^{-1} \left[\omega_{r\vec{k}}'^2 \Omega_i^{-1} (1 - r_i^{-2}) - Ck_{\perp}^2 \right]}{1 + \hat{\psi} (1 + r_i^{-2})}. \quad (38)$$

²²⁰ This expression is fully consistent with our Eq. (35) since $b = 0$ for the gradient-free case.

5.3. Limiting Case 3: Long Wavelengths in the F region

221 A particular case of interest in the long-wavelength limit is in the F region where
 222 $r_i^{-2} \gg 1$ and where Eq. (35) becomes

$$\gamma_{\text{LW}}^F = \frac{b\omega'_r r_i^{-1}}{1 + \hat{\psi}r_i^{-2}} - \frac{\hat{\psi}r_i^{-1}k_{\perp}^2 (C + \omega_r'^2 k_{\perp}^{-2} \Omega_i^{-1} r_i^{-2})}{1 + \hat{\psi}r_i^{-2}}. \quad (39)$$

223 One can rewrite Eq. (39) by using identities $\hat{\psi}r_i^{-1} = -r_e + \psi^{-1}r_i y^2$, $1 + \hat{\psi}r_i^{-2} =$
 224 $\psi^{-1}(\psi + y^2)$ and $\omega'_r \approx \omega_{r0}^F$ from Eq. (B9) as

$$\gamma_{\text{LW}}^F = -\frac{b}{\psi + y^2} \left(\psi \frac{\mathbf{E}_{0\perp}}{B} \cdot \mathbf{k} + \frac{E_{0\parallel} k_{\parallel}}{B} \right) + \left(r_e k_{\perp}^2 - \frac{r_i k_{\parallel}^2}{\psi + y^2} \right) (C + \omega_r'^2 k_{\perp}^{-2} \Omega_i^{-1} r_i^{-2}). \quad (40)$$

225 This agrees with Eq. (27) of *Makarevich* [2016a] except for the term $\omega_r'^2 k_{\perp}^{-2} \Omega_i^{-1} r_i^{-2}$ that
 226 is added to C .

227 The first term in Eq. (39) is gradient-dependent but wavelength-independent to zeroth
 228 order, since $b \propto G/k$ and $\omega'_r \propto k$ to zeroth order, Section 3. The second term in Eq. (39),
 229 on the other hand, decreases with the wavelength as $\lambda^{-2} = k^2$. If it is neglected as well
 230 as the typically small term $\hat{\psi}r_i^{-2}$ in the denominator, Eq. (39) takes a simple form

$$\gamma_{\text{LW}}^F \approx b\omega'_r r_i^{-1}. \quad (41)$$

231 Evaluating ω'_r from Eq. (16) and using $s_i \approx 1$ as is appropriate in the F region, one
 232 obtains

$$\gamma_{\text{LW}}^F \approx b \left(r_i \mathbf{V}_E - \frac{\mathbf{E}_{0\perp}}{B} \right) \cdot \mathbf{k}, \quad (42)$$

233 which is in agreement with Eq. (28) from *Makarevich* [2016a]

$$\gamma = \frac{b}{1+\psi} \left(R \mathbf{V}_E - \frac{\mathbf{E}_{0\perp}}{B} \right) \cdot \mathbf{k} \quad (43)$$

²³⁴ considering that $R = (r_i + r_e) / (1 + \psi) \approx r_i$ and $\psi \ll 1$ in the F region.

6. Limits of Applicability: Growth Rate

²³⁵ In this section, limits of applicability of the developed expressions for the growth rate
²³⁶ are considered. Figure 2 shows a dependence on the wavelength λ and gradient strength
²³⁷ G of (a) the exact quadric values γ , Eq. (12), (b) the quadratic values $\bar{\gamma}$, Eq. (26) and (c)
²³⁸ the approximate values $\tilde{\gamma}$, Eq. (29) at an altitude of 300 km, representative combination
²³⁹ of gradient and propagation directions $\chi = \pi/2$, $\alpha = 0$, and the PFAI case $\alpha' = 0$. In
²⁴⁰ Figure 2a, the normalized growth rate itself is shown γ/ν_i , while in Figures 2b and 2c, the
²⁴¹ differences with respect to the exact values γ are shown, i.e. $(\bar{\gamma} - \gamma)/\nu_i$ and $(\tilde{\gamma} - \gamma)/\nu_i$,
²⁴² respectively. Figures 2d–2f show the same, but for an E -region altitude of 110 km. The
²⁴³ exact values γ were obtained by numerically solving the cubic form of the dispersion
²⁴⁴ relation (6) as described by *Makarevich* [2016b], while the $\bar{\gamma}$ and $\tilde{\gamma}$ values were obtained
²⁴⁵ by numerically solving exact quadratic Eq. (26) and finding its approximate solution from
²⁴⁶ Eq. (29), respectively. In these calculations of the quadratic $\bar{\gamma}$ and approximate $\tilde{\gamma}$ values,
²⁴⁷ we used the exact frequencies ω'_r which were also obtained from numerical solutions of
²⁴⁸ Eq. (6).

²⁴⁹ Also shown in Figure 2 are contours of $\gamma = 0$ (grey-white dashed line), $\gamma/\nu_i = 0.5$ (pink
²⁵⁰ dashed), and $\bar{\gamma} = \gamma$ or $\tilde{\gamma} = \gamma$ (white dotted) from the above described numerical analysis.
²⁵¹ In addition, the pink solid lines show critical gradients $G_\kappa(\lambda)$, $\kappa = \pm 0.001, 0.01, 0.1$ from
²⁵² analytic expressions (D4) derived in Appendix D, and the red solid lines show $G = \kappa k$. In
²⁵³ the corners defined by the last set of lines the local approximation $G \ll k$ or $G\lambda \ll 1$, Eq.

²⁵⁴ (21), becomes progressively less applicable since $G/k = 0.001$ on the leftmost red line,
²⁵⁵ $G/k = 0.01$ on the middle red line, and $G/k = 0.1$ on the rightmost red line. Similarly,
²⁵⁶ the slow growth approximation $|\gamma| \ll \nu_i$, Eq. (22), becomes less applicable further away
²⁵⁷ from the $\gamma = 0$ line.

²⁵⁸ From Figures 2a and 2d, the analytic expressions for gradients G_κ work well to describe
²⁵⁹ the growth rate magnitudes for the slow growth case, i.e. they follow the contours of
²⁶⁰ constant γ/ν_i . This is fully expected since they were derived under this approximation.
²⁶¹ From Figure 2a, the growth in the F region is slow $|\gamma|/\nu_i \leq 0.1$ (between outmost pink
²⁶² lines) except at short scales ($\lambda \leq 2$ m) or strong gradients $G \geq 2 \times 10^{-5}$. In the E region,
²⁶³ the growth is slow for most gradients and wavelengths of interest.

²⁶⁴ From Figure 2b and 2e, solutions of the quadratic equation $\bar{\gamma}$ agree well with exact
²⁶⁵ values γ except at large positive growth rates (blue color). As a rough guide, Figure
²⁶⁶ 2b shows the value of $\gamma/\nu_i = 0.5$ by the dashed pink line and large disagreements start
²⁶⁷ above it. In the E -region, there are no significant disagreements in the domain of interest,
²⁶⁸ since lines of $\gamma/\nu_i = 0.5$ and even $\gamma/\nu_i = 0.1$ are not located within the domain. The
²⁶⁹ contour patterns are slightly different for the approximate values $\tilde{\gamma}$, Figures 2c and 2f, as
²⁷⁰ compared to their quadratic counterparts $\bar{\gamma}$, Figures 2b and 2e, but the same feature is
²⁷¹ observed, i.e. good agreement except for large growth rates above the dashed pink line of
²⁷² $\gamma/\nu_i = 0.5$.

²⁷³ From this analysis, a conservative estimate is that one can use approximate expressions
²⁷⁴ as long as growth is slow $|\gamma| \leq 0.1$. This includes all marginal growth cases $\gamma = 0$.
²⁷⁵ Moreover, numerical analysis presented in Figure 2 shows that one can relax this condition
²⁷⁶ to $\gamma \leq 0.5$. This includes all E region cases of interest, Figures 2d–2f, and F -region cases

277 with $G < 2 \times 10^{-4} \text{ m}^{-1}$, Figures 2b and 2c. The reason why the approximate expression
 278 (29) works at large negative values of γ is as follows. This expression is an approximation
 279 to the solution of quadratic equation (23) in which higher-order terms $\gamma^3\Gamma_3$ and $\gamma^4\Gamma_4$
 280 have been neglected. They can become important, i.e. comparable with the dominant,
 281 linear term $\gamma\Gamma_1$, but only at very short scales. A simple OOM estimate shows that in the
 282 F -region, they are comparable near $\lambda = 0.05 \text{ m}$, which is outside the wavelength range of
 283 interest (details are not presented here for brevity).

