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Abstract: This paper is concerned with the estimation of time-varying networks for high-dimensional
nonstationary time series. Two types of dynamic behaviors are considered: structural breaks (i.e.,
abrupt change points) and smooth changes. To simultaneously handle these two types of time-varying
features, a two-step approach is proposed: multiple change point locations are first identified
on the basis of comparing the difference between the localized averages on sample covariance
matrices, and then graph supports are recovered on the basis of a kernelized time-varying constrained
L1-minimization for inverse matrix estimation (CLIME) estimator on each segment. We derive the
rates of convergence for estimating the change points and precision matrices under mild moment
and dependence conditions. In particular, we show that this two-step approach is consistent in
estimating the change points and the piecewise smooth precision matrix function, under a certain
high-dimensional scaling limit. The method is applied to the analysis of network structure of the
S&P 500 index between 2003 and 2008.

Keywords: high-dimensional time series; nonstationarity; network estimation; change points;
kernel estimation

1. Introduction

Networks are useful tools to visualize the relational information among a large number of
variables. An undirected graphical model belongs to a rich class of statistical network models that
encodes conditional independence [1]. Canonically, Gaussian graphical models (or their normalized
version partial correlations [2]) can be represented by the inverse covariance matrix (i.e., the precision
matrix), where a zero entry is associated with a missing edge between two vertices in the graph.
Specifically, two vertices are not connected if and only if they are conditionally independent, given the
value of all other variables.

On one hand, there is a large volume of literature on estimating the (static) precision matrix
for graphical models in the high-dimensional setting, where the sample size and the dimension are
both large [3–16]. Most of the earlier work along this line assumes that the underlying network
is time-invariant. This assumption is quite restrictive in practice and hardly plausible for many
real-world applications, such as gene regulatory networks, social networks, and stocking market,
where the underlying data generating mechanisms are often dynamic. On the other hand, dynamic
random networks have been extensively studied from the perspective of large random graphs,
such as community detection and edge probability estimation for dynamic stochastic block models
(DSBMs) [17–30]. Such approaches do not model the sampling distributions of the error (or noise),
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since the “true” networks are connected with random edges sampled from certain probability models,
such as the Erdős–Rényi graphs [31] and random geometric graphs [32].

In this paper, we view the (time-varying) networks of interests as non-random graphs. We adopt
the graph signal processing approach for denoising the nonstationary time series and target
on estimating the true unknown underlying graphs. Despite the recent attempts towards more
flexible time-varying models [33–40], there are still a number of major limitations in the current
high-dimensional literature. First, theoretical analysis was derived under the fundamental assumption
that the observations are either temporally independent, or the temporal dependence has very
specific forms, such as Gaussian processes or (linear) vector autoregression (VAR) [14,33,34,37,41–43].
Such dynamic structures are unduly demanding in view that many time series encountered in real
applications have very complex nonlinear spatial-temporal dependency [44,45]. Second, most existing
work assumes the data have time-varying distributions with sufficiently light tails, such as Gaussian
graphical models and Ising models [33,34,36,41,42]. Third, in change point estimation problems
for high-dimensional time series, piecewise constancy is widely used [41,42,46,47], which can be
fragile in practice. For instance, financial data often appears to have time-dependent cross-volatility
with structural breaks [48]. For resting-state fMRI signals, correlation analysis reveals both slowly
varying and abruptly changing characteristics corresponding to modularities in brain functional
networks [49,50].

Advances in analyzing high-dimensional (stationary) time series have been made recently
to address the aforementioned nonlinear spatial-temporal dependency issue [14,37,43,51–57].
In [53,56,57], the authors considered the theoretical properties of regularized estimation of
covariance and precision matrices, based on various dependence measures of high-dimensional
time series. Reference [38] considered the non-paranormal graphs that evolve with a random variable.
Reference [37] discussed the joint estimation of Gaussian graphical models based on a stationary VAR(1)
model with special coefficient matrices, which may also depend on certain covariates. The authors
applied a constrained L1-minimization for inverse matrix estimation (CLIME) estimator with a kernel
estimator of covariance matrix and developed consistency in the graph recovery at a given time
point. Reference [14] studied the recovery of the Granger causality across time and nodes assuming a
stationary Gaussian VAR model with unknown order.

In this paper, we focus on the recovery of time-varying undirected graphs on the basis of the
regularized estimation of the precision matrices for a general class of nonstationary time series.
We simultaneously model two types of dynamics: abrupt changes with an unknown number of
change points and the smooth evolution between the change points. In particular, we study a class
of high-dimensional piecewise locally stationary processes in a general nonlinear temporal dependency
framework, where the observations are allowed to have a finite polynomial moment.

More specifically, there are two main goals of this paper: first, to estimate the change point
locations, as well as the number of change points, and second, to estimate the smooth precision matrix
functions between the change points. Accordingly, our proposed method contains two steps. In the
first step, the maximum norm of the local difference matrix is computed at each time point and the
jumps in the covariance matrices are detected at the location where the maximum norms are above a
certain threshold. In the second step, the precision matrices before and after the jump are estimated by
a regularized kernel smoothing estimator. These two steps are recursively performed until a stopping
criterion is met. Moreover, a boundary correction procedure based on data reflection is considered to
reduce the bias near the change point.

We provide an asymptotic theory to justify the proposed method in high dimensions: point-wise
and uniform rates of convergence are derived for the change point estimation and graph recovery
under mild and interpretable conditions. The convergence rates are determined via subtle interplay
among the sample size, dimensionality, temporal dependence, moment condition, and the choice
of bandwidth in the kernel estimator. Our results are significantly more involved than problems
for sub-Gaussian tails and independent samples. We highlight that uniform consistency in terms



Entropy 2020, 22, 55 3 of 27

of time-varying network structure recovery is much more challenging and difficult than pointwise
consistency. For the multiple change point detection problem, we also characterize the threshold of the
difference statistic that gives a consistent selection of the number of change points.

We fix some notations: Positive, finite, and non-random constants, independent of the sample size
n and dimension p, are denoted by C, C1, C2, . . . , whose values may differ from line to line. For the
sequence of real numbers, an and bn, we write an = O(bn) or an . bn if lim supn→∞(an/bn) ≤ C for
some constant C < ∞ and an = o(bn) if limn→∞(an/bn) = 0. We say an � bn if an = O(bn) and
bn = O(an). For a sequence of random variables Yn and a corresponding set of constants an, denote
Yn = OP(an) if for any ε > 0 there is a constant C > 0 such that P(|Yn|/an > C) < ε for all n. For a
vector x ∈ Rp, we write |x| = (∑

p
j=1 x2

j )
1/2. For a matrix Σ, |Σ|1 = ∑j,k |σjk|, |Σ|∞ = maxj,k |σjk|,

|Σ|L1 = maxk ∑j |σjk|, |Σ|F = (∑j,k σ2
jk)

1/2 and ρ(Σ) = max{|Σx| : |x| = 1}. For a random vector

z ∈ Rp, write z ∈ La, a > 0, if ‖z‖a =: [E(|z|a)]1/a < ∞. Let ‖z‖ = ‖z‖2. Denote a ∧ b = min(a, b)
and a ∨ b = max(a, b).

The rest of the paper is organized as follows: Section 2 presents the time series model, as well as
the main assumptions, which can simultaneously capture the smooth and abrupt changes. In Section 3,
we introduce the two-step method that first segments the time series based on the difference between
the localized averages on sample covariance matrices and then recovers the graph support based
on a kernelized CLIME estimator. In Section 4, we state the main theoretical results for the change
point estimation and support recovery. Simulation examples are presented in Section 5 and a real data
application is given in Section 6. Proof of main results can be found in Section 7.

