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X-2 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

Abstract.  General analytic expressions are derived for the growth rate

v and oscillation frequency in the ion frame w,. of unstable plasma waves gen-
erated by ionospheric plasma instabilities including the Farley-Buneman in-
stability (FBI) and the gradient-drift instability (GDI). The explicit expres-
sions are developed for arbitrary altitude and scales in the local approxima-
tion. Limits of applicability are carefully considered focusing on the depen-
dence on the electron density gradients G = Vn/n and wavelengths A. Tt

is shown that the key parameter that controls the applicability is the growth
rate v normalized to the ion collision frequency v;, with the developed ex-
pressions being valid for slow growths v/v; < 0.1. It is also shown that

the commonly used assumption about the equivalency of the wave phase ve-
locity Vi and the plasma drift velocity V; fails in the F' region at gradients
as weak as G = 107° m~!. The developed analytic expressions for arbi-
trary altitude/scale offer a straightforward way of reconciling various altitude-
and scale-specific cases (e.g. FBI/GDI modes in the E region), with the often-
neglected ion inertia shown to play a critical role in the reconciliation. The
new ion inertia effect is found to be represented by the quantity (v + wf)fl
in the growth rate expression. The effect is found to reduce the standard FBI
factor and amplify the GDI factor and, due to the inverse relationship with

the ion inertia, the effect becomes progressively stronger at larger altitudes

and/or wavelengths.
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-3

1. Introduction

Greater physical insight is often obtained when seemingly different processes are consid-
ered within the same formalism. Formation of plasma waves or irregularities in the Earth’s
ionosphere is no exception, with successful theoretical efforts including integration with
respect to different plasma instabilities such as the Farley-Buneman instability (FBI) and
the gradient-drift instability (GDI) in the ionospheric E region [Rogister and D’Angelo,
1970; Sudan et al., 1973; Fejer et al., 1975] as well as integration with respect to different
altitudes [Fejer et al., 1984; Dimant and Oppenheim, 2011b; Makarevich, 2014, 2016a, b].

Integrated or unified formalism of ionospheric plasma instabilities allows to derive a
general dispersion relation which can be solved for the instability growth rate and wave
oscillation frequency. Analytic expressions are particularly useful since they allow to
analyze different destabilizing and stabilizing factors, thereby providing greater physical
insight [e.g. Dimant and Oppenheim, 2011b]. Such expressions remain, however, difficult
to develop for most general cases. Thus Dimant and Oppenheim [2011b] considered both
FBI and GDI at an arbitrary altitude, but limited their consideration to long wavelengths.
Makarevich [2016a, b] considered more arbitrary scales, but failed to obtain analytic
expressions since dispersion relation was cubic in complex wave frequency.

In the current study, approximate explicit expressions for the growth rate and oscilla-
tion frequency are developed based on the theory by Makarevich [2016a, b] that provide
greater insight into various destabilizing and stabilizing factors at various altitudes. The
approximations employed and applicability limits are carefully considered and the devel-

oped expressions are reconciled with various limiting cases.
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X-4 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

The paper is organized as follows. In Section 2, different forms of a general dispersion
relation are presented. In Section 3, the adopted vector geometry is introduced and expres-
sions for zeroth-order oscillation frequency are derived. In Section 4, explicit approximate
expressions for the growth rate are derived from the general dispersion relation, while in
Section 5 these expressions are demonstrated to be consistent with the previously consid-
ered limiting cases. Section 6 considers limits of applicability of the explicit expressions
for the growth rate in terms of density gradients and wavelengths. In Section 7, explicit
expressions for the oscillation frequency are derived, while their limits of applicability are
considered in Section 8. Finally, in Section 9, the underlying physics of inertial effects in

the instability growth rate is discussed, focusing on altitude and wavelength dependence.

2. Forms of General Dispersion Relation

In this section, four forms of a general dispersion relation that was previously derived
by Makarevich [2016a, b] are introduced. A version of general dispersion relation that
describes fundamental ionospheric plasma instabilities including FBI and GDI for arbi-
trary altitude in the ion frame and for nearly field-aligned irregularities (NFAI) has been

derived by Makarevich [2016b, equation 3] as

(iDi +aD; —b) (W' — Vq-k) — P[(1+ D) ' + Ck (iD; +aD; — )] =0. (1)

This equation hereinafter is referred to as the standard form of the dispersion equation.
Here V4 = V. — Vg is the plasma drift velocity or the difference between the background
drift velocities of electrons and ions, w’ = w — k- Vg is the complex wave frequency in the
ion frame, r, = v,/8, is the ratio between the collision frequency v, and gyrofrequency

Q. = g B/m,, of a plasma species a = (i, ¢), and other quantities are defined through
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-5

T,+1T. C?
D;=—iQ W +r, C= !eTB = a=G-ki/k, @)

b=-G-kxb/k’, b=B/B, G =Vn/n.

The quantity D; defined by Makarevich [2016a] is a Fourier representation of the convec-
tive derivative plus collisional term 0/9t+V;o-V +1;, normalized to the ion gyrofrequency
Q;, C'is a thermal diffusion term related to the ion-acoustic speed Cj, a and b are gradient-
related quantities that are defined in that way to be small in the local approximation since
they are both proportional to G/k, and G is a gradient strength vector. The quantity P

in Eq. (1) has been defined by Makarevich [2016b] through

P= —i@@r{l +ar, — b. (3)

under an implicit assumption of no parallel density gradients G = 0. Here ¥ is the

anisotropy factor that depends on the ratios r;, r. and the aspect angle o’ through

~

V=9 (1+r %), v=-rr., y=k/kL=tand. (4)

In order to maintain exact numerical equivalence between Eq. (1) and the following
equivalent forms of the dispersion relation, the assumption G = 0 is lifted in the present

A

study, with the following generalization of the quantity P

~

P=—ipr;t—apr7t —b, o =4 (1+r*yc/a), c=G- -k /k/kL. (5)

Following Makarevich [2016b], Eq. (1) is rewritten purely in terms of frequency-
dependent quantity D; by substituting D; = —iQ; 'w’ + 7; from Eq. (2), multiplying

by ¢ — a and simplifying
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X-6 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

AD? + BD? + CD; + D =0, [cubic form] (6)

~

A=(i—a)P, B=1+a*>-rA, C’E(iW—m)(1+a2)—(i1/;+a¢’)r;1(i—a),

A~

D

(ibWﬂ'zﬂaw’) (i—a), W= (Vd-k+150k§) .
(7)

Equation (6) hereinafter is referred to as the cubic form of the dispersion equation. Even
though mﬂ’r{l < b and can therefore often be neglected in P = —izﬂr;l — aw’ri_l — b,
when working with the standard form (1) [e.g. Makarevich, 2016a, equation (21)], it is
useful to maintain numerical equivalency between the two forms (1) and (6), which allows
for easy numerical tests of the explicit expressions to be derived in the following sections.