7. Explicit Expressions for the Oscillation Frequency

284 In this section, a set of approximate explicit expressions for the oscillation frequency
 285 and phase velocity is derived. We start from the quadric equation (11) and neglect higher-
 286 order terms $\gamma^3\Omega_3$ and $\gamma^4\Omega_4$, which results in the quadratic equation (in γ) of the form

$$\omega'_r D_0 = X\omega'_{r0} - \gamma\Omega_1 - \gamma^2\Omega_2, \quad (44)$$

287 where frequency-dependent quantities D_0 , X , and Ω_j have been defined in Appendix A.
 288 This is next rewritten into an equivalent form

$$\omega'_r = \omega'_{r0} + \omega'_r (X - D_0) X^{-1} - \gamma\Omega_1 X^{-1} - \gamma^2\Omega_2 X^{-1}. \quad (45)$$

289 In terms with the growth rate γ in Eq. (45), we use the approximate expression (30)
 290 which is rewritten as

$$\gamma \approx \gamma_{\text{FB}} + b\omega'_r \tau, \quad (46)$$

291 with newly defined quantities

$$\gamma_{\text{FB}} \equiv \frac{\hat{\psi} r_i^{-1} \Omega_i^{-1} [\omega_r'^2 (1 - I^{-1}) - C_s^2 k_\perp^2]}{1 + \hat{\psi} (1 + I^{-1})}, \quad \tau \equiv r_i \frac{1 + I^{-1}}{1 + \hat{\psi} (1 + I^{-1})}. \quad (47)$$

292 Here subscript FB is introduced to indicate that the first term in Eq. (46) refers to the
 293 pure Farley-Buneman instability case, while the second term is gradient-related through
 294 $b \propto G$. We also neglect all small terms $\propto G^2$ in the local approximation to obtain

$$\begin{aligned} D_0 &\approx I + \hat{\psi} (1 + I) - b \omega_r' \Omega_i^{-1} (1 + I + 2\hat{\psi}), \\ X &\approx I + 2b \omega_r' \Omega_i^{-1} (\tau r_i - 1 + \tau \Omega_i^{-1} \gamma_{\text{FB}}) + 2\gamma_{\text{FB}} \Omega_i^{-1} r_i + \gamma_{\text{FB}}^2 \Omega_i^{-2}, \\ X - D_0 &\approx b \omega_r' \Omega_i^{-1} (2\tau r_i - 1 + I + 2\hat{\psi} + 2\tau \Omega_i^{-1} \gamma_{\text{FB}}) - \hat{\psi} (1 + I) + 2\gamma_{\text{FB}} \Omega_i^{-1} r_i + \gamma_{\text{FB}}^2 \Omega_i^{-2}, \\ \Omega_1 &\approx 2r_i \omega_r' \Omega_i^{-1} (1 + 2\hat{\psi} + \hat{\psi} \kappa_{\text{sc}}^2) + b \Omega_{1,b}, \\ \Omega_2 &\approx \omega_r' \Omega_i^{-2} (1 + 5\hat{\psi}) + b \Omega_{2,b}, \end{aligned} \quad (48)$$

295 where

$$\kappa_{\text{sc}} \equiv \omega_r' \Omega_i^{-1} r_i^{-1}, \quad \Omega_{1,b} \equiv r_i [1 + I - 2\omega_r'^2 \Omega_i^{-2} + \hat{\psi} (1 + r_i^{-2} - 3\kappa_{\text{sc}}^2)], \quad \Omega_{2,b} \equiv \Omega_i^{-1} (1 + 3r_i^2 + 2\hat{\psi}) \quad (49)$$

296 The next step is to approximate terms $\gamma \Omega_1$, $\gamma^2 \Omega_2$ by using Eq. (46) for γ and expressions
 297 for Ω_j from Eq. (48) and, again, neglecting terms quadratic in $b \propto G$, with the resulting
 298 expression being

$$\begin{aligned} \omega_r' &\approx \omega_{r0}' - b \omega_r'^2 \Omega_i^{-1} [1 - I - 2\hat{\psi} + 2\hat{\psi} \tau r_i (2 + \kappa_{\text{sc}}^2) + 10\hat{\psi} \gamma_{\text{FB}} \Omega_i^{-1} \tau] X^{-1}, \\ &\quad - b (\gamma_{\text{FB}} \Omega_{1,b} + \gamma_{\text{FB}}^2 \Omega_{2,b}) X^{-1} - \hat{\psi} \omega_r' [1 + I + 2\gamma_{\text{FB}} r_i \Omega_i^{-1} (2 + \kappa_{\text{sc}}^2) + 5\gamma_{\text{FB}}^2 \Omega_i^{-2}] X^{-1}. \end{aligned} \quad (50)$$

299 The terms proportional to γ_{FB} and γ_{FB}^2 can be neglected in Eq. (50) and X , since
 300 $\gamma_{FB} \ll \nu_i$ (slow growth approximation) or, equivalently, $\gamma_{FB}\Omega_i^{-1} \ll r_i$, $\gamma_{FB}^2\Omega_i^{-2} \ll r_i^2 < I$,
 301 $\gamma_{FB}\Omega_i^{-1}r_i \ll r_i^2 < I$. In addition, we neglect small terms $\propto \hat{\psi}$ in the second term in Eq.
 302 (50), with the resulting expression being

$$\omega'_r \approx \omega'_{r0} - \frac{b\omega'^2\Omega_i^{-1}(1-I) + \hat{\psi}\omega'_r(1+I)}{I + 2b\omega'_r\Omega_i^{-1}(\tau r_i - 1)}. \quad (51)$$

303 The OOM analysis shows that the second term in the denominator is considerable only
 304 in the F region at strong gradients $G > 10^{-3} \text{ m}^{-1}$ and for most of cases of interest can be
 305 neglected. After rearranging Eq. (51), the final expression for the oscillation frequency is

$$\omega'_r \approx \tilde{\omega}'_r = \frac{\omega'_{r0} + b\tilde{\omega}'^2\Omega_i^{-1}\left(1 - \tilde{I}^{-1}\right)}{1 + \hat{\psi}\left(1 + \tilde{I}^{-1}\right)}, \quad \tilde{I} \equiv r_i^2 + \tilde{\omega}'^2\Omega_i^{-2}. \quad (52)$$

306 Here we introduced a new notation $\tilde{\omega}'_r$ to differentiate from the exact value ω'_r and a
 307 corresponding quantity \tilde{I} . One can see from Eq. (52) that, generally, $\omega'_r \neq \omega'_{r0}$. In the E
 308 region, $I^{-1} \ll 1$, and considering inequality (D6), Eq. (52) reduces to the expected value

$$\omega'^E_r \approx \frac{\omega'_{r0}}{1 + \hat{\psi}}. \quad (53)$$

309 This is also consistent with $\omega'_{r\vec{k}}$ from Eq. (36). In a general case, Eq. (52) is a quadric
 310 equation on ω'_r since $I = r_i^2 + \omega'^2\Omega_i^{-2}$ which can be solved numerically. Alternatively, it
 311 can be solved iteratively and the first-order solution is

$$\omega'_{r1} = \frac{\omega'_{r0} + b\omega'^2\Omega_i^{-1}\left(1 - I_0^{-1}\right)}{1 + \hat{\psi}\left(1 + I_0^{-1}\right)}, \quad I_0 \equiv r_i^2 + \omega'^2\Omega_i^{-2}. \quad (54)$$

8. Limits of Applicability: Oscillation Frequency and Phase Velocity

312 The differences between frequencies calculated in the three approaches (zeroth-order
 313 ω'_{r0} using Eq. (13), approximate $\tilde{\omega}'_r$ using Eq. (52), and first-order ω'_{r1} using Eq. (54))
 314 are presented in Figure 3. It has the same format as Figure 2 except that the differences
 315 with respect to the exact values ω'_r normalized to ω'_{r0} are shown in all three columns,
 316 e.g. Figure 3a shows $(\omega'_{r0} - \omega'_r) / \omega'_{r0}$, Figure 3b shows $(\tilde{\omega}'_r - \omega'_r) / \omega'_{r0}$, and Figure 3c shows
 317 $(\omega'_{r1} - \omega'_r) / \omega'_{r0}$. Since $\omega'_r / \omega'_{r0} = V_{ph} / V_{ph0}$, each panel also shows normalized differences
 318 between phase velocities. Since V_{ph0} is largely independent of G and λ , Figures 3a and 3d
 319 also show behavior of V_{ph} versus G and λ , e.g. green color refers to area where $V_{ph} = V_{ph0}$,
 320 while dark red contours of 0.1 refers to the line where $1 - V_{ph} / V_{ph0} = 0.1$ and hence
 321 where $V_{ph} = 0.9V_{ph0}$. In other words, green color shows areas where two approaches give
 322 the same result, while red color shows areas where zeroth-order values exceed exact ones
 323 significantly.

324 The first important feature in Figure 3a is that, in the F region, the zeroth-order result
 325 of ω'_{r0} considered in Section 3 generally applies only at weak gradients $G < 10^{-5} \text{ m}^{-1}$
 326 (green color). For stronger gradients, zeroth-order frequencies overestimate exact values
 327 $\omega'_{r0} > \omega'_r$. From Section 3, the zeroth-order phase velocity is approximately the plasma
 328 drift speed, $V_{ph0} \sim V_d$, and the above result means that $V_{ph} < V_d$. The ratio V_{ph0}/V_d is
 329 below 0.9 (red color) at $G = 10^{-4} \text{ m}^{-1}$.

330 Ideally, however, one would want to develop a method whose results differ not too much
 331 from the exact ones in a larger subset of the domain of interest. By solving Eq. (52) which
 332 is a quadric equation in $\tilde{\omega}'_r$, one can largely achieve this goal, Figure 3b. Thus at long
 333 wavelengths $\lambda > 100 \text{ m}$, small differences are now seen up to $G = 10^{-4} \text{ m}^{-1}$, while at 10

334 m they extend almost to $G = 10^{-3} \text{ m}^{-1}$. Interestingly, even the first-order results that
 335 are obtained by a simple substitution using Eq. (54), rather than solving a fourth-order
 336 equation (52), achieve similar results, Figure 3c. Here the blue area shift downwards as
 337 compared with Figure 3b, but overall the domain of applicability is much larger than in
 338 Figure 3a. An important subset is the area near $\gamma = 0$ (dashed line) where differences
 339 are small except for very short scales. This is expected since expressions for both $\tilde{\omega}'_r$ and
 340 ω'_{r1} were developed for the slow-growth case. In the E region, the patterns are different,
 341 Figures 3d–3f, with the only area of large differences being where the local approximation
 342 fails (red corners and lines). This is also expected since the wave growth is slow in the
 343 domain of interest in the E region, while local approximation was also used in Section 7.