2. Time Series Model

We first introduce a class of causal vector stochastic processes. Next, we state the assumptions
to derive an asymptotic theory in Section 4 and explain their implications. Let εi ∈ Rp, i ∈ Z be
independent and identically distributed (i.i.d.) random vectors and Fi = (. . . , εi−1, εi) be a shift
process. Let X◦i (t) = (X◦i1(t), . . . , X◦ip(t)) be a p-dimensional nonstationary time series generated by

X◦i (t) = H(Fi; t), (1)

where H(·; ·) =
(

H1(·; ·), . . . , Hp(·; ·)) is an Rp-valued jointly measurable function. Suppose we
observe the data points Xi = Xi,n = X◦i (ti) at the evenly spaced time intervals ti = i/n, i = 1, 2, . . . , n,

Xi,n = H(Fi; i/n). (2)

We drop the subscription n in Xi,n in the rest of this section. Since our focus is to study the
second-order properties, the data is assumed to have a mean of zero.

Model (1) is first introduced in [58]. The stochastic process
(
X◦i (t)

)
i∈Z,t∈[0,1) can be thought of as

a triangular array system, double indexed by i and t, while the observations (Xi)
n
i=1 are sampled from

the diagonal of the array. On one hand, when fixing the time index t, the (vertical) process
(
X◦i (t)

)
i∈Z

is stationary. On the other hand, since H(Fi; ti) is allowed to vary with ti, the diagonal process (2) is
able to capture nonstationarity.

The process (Xi)i∈Z is causal or non-anticipative as Xi is an output of the past innovations (εj)j≤i
and does not depend on future innovations. In fact, it covers a broad range of linear and nonlinear,
stationary and non-stationary processes, such as vector auto-regressive moving average processes,
locally stationary processes, Markov chains, and nonlinear functional processes [53,58–61].

Motivated by real applications where nonstationary time series data can involve both abrupt
breaks and smooth varies between the breaks, we model the underlying processes as piecewise locally
stationary with a finite number of structural breaks.
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Definition 1 (Piecewise locally stationary time series model). Define PLSι([0, 1], L) as the collection of
mean-zero piecewise locally stationary processes on [0, 1], if for each (X(t))0≤t≤1 ∈ PLSι([0, 1], L), there is a
nonnegative integer ι such that X(t) is piecewise stochastic Lipschitz continuous in t with Lipschitz constant L
on the interval [t(l), t(l+1)), l = 0, · · · , ι, where 0 = t(0) < t(1) · · · < t(ι) < t(ι+1) = 1. A vector stochastic
process (X(t))0≤t≤1 ∈ PLSι([0, 1], L) if all coordinates belong to PLSι([0, 1], L). For the process (X◦0 (t))0≤t≤1

defined in (1), this means that there exists a non-negative integer ι and a constant L > 0, such that

max
1≤j≤p

∥∥Hj(F0; t)− Hj(F0; t′)
∥∥ ≤ L|t− t′| for all t(l) ≤ t, t′ < t(l+1), 0 ≤ l ≤ ι.

Remark 1. If we assume (X◦i (t))0≤t≤1 ∈ PLSι([0, 1], L), i ∈ Z, then it follows that for each i′ = i− k, . . . , i +
k, where k/n→ 0, and that t(l) ≤ i, i′ < t(l+1) for some 0 ≤ l ≤ ι, we have

max
1≤j≤p

‖Hj(Fi′ ; i/n)− Hj(Fi′ ; i′/n)‖ ≤ Lk/n = o(1).

In other words, within a locally stationary time period, in a local window of i, (Xi′ j)i−k≤i′≤i+k can
be approximated by the stationary process (X◦i′ j(i/n))i−k≤i′≤i+k for each j = 1, . . . , p. This justifies the
terminology of local stationarity.

The covariance matrix function of the underlying process is Σ(t) =
(
σjk(t)

)
1≤j,k≤p, t ∈ [0, 1],

where σjk(t) = E
(

Hj(F0; t)Hk(F0; t)), and the precision matrix function is Ω(t) = Σ(t)−1 =(
ωjk(t)

)
1≤j,k≤p. The graph at time t is denoted by G(t) = (V , E(t)), where V is the vertex set and

E(t) = {(j, k) : ωjk(t) 6= 0}. Note that (X◦i (t))t ∈ PLSι([0, 1], L), i ∈ Z implies piecewise Lipschitz
continuity in Σ(t) except at the breaks t(1), . . . , t(ι). In particular, if sup0≤t≤1 max1≤j≤p

∥∥Hj(F0; t)
∥∥ ≤ C

for some constant C > 0, then

|Σ(s)− Σ(t)|∞ ≤ 2CL|s− t|, ∀s, t ∈ [t(l), t(l+1)), l = 0, . . . , ι. (3)

The reverse direction is not necessarily true, i.e., (3) does not indicate (X◦i (t))t ∈ PLSι([0, 1], L),
i ∈ Z in general. As a trivial example, let εij = 2−1/2 with probability 2/3 and

√
2 with probability

1/3 i.i.d for all i, j. At time tk = k/n, let X◦ij(tk) = (−1)k
√

tkεij. Then for any k and k′ such that k + k′ is
odd, |Σ(tk)− Σ(tk′)|∞ = |tk − tk′ |, while ‖X◦01(tk)− X◦01(tk′)‖2 =

√
tk +
√

tk′ .

Assumption 1 (Piecewise smoothness). (i) Assume (X◦i (t))0≤t≤1 ∈ PLSι([0, 1], L) for each i ∈ Z, where
L > 0 and ι ≥ 0 are constants independent of n and p. (ii) For each l = 0, . . . , ι, and 1 ≤ j, k ≤ p, we have
σjk(t) ∈ C2[t(l), t(l+1)).

Now we introduce the temporal dependence measure. We quantify the dependence of
(
X◦i (t)

)
i∈Z

by the dependence adjusted norm (DAN) (cf. [62]). Let ε′i be an independent copy of εi and Fi,{m} =

(. . . , εi−m−1, ε′i−m, εi−m+1, . . . , εi). Denote X◦i,{m}(t) =
(
X◦i1,{m}(t), . . . , X◦ip,{m}(t)

)
, where X◦ij,{m}(t) =

Hj(Fi,{m}; t), 1 ≤ j ≤ p. Here X◦i,{m}(t) is a coupled version of X◦i (t), with the same generating
mechanism and input, except that εi−m is replaced by an independent copy ε′i−m.

Definition 2 (Dependence adjusted norm (DAN)). Let constants a ≥ 1, A > 0.
Assume sup0≤t≤1 ‖X◦1j(t)‖a < ∞, j = 1, . . . , p. Define the uniform functional dependence measure
for the sequences (X◦ij(t))i∈Z,t∈[0,1] of form (1) as

θm,a,j = sup
0≤t≤1

‖X◦ij(t)− X◦ij,{m}(t)‖a, j = 1, . . . , p,
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and Θm,a,j = ∑∞
i=m θi,a,j. The dependence adjusted norm of (X◦ij(t))i∈Z,t∈[0,1] is defined as

∥∥X·,j
∥∥

a,A = sup
m≥0

(m + 1)AΘm,a,j,

whenever
∥∥X·,j

∥∥
a,A < ∞.

Intuitively, the physical dependence measure quantifies the adjusted stochastic difference between
the random variable and its coupled version by replacing past innovations. Indeed, θm,a,j measures
the impact on X◦ij(t) uniform over t by replacing εi−m while freezing all the other inputs, while Θm,a,j

quantifies the cumulative influence of replacing ε−m on (X◦ij(t))i≥0 uniform over t. Then
∥∥X·,j

∥∥
a,A

controls the uniform polynomial decay in the lag of the cumulative physical dependence, where a
depends on the the tail of marginal distributions of X◦1,j(t) and A quantifies the polynomial decay
power and thus the temporal dependence strength. It is clear that

∥∥X·,j
∥∥

a,A is a semi-norm, i.e., it is
subaddative and absolutely homogeneous.