One should also note that in deriving a similar cubic equation Makarevich [2016b]
employed two additional restrictions: the local approximation a?> < 1 and no parallel
gradients ¢ = 0. For that case, they approximated A= ab—ib+ 1&7"[ 1 while W had
a slightly less general quantity P = —Zdﬁr;l + are —b. Employing ¢ = 0 in Eq. (6) is

equivalent to substituting ¢’ — 1, while employing a? < 1 results in

AD;’%—D? <1 — 7“/1) +D; [zW -1 + 1&7";1 +1a (@@ — ¢> ri_l} —(1 +ia) bW—@/A)—I—m (@b — @@) = 0.

(8)
This differs from Eq. (9) of Makarevich [2016b] by small factors proportional to ¢ — )
which reduce to zero for purely perpendicular propagation k; = 0. In the following

analysis, a more general and accurate cubic equation (6) will be used to obtain exact
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-7

» numerical solutions in D; and therefore in w’ from Eq. (2). These solutions will be, in
o turn, used to test explicit expressions for w’ that are developed in the following sections.
o  For further analysis it is also convenient to divide the standard form (1) by iD;+aD; —b

s and rewrite using a new frequency-dependent quantity Z as

W =Vy-k— (2w +iCk7T) <1ﬁr;1 —ib — z'az//r;l> [iterative form], 9)
1+ D;
Z = : . 1

% This form hereinafter is referred to as the iterative form of the dispersion equation,

o since it has the form w’ = f (w’) and can be solved iteratively as w),,; = f (w;,), similar

s to Makarevich [2016a].
o The fourth and final form of the dispersion relation is obtained by taking R and <& of
w Eq. (9) and writing out explicitly all terms in the growth rate v = Qw’. The detailed

w derivation is given in Appendix A, with resulting equations for the oscillation frequency

w wl and the growth rate v being quadric in

wl.Dy = (Xo + X174+ Xo7*) wly — v — ¥ — 7°Q3 — 7' Q. (11)

YTy +9°T3 + 4Ty ++I'1y =Ty [quadric form). (12)

o Here quantities Dy, X, 2;,I'; depend on the oscillation frequency wy., as given in Appendix

w A. Together, Egs. (11-12) are referred to as the quadric form (in 7) of the dispersion
s relation.

ws  One should note that all four forms (1), (6), (9), and (11-12) are equivalent. While

o finding solutions is numerically preferable from the cubic form (6) [Makarevich, 2016b],
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X-8 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

in the following sections the quadric form (11-12) is approximated to obtain explicit

expressions for w!. and .

3. Vector Geometry and Zeroth-Order Oscillation Frequency w/,

In this section, vector geometry and angle definitions are introduced and several pa-
rameters of interest are evaluated for arbitrary altitude, with a particular focus on the
differential drift speed V; and zeroth-order oscillation frequency that has been defined in

Appendix A as

who=Vy-k— (b+apr') CkT. (13)

In the present study, the same vector geometry and model ionospheric parameters (i.e.
Vi, Qi, Ve, Qe, Cs) are adopted as in Makarevich [2016b, 2017]. Figure 1 illustrates the
adopted geometry. This geometry is completely general since the choice of the coordinate
system with the z axis along the background electric field E preserves generality. The

angle definitions are also the same as in Makarevich [2017], with an additional angle /3

defined as

B =tan"'r;. (14)

The exact vector directions in Figure 1 refer to an E-region altitude of 110 km where
r; = 5. For the F' region, r; < 1 and # =~ 0. The flow angle # is defined as the angle

between the wavevector k and V, or, in terms of the new “phase” angle 3, Figure 1, as

f=m—a-—p. (15)
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-9

s From Appendix B, the zeroth-order oscillation frequency can be written as

E E _
W;o R S;T; (T’LVE _ %) -k + ’I“e_lkf||??“7 S; = (1 + 7"12) ! . (16)

This equation can be simplified by substituting r; = tan from Eq. (14) into the

1

)
i

ws  second r; factor and employing the coordinate system of Figure 1 with Eq, /B = Vgé,,
2w Vg =Vgeé, and k = k| (cosae, +sinae,) — ke, to become

Wi R —32/27’Z-VE16L cos (o + f) —I—re_lk%. (17)
> From the above form, it is easy to see that [ represents a phase factor as it is added
s t0 @ in the argument of the cosine function. Eq. (17) is also useful in demonstrating the
e importance of two special cases: § = 0 and o = 0. In the first case, the differential plasma

w flow V is parallel to the direction of propagation k, Figure 1. In this case w/, reaches its

w maximum value since cos (o + ) = cosm = —1 and
' ~ J1/2
Wromax 2 8;' TiVEK. (18)

132 In the case of @ = 0, it is the electric field that is parallel to the propagation direction,

s Figure 1, and in this case expression for W/, also simplifies since cos = costan™'r; =

w (14 r?)_l/ = sil /2 A similar simplification also occurs for o = 7 so that

who(a=0,m) = Fs;1;Vik. (19)

135 A similar analysis can be carried out in terms of the differential drift speed V; ~ 53 / 27‘Z-VE

s from Eq. (B6) and the flow angle 6 from Eq. (15) as
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X-10 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

who ~ Vak cos 6. (20)

The end result of w), ~ Vgq-k is a well-familiar expression, but it is important to under-
stand that this is an approximation. In particular, it does not contain any gradient terms;
these can be neglected for most gradient conditions, as discussed in Appendix B. In the
following analytic derivations, Eqs. (18) and (19) will be used in the order-of-magnitude
(OOM) analysis. In this analysis, magnitudes of different terms are compared and ap-
proximate expressions (18)—(20) are substituted into terms containing w,, to determine
which terms can be neglected, e.g. Appendix C. For all numerical calculations, however,

the original exact definition for w!, (13) will be used.

4. Explicit Expression for the Growth Rate
In this section, an explicit approximate expression is developed for the growth rate ~.

We start from the quadric equation (12) and employ the following approximations:

G <k, [local approximation)] (21)
1] < ;. [slow growth approximation] (22)

The physical meaning of these approximations is as follows. In the local approximation,
the gradient strength is much smaller than the wavenumber or, alternatively, the gradient
scale length is much larger than the wavelength, and the dispersion relation is valid at any
point in the plasma, using the local values of the plasma parameters. In the slow growth

approximation, the instability growth rate is much smaller than collision frequency, and
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-11

1> only lower-order terms in 7 from convective derivative and related quantity D; contribute
155 to the dispersion relation and equation on 7.

s The local approximation allows to neglect all terms quadratic in G?, i.e. a?,b?, ab, in
s expressions for I'; (A18). In notations of Appendix A, I'; =10+ + o =~ o+ 1,
s where the first term I'; ¢ is gradient-free, while the second term I'; ; has parts proportional
i5» to b and a. The slow growth approximation allows to neglect two higher-order terms in ~y

s in Eq. (12) which becomes quadratic

7Ty + 4Ty =T, (23)