344 Finally, from the point of view of potential experimental signatures and verifications,
 345 it is important to consider how the applicability range in G changes versus wavelength
 346 λ . From Figure 3b, it is more extended at shorter scales than at longer scales. For
 347 example, this range in the F region is $G < 10^{-3} \text{ m}^{-1}$ at $\lambda = 10 \text{ m}$ versus $G < 10^{-4} \text{ m}^{-1}$
 348 at $\lambda = 100\text{--}1000 \text{ m}$. A similar feature is seen in the growth rate, Figure 2. Waves near
 349 $\lambda = 10 \text{ m}$ refer to the decameter-scale irregularities observed by coherent HF radars such
 350 as Super Dual Auroral Radar Network (SuperDARN) [e.g. *Chisham et al.*, 2007], while
 351 waves near 1000 m are thought to be responsible for scintillation of the radio signal in
 352 the Global Navigation Satellite System (GNSS) [e.g. *Basu et al.*, 1998; *Keskinen*, 2006].
 353 This means that, under the strong gradient conditions, one has to be more careful in
 354 interpreting GNSS observations than those with SuperDARN. Unlike observations with
 355 coherent radars and GNSS receivers, numerical simulations provide information across

³⁵⁶ a wide range of scales [e.g. recent studies by *Hassan et al.*, 2015, 2016; *Young et al.*,
³⁵⁷ 2017, 2019], which is useful in considering wavelength dependence.

9. Stability Analysis and Role of Inertia

³⁵⁸ In this last section, we discuss various destabilizing and stabilizing factors and the role
³⁵⁹ that the ion inertia plays in instability development for various altitudes. The approximate
³⁶⁰ expression for the growth rate was derived in Section 4 as

$$\gamma \approx \frac{\hat{\psi} \nu_i^{-1} k^2 [s_i r_i^2 V_E^2 \cos^2(\alpha + \beta) (1 - I^{-1}) - C_s^2] + G V_E f s_i r_i^2 (1 + I^{-1})}{1 + \hat{\psi} (1 + I^{-1})}. \quad (55)$$

³⁶¹ Generally, a quantity in the expression for the growth rate is considered destabilizing
³⁶² when it is positive and stabilizing if it is negative. For example, the diffusion term $-C_s^2$
³⁶³ in Eq. (55) is always negative and therefore stabilizing. Some factors may be either
³⁶⁴ destabilizing or stabilizing, depending, for example, on vector orientation. For example,
³⁶⁵ the second, GDI-related term in the numerator contains information about orientation in
³⁶⁶ the angular function f ; it is destabilizing for $f > 0$.

³⁶⁷ Eq. (55) is more suitable for such an analysis for arbitrary altitude than similar ex-
³⁶⁸ pressions that are written in terms of ω_r' or V_d since both are altitude-dependent, while
³⁶⁹ factor $V_E = E_0/B$ is not. One example is the long-wavelength limit of the growth rate
³⁷⁰ given by Eq. (55). In this case, the quantity I^{-1} simplifies to r_i^{-2} and the GDI term in
³⁷¹ Eq. (55) simplifies to $G V_E f$ since $s_i r_i^2 (1 + r_i^{-2}) = 1$. For the important special case of
³⁷² $\theta = 0$ ($\mathbf{V}_d \parallel \mathbf{k}$), Section 2, $f = 1$ and the growth rate is independent of altitude in the
³⁷³ long-wavelength limit.

³⁷⁴ Figure 4 illustrates the growth rate behavior with the wavelength λ for various altitudes.
³⁷⁵ From Figure 4, the growth rate approaches the same value at large λ , when it is normalized

³⁷⁶ to GV_E . At short scales, the behavior is determined by the first term in the numerator
³⁷⁷ $\propto k^2$. Depending whether the quantity in brackets is positive (110 and 120 km) or negative
³⁷⁸ (altitudes ≥ 130 km), it increases or decreases with λ .

³⁷⁹ An important new result of this study is that the ion inertia plays a key role in the
³⁸⁰ growth rate behavior by modifying other factors as discussed below. The dashed lines
³⁸¹ show dimensionless quantities $1 \pm I^{-1}$ that appear in Eq. (55) that deviate significantly
³⁸² from unity at long wavelengths. This deviation is important since the limit of $I^{-1} \rightarrow 0$
³⁸³ refers to the standard FBI/GDI mode, Eq. (34). Thus, Eqs. (30) and (55) may be
³⁸⁴ regarded as a generalization of the standard FBI/GDI case for arbitrary altitude.

³⁸⁵ Another new result is that the ion inertia always amplifies the gradient effects. This is
³⁸⁶ easy to see since the quantity I^{-1} is always positive and since $1 + I^{-1} > 1$ is multiplied by
³⁸⁷ the gradient term $GV_E f$ in Eq. (55). As discussed above, when $f > 0$, this amplifies the
³⁸⁸ destabilizing effects of gradients and when $f < 0$ their stabilizing effects are amplified.

³⁸⁹ In contrast, the quantity $1 - I^{-1}$ is always smaller than unity. Moreover, it can be
³⁹⁰ negative, as for short scales $\lambda < 20$ m at 130 km and for all scales of interest at higher
³⁹¹ altitudes in Figure 4. The quantity $1 - I^{-1}$ is multiplied by the term $s_i r_i^2 V_E^2 \cos^2 \theta$ in Eq.
³⁹² (55) which is also due to the ion inertia and in the E region, where $s_i r_i^2 \approx 1$, is traditionally
³⁹³ associated with FBI. Thus additional inertial effects considered in the present study reduce
³⁹⁴ this FBI factor and can even change a destabilizing FBI factor to a stabilizing one. The
³⁹⁵ quantity $1 - I^{-1}$ reduces to $1 - r_i^{-2}$ at long wavelengths, which is consistent with *Dimant*
³⁹⁶ and *Oppenheim* [2011b], Section 5.2, who also attributed this additional factor to the ion
³⁹⁷ inertia. The current study thus may be regarded as an extension of the theory by *Dimant*
³⁹⁸ and *Oppenheim* [2011b] to shorter scales.

399 The origin of the additional ion inertia effect is the higher-order terms in the dispersion
 400 relation. The quantity $I = r_i^2 + \omega_r'^2 \Omega_i^{-2}$ can be traced back to quantity $D_i = -i\Omega_i^{-1}\omega' +$
 401 r_i that appears in the cubic dispersion relation (6). The standard FBI/GDI case can
 402 be obtained from an approximate version of the dispersion relation which is quadratic
 403 in D_i [Makarevich, 2016b], while consideration of the full cubic version for arbitrary
 404 altitude leads to our general case. As defined in Section 2, the quantity D_i is a Fourier
 405 representation of the convective derivative plus collisional term, while the cubic term D_i^3
 406 can be traced back to the momentum equation whose solution for velocity includes both
 407 linear and nonlinear terms in D_i [Makarevich, 2016a, and their equations (11) and (12)].
 408 In this sense one can regard additional inertial effects considered in the current study as
 409 “nonlinear”, although one should not confuse those with nonlinear effects that are due to
 410 nonlinear terms in perturbations.

411 Finally, it is important to differentiate between the ion inertia itself that is represented
 412 by the quantity $I = r_i^2 + \omega_r'^2 \Omega_i^{-2} = (\nu_i^2 + \omega_r'^2) \Omega_i^{-2}$ and the effect considered here that is
 413 represented by its inverse $I^{-1} = \Omega_i^2 (\nu_i^2 + \omega_r'^2)^{-1}$. The often-used assumption of negligible
 414 inertia (e.g. at long wavelengths in the F region) results in small I , but large I^{-1} and hence
 415 large modification of the growth rate as compared to the standard FBI/GDI expression.
 416 In this limit, the modification actually results in the well-known simple F -region GDI
 417 expression GV_E . The quantity I^{-1} that appears in the arbitrary-altitude expressions
 418 (29), (30), and (55) thus facilitates a transparent reconciliation between different limiting
 419 cases.

10. Summary and Conclusions

420 1. The growth rate and oscillation frequency of unstable plasma waves generated
 421 by ionospheric plasma instabilities such the Farley-Buneman instability (FBI) and the
 422 gradient-drift instability (GDI) can be found from explicit expressions that are valid
 423 throughout the lower ionosphere including the ionospheric *E* and *F* regions.

424 2. The domains of applicability for the explicit expressions in terms of the plasma
 425 density gradient $\mathbf{G} = \nabla n/n$ and wavelength λ are controlled by the limits imposed by the
 426 local and slow growth approximations. In the *E* region, the expressions work for all scales
 427 of interest (G, λ), except at strong gradients and long wavelengths. In the *F* region, the
 428 applicability range in G changes with the wavelength λ ; it is more extended at shorter
 429 scales than at longer scales. The obtained expressions apply for $G < 10^{-3} \text{ m}^{-1}$ at $\lambda = 10$
 430 m versus $G < 10^{-4} \text{ m}^{-1}$ at $\lambda = 100\text{--}1000$ m. The commonly used assumption about the
 431 equivalency of the wave phase velocity V_{ph} and the plasma drift velocity V_d fails in the *F*
 432 region at gradients as weak as $G = 10^{-5} \text{ m}^{-1}$. A more careful treatment results in the
 433 ratio $V_{\text{ph}}/V_d \approx 0.9$ at $G = 10^{-4} \text{ m}^{-1}$ which decreases even further for stronger gradients.