Assumption 2 (Dependence and moment conditions). Let X◦i (t) be defined in (1) and Xi in (2). There exist
q > 2 and A > 0 such that

ν2q := sup
t∈[0,1]

max
1≤j≤p

E|X◦j (t)|2q < ∞ and NX,2q := max
1≤j≤p

∥∥X·,j
∥∥

2q,A < ∞. (4)

We let MX,q :=
(

∑1≤j≤p
∥∥X·,j

∥∥q
2q,A

)1/q
and write NX = NX,4, MX = MX,2. The quantities MX,q

and NX,2q measure the Lq-norm aggregated effect and the largest effect of the element-wise DANs
respectively. Both quantities play a role in the convergence rates of our estimator.

Obviously, we have ‖Xij − Xij,{m}‖a ≤ θm,a,j and max1≤j≤p E|Xij|2q ≤ ν2q for all 1 ≤ i ≤ n.
In contrast to other works in a high-dimensional covariance matrix and network estimation, where
sub-Gaussian tails and independence are the keys to ensure consistent estimation. Assumption 2
only requires that the time series have a finite polynomial moment, and it allows linear and nonlinear
processes with short memory in the time domain.

Example 1 (Vector linear process). Consider the following vector linear process model

H(Fi; t) =
∞

∑
m=0

Am(t)εi−m,

where εi = (ε1, . . . , εp) and εij are i.i.d. with mean 0 and variance 1, and ‖εij‖q ≤ Cq for each i ∈ Z and
1 ≤ j ≤ p with some constants q > 2 and Cq > 0. The vector linear process is commonly seen in literature and
application [63]. It includes the time-varying VAR model where Am(t) = A(t)m as a special example.

Suppose that the coefficient matrices Am(t) = (am,jk(t))1≤j,k≤p, m = 0, 1, . . . satisfy the
following condition.

(A1) For each 1 ≤ j, k ≤ p, am,jk(t) ∈ C2[0, 1].

(A2) For each 1 ≤ j ≤ p, there is a constant CA,j > 0 such that for each t ∈ [0, 1], ∑
p
k=1 am,jk(t)2 ≤

CA,j(m + 1)−2(A+1) for all m ≥ 0.
(A3) For any t, t′ ∈ [0, 1], ∑∞

m=0 ∑
p
k=1[am,jk(t)− am,jk(t′)]2 ≤ L2|t− t′|2 for each j = 1, . . . , p.
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Note that

σjk(t) = ∑
m≥0

A>m,j·(t)Am,k·(t),

Θm,q,j ≤ 2Cq
√

q− 1
∞

∑
m=0

(A>m,j·Am,j·)
1/2,

‖X◦ij(t)− X◦ij(t
′)‖2 =

∞

∑
m=0

Am,j·

p

∑
k=1

[am,jk(t)− am,jk(t′)]2,

where Am,j·(t) is the jth row of Am(t). Under conditions (A1)–(A3), one can easily verify that for each

1 ≤ j, k ≤ p, the process satisfies: (1) σjk(t) ∈ C2[0, 1]; (2) ‖X·,j‖q,A ≤ Cq

√
(q− 1)CA,j (due to Burkholder’s

inequality, cf. [64]); (3) ‖Hj(F0; t)− Hj(F0; t′)‖ ≤ L|t− t′|.
Conditions (A1)–(A3) implicitly impose smoothness in each entry of the coefficient matrices, sparseness in

each column of the entry and evolution, and polynomial decay rate in the lag m of each entry and its derivative.

For 1 ≤ l ≤ ι, let δjk(t(l)) := σjk(t(l)) − σjk(t(l)−) and ∆(t(l)) =
(
δjk(t(l))

)
1≤j,k≤p, where

σjk(t(l)−) = limt→t(l)− σjk(t) is well-defined in view of (3). We assume that the change points are
separated and sizeable.

Assumption 3 (Separability and sizeability of change points). There exist positive constants c1 ∈ (0, 1)
and c2 > 0 independent of n and p such that max0≤l≤ι(t(l+1) − t(l)) ≥ c1 and δ(tl) := |∆(tl)|∞ ≥ c2.

In the high-dimensional context, we assume that the inverse covariance matrices are sparse in the
sense of their L1 norms.

Assumption 4 (Sparsity of precision matrices). The precision matrix |Ω(t)|L1 ≤ κp for each t ∈ [0, 1],
where κp is allowed to grow with p.

If we further assume that the eigenvalues of the covariance matrices are bounded from below and
above, i.e., there exists a constant 0 < c < 1, such that c ≤ inft∈[0,1] |Σ(t)|2 ≤ supt∈[0,1] |Σ(t)|2 ≤ c−1,
then the covariance matrices and precision matrices are well-conditioned. In particular, as |Ω(t)−
Ω(t′)| ≤ c−2|Σ(t)− Σ(t′)|, a small perturbation in the covariance matrix would guarantee a small
change of the same order in the precision matrix under the spectral norm.

3. Method: Change Point Estimation and Support Recovery

In graphical models (such as the Gaussian graphical model or partial correlation graph), network
structures relevant to correlations or partial correlations are second-order characteristics of the data
distributions. Specifically, the existence of edges coincides with non-zero entries of the inverse
covariance matrix. We consider the dynamics of time series with both structural breaks and smooth
changes. The piecewise stochastic Lipschitz continuity in Definition 1 allows the time series to have
discontinuity in the covariance matrix function at time points t(l), l = 1, . . . , ι (i.e., change points),
while only smooth changes (i.e., twice continuous differentiability of the covariance matrix function in
Assumptions 1) can occur between the change points.

In the presence of change points, we must first remove the change points before applying any
smoothing procedures since |Ω(t) − Ω(t−)|∞ ≥ |Σ(t)|−1

L1 |Σ(t−)|−1
L1 |∆(t)|∞, i.e., a non-negligible

abrupt change in the covariance matrix will result in a substantial change of the graph structure
for sparse and smooth covariance matrices. Thus our proposed graph recovery method consists of two
steps: change point detection and support recovery.



Entropy 2020, 22, 55 7 of 27

Let h ≡ hn > 0 be a bandwidth parameter such that h = o(1) and n−1 = o(h), and Dh(0) =

{h, h + 1/n, . . . , 1− h} be a search grid in (0, 1). Define

D(s) = n−1

(
hn−1

∑
i=0

Xns−iX>ns−i −
hn

∑
i=1

Xns+iX>ns+i

)
, s ∈ Dh(0). (5)

To estimate the change points, compute

ŝ1 = argmaxs∈Dh(0)
|D(s)|∞. (6)

The following steps are performed recursively. For l = 1, 2, . . ., let

Dh(l) = Dh(l − 1) ∩ {ŝl − 2h, · · · , ŝl + 2h}c, (7)

ŝl+1 = arg maxs∈Dh(l) |D(s)|∞, (8)

until the following criterion is attained:

max
s∈Dh(l)

|D(s)|∞ < ν, (9)

where ν is an early stopping threshold. The value of ν is determined in Section 4, which depends on the
dimension and sample size, as well as the serial dependence level, tail condition, and local smoothness.
Since our method only utilizes data in the localized neighborhood, multiple change points can be
estimated and ranked in a single pass, which offers some computational advantage than the binary
segmentation algorithm [41,46].

Once the change points are claimed, in the second step, we consider recovering the networks from
the locally stationary time series before and after the structural breaks. In [11], where Xi, i = 1, . . . , n
are assumed with an identical covariance matrix, the precision matrix Ω̂ is estimated as,

Ω̂λ = arg min
Ω∈Rp×p

|Ω|1 s.t. |Σ̂Ω− Idp|∞ ≤ λ, (10)

where Σ̂ is the sample covariance matrix. Inspired by (10), we apply a kernelized time-varying (tv-)
CLIME estimator for the covariance matrix functions of the multiple pieces of locally stationary
processes before and after the structural breaks. Let

Σ̂(t) =
n

∑
i=1

w(t, ti)XiX>i , (11)

where

w(t, i) =
Kb(ti, t)

∑n
i=1 Kb(ti, t)

(12)

and Kb(u, v) = K(|u− v|/b)/b. The bandwidth parameter b satisfies that b = o(1) and n−1 = o(b).
Denote Bn = nb. The kernel function K(·) is chosen to have properties as follows.