15 with the bar notation introduced to specify that this is an exact solution of the quadratic
e equation which approximates a solution of the quadric equation . From Eq. (A18), the

w coefficients I'; are given by

Ty = ry ! [w207 (I — 1) — CK2I) + bulr, [1 2 T (1— T+ 20/@9;1)} +aw (zb’ - ¢) (1+.
I}:I+$@+I—&ﬁﬂf+acﬁﬂf)—%¢m4Qﬁ&@+ﬁ+i>+%&¢—wvﬁ%ﬂﬁ%1+ﬁy

FzZTJEJ[2+3¢—%¢ﬁ4(1%—0ki95w]—%wﬂ%a[5a<¢——¢v——m]<5+3¢m4>]’

(24)
e with
I=r] +wlPQ7% = (1] +w?) Q72 (25)
e A solution of Eq. (23) is given by
2T
(26)

R I v
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X-12 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

where we used an alternative expression for the quadratic equation root [Press et al., 1992,

equation (5.6.5)] and introduced a new definition

p= -T2 (27)

In principle, one can also consider a linear solution I'\I';* (essentially a case of p = 0),
but an important (quadratic) correction can also be obtained analytically by expanding

the square root for |p| < 1

24 1) P W
1+1-2p Ty —ply’

5~ (28)
Here the second term in the denominator represents a quadratic correction to the linear
solution T'g/I";. Further simplification can be obtained by factoring out the typically

dominant term I from the denominator I'y — pI'y = I [1 + € — p (1 + €)] and treating both

p and € as small corrections, with the resulting approximate expression being

~

Dry WP (1= 1Y) — CK3] + bwlry (1 + 17 2000 *1Ck:iQ;1) + aw, (@b’ - w) (I+171)

' 1+ (1+ 1)

(20)
where a notation 7 is introduced to distinguish this approximate solution from their
quadric vy or quadratic 4 counterparts. This expression can be further simplified by
neglecting the last two terms in the numerator. The OOM analysis of these terms carried
out in Appendix C shows that losses in applicability associated with these terms are
relatively small.

If both of the last two terms in Eq. (29) can be neglected, the growth rate takes a

relatively simple form
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-13

- 7,&7“;19;1 W2 (1 —1T7Y) = C?K2 ) +bwlr; (1 + 1Y) (30)
K 1+¢(1+11) ’

w where we used the identity C' = C?Q; ! from Eq. (2).

e The final approximate form of the growth rate is obtained by substituting /. from Eq.

w  (17) and rewriting the gradient term b in terms of angles a and x defined in Section 3 as

b=—G -k xb/k? = Gk'sin(a— ). (31)

s For the case of the purely field-aligned irregularities (PFAI), the growth rate becomes

_ K2 [sr2VEcos? (a+ B) (1 —T7Y) — C? + GV fsir? (14 171)

v = , 32
1+ (1+171 (32)

s where a new function f has been defined as
f (o, B,x) = —s; ' cos (+ B) sin (o — x). (33)

s The function f describes a directional dependence of the gradient term. Since

1/2
w COS[ = st/

;/7, it simplifies for a representative configuration with x = 7/2, a = 0,7

. as f(0,8,7/2) = f(m,5,7/2) = 1. Similarly, f = 1 when cos (a + ) = —1 or, in terms

1i

o

s of the flow angle defined through Eq. (15), when 6 = 0.

5. Limiting Cases for the Growth Rate Expression

5.1. Limiting Case 1: FE region
w  In the F region, r? > 1 and therefore I=! < 1 from its definition (25). In this case,

w  Eq. (30) becomes
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X-14 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

B _ Ui (W — C2R2) + buyrg
1+

ot 7 (34)

which is is exact agreement with the standard FBI/GDI expression in the F region, e.g.

Eq. (22) of Makarevich [2016a)].

5.2. Limiting Case 2: Long Wavelengths for Arbitrary Altitude

In this case, w!. < v; or w.Q; " < r;. Hence from definition of I (25), 7' ~ r;?

;- and

1&7’;1 [w?Q;l (1 — 7’;2) — C’ki] + bw'r; (1 + 7’;2)
1+ (14772

nw = , (35)

where a subscript LW indicates long wavelengths. This is an arbitrary-altitude expression
applicable in the long-wavelength limit. It is demonstrated below that it is consistent with
the growth rate expression derived by Dimant and Oppenheim [2011b]. We first make the

following identifications between their and our notations

-1

Ra =T,

U= [ (L) (L) y? ) o [T (L) r "] = (14 07%) — o,

Q(j) = k- Vd ~ W;«() w'~.

(36)

Here the approximation |re| > 1 was used and a shorthand «’ . was introduced for the
frequency. It will be demonstrated in Section 7 that w; z is a better approximation to w..
than w/,, which we have previously used in our OOM analysis.

Eqgs. (A30)—(A32) of Dimant and Oppenheim [2011b] are next rewritten in our present

notations and a case of fully-magnetized electrons is considered |r.| < 1. In this case, Egs.
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-15

(A30)-(A32) of Dimant and Oppenheim [2011b], when combined into a single growth rate

expression, become

1[17“1._1 [u}fEQ;I (1—r7?) - C’ki] +wer (L+r72) [b—rityc+r  ay?
L+ (14772) —yr 2

TD&O = . (37)

where a subscript D&O is introduced to indicate that these results are by Dimant and Op-
penheim [2011b]. One should note that Eq. (37) contains one extra term of r, 'ay?® which
is missing from their Eqs. (A34)-(A35) which are also written for the fully-magnetized
electrons case. This term, together with another term —r_!yc, are not present in our
expression (35). Both are present, however, if a more general Eq. (29) is written in the
long-wavelength limit. Thus the growth rate from Dimant and Oppenheim [2011b] rep-
resented by Eq. (37) is fully consistent with the long-wavelength limit of expression (29)
except for an additional term —1)7; 2 in the denominator.

It has been previously noted that for arbitrary ion magnetization ratio r; (i.e. arbitrary-
altitude case), the generalized anisotropy parameter 1; replaces the product zﬁ (1 +r; 2)
but the difference is of the order of ¢r;? and therefore small [Dimant and Oppenheim,
2011a, Egs. (34a,b) and Section 3.1]. However, the factor 7,@ (1 + 7"1-_2) is already appro-
priate for any 7; and it can be approximated as 1 only for r; > <« 1. This is also the
factor that appears in the growth rate from Dimant and Milikh [2003] (their equation 5)

which was written for the gradient-free case and is equivalent to

Yt [wf]zQ{l (1- ri?) — Ck:i]
L+ (1+72)

Tk = (38)

This expression is fully consistent with our Eq. (35) since b = 0 for the gradient-free case.
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X-16 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

5.3. Limiting Case 3: Long Wavelengths in the F' region

A particular case of interest in the long-wavelength limit is in the F' region where

772> 1 and where Eq. (35) becomes

btryt R (C + WPk )

F
")/ = — — 39
L 2 1+ or; 2 (39)
One can rewrite Eq. (39) by using identities ¢r;' = —re + ¢ triy?, 1+ r;?2 =

7 (Y 4+ y?) and w) ~ WE from Eq. (B9) as

b

EOL

F j—
Tow ¢ + yg

(v

B

FEok ikt
k4 WI>+<%H i

B Lot y?