434 3. The general explicit expressions represent a generalization of the standard FBI/GDI
 435 expressions in the *E* region to all altitudes, with previously-unreported additional effects
 436 due to the ion inertia represented by the factor $(\nu_i^2 + \omega_r'^2)^{-1}$. The additional inertial effect
 437 modifies the growth rate factors traditionally associated with FBI and GDI, with the FBI
 438 factor being reduced and the GDI factor being amplified. Progressively stronger effects
 439 are seen at larger altitudes and/or wavelengths. The previously-considered limiting cases
 440 (e.g. standard FBI/GDI mode) fall out transparently from the general expressions by
 441 considering magnitude of the additional inertial factor.

Appendix A: From Iterative to Quadric Form of Dispersion Relation

442 In this section, the iterative form of the dispersion relation (9) is rewritten into an
 443 alternative form with the growth rate $\gamma = \Im\omega'$ given explicitly everywhere. The alternative
 444 form is shown to be a quadric equation in γ that can be approximated into a linear or
 445 quadratic form in γ . By taking real and imaginary parts of Eq. (9), the following equations
 446 on the oscillation frequency ω'_r and the growth rate γ are obtained

$$\omega'_r = \Re\omega' = \frac{\omega'_{r0} + \gamma \left[\hat{\psi}r_i^{-1}\Im Z - (b + a\psi'r_i^{-1})\Re Z \right]}{1 + \hat{\psi}r_i^{-1}\Re Z + (b + a\psi'r_i^{-1})\Im Z}, \quad (A1)$$

$$\gamma = \Im\omega' = \frac{\hat{\psi}r_i^{-1}(-\omega'_r\Im Z - Ck_\perp^2) + (b + a\psi'r_i^{-1})\omega'_r\Re Z}{1 + \hat{\psi}r_i^{-1}\Re Z + (b + a\psi'r_i^{-1})\Im Z}, \quad (A2)$$

where

$$\omega'_{r0} \equiv \mathbf{V}_d \cdot \mathbf{k} - (b + a\psi'r_i^{-1})Ck_\perp^2. \quad (A3)$$

Eqs. (A1) and (A2) are further rewritten as

$$\omega'_r = \frac{X\omega'_{r0} + \gamma \left[\hat{\psi}r_i^{-1}X\Im Z - (b + a\psi'r_i^{-1})X\Re Z \right]}{X + \hat{\psi}r_i^{-1}X\Re Z + (b + a\psi'r_i^{-1})X\Im Z}, \quad (A4)$$

$$\gamma = \frac{\hat{\psi}r_i^{-1}(-\omega'_rX\Im Z - XCk_\perp^2) + (b + a\psi'r_i^{-1})\omega'_rX\Re Z}{X + \hat{\psi}r_i^{-1}X\Re Z + (b + a\psi'r_i^{-1})X\Im Z}, \quad (A5)$$

447 where a new real quantity has been introduced

$$X \equiv |D_i - iaD_i + ib|^2 = X_2\gamma^2 + X_1\gamma + X_0, \quad (A6)$$

with

$$X_2 \equiv \Omega_i^{-2}(1 + a^2), \quad X_1 \equiv 2\Omega_i^{-1}(r_i + a^2r_i - ab), \quad X_0 \equiv I(1 + a^2) + b^2 - 2abr_i - 2b\omega'_r\Omega_i^{-1}, \quad (A7)$$

$$I \equiv r_i^2 + \omega'^2_r\Omega_i^{-2}. \quad (A8)$$

⁴⁴⁸ Quantities $X\Re Z$ and $X\Im Z$ are found from Eq. (10) using definition of D_i in terms of
⁴⁴⁹ ω' from Eq. (2)

$$X\Re Z = R_3\gamma^3 + R_2\gamma^2 + R_1\gamma + R_0, \quad (\text{A9})$$

$$X\Im Z = I_3\gamma^3 + I_2\gamma^2 + I_1\gamma + I_0, \quad (\text{A10})$$

with

$$R_3 \equiv \Omega_i^{-3}, \quad R_2 \equiv \Omega_i^{-2} (3r_i + a\omega'_r \Omega_i^{-1}), \quad R_1 \equiv \Omega_i^{-1} [1 + I + 2r_i^2 + 2(ar_i - b)\omega'_r \Omega_i^{-1}],$$

$$R_0 \equiv (1 + I)r_i - a\omega'_r \Omega_i^{-1}(1 - I) - 2br_i\omega'_r \Omega_i^{-1}, \quad (\text{A11})$$

$$I_3 \equiv a\Omega_i^{-3}, \quad I_2 \equiv \Omega_i^{-2} (3ar_i - b - \omega'_r \Omega_i^{-1}), \quad I_1 \equiv -2r_i\Omega_i^{-1} (b + \omega'_r \Omega_i^{-1}) + a\Omega_i^{-1} (1 + I + 2r_i^2),$$

$$I_0 \equiv \omega'_r \Omega_i^{-1} (1 - I) + ar_i (1 + I) - b (1 + r_i^2 - \omega'^2_r \Omega_i^{-2}). \quad (\text{A12})$$

⁴⁵⁰ Since both $X\Re Z$ and $X\Im Z$ are cubic in γ , both equations (A4) and (A5) are quadric
⁴⁵¹ in γ . After tedious but straightforward algebra, these can be rewritten into a form that
⁴⁵² is explicitly quadric

$$\omega'_r D_0 = (X_0 + X_1\gamma + X_2\gamma^2) \omega'_{r0} - \gamma\Omega_1 - \gamma^2\Omega_2 - \gamma^3\Omega_3 - \gamma^4\Omega_4. \quad (\text{A13})$$

$$\gamma^4\Gamma_4 + \gamma^3\Gamma_3 + \gamma^2\Gamma_2 + \gamma\Gamma_1 = \Gamma_0, \quad (\text{A14})$$

⁴⁵³ where quantities D_0, Ω_j, Γ_j are defined below and most are explicitly separated into parts
⁴⁵⁴ proportional to different gradient powers, e.g.

$$D_0 \equiv D_{0,0} + D_{0,1} + D_{0,2}, \quad (\text{A15})$$

⁴⁵⁵ with $D_{0,0} \propto G^0$ being a gradient-free term, $D_{0,1} \propto G$ (terms $\propto b \propto G$ and $a \propto G$),
⁴⁵⁶ $D_{0,2} \propto G^2$ (terms $\propto b^2, a^2, ab$). The complete set of definitions is

$$\begin{aligned}
D_{0,0} &\equiv I + \hat{\psi} (1 + I), & D_{0,1} &\equiv -b \left(1 + I + 2\hat{\psi} \right) + a \left(\psi' - \hat{\psi} \right) r_i^{-1} \omega_r' \Omega_i^{-1} (1 - I), \\
D_{0,2} &\equiv a^2 [I + \psi' (1 + I)] + abr_i (-1 + I) - ab\psi' r_i^{-1} (1 + r_i^2 - \omega_r'^2 \Omega_i^{-2}) + b^2 (\omega_r'^2 \Omega_i^{-2} - r_i^2),
\end{aligned} \tag{A16}$$

$$\begin{aligned}
\Omega_{1,0} &\equiv 2r_i \omega_r' \Omega_i^{-1} \left(1 + 2\hat{\psi} + \hat{\psi} r_i^{-2} \omega_r'^2 \Omega_i^{-2} \right), \\
\Omega_{1,1} &\equiv br_i (1 + r_i^2 - \omega_r'^2 \Omega_i^{-2}) + b\hat{\psi} r_i^{-1} (1 + r_i^2 - 3\omega_r'^2 \Omega_i^{-2}) + a (\psi' - \hat{\psi}) (1 + r_i^2 - \omega_r'^2 \Omega_i^{-2}), \\
\Omega_{1,2} &\equiv 2\omega_r' \Omega_i^{-1} [a^2 r_i + a^2 \psi' r_i^{-1} (I + r_i^2) - 2b^2 r_i + ab (-1 + I + r_i^2 - 2\psi')], \\
\Omega_{2,0} &\equiv \omega_r' \Omega_i^{-2} (1 + 5\hat{\psi}), & \Omega_{2,1} &\equiv b\Omega_i^{-1} (1 + 3r_i^2 + 2\hat{\psi}) + a\Omega_i^{-1} (\psi' - \hat{\psi}) r_i^{-1} (1 + 3r_i^2), \\
\Omega_{2,2} &\equiv \omega_r' \Omega_i^{-2} (a^2 + 5a^2 \psi' - 3b^2 + 5abr_i - 3ab\psi' r_i^{-1}), \\
\Omega_3 &\equiv 2\omega_r' \Omega_i^{-3} (\hat{\psi} r_i^{-1} + ab + a^2 \psi' r_i^{-1}) + b\Omega_i^{-1} (\hat{\psi} r_i^{-1} + 3r_i) + 3a\Omega_i^{-1} (\psi' - \hat{\psi}), \\
\Omega_4 &\equiv \Omega_i^{-3} [b + a (\psi' - \hat{\psi}) r_i^{-1}],
\end{aligned} \tag{A17}$$