Assumption 5 (Regularity of kernel function). The kernel function K(·) is non-negative, symmetric,
and Lipschitz continuous with bounded support in [−1, 1], and that

∫ 1
−1 K(u)du = 1.

Assumption 5 is a common requirement on the kernel functions and can be fulfilled by a range
of kernel functions, such as the uniform kernel, triangular kernel, and the Epanechnikov kernel.
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Now the tv-CLIME estimator of the precision matrix Ω(t) is defined by Ω̃(t) =
(

ω̃jk(t)
)

1≤j,k≤p
, where

ω̃jk(t) = min(ω̂jk(t), ω̂kj(t)), and Ω̂(t) ≡ Ω̂λ(t) = (ω̂jk(t))1≤j,k≤p,

Ω̂λ(t) = arg min
Ω∈Rp×p

|Ω|1 s.t. |Σ̂(t)Ω− Idp|∞ ≤ λ. (13)

Similar hybridized kernel smoothing and the CLIME method for estimating the sparse and
smooth transition matrices in high-dimensional VAR model has been considered in [65], where change
point is not considered. Thus in the current setting we need to carefully control effect of (consistently)
removing the change points before smoothing.

Then, the network is estimated by the “effective support" defined as follows.

Ĝ(t; u) = (ĝjk(t; u))1≤j,k≤p, where ĝjk(t; u) = I
{
|ω̃jk(t)| ≥ u

}
. (14)

It should be noted that the (vanilla) kernel smoothing estimator (11) of the covariance matrix
does not adjust for the boundary effect due to the change points in the covariance matrice function.
Thus, in the neighborhood of the change points, a larger bias can be induced in estimating Σ(t) by
Σ̂(t). As a remedy, we apply the following reflection procedure for boundary correction. Suppose t ∈
T̂b+h2(j) for 1 ≤ j ≤ ι, Denote T̂d(j) := [ŝj − d, ŝj + d) for d ∈ (0, 1). We replace (11) by

Σ̂(t) =
n

∑
i=1

w(t, ti)x̆i x̆>i ,

and then apply the rest of the tv-CLIME approach. Here

x̆i =

{
xi if (i− ŝjn)(t− ŝjn) ≥ 0;

x2ŝjn−i otherwise.
(15)

4. Theoretical Results

In this section, we derive the theoretical guarantees for the change point estimation and graph
support recovery. Roughly speaking, Proposition 1 and 2 below show that under appropriate
conditions, if each element of the covariance matrix varies smoothly in time, one can obtain an
accurate snapshot estimation of the precision matrices as well as the time-varying graphs with high
probability via the proposed kernel smoothed constrained l1 minimization approach.

Define Jq,A(n, p) = MX,q(pvq,A(n))1/q, where vq,A(n) = n, n(log n)1+2q, nq/2−Aq if A > 1/2−
1/q, A = 1/2− 1/q, and 0 < A < 1/2− 1/q, respectively.

Proposition 1 (Rate of convergence for estimating precision matrices: pointwise and uniform).
Suppose Assumptions 2, 4, and 5 hold with ι = 0. Let Bn = bn for n−1 = o(b) and b = o(1).

(i) Pointwise. Choose the parameter λ◦ ≥ Cκp(b2 + B−1
n Jq,A(Bn, p) + NX(log p/Bn)1/2) in the

tv-CLIME estimator Ω̂λ◦(t) in (13), where C is a sufficiently large constant independent of n and p.
Then for any t ∈ [b, 1− b], we have

|Ω̂λ◦(t)−Ω(t)|∞ = OP(κpλ◦). (16)

(ii) Uniform. Choose λ� ≥ Cκp

(
b2 + B−1

n Jq,A(n, p) + NXB−1
n (n log(p))1/2

)
in the tv-CLIME estimator

Ω̂λ◦(t) in (13), where C is a sufficiently large constant independent of n and p. Then we have

sup
t∈[b,1−b]

|Ω̂λ�(t)−Ω(t)|∞ = OP(κpλ�). (17)
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The optimal order of the bandwidth parameter b = b] in (17) is the solution to the
following equation:

b2 = B−1
n max(Jq,A(n, p), NX(n log(p2))1/2),

which implies that the closed-form expression for b] is given by

b] = C1
(
n−1 Jq,A(n, p)

)1/3
+ C2N1/3

X n−1/6 log(p)1/6

for some constants C1 and C2 that are independent of n and p.
Given a finite sample, to distinguish the small entries in the precision matrix from the noise is

challenging. Since a smaller magnitude of a certain element of the precision matrix implies a weaker
connection of the edge in the graphical model, we instead consider the estimation of significant edges
in the graph. Define the set of significant edges at level u as E∗(t; u) =

{
(j, k) : g∗jk(t; u) 6= 0

}
, where

g∗jk(t; u) = I
{
|ωjk(t)| > u

}
.

Then, as a consequence of (17), we have the following support recovery consistency result.

Proposition 2 (Consistency of support recovery: significant edges). Choose u as u] = C0κ2
pb2

] , where
C0 is taken as a sufficiently large constant independent of n and p. Suppose that u] = o(1) as n, p → ∞.
Then under conditions of Proposition 1, we have that as n, p→ ∞,

P
(

sup
t∈[b,1−b]

∑
(j,k)∈E c(t)

I
{

ĝjk(t; u]) 6= 0
}
6= 0

)
→ 0, (18)

P
(

sup
t∈[b,1−b]

∑
(j,k)∈E∗(t;2u])

I
{

ĝjk(t; u]) = 0
}
6= 0

)
→ 0. (19)

Proposition 2 shows that the pattern of significant edges in the time-varying true graphs
G(t), t ∈ [b, 1− b], can be correctly recovered with high probability. However, it is still an open
question to what extent the edges with magnitude below u can be consistently estimated, which can
be naturally studied in the multiple hypothesis testing framework. Nonetheless, hypothesis testing for
graphical models on the nonstationary high-dimensional time series is rather challenging. We leave it
as a future problem.

Propositions 1 and 2 together yield that the consistent estimation of the precision matrices and
the graphs can be achieved before and after the change points. Now, we provide the theoretical result
of the change point estimation. Theorem 1 below shows that if the change points are separated and
sizable, then we can consistently identify them via the single pass segmentation approach under
suitable conditions. Denote

h� = C1
(
n−1 Jq,A(n, p)

)1/3
+ C2N1/3

X n−1/6 log(p)1/6,

where C1 and C2 are constants independent of n and p.

Theorem 1 (Consistency of change point estimation). Assume Xi ∈ Rp admits the form (2). Suppose that
Assumptions 2 to 3 are satisfied. Choose the bandwidth h = h�, and ν = (1 + L)h2

� in (5) and (9) respectively.
Assume that h� = o(1) as n, p → ∞. We find that there exist constants C1, C2, C3 independent of n and p,
such that

P(|ι̂− ι| > 0) ≤ C1

( pvq,A(n)Mq
X,qν

q
2q

nqcq
2

)1/3
+ C2 p2 exp

{
− C3(

n log2(p)
N2

X
)1/3

}
. (20)
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Furthermore, in the event {ι = ι̂}, the ordered change-point estimator (ŝ(1) < ŝ(2) < · · · < ŝ(ι̂)) defined
in (7) satisfies

max1≤j≤ι |ŝ(j) − t(j)| = OP(h2
�). (21)

Proposition 2 and Theorem 1 together indicate the consistency in the snapshot estimation of
the time-varying graphs before and after the change points. In a close neighborhood of the change
points, we have the following result for the recovery of the time-varying network. Denote S :=[
b], 1− b]] ∩ (∪1≤j≤ι̂T̂ c

h2�+b]
(j)
)

as the time intervals between the estimated change points, and N :=

[0, b]) ∪
(
∪1≤j≤ι̂ (T̂h2�+b] ∩ T̂

c
h2�
)
)
∪ (1− b], 1] as the recoverable neighborhood of the jump.