) (C+wPk*Q %) . (40)

This agrees with Eq. (27) of Makarevich [2016a] except for the term w/2k72Q; 'r;? that

is added to C.

The first term in Eq. (39) is gradient-dependent but wavelength-independent to zeroth

order, since b x G/k and w.  k to zeroth order, Section 3. The second term in Eq. (39),

on the other hand, decreases with the wavelength as A\™2 = k2. If it is neglected as well

as the typically small term 1&7{ % in the denominator, Eq. (39) takes a simple form

F o p /-1
Tw R bw,T;

(41)

Evaluating w! from Eq. (16) and using s; ~ 1 as is appropriate in the F' region, one

obtains

E

(42)

which is in agreement with Eq. (28) from Makarevich [2016a]
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MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-17

EOL

7:%(}2\@—?) 'k (43)

considering that R = (r; +r.) / (1 +¢) =~ r; and ) < 1 in the F' region.

6. Limits of Applicability: Growth Rate

In this section, limits of applicability of the developed expressions for the growth rate
are considered. Figure 2 shows a dependence on the wavelength A and gradient strength
G of (a) the exact quadric values 7, Eq. (12), (b) the quadratic values 7, Eq. (26) and (c)
the approximate values 7, Eq. (29) at an altitude of 300 km, representative combination
of gradient and propagation directions x = 7/2, o = 0, and the PFAI case ¢/ = 0. In
Figure 2a, the normalized growth rate itself is shown v/v;, while in Figures 2b and 2c, the
differences with respect to the exact values 7 are shown, i.e. (¥ —7)/v; and (v — ) /v,
respectively. Figures 2d-2f show the same, but for an F-region altitude of 110 km. The
exact values v were obtained by numerically solving the cubic form of the dispersion
relation (6) as described by Makarevich [2016b], while the 4 and 7 values were obtained
by numerically solving exact quadratic Eq. (26) and finding its approximate solution from
Eq. (29), respectively. In these calculations of the quadratic 4 and approximate 7 values,
we used the exact frequencies w! which were also obtained from numerical solutions of
Eq. (6).

Also shown in Figure 2 are contours of v = 0 (grey-white dashed line), v/v; = 0.5 (pink
dashed), and ¥ = v or 7 = 7 (white dotted) from the above described numerical analysis.
In addition, the pink solid lines show critical gradients G, (\),x = £0.001,0.01, 0.1 from
analytic expressions (D4) derived in Appendix D, and the red solid lines show G = k. In

the corners defined by the last set of lines the local approximation G < k or GA < 1, Eq.
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(21), becomes progressively less applicable since G/k = 0.001 on the leftmost red line,
G/k = 0.01 on the middle red line, and G/k = 0.1 on the rightmost red line. Similarly,
the slow growth approximation |y| < v;, Eq. (22), becomes less applicable further away
from the v = 0 line.

From Figures 2a and 2d, the analytic expressions for gradients G, work well to describe
the growth rate magnitudes for the slow growth case, i.e. they follow the contours of
constant 7/v;. This is fully expected since they were derived under this approximation.
From Figure 2a, the growth in the F' region is slow |y|/v; < 0.1 (between outmost pink
lines) except at short scales (A < 2 m) or strong gradients G > 2 x 107°. In the E region,
the growth is slow for most gradients and wavelengths of interest.

From Figure 2b and 2e, solutions of the quadratic equation 7 agree well with exact
values 7 except at large positive growth rates (blue color). As a rough guide, Figure
2b shows the value of v/v; = 0.5 by the dashed pink line and large disagreements start
above it. In the E-region, there are no significant disagreements in the domain of interest,
since lines of v/v; = 0.5 and even v/v; = 0.1 are not located within the domain. The
contour patterns are slightly different for the approximate values 7, Figures 2c and 2f, as
compared to their quadratic counterparts 7, Figures 2b and 2e, but the same feature is
observed, i.e. good agreement except for large growth rates above the dashed pink line of
v/v; = 0.5.

From this analysis, a conservative estimate is that one can use approximate expressions
as long as growth is slow |y| < 0.1. This includes all marginal growth cases 7 = 0.
Moreover, numerical analysis presented in Figure 2 shows that one can relax this condition

to v < 0.5. This includes all E region cases of interest, Figures 2d—2f, and F-region cases
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with G < 2 x 107 m™!, Figures 2b and 2c. The reason why the approximate expression
(29) works at large negative values of 7 is as follows. This expression is an approximation
to the solution of quadratic equation (23) in which higher-order terms v°I's and T
have been neglected. They can become important, i.e. comparable with the dominant,
linear term ~I'y, but only at very short scales. A simple OOM estimate shows that in the
F-region, they are comparable near A = 0.05 m, which is outside the wavelength range of

interest (details are not presented here for brevity).

7. Explicit Expressions for the Oscillation Frequency
In this section, a set of approximate explicit expressions for the oscillation frequency
and phase velocity is derived. We start from the quadric equation (11) and neglect higher-

order terms v3Q3 and 7*Q,, which results in the quadratic equation (in ) of the form

w.Dy = Xw,y — v — 72, (44)

where frequency-dependent quantities Dy, X, and €2; have been defined in Appendix A.

This is next rewritten into an equivalent form

wh=wo+ W (X = Do) XM=y X1 — 4?0 X1 (45)

In terms with the growth rate v in Eq. (45), we use the approximate expression (30)

which is rewritten as

v & B + bwl.T, (46)

with newly defined quantities
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SN ol o Ul ) B 7. S o
L4+ (14171) ’ 14+ (14171

Here subscript FB is introduced to indicate that the first term in Eq. (46) refers to the

(47)

pure Farley-Buneman instability case, while the second term is gradient-related through

b x G. We also neglect all small terms o< G? in the local approximation to obtain

Do~ T+ (1+1)—bw' Q7 (1+1+2@2),
X~ T4 200,71 (s — 1+ 7Q7 Y yem) + 2968 Q5 i + o2,

X — Dy ~ bw.Q;? <277‘i —1+T+20+ QTQ;WFB> —p(1+1)+ 29reS2; T 4+ YRSl 2,
O =~ 2rwl ! <1 + 20 + zﬁ/igc> + 02 p,

Oy ~ W Q2 (1 + 51/3) + b,
(48)

where

e = Wl Q= 14T — 202077 44 (14172 — 3K§C)] L Q=0 (1 + 32+ 21/})

(49)
The next step is to approximate terms 71, v*€), by using Eq. (46) for v and expressions
for ©; from Eq. (48) and, again, neglecting terms quadratic in b &< G, with the resulting

expression being

wh Wy — bt [1 — I — 2 + 2077 (2+K2) + 101&71:39;17} X1

—b (’yFBQLb + VE%BQQJ)) Xt - zﬂw; [1 + 1+ 27FB7“Z<Q;1 (2 + lizc) + 57%391-_2] XL
(50)
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»  The terms proportional to ypp and 72 can be neglected in Eq. (50) and X, since