$$\begin{aligned}
\Gamma_{0,0} &\equiv \hat{\psi}r_i^{-1} \left[\omega_r'^2 \Omega_i^{-1} (I - 1) - Ck_{\perp}^2 I \right], \\
\Gamma_{0,1} &\equiv b\omega_r' r_i \left[1 + 2\hat{\psi} + I + \hat{\psi}r_i^{-2} (1 - I + 2Ck_{\perp}^2 \Omega_i^{-1}) \right] + a\omega_r' (\psi' - \hat{\psi}) (1 + I), \\
\Gamma_{0,2} &\equiv \omega_r'^2 \Omega_i^{-1} \left[2b^2 r_i + a^2 \psi' r_i^{-1} (1 - I) + ab (1 - I + 2\psi') \right] - \hat{\psi}r_i^{-1} Ck_{\perp}^2 (a^2 I + b^2 - 2abr_i), \\
\Gamma_{1,0} &\equiv I + \hat{\psi} (1 + I - 2\omega_r'^2 \Omega_i^{-2} + 2Ck_{\perp}^2 \Omega_i^{-1}), \\
\Gamma_{1,1} &\equiv -2b\omega_r' \Omega_i^{-1} (1 + 2\hat{\psi} + r_i^2 + I) + 2a (\hat{\psi} - \psi') r_i^{-1} \omega_r' \Omega_i^{-1} (I + r_i^2), \\
\Gamma_{1,2} &\equiv a^2 \left[I + \psi' (1 + I - 2\omega_r'^2 \Omega_i^{-2}) + 2\hat{\psi} Ck_{\perp}^2 \Omega_i^{-1} \right] + b^2 (3\omega_r'^2 \Omega_i^{-2} - r_i^2), \\
&\quad + abr_i (-1 + I - 2\omega_r'^2 \Omega_i^{-2}) - ab\psi' r_i^{-1} (1 + r_i^2 - 3\omega_r'^2 \Omega_i^{-2}) - 2ab\hat{\psi} r_i^{-1} Ck_{\perp}^2 \Omega_i^{-1}, \\
\Gamma_{2,0} &\equiv r_i \Omega_i^{-1} \left[2 + 3\hat{\psi} + \hat{\psi}r_i^{-2} (1 + Ck_{\perp}^2 \Omega_i^{-1}) \right], \quad \Gamma_{2,1} \equiv \omega_r' \Omega_i^{-2} \left[5a (\hat{\psi} - \psi') - br_i (5 + 3\hat{\psi}r_i^{-2}) \right], \\
\Gamma_{2,2} &\equiv 2r_i \Omega_i^{-1} (a^2 - b^2) + ab \Omega_i^{-1} (1 + 3r_i^2 - 2\psi' - 2) + a^2 \psi' r_i^{-1} \Omega_i^{-1} (1 + 3r_i^2) + a^2 \hat{\psi} r_i^{-1} Ck_{\perp}^2 \Omega_i^{-2}, \\
\Gamma_3 &\equiv \Omega_i^{-2} (1 + 3\hat{\psi}) + 2\omega_r' \Omega_i^{-3} \left[ar_i^{-1} (\hat{\psi} - \psi') - b \right] + \Omega_i^{-2} [a^2 (1 + 3\psi') - b^2 + ab (3r_i - \psi' r_i^{-1})], \\
\Gamma_4 &\equiv \Omega_i^{-3} \left[\hat{\psi} r_i^{-1} + a^2 \psi' r_i^{-1} + ab \right]. \tag{A18}
\end{aligned}$$

457 The correctness of the quadric form expressions (A13) and (A14) has been verified by
458 substituting numerical solutions of the cubic form (6) and determining that equations
459 (A13) and (A14) hold to double precision (not presented here). It is for this reason that
460 all terms including small ones were kept in Eqs. (A16)–(A18).

Appendix B: Differential Drift Velocity and Zeroth-Order Frequency

461 In this section, we evaluate \mathbf{V}_d and ω'_{r0} for arbitrary altitude and vector directions.
462 The previously derived general expressions for the drift velocities are [Makarevich, 2016a,
463 equation (5)]

$$\mathbf{V}_{\alpha 0} = s_{\alpha} \left(\frac{\mathbf{E}_0}{B} - C_{\alpha} \mathbf{G} \right) \times \hat{\mathbf{b}} + s_{\alpha} r_{\alpha} \left(\frac{\mathbf{E}_{0\perp}}{B} - C_{\alpha} \mathbf{G}_{\perp} \right) + r_{\alpha}^{-1} \left(\frac{E_{0\parallel}}{B} - C_{\alpha} G_{\parallel} \right) \hat{\mathbf{b}}, \quad (\text{B1})$$

464 where \mathbf{E}_0 is the background electric field, $\mathbf{G} = \nabla n/n$ is the gradient strength vector, and

$$r_{\alpha} = \nu_{\alpha}/\Omega_{\alpha}, \quad s_{\alpha} = (1 + r_{\alpha}^2)^{-1}, \quad C_{\alpha} = T_{\alpha}/(q_{\alpha} B). \quad (\text{B2})$$

465 The differential drift velocity is found by subtracting the ion drift velocity from the
466 electron drift velocity and rewriting

$$\begin{aligned} \mathbf{V}_d = & s_e s_i (r_i - r_e) (1 + \psi) \left(R \mathbf{V}_E - \frac{\mathbf{E}_{0\perp}}{B} \right) - \psi^{-1} (r_i - r_e) \frac{E_{0\parallel}}{B} \hat{\mathbf{b}} + \\ & + s_e s_i (1 + \psi) \left[(C - RL) \mathbf{G} \times \hat{\mathbf{b}} + (RC + L) \mathbf{G}_{\perp} \right] + \psi^{-1} L G_{\parallel} \hat{\mathbf{b}}. \end{aligned} \quad (\text{B3})$$

where

$$R \equiv \frac{r_i + r_e}{1 + \psi}, \quad L \equiv r_i C_e - r_e C_i, \quad C = C_i - C_e. \quad (\text{B4})$$

467 This can be approximated for the case of fully-magnetized electrons $|r_e| \ll 1$ and $s_e \approx 1$
468 and for the ionospheric applications where $|r_e| \ll r_i$, $\psi \ll 1$. In this case, $R \approx r_i$,
469 $C - RL \approx C - C_e r_i^2$, $RC + L \approx r_i C_i$, $\psi^{-1} L \approx -r_e^{-1} C_e$, and

$$\mathbf{V}_d \approx s_i r_i \left(r_i \mathbf{V}_E - \frac{\mathbf{E}_{0\perp}}{B} \right) + r_e^{-1} \frac{E_{0\parallel}}{B} \hat{\mathbf{b}} + s_i \left[(C - C_e r_i^2) \mathbf{G} \times \hat{\mathbf{b}} + r_i C_i \mathbf{G}_{\perp} \right] - r_e^{-1} C_e G_{\parallel} \hat{\mathbf{b}}, \quad (\text{B5})$$

470 A simple OOM analysis of V_d can be carried out by neglecting all terms except for the
471 first one which includes two perpendicular components parallel to \mathbf{V}_E and $\mathbf{E}_{0\perp}/B$. From
472 these and definition of s_i from Eq. (B2),

$$V_d \sim s_i r_i V_E (r_i^2 + 1)^{1/2} = s_i^{1/2} r_i V_E. \quad (\text{B6})$$

⁴⁷³ The zeroth-order oscillation frequency defined by Eq. (13) is evaluated by approximat-
⁴⁷⁴ ing $a\psi'r_i^{-1} \ll b$, substituting Eq. (B5) and definitions of gradient terms a and b from Eq.
⁴⁷⁵ (2), and simplifying

$$\omega'_{r0} \approx s_i r_i \left[r_i \left(\mathbf{V}_E - C_i \mathbf{G} \times \hat{\mathbf{b}} \right) - \left(\frac{\mathbf{E}_{0\perp}}{B} - C_i \mathbf{G}_\perp \right) \right] \cdot \mathbf{k} + r_e^{-1} k_\parallel \left(\frac{E_{0\parallel}}{B} - C_e G_\parallel \right). \quad (\text{B7})$$

⁴⁷⁶ For realistic gradients $C_\alpha G \ll E_0/B$ and all gradient terms are negligible as compared
⁴⁷⁷ to their electric field counterparts

$$\omega'_{r0} \approx s_i r_i \left(r_i \mathbf{V}_E - \frac{\mathbf{E}_{0\perp}}{B} \right) \cdot \mathbf{k} + r_e^{-1} k_\parallel \frac{E_{0\parallel}}{B}. \quad (\text{B8})$$

One should note that the last step is only possible because both terms $\mathbf{V}_d \cdot \mathbf{k}$ and bCk_\perp^2 in ω'_{r0} contain gradient-dependent terms, but these partially cancel leaving only terms that can be neglected. A similar cancelation has been previously demonstrated by *Makarevich* [2016b] for the *F*-region case and purely perpendicular propagation $k_\parallel = 0$. For a more general case in the *F* region, $r_i \ll 1$, $s_i \approx 1$ and

$$\omega'_{r0}^F \approx -r_i \left(\frac{\mathbf{E}_{0\perp}}{B} \cdot \mathbf{k} + \psi^{-1} \frac{E_{0\parallel} k_\parallel}{B} \right). \quad (\text{B9})$$

Appendix C: Growth Rate Expression: Order-of-Magnitude Analysis

⁴⁷⁸ In this section, we carry out an order-of-magnitude (OOM) analysis of two specific
⁴⁷⁹ terms in the expression for the growth rate. It is demonstrated that the first term is
⁴⁸⁰ important only at short wavelengths $\lambda < 10$ m in the *F* region, while the second term can
⁴⁸¹ be neglected for purely field-aligned irregularities (PFAI).