Theorem 2. Let Assumptions 2 to 5 be satisfied. We have the following results as n, p→ ∞.

(i) Between change points. For t ∈ S , take b = b] and u = u], where b] and u] are defined in Proposition 2.
Suppose u] = o(1). We have

sup
t∈S

max
j,k
|σ̂j,k(t)− σj,k(t)| = OP(b2

] ). (22)

Choose the penalty parameter as λ] := C1κpb2
] , where C1 is a constant independent of n and p. Then

sup
t∈S
|Ω̂λ]

(t)−Ω(t)|∞ = OP(κ
2
pb2

] ).

Moreover,

P
(

sup
t∈S

∑
(j,k)∈E c(t)

I
{

ĝj,k(t; u]) 6= 0
}
= 0

)
→ 1, (23)

P
(

sup
t∈S

∑
(j,k)∈E∗(t;2u])

I
{

ĝjk(t; u]) = 0
}
= 0

)
→ 1. (24)

(ii) Around change points. For s ∈ N , take b = b? := C1
(
n−1 Jq,A(n, p)

)1/2
+ C2N1/2

X n−1/4 log(p)1/4,
and u = u? := C0κ2

pb?, where C0, C1 and C2 are constants independent of n and p. Suppose u? = o(1).
We have

sup
t∈N

max
j,k
|σ̂j,k(t)− σj,k(t)| = OP(b?).

Choose the penalty parameter as λ? := C1κpb?, where C1 is a constant independent of n and p. Then

sup
t∈N
|Ω̂λ?(t)−Ω(t)|∞ = OP(κ

2
pb?). (25)

Moreover,

P
(

sup
t∈N

∑
(j,k)∈E c(t)

I
{

ĝj,k(t; u?) 6= 0
}
= 0

)
→ 1, (26)

P
(

sup
t∈N

∑
(j,k)∈E∗(t;2u?)

I
{

ĝj,k(t; u?) = 0
}
= 0

)
→ 1. (27)

Note that the convergence rates for the covariance matrix entries and precision matrix entries
in case (ii) around the jump locations are slower than those for points well separated from the jump
locations in case (i). This is because on the boundary due to the reflection, the smooth condition may
no longer hold true. Indeed, we only take advantage of the Lipschitz continuous property of the
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covariance matrix function. Thus, we lose one degree of regularity in the covariance matrix function,
and the bias term b2 in the convergence rate of the between-jump area becomes b around the jumps.
We also note that around the smaller neighborhood of the jump J := ∪1≤j≤ι̂T̂h2�

, due to the larger error
in the change point estimation, consistent recovery of the graphs is not achievable.

5. A Simulation Study

We simulate data from the following multivariate time series model:

Xi =
100

∑
m=0

Am(i)εi−m, i = 1, . . . , n,

where Am(i) ∈ Rp×p, 1 ≤ m ≤ 100, 1 ≤ i ≤ n, and εi−m = (εi−m,1, . . . , εi−m,p)
>, with εm,k, m ∈ Z, j =

1, . . . , p generated as i.i.d. standardized T(8) random variables. In the simulation, we fix n = 1000 and
vary p = 50 and p = 100. For each m = 1, . . . , 100, the coefficient matrices Am(i) = (1 + m)−βBm(i),
where β = 1, and Bm(1) is an Rp×p block diagonal matrix. The 5× 5 diagonal blocks in Bm(i) are fixed
with i.i.d. N(0, 1) entries and all the other entries are 0.

We consider the number of abrupt changes is ι = 2 and (nt(1), nt(2)) = (300, 650). The matrix
A0(i) is set to be a zero matrix for i = 1, 2, . . . , 299, while A0(i) = A0(299) + αα>, i = 300, 301, . . . , 649,
and A0(i) = A0(649)− αα>, i = 650, 651, . . . , 1000, where the first 20 entries in α are taken to be a
constant δ0 and the others are 0.

We let the coefficient matrices A1(i) = {am,jk(i)}1≤j,k≤p evolve at each time point, such that two
entries are soft-thresholded and another two elements increase. Specifically, at time i, we randomly
select two elements from the support of A1(i), which are denoted as {a1,j?l k?l

(i)}, l = 1, 2 and that
a1,j?k?(i) 6= 0, and set them to a?1,j?l k?l

(i) = sign(a1,j?l k?l
(i))(|a1,j?l k?l

(i)− 0.05|). We also randomly select

two elements from A?
1(i) and increase their values by 0.03.

Figures 1 and 2 show the support of the true covariance matrices at i = 100, 200, . . . , 900.
In detecting the change points, the cutoff value ν of detection is chosen as follows. After removing

the neighborhood of detected change points, we obtain D(l)
h by ordering D(l)

h , . . .D(l)
h , where l is

obtained from (9) with ν = 0. For l = 1, 2, . . . , l− 1, compute

R(l)
h =

D(l)
h

D(l+1)
h

.

We let ι̂ = arg max0≤l≤l−1R
(l)
h and set ν = D(ι̂)

h .
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Figure 1. Support of the true covariance matrices, p = 50.
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Figure 2. Support of the true covariance matrices, p = 100.

We report the number of estimated jumps and the average absolute estimation error, where the
average absolute estimation error is the mean of the distance between the estimated change points
and the true change points. As is shown in Tables 1 and 2, there is an apparent improvement in
the estimation accuracy as the jump magnitude increases and dimension decreases. The detection is
relatively robust to the choice of bandwidth.

Table 1. Average distance.

Bandwidth 0.14 0.16 0.18 0.2 0.22 0.24

p = 50
δ0 = 1 23.4 21.0 17.47 16.6 14.7 16.5
δ0 = 2 7.4 6.9 8.3 8.1 7.2 6.3

p = 100
δ0 = 1 37.2 30.1 26.4 25.5 21.2 21.3
δ0 = 2 7.8 8.2 9.9 6.9 8.9 7.6
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Table 2. Number of estimated change points.

Bandwidth 0.14 0.16 0.18 0.2 0.22 0.24

p = 50
δ0 = 1 2.38 2.16 1.99 2.00 2.00 2.00
δ0 = 2 2.46 2.31 2.00 2.00 2.00 2.00

p = 100
δ0 = 1 2.25 2.09 1.99 1.99 2.00 2.00
δ0 = 2 2.38 2.19 2.00 2.00 2.00 2.00

We evaluate the support recovery performance of the time-varying CLIME at the lattice
100, 200, . . . , 900 with λ = 0.02, 0.06, 0.1. We take the uniform kernel function and the bandwidth is
fixed as 0.2. At each time point t0, two quantities are computed: sensitivity and specificity, which are
defined as:

sensitivity =
∑1≤j,k≤p I{ĝjk(t0; u) 6= 0, gjk(t0; u) 6= 0}

∑1≤j,k≤p I{gjk(t0; u) 6= 0} ,

specificity =
∑1≤j,k≤p I{ĝjk(t0; u) = 0, gjk(t0; u) = 0}

∑1≤j,k≤p I{gjk(t0; u) = 0} .

We plot the Receiver Operating Characteristic (ROC) curve, that is, sensitivity against 1-specificity.
From Figures 3 and 4 we observe that, due to a screening step, the support recovery is robust to the
choice of λ, except at the change points, where a non-negligible estimation error of the covariance
matrix is induced and the overall estimation is less accurate. As the effective dimension of the network
remains the same at p = 50 and p = 100 by the construction of the coefficient matrix Am(i), there is no
significant difference in the ROC curves at different dimensions.
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Figure 3. ROC curve of the time-varying CLIME, p = 50.
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Figure 4. ROC curve of the time-varying CLIME, p = 100.