3

1=}
S

vrp < v; (slow growth approximation) or, equivalently, yrpQ; * < 7;, 72 2 < 72 < I,
o St < 2 < 1. In addition, we neglect small terms o 1& in the second term in Eq.

w2 (50), with the resulting expression being

o BPOT (D) i (D)
roo e I+ 2bw Q7 (11 — 1)

(51)

ws  The OOM analysis shows that the second term in the denominator is considerable only
w in the F region at strong gradients G > 1072 m~! and for most of cases of interest can be

3

S

s neglected. After rearranging Eq. (51), the final expression for the oscillation frequency is

Wy 20! (1 - 7—1)
WLl = - — . T =r? 402702 (52)
1+¢(1+I%)

w  Here we introduced a new notation &, to differentiate from the exact value w! and a

. corresponding quantity I. One can see from Eq. (52) that, generally, w. # /. In the E

3

<

w region, 17! < 1, and considering inequality (D6), Eq. (52) reduces to the expected value

/
WE”EI%?Z' (53)

s This is also consistent with w’. from Eq. (36). In a general case, Eq. (52) is a quadric
w0 equation on w’. since I = 72 + w?Q;? which can be solved numerically. Alternatively, it
sn can be solved iteratively and the first-order solution is

;W bt (1 - 1)

wyy = k , Ly=rl 4+ w0 54
! 1+4 (1+ 1Y) ‘ 0 (54)
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8. Limits of Applicability: Oscillation Frequency and Phase Velocity

The differences between frequencies calculated in the three approaches (zeroth-order
wl, using Eq. (13), approximate ! using Eq. (52), and first-order w!; using Eq. (54))
are presented in Figure 3. It has the same format as Figure 2 except that the differences
with respect to the exact values w, normalized to w;, are shown in all three columns,
e.g. Figure 3a shows (w), — w!) /w.,, Figure 3b shows (&, — w!) /w!,, and Figure 3c shows
(wiq —wl) Jwly. Since wl/wly = Von/Vipno, each panel also shows normalized differences
between phase velocities. Since Vjyo is largely independent of G and A, Figures 3a and 3d
also show behavior of Vj, versus G and A, e.g. green color refers to area where V,, = Viho,
while dark red contours of 0.1 refers to the line where 1 — V},;,/Vono = 0.1 and hence
where Vi, = 0.9V,10. In other words, green color shows areas where two approaches give
the same result, while red color shows areas where zeroth-order values exceed exact ones
significantly.

The first important feature in Figure 3a is that, in the F region, the zeroth-order result
of w!, considered in Section 3 generally applies only at weak gradients G < 107° m™"
(green color). For stronger gradients, zeroth-order frequencies overestimate exact values
wly > wi. From Section 3, the zeroth-order phase velocity is approximately the plasma
drift speed, Vyno ~ Vg, and the above result means that Vi, < V. The ratio Viyuo/Vy is
below 0.9 (red color) at G = 107* m~!.

Ideally, however, one would want to develop a method whose results differ not too much
from the exact ones in a larger subset of the domain of interest. By solving Eq. (52) which

is a quadric equation in !, one can largely achieve this goal, Figure 3b. Thus at long

wavelengths A\ > 100 m, small differences are now seen up to G = 10~ m~!, while at 10
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!, Interestingly, even the first-order results that

m they extend almost to G = 1073 m~
are obtained by a simple substitution using Eq. (54), rather than solving a fourth-order
equation (52), achieve similar results, Figure 3c. Here the blue area shift downwards as
compared with Figure 3b, but overall the domain of applicability is much larger than in
Figure 3a. An important subset is the area near v = 0 (dashed line) where differences
are small except for very short scales. This is expected since expressions for both @/ and
w!, were developed for the slow-growth case. In the E region, the patterns are different,
Figures 3d-3f, with the only area of large differences being where the local approximation
fails (red corners and lines). This is also expected since the wave growth is slow in the
domain of interest in the E region, while local approximation was also used in Section 7.

Finally, from the point of view of potential experimental signatures and verifications,
it is important to consider how the applicability range in G changes versus wavelength
A. From Figure 3b, it is more extended at shorter scales than at longer scales. For
example, this range in the F region is G < 1073 m~! at A = 10 m versus G < 1074 m~!
at A = 100-1000 m. A similar feature is seen in the growth rate, Figure 2. Waves near
A = 10 m refer to the decameter-scale irregularities observed by coherent HF' radars such
as Super Dual Auroral Radar Network (SuperDARN) [e.g. Chisham et al., 2007], while
waves near 1000 m are thought to be responsible for scintillation of the radio signal in
the Global Navigation Satellite System (GNSS) [e.g. Basu et al., 1998; Keskinen, 2006].
This means that, under the strong gradient conditions, one has to be more careful in

interpreting GNSS observations than those with SuperDARN. Unlike observations with

coherent radars and GNSS receivers, numerical simulations provide information across
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a wide range of scales [e.g. recent studies by Hassan et al., 2015, 2016; Young et al.,

2017, 2019], which is useful in considering wavelength dependence.

9. Stability Analysis and Role of Inertia
In this last section, we discuss various destabilizing and stabilizing factors and the role
that the ion inertia plays in instability development for various altitudes. The approximate

expression for the growth rate was derived in Section 4 as

N zﬁl/i_llcQ [s;r2VEcos? (a+ B) (1 — TN —C?|+ GV fsr? (1+171)

L+ (14171 (55)

g

Generally, a quantity in the expression for the growth rate is considered destabilizing
when it is positive and stabilizing if it is negative. For example, the diffusion term —C?
in Eq. (55) is always negative and therefore stabilizing. Some factors may be either
destabilizing or stabilizing, depending, for example, on vector orientation. For example,
the second, GDI-related term in the numerator contains information about orientation in
the angular function f; it is destabilizing for f > 0.

Eq. (55) is more suitable for such an analysis for arbitrary altitude than similar ex-
pressions that are written in terms of w, or V; since both are altitude-dependent, while
factor Vg = Ey/B is not. One example is the long-wavelength limit of the growth rate

! simplifies to r;? and the GDI term in

given by Eq. (55). In this case, the quantity I-
Eq. (55) simplifies to GVgf since s;r? (1 + ri_2) = 1. For the important special case of
0 =0 (Vg k), Section 2, f = 1 and the growth rate is independent of altitude in the
long-wavelength limit.

Figure 4 illustrates the growth rate behavior with the wavelength A for various altitudes.

From Figure 4, the growth rate approaches the same value at large A, when it is normalized
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to GVEg. At short scales, the behavior is determined by the first term in the numerator
o k2. Depending whether the quantity in brackets is positive (110 and 120 km) or negative
(altitudes > 130 km), it increases or decreases with \.