The explicit expression for the growth rate derived in Section 4 was as follows

$$\tilde{\gamma} = \frac{\hat{\psi}r_i^{-1} [\omega_r'^2\Omega_i^{-1} (1 - I^{-1}) - Ck_{\perp}^2] + b\omega_r'r_i \left(1 + I^{-1} + 2\hat{\psi}r_i^{-2}I^{-1}Ck_{\perp}^2\Omega_i^{-1} \right) + a\omega_r' (\psi' - \hat{\psi}) (1 + I^{-1})}{1 + \hat{\psi} (1 + I^{-1})}. \quad (\text{C1})$$

482 The first term of interest is the term $2\hat{\psi}r_i^{-2}I^{-1}Ck_{\perp}^2\Omega_i^{-1}$ in the numerator. It is compared
483 to the remaining terms $1 + I^{-1}$ in the second term in the numerator in Eq. (29) by equating

$$2\hat{\psi}r_i^{-2}I^{-1}Ck_{\perp}^2\Omega_i^{-1} = \kappa (1 + I^{-1}), \quad (\text{C2})$$

484 where κ is assumed to represent a smallness parameter, e.g. 0.01 or 0.1. From Eq. (C2),
485 the wavelengths that refer to different κ levels are found by using an OOM estimate
486 for ω_r' from Eq. (19) and a corresponding factor $I \sim r_i^2 + \Omega_i^{-2}s_i^2r_i^2V_E^2k^2$. Under these
487 approximations, Eq. (C2) becomes

$$2\hat{\psi}r_i^{-2}Ck^2\Omega_i^{-1} = \kappa (1 + r_i^2 + \Omega_i^{-2}s_i^2r_i^2V_E^2k^2). \quad (\text{C3})$$

488 When $\kappa\Omega_i^{-2}s_i^2r_i^2V_E^2 > 2\hat{\psi}r_i^{-2}C\Omega_i^{-1}$, there is no real solutions in k , which means that the
489 left-hand-side is small for any k . This is the case for the E region. When $\kappa\Omega_i^{-2}s_i^2r_i^2V_E^2 <$
490 $2\hat{\psi}r_i^{-2}C\Omega_i^{-1}$, a solution is $k_{\kappa}^2 = \kappa s_i^{-1} / (2\hat{\psi}r_i^{-2}C\Omega_i^{-1} - \kappa\Omega_i^{-2}s_i^2r_i^2V_E^2)$, from which $\lambda_{\kappa=0.01} =$
491 14 m and $\lambda_{\kappa=0.1} = 4.5$ m for the F region. This means that at scales near $\lambda \sim 10$ m and
492 shorter, the term in question is important, but at longer wavelengths it quickly becomes
493 negligible.

494 The second term is $a\omega_r' (\psi' - \hat{\psi}) (1 + I^{-1})$, where $a = \mathbf{G} \cdot \mathbf{k}_{\perp} / k_{\perp}^2$ from Eq. (2). It is zero
495 for purely perpendicular propagation $k_{\parallel} = 0$, since $\hat{\psi} = \psi' = \psi$ in this case from Eqs. (4)
496 and (5). More generally, it can be neglected when $a (\psi' - \hat{\psi}) \ll br_i$. Since both gradient
497 terms a and b are of the same magnitude and since $\psi' - \hat{\psi} \approx -r_i r_e^{-1} y^2$, this condition

498 can be rewritten as $y^2 \ll -r_e$. This is significantly more restrictive than the condition
 499 of nearly field-aligned irregularities (NFAI) under which the general dispersion relation is
 500 valid. For arbitrary altitude, the NFAI condition is $y^2 \ll s_i r_i^2 < 1$, which in the F region
 501 can be written as $y^2 \ll r_i^2 \ll 1$, since $s_i \approx 1$ there. Thus the last term in Eq. (29) can be
 502 neglected close to purely perpendicular propagation or purely field-aligned irregularities
 503 (PFAI) when $y^2 \ll -r_e$.

504 In addition, this term is typically much smaller than the gradient-free term $\Gamma_{0,0} I^{-1} =$
 505 $\hat{\psi} r_i^{-1} [\omega_r'^2 \Omega_i^{-1} (1 - I^{-1}) - C k_\perp^2]$. A simple OOM analysis is to equate $a \omega_r' (\psi' - \hat{\psi}) =$
 506 $\hat{\psi} r_i^{-1} \omega_r'^2 \Omega_i^{-1}$ and to find the wavelength where the contributions are equal by utilizing
 507 OOM estimates $y^2 \sim -r_e$, $\psi' - \hat{\psi} \approx -r_i r_e^{-1} y^2 \sim r_i$, $\hat{\psi} = \psi (1 + r_e^{-2} y^2) \sim \psi (1 - r_e^{-1}) \sim r_i$,
 508 $a \sim b \sim G/k$, as well as Eq. (19) for ω_r' . With these estimates, the wavelength is found as
 509 $\lambda = 2\pi \sqrt{s_i V_E / G / \Omega_i}$, which for moderate gradients $G = 10^{-5} \text{ m}^{-1}$ and strong convection
 510 $V_E = 1000 \text{ m}$ is $\lambda \sim 1000 \text{ m}$ for the E region and $\lambda \sim 3650 \text{ m}$ for the F region. This
 511 means that the term in question is small as compared to the gradient-free term $\Gamma_{0,0} I^{-1}$
 512 except at long wavelengths in the E region.

Appendix D: Critical Gradients

513 The expressions for the growth rate can be analyzed analytically using various ap-
 514 proaches, including analysis of the marginal instability growth condition $\gamma = 0$ and pa-
 515 rameters such as electric field E and density gradients G that satisfy it [e.g. *Makarevich*,
 516 2017]. In this section, a more general analysis is carried out in which gradient strengths
 517 G_κ are evaluated that are required to achieve a particular growth rate level κ , when
 518 normalized to the ion collision frequency ν_i

$$\gamma(G_\kappa)/\nu_i = \kappa, \quad (D1)$$

including critical gradients G_0 that lead to zero growth $\gamma(G_0) = 0$. It is useful to consider this more general case of G_κ rather than just G_0 , since in developing expressions for the growth rate, the slow growth approximation was employed, Eq. (22). In this section, we will develop expressions for G_κ and then use these expressions in Section 6 to analyze limits of applicability of the developed expressions for the growth rate.

We start from Eq. (29), consider a case of the purely field-aligned irregularities (PFAI) where the last term in the numerator can be neglected, Appendix C, and substitute into Eq. (D1)

$$\kappa = \frac{\hat{\psi}r_i^{-2} [\omega_r'^2\Omega_i^{-2}(1 - I^{-1}) - Ck_\perp^2\Omega_i^{-1}] + b\omega_r'\Omega_i^{-1} \left(1 + I^{-1} + 2\hat{\psi}r_i^{-2}I^{-1}Ck_\perp^2\Omega_i^{-1}\right)}{1 + \hat{\psi}(1 + I^{-1})}. \quad (D2)$$

By substituting Eq. (31) into Eq. (D2) and rearranging, the exact expression for G_κ is

$$G_\kappa = \frac{\hat{\psi}r_i^{-2} [\omega_r'^2\Omega_i^{-2}(1 - I^{-1}) - Ck_\perp^2\Omega_i^{-1}] - \kappa [1 + \hat{\psi}(1 + I^{-1})]}{-\omega_r'\Omega_i^{-1}k_\perp^{-1} \sin(\alpha - \chi) \left(1 + I^{-1} + 2\hat{\psi}r_i^{-2}I^{-1}Ck_\perp^2\Omega_i^{-1}\right)}. \quad (D3)$$

The above expression can be approximated for the PFAI case by using Eq. (17) as

$$G_\kappa \approx -G_* f^{-1}(\alpha, \beta, \chi) \frac{\hat{\psi}\nu_i^{-2}k_\perp^2 [s_i r_i^2 V_E^2 \cos^2(\alpha + \beta) (1 - I^{-1}) - C_s^2] - \kappa [1 + \hat{\psi}(1 + I^{-1})]}{1 + I^{-1} + 2\hat{\psi}r_i^{-2}I^{-1}Ck_\perp^2\Omega_i^{-1}}, \quad (D4)$$

where function f has been previously defined by Eq. (33) and a new parameter G_* has been introduced as

$$G_* \equiv s_i^{-1} r_i^{-1} \Omega_i V_E^{-1}. \quad (\text{D5})$$

531 The G_* parameter is a characteristic gradient strength which for our model parameters

532 and strong convection case of $V_E = 1000$ m/s is 312 m at 300 km and 0.78 m at 110 km.

533 For a weaker convection, it becomes smaller but still much larger than gradients within

534 the range of interest $G = 10^{-8}$ – 10^{-2} m $^{-1}$ so that $G \ll G_*$.

535 For future reference, it is also convenient to rewrite the combination $b\omega'_r \Omega_i^{-1}$ by using

536 the same notations as

$$b\omega'_r \Omega_i^{-1} \approx G G_*^{-1} f(\alpha, \beta, \chi) \ll 1, \quad (\text{D6})$$

537 where in the last inequality we used the previously obtained estimate $G \ll G_*$.

538 **Acknowledgments.** This work was supported by NSF grants AGS-1656955 and PLR-

539 1443504. No data have been used in this theoretical study.

References

540 Basu, S., et al. (1998), Characteristics of plasma structuring in the cusp/cleft region at
541 svalbard, *Radio Sci.*, *33*(6), 1885–1899, doi:10.1029/98RS01597.