6. A Real Data Application

Understanding the interconnection among financial entities and how they vary over time provides
investors and policy makers with insights into risk control and decision making. Reference [66] presents
a comprehensive study of the applications of network theory in financial systems. In this section,
we apply our method to a real financial dataset from Yahoo! Finance (finance.yahoo.com). The data
matrix contains daily closing prices of 420 stocks that are always in the S&P 500 index between 2
January 2002 through 30 December 2011. In total, there are n = 2519 time points. We select 100 stocks
with the largest volatility and consider their log-returns; that is, for j = 1, . . . , 100,

Xij = log
(

pi+1,j/pij
)

,

where pij is the daily closing price of the stock j at time point i. We first compute the statistic (5)
and (6) for the change point detection. We look at the top three statistics for different bandwidths.
For bandwidth k = n−1/5 = 0.21, we rank the test statistic and find that the location for the top change
point is: 7 February 2008 (nŝ1 = 1536), which is shown in Figure 5. The detected change point is quite
robust to a variety of choices of bandwidth. Our result is partially consistent with the change point

finance.yahoo.com
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detection method in [48]. In particular, the two breaks in 2006 and 2007 were also found in [48] and it
is conjectured that the 2007 break may be associated to the U.S. house market collapse. Meanwhile, it is
interesting to observe the increased volatility before the 2008 financial crisis.

2004 2005 2006 2007 2008 2009 2010

0.
00
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01
0
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01
5

0.
02
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0.
03
5
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D
m
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Figure 5. Break size |Ds|∞. From 4 February 2004, to 30 November 2009.

Next, we estimate the time-varying networks before and after the change point at 26 May 2006 with
the largest jump size. Specifically, we look at four time points at: 813, 828, 888, and 903, corresponding
to 23 March 2006, 13 April 2006, 11 July 2006, and 1 August 2006. We use tv-CLIME (13) with the
Epanechnikov kernel with the same bandwidth as in the change point detection to estimate the
networks at the four points. Optimal tuning parameter λ is automatically selected according to the
stability approach [67]. The following matrix shows the number of different edges at those four time
points. It is observed that the time of the first two time points (813 and 828) and the last two (888
and 903) has a higher similarity than across the change point at time 858. The estimated networks are
shown in Figure 6. Networks in the first and second row are estimated before and after the estimated
change point at time 858, respectively. It is observed that at each time point the companies in the same
section tend to be clustered together such as companies in the Energy section: OXY, NOV, TSO, MRO,
and DO (highlighted in cyan). In addition, the distance matrix of estimated networks is estimated as

0 332 350 396
332 0 394 428
350 394 0 234
396 428 234 0

 .
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Figure 6. Estimated networks at time points 813, 828, 888, and 903, corresponding to 23 March
2006, 13 April 2006, 11 July 2006, and 1 August 2006. Colors correspond to the nine sections in the
S&P dataset.

7. Proof of Main Results

7.1. Preliminary Lemmas

Lemma 1. Let (Yi)i∈Z be a sequence that admits (2). Assume Yi ∈ Lq for i = 1, 2, . . . , and the dependence
adjusted norm (DAN) of the corresponding underlying array (Y◦i (t)) satisfies ‖Y·‖q,A < ∞ for q > 2 and
A > 0. Let (ω(t, ti))

n
i=1 be defined in (12) and suppose that the kernel function K(·) satisfies Assumption 5.

Denote vq,A(n) = n, n(log n)1+2q, nq/2−Aq if A > 1/2− 1/q, A = 1/2− 1/q, and 0 < A < 1/2− 1/q,
respectively. Then there exist constants C1, C2 and C3 independent of n, such that for all x > 0,

sup
t∈(0,1)

P
(∣∣∣∣∣ n

∑
i=1

w(t, ti)
(
Yi −E(Yi)

)∣∣∣∣∣ > x

)
≤ C1

vq,A(Bn) ‖Y·‖q
q,A

Bq
nxq

+ C2 exp

(
−C3Bnx2

‖Y·‖2
2,A

)
. (28)

P
(

sup
t∈(0,1)

∣∣∣∣∣ n

∑
i=1

w(t, ti)
(
Yi −E(Yi)

)∣∣∣∣∣ > x

)
≤ C1

vq,A(n) ‖Y·‖
q
q,A

Bq
nxq

+ C2 exp

(
−C3B2

nx2

n ‖Y·‖2
2,A

)
. (29)
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Proof. Let Si = ∑i
j=1
(
Yi −E(Yi)

)
. Note that

sup
t∈(0,1)

∣∣∣∣∣ n

∑
i=1

w(t, ti)Yi

∣∣∣∣∣ = sup
t∈(0,1)

∣∣∣∣∣ n

∑
i=1

w(t, ti)(Si − Si−1)

∣∣∣∣∣
≤ sup

t

∣∣∣∣∣n−1

∑
i=1

[(
w(t, ti)− w(t, ti+1)

)
Si
]∣∣∣∣∣+ sup

t
|w(t, 1)Sn|

. B−1
n max

1≤i≤n
|Si|,

where the last inequality follows from the fact that supt ∑n
i=1 |w(t, ti)− w(t− ti+1)| � B−1

n , due to
Assumption 5.

To see (29), it suffices to show

P
(

max
1≤i≤n

|Si| > x
)
≤ C1

vq,A(n) ‖Y·‖
q
q,A

xq + C2 exp

(
−C3x2

n ‖Y·‖2
2,A

)
. (30)

Now, we develop a probability deviation inequality for max1≤i≤n |∑i
j=1 αjYj|, where αj ≥ 0,

1 ≤ j ≤ n are constants such that ∑1≤j≤n αj = 1. Denote P0(Yi) = E(Yi|εi)−E(Yi) and

Pk(Yi) = E(Yi|εi−k, . . . , εi)−E(Yi|εi−k+1, . . . , εi).

Then we can write

max1≤i≤n |∑i
j=1 αjYj| ≤ max1≤i≤n |∑i

j=1 αjP0(Yj)|+ max1≤i≤n |∑n
k=1 ∑i

j=1 αjPk(Yj)|
+max1≤i≤n |∑∞

k=n+1 ∑i
j=1 αjPk(Yj)|.

(31)

Note that (P0(Yj))j∈Z is an independent sequence. By Nagaev’s inequality and Ottaviani’s
inequality, we have that

P(max1≤i≤n |∑i
j=1 αjP0(Yj)| ≥ x) .

∑n
j=1 α

q
j ‖P0(Yj)‖q

q
xq + exp

(
− C3x2

∑n
j=1 α2

j ‖P0(Yj)‖2
2

)
.

∑n
j=1 α

q
j

xq‖Yj‖q
+ exp

(
− C3

x2

∑n
j=1 α2

j

)
,

(32)

where the last inequality holds because ‖P0(Yj)‖q ≤ 2‖Yj‖q by Jensen’s inequality.
Since ∑∞

j=i+1 αjPk(Yj) is a martingale difference sequence with respect to σ(εi+1−k, εi+2−k, . . .), we have
that |∑∞

k=1+n ∑n
j=i+1 αjPk(Yj)| is a non-negative sub-martingale. Then by Doob’s inequality and

Burkholder’s inequality, we have

P
(
max1≤i≤n |∑∞

k=n+1 ∑i
j=1 αjPk(Yj)| ≥ x

)
≤ P

(
|∑∞

k=n+1 ∑n
j=1 αjPk(Yj)| ≥ x

2
)
+ P

(
max1≤i≤n |∑∞

k=n+1 ∑n
j=1+i αjPk(Yj)| ≥ x

2
)

.

∥∥∥∑∞
k=1+n ∑n

j=1 αjPk(Yj)
∥∥∥q

q
xq

.
(∑n

j=1 α2
j )

q/2Θq
n,q

xq ≤
Θq

n,qnq/2−1 ∑n
j=1 α

q
j

xq .