An important new result of this study is that the ion inertia plays a key role in the
growth rate behavior by modifying other factors as discussed below. The dashed lines
show dimensionless quantities 1 4+ I~! that appear in Eq. (55) that deviate significantly
from unity at long wavelengths. This deviation is important since the limit of 771 — 0
refers to the standard FBI/GDI mode, Eq. (34). Thus, Egs. (30) and (55) may be
regarded as a generalization of the standard FBI/GDI case for arbitrary altitude.

Another new result is that the ion inertia always amplifies the gradient effects. This is
easy to see since the quantity I~! is always positive and since 1+ 1~! > 1 is multiplied by
the gradient term GVgf in Eq. (55). As discussed above, when f > 0, this amplifies the
destabilizing effects of gradients and when f < 0 their stabilizing effects are amplified.

In contrast, the quantity 1 — I~! is always smaller than unity. Moreover, it can be
negative, as for short scales A < 20 m at 130 km and for all scales of interest at higher
altitudes in Figure 4. The quantity 1 — /! is multiplied by the term s;7?V2 cos®# in Eq.
(55) which is also due to the ion inertia and in the E region, where s;r? = 1, is traditionally
associated with FBI. Thus additional inertial effects considered in the present study reduce
this FBI factor and can even change a destabilizing FBI factor to a stabilizing one. The
quantity 1 — I~! reduces to 1 —r; % at long wavelengths, which is consistent with Dimant
and Oppenheim [2011b], Section 5.2, who also attributed this additional factor to the ion
inertia. The current study thus may be regarded as an extension of the theory by Dimant

and Oppenheim [2011b] to shorter scales.

DRAFT May 9, 2019, 12:35pm DRAFT



399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

X - 26 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

The origin of the additional ion inertia effect is the higher-order terms in the dispersion
relation. The quantity I = r? + w/2Q;? can be traced back to quantity D; = —i€);'w’ +
r; that appears in the cubic dispersion relation (6). The standard FBI/GDI case can
be obtained from an approximate version of the dispersion relation which is quadratic
in D; [Makarevich, 2016b], while consideration of the full cubic version for arbitrary
altitude leads to our general case. As defined in Section 2, the quantity D; is a Fourier
representation of the convective derivative plus collisional term, while the cubic term D3
can be traced back to the momentum equation whose solution for velocity includes both
linear and nonlinear terms in D; [Makarevich, 2016a, and their equations (11) and (12)].
In this sense one can regard additional inertial effects considered in the current study as
“nonlinear”, although one should not confuse those with nonlinear effects that are due to
nonlinear terms in perturbations.

Finally, it is important to differentiate between the ion inertia itself that is represented
by the quantity I = 72 4+ w/2Q; % = (2 + w?)Q;? and the effect considered here that is
represented by its inverse 17! = Q2 (12 4+ w2) . The often-used assumption of negligible
inertia (e.g. at long wavelengths in the F region) results in small 7, but large I~ and hence
large modification of the growth rate as compared to the standard FBI/GDI expression.
In this limit, the modification actually results in the well-known simple F-region GDI
expression GVg. The quantity /~! that appears in the arbitrary-altitude expressions
(29),(30), and (55) thus facilitates a transparent reconciliation between different limiting

cases.
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10. Summary and Conclusions

1. The growth rate and oscillation frequency of unstable plasma waves generated
by ionospheric plasma instabilities such the Farley-Buneman instability (FBI) and the
gradient-drift instability (GDI) can be found from explicit expressions that are valid
throughout the lower ionosphere including the ionospheric £ and F' regions.

2. The domains of applicability for the explicit expressions in terms of the plasma
density gradient G = Vn/n and wavelength A are controlled by the limits imposed by the
local and slow growth approximations. In the E region, the expressions work for all scales
of interest (G, \), except at strong gradients and long wavelengths. In the F' region, the
applicability range in G changes with the wavelength \; it is more extended at shorter
scales than at longer scales. The obtained expressions apply for G < 1073 m~! at A = 10

m versus G < 107* m~! at A = 100-1000 m. The commonly used assumption about the

equivalency of the wave phase velocity V, and the plasma drift velocity V; fails in the F

1A more careful treatment results in the

region at gradients as weak as G = 107° m~
ratio Voo /Va =~ 0.9 at G = 10~* m~! which decreases even further for stronger gradients.

3. The general explicit expressions represent a generalization of the standard FBI/GDI
expressions in the E region to all altitudes, with previously-unreported additional effects
due to the ion inertia represented by the factor (v + w{?)*l. The additional inertial effect
modifies the growth rate factors traditionally associated with FBI and GDI, with the FBI
factor being reduced and the GDI factor being amplified. Progressively stronger effects
are seen at larger altitudes and/or wavelengths. The previously-considered limiting cases

(e.g. standard FBI/GDI mode) fall out transparently from the general expressions by

considering magnitude of the additional inertial factor.
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Appendix A: From Iterative to Quadric Form of Dispersion Relation
«  In this section, the iterative form of the dispersion relation (9) is rewritten into an
«s alternative form with the growth rate v = Sw’ given explicitly everywhere. The alternative
« form is shown to be a quadric equation in ~ that can be approximated into a linear or
ws quadratic form in . By taking real and imaginary parts of Eq. (9), the following equations

« on the oscillation frequency w!. and the growth rate v are obtained

o+ |77 = (b+ av'r!) RZ |
L+ r, 'RZ + (b+ ay'r;t) SZ
T (—wSZ - CR) + (b+ ap'r ) wRZ

=SQw = - , A2
! L+ "RZ + (b4 ay'r; ') SZ (42)

; = %w, = I (Al)

where

who=Vg-k— (b+apr') Ck?. (A3)

Egs. (A1) and (A2) are further rewritten as

, Xwho+7 [Qﬂri_lX%Z — (b+ay'rit) X@%Z]

A - (Ad)
X +Yri' XRZ + (b+ ay'r; ') XSZ
U (—wlXSZ = XOR) + (b+ ay'r ) wl XRZ (A5)
' X +¢r ' XRZ + (b+ av'r; ) XSZ ’
w7 where a new real quantity has been introduced
X = |D; —iaD; + ib|* = Xon? + X1y + Xo, (A6)

X, =072 (1 + a2) . X =201 (ri +a*r; — ab) , Xo=1 (1 + a2) +b% —2abr; —2bw/ ;1

(A7)

I =77 +W?Q2 (A8)

DRAFT May 9, 2019, 12:35pm DRAFT



MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE X-29

ws  Quantities XRZ and X3Z are found from Eq. (10) using definition of D; in terms of

w w' from Eq. (2)

XRZ = R3y* + Ryy® + Riy + Ry, (A9)
XQZ = Ly + Ly + Ly + I, (A10)
with
Ry = Q3 Ry =Q;? (3r; + aw;Qi_l) , Ry =0t [1 + T4 2r7 4+ 2(ar; — b) w;Qi_l] ,

Ro=(1+1Dr —awlQ (1= 1) — 2brw/ ;!