542 Chisham, G., et al. (2007), A decade of the Super Dual Auroral Radar Network (Su-
543 perDARN): scientific achievements, new techniques and future directions, *Surveys in*
544 *Geophysics*, *28*, 33–109, doi:10.1007/s10712-007-9017-8.

545 Dimant, Y. S., and G. M. Milikh (2003), Model of anomalous electron heating in the E
546 region: 1. Basic theory, *J. Geophys. Res.*, *108*, 1350, doi:10.1029/2002JA009524.

547 Dimant, Y. S., and M. M. Oppenheim (2011a), Magnetosphere-ionosphere coupling
548 through E region turbulence: 1. Energy budget, *J. Geophys. Res.*, *116*, A09303, doi:
549 10.1029/2011JA016648.

550 Dimant, Y. S., and M. M. Oppenheim (2011b), Magnetosphere-ionosphere coupling
551 through E region turbulence: 2. Anomalous conductivities and frictional heating, *J.*
552 *Geophys. Res.*, *116*, A09304, doi:10.1029/2011JA016649.

553 Fejer, B. G., D. T. Farley, B. B. Balsley, and R. F. Woodman (1975), Vertical structure
554 of the VHF backscattering region in the equatorial electrojet and the gradient drift
555 instability, *J. Geophys. Res.*, *80*, 1313–1324.

556 Fejer, B. G., J. Providakes, and D. T. Farley (1984), Theory of plasma waves in the
557 auroral E region, *J. Geophys. Res.*, *89*, 7487–7494.

558 Hassan, E., W. Horton, A. I. Smolyakov, D. R. Hatch, and S. K. Litt (2015), Multiscale
559 equatorial electrojet turbulence: Baseline 2-D model, *J. Geophys. Res. Space Physics*,
560 *120*, 1460–1477, doi:10.1002/2014JA020387.

561 Hassan, E., D. R. Hatch, P. J. Morrison, and W. Horton (2016), Multiscale equatorial elec-
562 trojet turbulence: Energy conservation, coupling, and cascades in a baseline 2-D fluid
563 model, *J. Geophys. Res. Space Physics*, 121, 9127–9145, doi:10.1002/2016JA022671.

564 Keskinen, M. J. (2006), GPS scintillation channel model for the disturbed low-latitude
565 ionosphere, *Radio Sci.*, 41(4), doi:10.1029/2005RS003442.

566 Makarevich, R. A. (2014), Symmetry considerations in the two-fluid theory of the
567 gradient-drift instability in the lower ionosphere, *J. Geophys. Res.*, 119, doi:
568 10.1002/2014JA020292.

569 Makarevich, R. A. (2016a), Toward an integrated view of ionospheric plasma instabilities:
570 Altitudinal transitions and strong gradient case, *J. Geophys. Res. Space Physics*, 121,
571 3634–3647, doi:10.1002/2016JA022515.

572 Makarevich, R. A. (2016b), Toward an integrated view of ionospheric plasma instabilities:
573 2. Three inertial modes of a cubic dispersion relation, *J. Geophys. Res. Space Physics*,
574 121, 6855–6869, doi:10.1002/2016JA022864.

575 Makarevich, R. A. (2017), Critical density gradients for small-scale plasma irregularity
576 generation in the E and F regions, *J. Geophys. Res. Space Physics*, 122, 9588–9602,
577 doi:10.1002/2017JA024393.

578 Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), *Numer-
579 ical Recipes in Fortran 77: the Art of Scientific Computing. Second Edition*, vol. 1,
580 Cambridge University Press.

581 Rogister, A., and N. D'Angelo (1970), Type II irregularities in the equatorial electrojet,
582 *J. Geophys. Res.*, 75, 3879–3887.

583 Sudan, R. N., J. Akinrimisi, and D. T. Farley (1973), Generation of small-scale irregular-
584 ities in the equatorial electrojet, *J. Geophys. Res.*, 78, 240–248.

585 Young, M. A., M. M. Oppenheim, and Y. S. Dimant (2017), Hybrid simulations of coupled
586 Farley-Buneman/gradient drift instabilities in the equatorial E region ionosphere, *J.*
587 *Geophys. Res. Space Physics*, 122, 5768–5781, doi:10.1002/2017JA024161.

588 Young, M. A., M. M. Oppenheim, and Y. S. Dimant (2019), Simulations of secondary
589 Farley-Buneman instability driven by a kilometer-scale primary wave: Anomalous trans-
590 port and formation of flat-topped electric fields, *J. Geophys. Res. Space Physics*, 124,
591 734–748, doi:10.1029/2018JA026072.

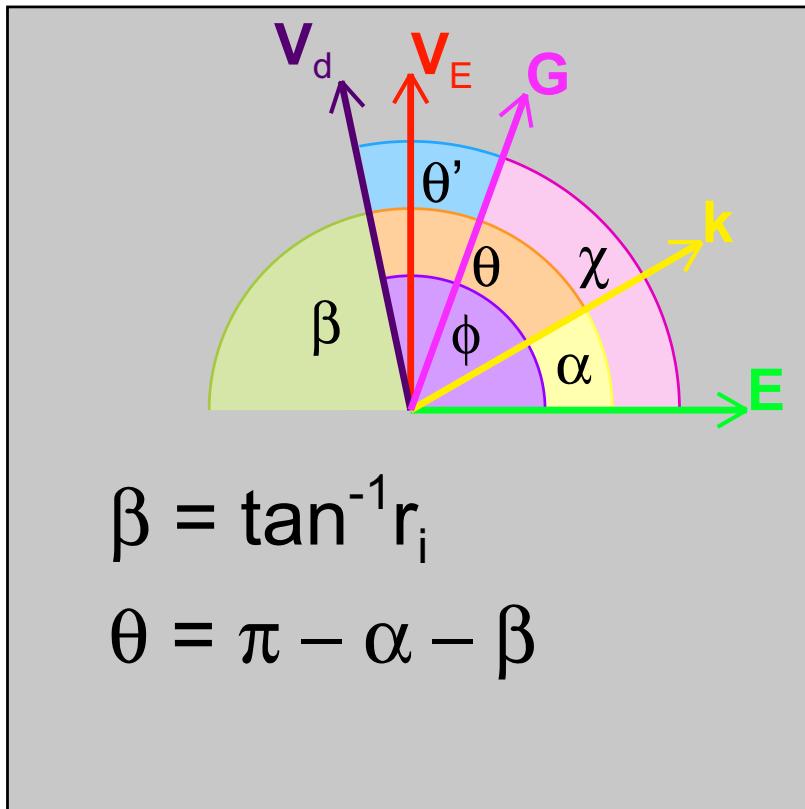


Figure 1. Vector geometry and angle definitions. Shown are the directions of the field-perpendicular components of the differential plasma drift velocity \mathbf{V}_d , the $\mathbf{E} \times \mathbf{B}$ drift velocity \mathbf{V}_E , gradient $\mathbf{G} = \nabla n/n$, wavevector \mathbf{k} , and the electric field \mathbf{E} . The definitions of six angles of interest are also shown. All angles are positive ccw from the x axis, except for β which is positive from the negative x axis cw.