(33)

Now, we deal with the term max1≤i≤n |∑n
k=1 ∑i

j=1 αjPk(Yj)|. Define am = min(2m, n) and Mn =

dlog n/ log 2e. Then

max
1≤i≤n

∣∣ n

∑
k=1

i

∑
j=1

αjPk(Yj)
∣∣ ≤ Mn

∑
m=1

max
1≤i≤n

∣∣ di/ame

∑
l=1

min(lam ,i)

∑
j=1+(l−1)am

am

∑
k=1+am−1

αjPk(Yj)
∣∣. (34)



Entropy 2020, 22, 55 20 of 27

Let Aodd = {1 ≤ l ≤ di/ame, l is odd} and Aeven = {1 ≤ l ≤ di/ame, l is even}. We have

P
(

max
1≤i≤n

∣∣ di/ame

∑
l=1

Zl,m,i
∣∣ ≥ x

)
≤ P

(
max

1≤i≤n

∣∣ ∑
Aodd

Zl,m,i
∣∣ ≥ x/2

)
+ P

(
max

1≤i≤n

∣∣ ∑
Aeven

Zl,m,i
∣∣ ≥ x/2

)
,

where we have that Zl,m,i := ∑
min(lam ,i)
j=1+(l−1)am

αjP am
am−1(Yj) is independent of Zl+2,m,i for 1 ≤ l ≤

di/ame, 1 ≤ m ≤ Mn, 1 ≤ i ≤ n, as P am
am−1(Yj) := ∑am

k=1+am−1
Pk(Yj) is am-dependent. Therefore, we can

apply Ottaviani’s inequality and Nagaev’s inequality for independent variables. As a consequence,

P
(

max
1≤i≤n

∣∣ di/ame

∑
l=1

Zl,m,i
∣∣ ≥ x

)
.

∑1≤l≤dn/ame ‖Zl,m,n‖
q
q

xq + exp
(
− C3x2

∑1≤l≤dn/ame ‖Zl,m,n‖2
2

)
.

Again, by Burkholder’s inequality, we have that for q ≥ 2,

‖Zl,m,n‖q ≤
am

∑
k=1+am−1

‖
min(lam ,n)

∑
j=1+(l−1)am

αjPk(Yj)‖q

. (
min(lam ,n)

∑
j=1+(l−1)am

α2
j )

1/2(Θam−1 −Θam).

Note ∑
min(lam ,n)
j=1+(l−1)am

α2
j ≤ a(q−2)/q

m (∑
min(lam ,n)
j=1+(l−1)am

α
q
j )

2/q. Let τm = m−2/ ∑Mn
m=1 m−2, and we have

τm � m−2 as 1 ≤ ∑Mn
m=1 m−2 ≤ π2/6. In respect to (34), we have that

P
(

max1≤i≤n
∣∣∑n

k=1 ∑i
j=1 Pk(Yj)

∣∣ ≥ x
)
≤ ∑Mn

m=1 P
(

max1≤i≤n
∣∣∑
di/ame
l=1 Zl,m,i

∣∣ ≥ τmx
)

.
∑n

i=1 α
q
j

xq ‖Y·‖q
q,A ∑Mn

m=1 τ
−q
m a(1/2−A)q−1

m + ∑Mn
m=1 exp

(
− C3x2τ2

ma2A
m

∑n
j=1 α2

j ‖Y·‖
2
2,A

)
.

(35)
Note ∑Mn

m=1 τ
−q
m a(1/2−A)q−1

m � n−1vq,A(n), and

Mn

∑
m=1

exp
(
− C3x2τ2

ma2A
m

∑n
j=1 α2

j ‖Y·‖2
2,A

)
. exp

(
− C3x2

∑n
j=1 α2

j ‖Y·‖2
2,A

)
.

Combining (31), (32), (33), and (35), we obtain

P
(

max1≤i≤n
∣∣∑i

j=1 αj
(
Yj −E(Yj)

)∣∣ > x
)

≤ C1
vq,A(n)∑n

j=1 α
q
j ‖Y·‖

q
q,A

nxq + C2 exp
( −C3x2

∑n
j=1 α2

j ‖Y‖
2
2,A

)
.

(36)

Now, we have (30) by taking αj = n−1 for j = 1, . . . , n. Note that since K(·) has bounded support,
for any given t ∈ [b, 1− b], we have

P
(∣∣ n

∑
i=1

w(t, ti)(Yi −EYi)
∣∣ > x

)
≤ P

(∣∣ Bn

∑
i=−Bn

w(t, ttn+i)(Ytn+i −EYtn+i)
∣∣ > x

)
≤ C1

vq,A(Bn)∑Bn
i=−Bn

w(t, ttn+i)
q ‖Y·‖q

q,A

Bnxq + C2 exp
( −C3x2

∑Bn
i=−Bn

w(t, ttn+i)2 ‖Y·‖2
2,A

)
.

Therefore (28) follows from (36) by taking αj = w(t, tn + j), and note that for any t ∈ [b, 1− b],

∑Bn
i=−Bn

w(t, ttn+i)
β � B1−β

n for a constant β ≥ 2.
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Lemma 2. Suppose (Xij)i∈Z,1≤j≤p satisfys Assumption 2. Furthermore, let Assumption 5 hold. Let vq,A(n)
be defined as in Lemma 1. Then there exist constants C1, C2, and C3 independent of n and p, such that for all
x > 0, we have

supt∈(0,1) P
(∣∣∑n

i=1 ω(t, ti)
(
XiX>i −E(XiX>i )

)∣∣
∞ ≥ x

)
≤ C1ν

q
2q

pvq,A(Bn)Mq
X,q

Bq
nxq + C2 p2 exp

(
−C3

Bnx2

ν2
4 N2

X

)
,

(37)

and
P
(

supt∈(0,1)

∣∣∑n
i=1 w(t, ti)

(
XiX>i −E(XiX>i )

)∣∣
∞ ≥ x

)
≤ C1ν

q
2q

pvq,A(n)Mq
X,q

Bq
nxq + C2 p2 exp

(
−C3

B2
nx2

nν2
4 N2

X

)
.

(38)

Proof. For 1 ≤ j, k ≤ p, let Yi,jk = XijXik. We now check the conditions in Lemma 1 for (Yi,jk)1≤i≤n.
Denote Yi,jk,{m} = Xij,{m}Xik,{m}. Then the uniform functional dependence measure of (Yi,jk)i is

θY
m,q,jk = sup

i
‖Yi,jk −Yi,jk,{m}‖q

= sup
i
‖XijXik − Xij,{m}Xik,{m}‖q

≤ sup
i
‖Xij(Xik − Xik,{m})‖q + sup

i
‖Xik,{m}(Xij − Xij,{m})‖q.

Thus the DAN of the process Y·,jk satisfies that

‖Y·,jk‖q,A ≤ sup
i
‖Xij‖2q ‖X·,k‖2q,A + sup

i
‖Xik‖2q ‖X·,j‖2q,A ≤ νq(‖X·,k‖2q,A + ‖X·,j‖2q,A).

The result follows immediately from Lemma 1 and the Bonferroni inequality.

Lemma 3. We adopt the notation in Lemma 2. Suppose Assumptions 2, 1, and 5 hold with ι = 0. Recall Bn =

nb, where b → 0 and Bn/
√

n → ∞ as n → ∞. Then there exists a constant C independent of n and p such
that Σ̂(t) in (11) satisfies that for any t ∈ [c, 1− c],

|Σ̂(t)− Σ(t)|∞ = OP
(

b2 + MX,qν2qB−1
n (pvq,A(Bn))

1/q + ν4NX(log p/Bn)
1/2
)

. (39)

Furthermore,

sup
t∈[c,1−c]

|Σ̂(t)− Σ(t)|∞ = OP
(

b2 + MX,qν2qB−1
n (pvq,A(n))1/q + ν4NXB−1

n [n log p]1/2
)

. (40)

Proof. First, we have

Eσ̂jk(t)− σjk(t) =
n

∑
i=1

w(t, ti)[σjk(ti)− σjk(t)].