[

(A11)
[3 = an3

7

L=Q;7?Bar; —b—w Q") , [ = —=2r, Q7 (b4+w, Q") +aQ; (1+ 1 +2r7),
L=wQ (1= +ar; (1+1) = b (141} —w?Q;?).
(A12)
s Since both XRZ and X Z are cubic in 7, both equations (A4) and (A5) are quadric

s in 7. After tedious but straightforward algebra, these can be rewritten into a form that

= 18 explicitly quadric

w!.Dy = (Xo + X174+ Xo7*) wly — v — ¥R — +* Q3 — v Q. (A13)
YTy +7°Ts + 7T + 7T = T, (Al4)

s where quantities Dy, €2;,I'; are defined below and most are explicitly separated into parts

« proportional to different gradient powers, e.g.

Do = Do + Do + Do, (A15)

s with Do o< GY being a gradient-free term, Dy; o< G (terms < b o< G and a < G),

s Dpo o< G* (terms o b%, a?, ab). The complete set of definitions is
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Dog=I+v(1+1), Doy = =b (14 T+20) +a (¢ =) r7 w07 (1= 1),

Dop=a*[I+¢' (L4 1) +abr; (=14 1) — aby'r; ' (1 + 17 —wP?Q7%) + 0% (w?Q;72 —17)

i

(A16)

Qo = 2w Q7 (14 20 + Pr22072)

Qu = bri (L2 = w2072) + bl (1407 = 3020,%) +a (v = 0) (1472 = wP0;2),

Qg = 2w [aPr; + a®'r7t (T +77) = 20%r; + ab (=1 + 1 + 7] — 2¢')]

0 = [0 (1450) Q1 =007 (1432 4 20) + a0 (v = ) 7t (14 3r2),

Qo = W) Q7% (a® + 50" — 30° + Sabr; — 3aby'r; )
ngz2u49;3(&r;14—ab4—a2¢%g*>—+bQ;1(&r;1+—3n)-+3aQ;1<¢/—-¢),

0, =0 [b ta (@z/ . ¢) rgl] ,
(A17)
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Lo = ¢y [wPQ (1= 1) = CkLT]
Dox = bwpr [1+20 + 1+ G (1= 1 +208 07 | + aw) (v = §) (14 1),
Too = wlQ " [20°r; + a®Y'ry P (1= 1)+ ab (1 — I +2¢')] — DritOk? (a1 +b* — 2abr;) ,
Tio=T+v (1412207 +20K1 07,
Dyp = —2bw/ Q) (1 242+ 1) +2a (w - zp’) WO (14 72),
Ty = a? [1 o (14— 202072) + 2&01@39;1] + 02 (3w 2 — r2)
+abry (=141 —20P2Q7%) — aby/ri (1412 — 3wQ;7%) — 2abir; ' CK2 Q7
oo = 1! [2 + 30+ U2 (14 CkiQ;l)} L T =0 [5& (1/1 - w’) — br, (5 + 31;772)] ,
I'yo = 2r; 0! (a2 — 62) + abQ; (1 +3r? — 2 — 2) + a®'r ! (1 + 37"12) + aQ@@ri_lC'kiQ;Q,
[3=0;72 (1 + 3@@) + 2w/ Q3 [ar;l (1[1 - ¢'> - b] + Q7 [a® (14 3¢) = b* +ab (3r; —'r; )],

r, =07 [&r;l +a*'rt + ab} .
(A18)
The correctness of the quadric form expressions (A13) and (A14) has been verified by

substituting numerical solutions of the cubic form (6) and determining that equations
(A13) and (A14) hold to double precision (not presented here). It is for this reason that

all terms including small ones were kept in Egs. (A16)—(A18).

Appendix B: Differential Drift Velocity and Zeroth-Order Frequency
In this section, we evaluate V,; and w), for arbitrary altitude and vector directions.
The previously derived general expressions for the drift velocities are [Makarevich, 2016a,

equation (5)]
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E, - Eo. _1 [ Ev :
VaO = Sa (E — OQG> x b + SaTa (? — C’QGJ_) + Tal (? — CQG|| b, (Bl)

«  where Eq is the background electric field, G = Vn/n is the gradient strength vector, and

o =Va/Qay  Sa=(1+712)7",  Co=Ta/(qB). (B2)

«  The differential drift velocity is found by subtracting the ion drift velocity from the

ws electron drift velocity and rewriting

Va=susi (= r) (14 0) (RVe = 200 ) =0 - ) Tl
(B3)
55 (14 0) |(C = RL)G x b+ (RC + L) G| + 47 LGyb.
where
Eri‘i‘re’ L=rC.—7r.C;, C=0C;—C.. (B4)
1+

«  This can be approximated for the case of fully-magnetized electrons |r.| < 1 and s, ~ 1
« and for the ionospheric applications where |r.| < r;, ¥ < 1. In this case, R ~ r,

w C —RL~C— Ceﬂ?, RC+ L =~ TiCi, 1/1_1.[/ ~ —re_lCe, and

E Ey - . .
Vg~ s;r; (mVE — %) + r;l??”b + s; [(C’ — C’er?) Gxb+ riC'iGL] — re_lCeG”b,

(B5)
w0 A simple OOM analysis of V; can be carried out by neglecting all terms except for the

o first one which includes two perpendicular components parallel to Vg and Eg, /B. From

« these and definition of s; from Eq. (B2),

12 = 3‘1/2riVE- (BG)

)

V;j ~ Si’f‘iVE (’I“Z2 + 1)
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The zeroth-order oscillation frequency defined by Eq. (13) is evaluated by approximat-
ing ai)'r; 1 < b, substituting Eq. (B5) and definitions of gradient terms a and b from Eq.

(2), and simplifying

- E E
Wro R SiTi |:7"i (VE - ;G % b> - (% - (JZ-GLH k+r (?ﬁ]” - (JeG> . (B7)

For realistic gradients C,,G < Fy/B and all gradient terms are negligible as compared
to their electric field counterparts
Eo,

E
UJ;O =~ S5;T; (TZVE — F) . k + Te_lku%”. (B8)

One should note that the last step is only possible because both terms V4-k and bCk? in
wr, contain gradient-dependent terms, but these partially cancel leaving only terms that
can be neglected. A similar cancelation has been previously demonstrated by Makarevich
[2016b] for the F-region case and purely perpendicular propagation kj = 0. For a more

general case in the F' region, r; < 1,s; =~ 1 and

E Eyk
w;ﬁ ~ _/ri (LJ_ . k+ w—l OH ) . (Bg)

B B
Appendix C: Growth Rate Expression: Order-of-Magnitude Analysis
In this section, we carry out an order-of-magnitude (OOM) analysis of two specific
terms in the expression for the growth rate. It is demonstrated that the first term is
important only at short wavelengths A < 10 m in the F' region, while the second term can

be neglected for purely field-aligned irregularities (PFAI).
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The explicit expression for the growth rate derived in Section 4 was as follows

Uit w20t (1= I — Ck2] + butlr (1 Ty 2@%;21*10@9;1) + aw! (@z/ - ¢) (14171

T L+ 0 (1+11)
(C1)

The first term of interest is the term 2¢r; 21~ Ck2 Q! in the numerator. It is compared

to the remaining terms 14/~ in the second term in the numerator in Eq. (29) by equating

20r 2 I CRAQT =k (14T (C2)

where k is assumed to represent a smallness parameter, e.g. 0.01 or 0.1. From Eq. (C2),
the wavelengths that refer to different s levels are found by using an OOM estimate
for w! from Eq. (19) and a corresponding factor I ~ 72 + Q7 2s2r2V2k% Under these

approximations, Eq. (C2) becomes

207 20K Q7 = w (1412 + Q7 222 VEE?) . (C3)

When £€;2s2r2V2 > 2r;2CQ;", there is no real solutions in k, which means that the
left-hand-side is small for any k. This is the case for the E region. When x2; ?s?r2V2 <
2r72C0 Y a solution is k2 = ks, L/ (21&7’;209;1 — mQ;zs?rz-QVé), from which \;—g01 =
14 m and A.—o1 = 4.5 m for the F' region. This means that at scales near A ~ 10 m and
shorter, the term in question is important, but at longer wavelengths it quickly becomes
negligible.