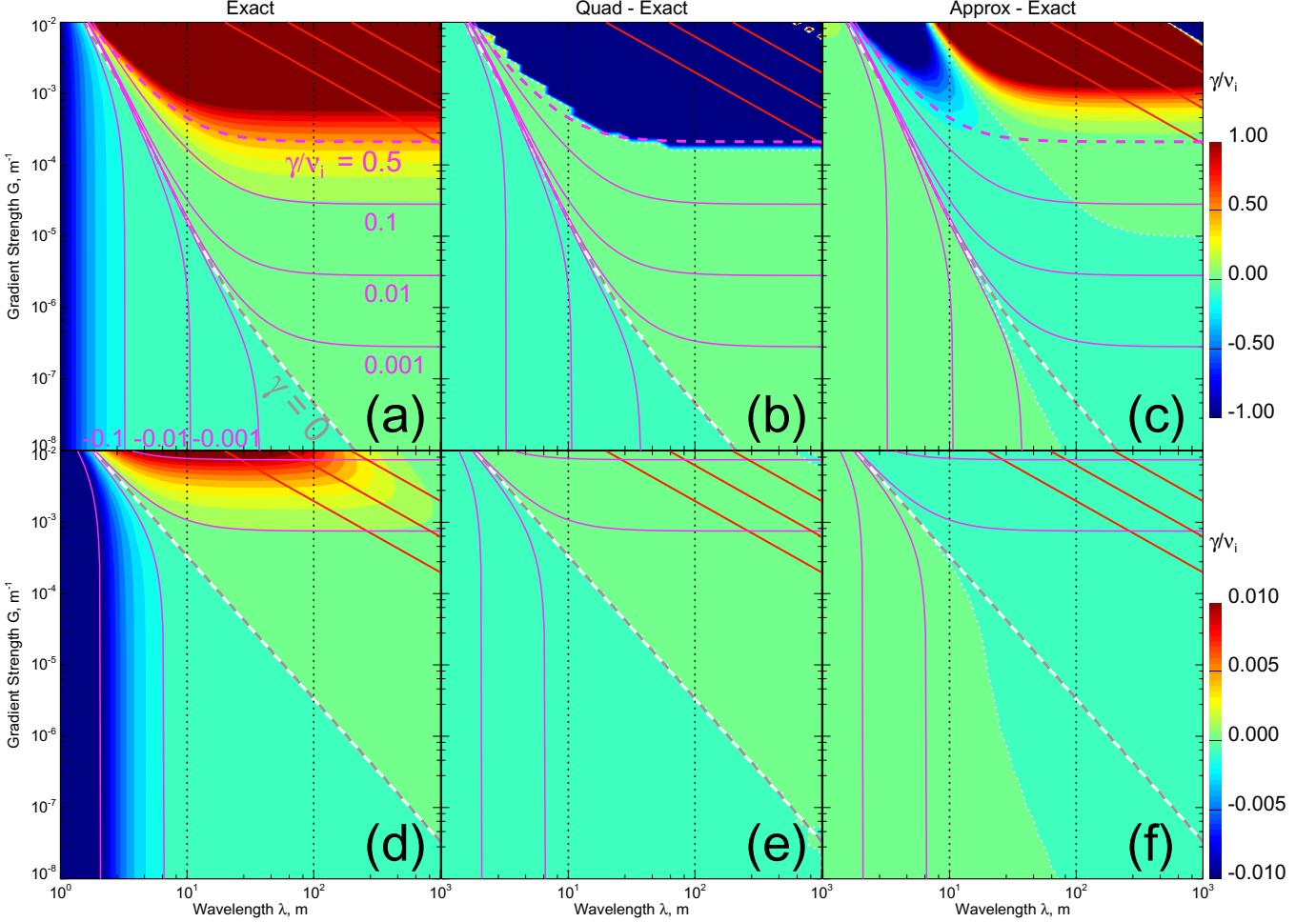


Figure 2. The growth rate dependence on the wavelength λ and gradient strength G for the gradient angle $\chi = \pi/2$, propagation angle $\alpha = 0$, and zero aspect angle $\alpha' = 0$. Shown are (a) the exact values γ normalized to ν_i , (b) differences between the quadratic values $\bar{\gamma}/\nu_i$ and the exact values γ/ν_i , and (c) differences between the approximate values $\tilde{\gamma}/\nu_i$ and the exact values γ/ν_i at an *F*-region altitude of 300 km. Figures 2d–2f show the same but for an *E*-region altitude of 110 km. Also shown are the limits of applicability of the local ($G \ll k$; red lines) and slow-growth ($|\gamma| \ll \nu_i$; pink lines) approximations, as well as marginal instability conditions $\gamma = 0$ (grey-white dashed line), see text for details.

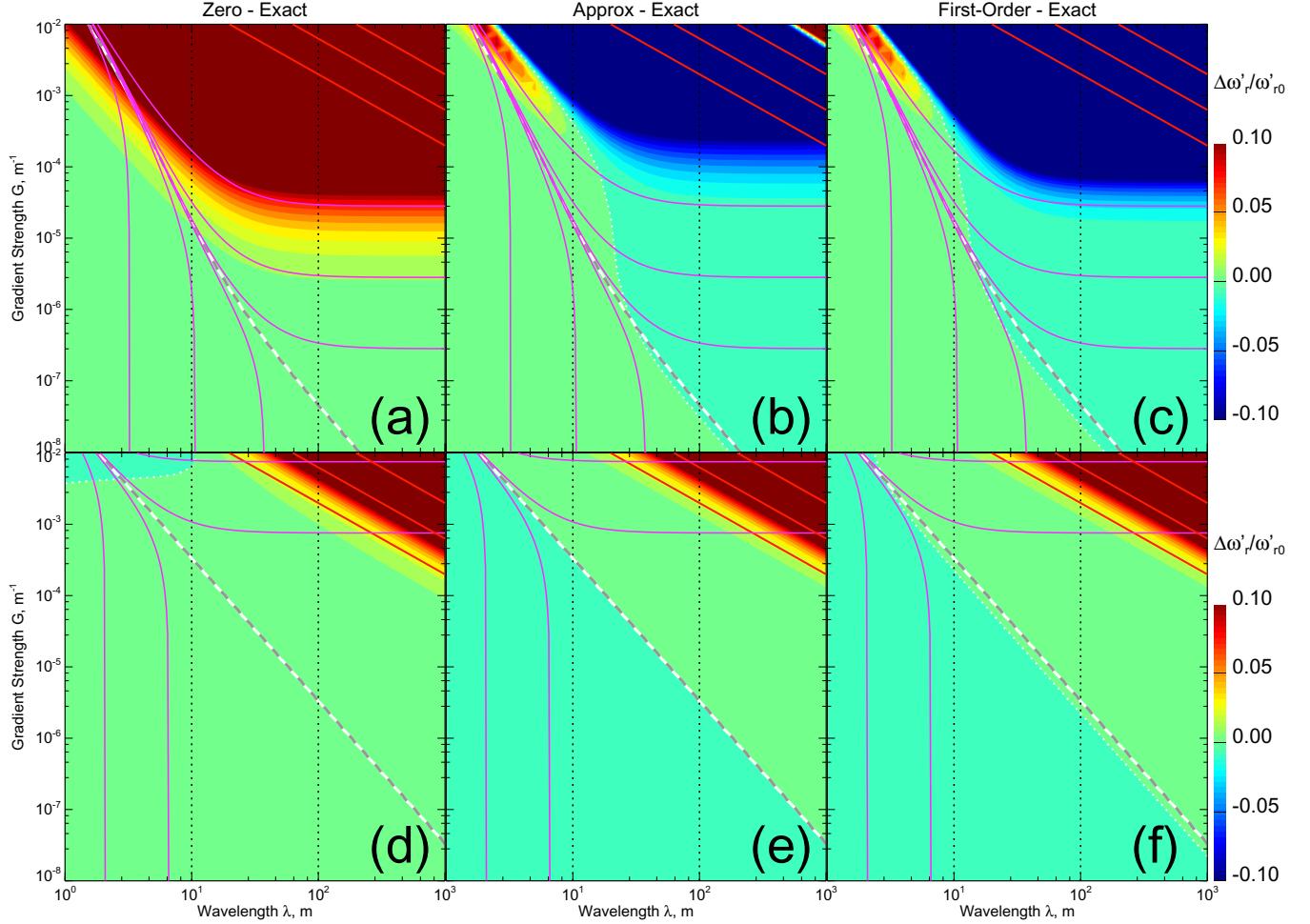


Figure 3. The same as Figure 2 but for the oscillation frequency. Shown are differences between (a) zeroth-order values ω'_{r0} and exact values ω'_r , (b) approximate quadratic values $\tilde{\omega}'_r$ and exact values ω'_r , and (c) first-order values ω'_{r1} and exact values ω'_r at an altitude of 300 km normalized to ω'_{r0} . Figures 3d–3f show the same but at an altitude of 110 km. Since $\omega'_r/\omega'_{r0} = V_{\text{ph}}/V_{\text{ph0}}$, each panel also shows normalized differences between phase velocities.

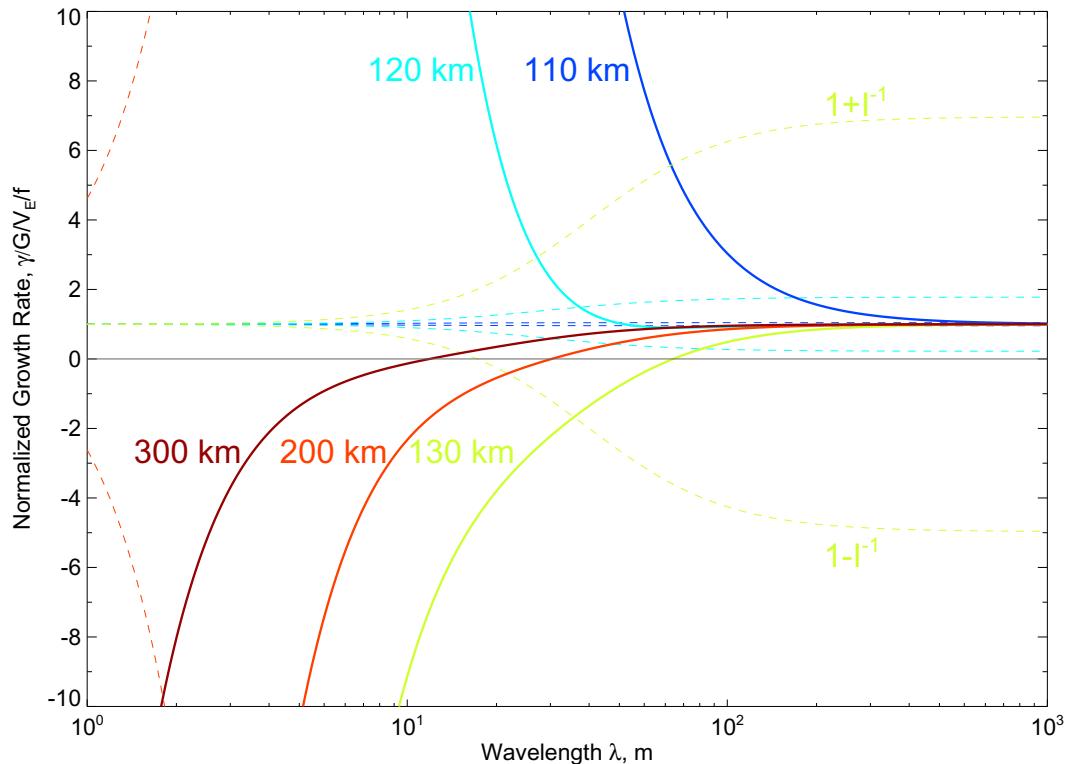


Figure 4. Normalized maximum growth rates $\gamma/(GV_E f)$ versus wavelength λ for $G = 10^5 \text{ m}^{-1}$ and $V_E = 1000 \text{ m/s}$ for 5 selected altitudes. Also shown by the dashed lines are dimensionless functions $1 \pm I^{-1}$.