The second term is aw. (w’ - 1@) (1+17'), where a = G-k, /k? from Eq. (2). Tt is zero
for purely perpendicular propagation kj = 0, since 7,@ = 1)’ =1 in this case from Eqs. (4)
and (5). More generally, it can be neglected when a (1// — 1/3) <& br;. Since both gradient

2

terms a and b are of the same magnitude and since v’ — 1& ~ —rr; ty?, this condition
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can be rewritten as y?> < —7.. This is significantly more restrictive than the condition
of nearly field-aligned irregularities (NFAT) under which the general dispersion relation is
valid. For arbitrary altitude, the NFAI condition is y* < s;r? < 1, which in the F region
can be written as y? < r? < 1, since s; ~ 1 there. Thus the last term in Eq. (29) can be
neglected close to purely perpendicular propagation or purely field-aligned irregularities
(PFAI) when y? < —r..

In addition, this term is typically much smaller than the gradient-free term ool ' =
zﬂri_l [wa;l (1—-11— C’kﬂ A simple OOM analysis is to equate aw!. (1/)’ — 12)) =
1&7‘{ 120! and to find the wavelength where the contributions are equal by utilizing
OOM estimates y? ~ —re, ¥ — b & —rir 2 ~ v, 0 = (L4122 ~ap (1 — 1Y) ~ 1,
a~b~ G/k,as well as Eq. (19) for w!. With these estimates, the wavelength is found as
A= ZW\/W, which for moderate gradients G = 107° m~! and strong convection
Vg = 1000 m is A ~ 1000 m for the E region and A ~ 3650 m for the F' region. This
means that the term in question is small as compared to the gradient-free term Tl

except at long wavelengths in the E region.

Appendix D: Critical Gradients

The expressions for the growth rate can be analyzed analytically using various ap-
proaches, including analysis of the marginal instability growth condition v = 0 and pa-
rameters such as electric field £ and density gradients G that satisfy it [e.g. Makarevich,
2017]. In this section, a more general analysis is carried out in which gradient strengths
G, are evaluated that are required to achieve a particular growth rate level k, when

normalized to the ion collision frequency v;

DRAFT May 9, 2019, 12:35pm DRAFT



519

520

521

522

523

524

525

526

527

528

529

530

X - 36 MAKAREVICH: PLASMA INSTABILITY FOR ARBITRARY ALTITUDE

V(Gy) [vi = £,

(D1)

including critical gradients Gg that lead to zero growth v (Go) = 0. It is useful to consider

this more general case of GG, rather than just Gy, since in developing expressions for the

growth rate, the slow growth approximation was employed, Eq. (22). In this section, we

will develop expressions for GG, and then use these expressions in Section 6 to analyze

limits of applicability of the developed expressions for the growth rate.

We start from Eq. (29), consider a case of the purely field-aligned irregularities (PFAI)

where the last term in the numerator can be neglected, Appendix C, and substitute into

Eq. (D1)

bri? (w272 (1= 17 — CREQ] + b/ Q! (1 +I 7+ 2¢r;21—10ki9;1)

K =

1+ (1+171)

. (D2)

By substituting Eq. (31) into Eq. (D2) and rearranging, the exact expression for G, is

G2 W20 (- 1) = OO =k 149 (14 17Y)]

G =

—w! Q7 kT sin (o — x) (1 + 171+ 21&1{2[*101@9;1)

(D3)

The above expression can be approximated for the PFAI case by using Eq. (17) as

G/@ ~ _G*f_l (O[, ﬂa X)

Yr 2k [sr2VEcos? (a+ B) (L— 1Y) — C2 — & [1 1+ 1Y)

1+ I71 4+ 2 211 CK2 Q!

(D4)

where function f has been previously defined by Eq. (33) and a new parameter G, has

been introduced as
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G.=s;'r] Qv (D5)

The G, parameter is a characteristic gradient strength which for our model parameters
and strong convection case of Vg = 1000 m/s is 312 m at 300 km and 0.78 m at 110 km.
For a weaker convection, it becomes smaller but still much larger than gradients within
the range of interest G = 107%-10"2 m~! so that G < G,.

For future reference, it is also convenient to rewrite the combination bw.; ' by using

the same notations as

b Q7 ~ GG f (o, 8,x) < 1, (D6)
where in the last inequality we used the previously obtained estimate G < G,.
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Figure 1. Vector geometry and angle definitions. Shown are the directions of the field-
perpendicular components of the differential plasma drift velocity V4, the E x B drift
velocity Vg, gradient G = Vn/n, wavevector k, and the electric field E. The definitions
of six angles of interest are also shown. All angles are positive ccw from the z axis, except

for $ which is positive from the negative x axis cw.
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The growth rate dependence on the wavelength A\ and gradient strength G

for the gradient angle x = 7/2, propagation angle a = 0, and zero aspect angle o/ = 0.

Shown are (a) the exact values vy normalized to v;, (b) differences between the quadratic

values 7/v; and the exact values v/v;, and (c) differences between the approximate values

~/v; and the exact values v/v; at an F-region altitude of 300 km. Figures 2d-2f show the

same but for an E-region altitude of 110 km. Also shown are the limits of applicability

of the local (G < k; red lines) and slow-growth (|| < v;; pink lines) approximations, as

well as marginal instability conditions v = 0 (grey-white dashed line), see text for details.
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Figure 3. The same as Figure 2 but for the oscillation frequency. Shown are differences
between (a) zeroth-order values w’,, and exact values w/., (b) approximate quadratic values
w!. and exact values w/., and (c) first-order values w/; and exact values w/. at an altitude
of 300 km normalized to w.,. Figures 3d-3f show the same but at an altitude of 110 km.

Since w)./wly = Vpn/Vino, each panel also shows normalized differences between phase

velocities.
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Figure 4. Normalized maximum growth rates v/ (GVgf) versus wavelength \ for
G =10° m~! and Vg = 1000 m/s for 5 selected altitudes. Also shown by the dashed lines

are dimensionless functions 1+ 1.
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