Approximating the discrete summation with integral, we obtain for all 1 ≤ j, k ≤ p,

sup
t∈[b,1−b]

∣∣∣∣Eσ̂jk(t)− σjk(t)−
∫ 1

−1
K(u)[σjk(ub + t)− σjk(t)]du

∣∣∣∣ = O
(

B−1
n

)
.

By Assumption 1, we have

σjk(ub + t)− σjk(t) = ubσ′jk(t) +
1
2

u2b2σ′′jk(t) + o(b2u2).
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Thus we have supt∈[c,1−c] |Eσ̂(t)− σ(t)|∞ = O
(

B−1
n + b2), in view of Assumption 5. By Lemma 2,

we have

sup
t∈(0,1)

P
(∣∣Σ̂(t)−EΣ̂(t)

∣∣
∞ ≥ x

)
≤ C1 pν

q
q

Mq
X,qvq,A(Bn)

Bq
nxq

+ C2 p2 exp

(
−C3

Bnx2

N2
X

)
.

Denote u = C4
(

MX,qν2qB−1
n (pvq,A(Bn))1/q + ν4NX(log p/Bn)1/2) for a large enough constant C4,

then for any t ∈ (0, 1), ∣∣Σ̂(t)−EΣ̂(t)
∣∣
∞ = OP(u).

Thus (39) is proved. The result (40) can be obtained similarly.

7.2. Proof of Main Results

Proof of Proposition 1. Given (39) and (40), the proof of (16) is standard. (See, e.g., Theorem 6 of [11]).
For λ◦ and λ∗ given in Proposition 1, by Lemma 3, we have that, respectively,

λ◦ ≥ sup
t

E
(
κp|Σ̂(t)− Σ(t)|∞

)
, (41)

λ� ≥ E
(
κp sup

t
|Σ̂(t)− Σ(t)|∞

)
. (42)

Then note that for any t ∈ [0, 1], for any λ > 0,

|Ω̂λ(t)−Ω(t)|∞ ≤ |Ω(t)|L1 |Σ(t)Ω̂λ(t)− Idp|∞
≤ |Ω(t)|L1

[
|Σ̂(t)Ω̂λ(t)− Idp|∞ + |(Σ(t)− Σ̂(t))Ω(t)|∞ + |Ω̂λ(t)−Ω(t)|L1 |Σ̂(t)− Σ(t)|∞

]
where by construction, we have |Σ̂(t)Ω̂λ(t)− Idp|∞ ≤ λ and |Ω̂λ(t)−Ω(t)|L1 ≤ 2κp. Consequently,

|Ω̂λ(t)−Ω(t)|∞ ≤ κp
(
λ + 3κp|Σ̂(t)− Σ(t)|∞

)
. (43)

Then (16) and (17) follow from (41) to (43).

Proof of Proposition 2. Theorem 2 is an immediate result of (17).

Proof of Theorem 1. Denote rj, 1 ≤ j ≤ ι as the time point(s) of the time of jump ordered decreasingly
in the sense of the infinite norm of covariance matrices, i.e., |∆(r1)|∞ ≥ |∆(r2)|∞ ≥ . . . ≥ |∆(rι)|∞ ≥
|∆(s)|∞ for s ∈ (0, 1)∩ {r1, . . . , rι}c. (Temporal order is applied if there is a tie.) Let Th(j) = [rj − h, rj +

h). For h = o(1), as a result of Assumption 3, Th(j) ∩ Th(i) = ∅ if i 6= j for n sufficiently large. That is
to say, each time point s ∈ (0, 1) is in the neighborhood of, at most, one change point.

For any s ∈ [t(j), t(j+1)), j = 0, 1, . . . , ι, denote D(s) = E[D(s)] and

D�(s) =


(h− s + t(j))∆(t(j)), t(j) ≤ s < t(j) + h

0, t(j) + h ≤ s < t(j+1) − h
(h + s− r)∆(t(j+1)), t(j+1) − h ≤ s ≤ t(j+1).

(44)

Then, for s ∈ ∪1≤j≤ι[t(j) + h,< t(j+1) − h), by (3), we have

|Σ(s + t)− Σ(s)|∞ ≤ Lt, ∀|t| ≤ h,

we can easily verify that
sup

s∈[0,1]
|D(s)−D�(s)|∞ ≤ Lh2. (45)
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Note that |D�(s)|∞ is maximized at s = r1 and |D�(r1)|∞ = h|∆(r1)|∞. By the triangle inequalities,
we have that for some positive constant C, for any s ∈ [0, 1],

|D(r1)|∞ − |D(s)|∞ ≥ hc2 − |D(r1)−D�(r1)|∞ − |D�(s)|∞ − |D(s)−D�(s)|∞
≥ hc2 − |D�(s)|∞ − 2Lh2

≥ c2(|s− r1| ∧ h)− 2Lh2.
(46)

On the other hand, since |D(r1)|∞ ≤ |D(ŝ1)|∞, we have

|D(r1)|∞ − |D(ŝ1)|∞ ≤ |D(r1)|∞ − |D(ŝ1)|∞ + |D(r1)− D(r1)|∞ + |D(ŝ1)− D(ŝ1)|∞
≤ |D(r1)− D(r1)|∞ + |D(ŝ1)− D(ŝ1)|∞.

(47)

Denote the event A := {sups∈[h,1−h] |D(s) − D(s)|∞ ≤ h2
�} and let Yi = (Yi,jk)1≤j,k≤p, Yi,jk =

XijXik − σi,jk. Note that

|Djk(s)−Djk(s)| =
1
n

∣∣∣∣∣ hn

∑
i=1

Yns+1−i,jk −
hn

∑
i=1

Yns+i,jk

∣∣∣∣∣ . (48)

By Lemma 2, we have for any x > 0,

P
(

sup
s∈[h,1−h]

|D(s)−D(s)|∞ ≥ x

)
≤ C1

pvq,A(n)Mq
X,qν

q
2q

nqxq + C2 p2 exp

(
−C3

nx2

N2
X

)
. (49)

It follows that

|D(r1)|∞ − |D(ŝ1)|∞ = OP
(
h−1 Jq,A(n, p) + NXh−1(n−1 log(p))1/2).

Taking h = h�, we have
|ŝ1 − r1| = OP(h2

�).

Furthermore, we have

P(A) ≥ 1− C1
( pvq,A(n)Mq

X,qν
q
2q

nqcq
2

)1/3 − C2 p2 exp
(
− C3(

n log2(p)
N2

X
)1/3).

Let Ak := {max1≤j≤k |ŝj − rj| ≤ c−1
2 2(L + 1)h2

�} for some 1 ≤ k ≤ ι. Assume Ak ⊂ A. Under Ak
we have that [rj − h�, rj + h�) ⊂ T̂2h�(j) =: [ŝj − 2h�, ŝj + 2h�) for 1 ≤ j ≤ k and rk+1 /∈ ∪1≤j≤kT̂2h�(j)
as a consequence of Assumption 3. According to (46) and (47), we have if A is true, |ŝk+1 − rk+1| ≤
c−1

2 2(L + 1)h2
�, which implies Ak+1 ⊂ A. The result (21) follows from deduction.

Suppose A holds. By the choice of ν, as a consequence of (45) and (49), and that ν � h�,
we have that

sup
s∈[0,1]

|D(s)−D�(s)|∞ ≤ ν.

As a result,
min
1≤j≤ι

|D(rj)|∞ ≥ c2h� − ν ≥ ν,

i.e., ι̂ ≥ ι. On the other hand, since ∪1≤j≤ιT̂2h�(j) is excluded from the searching region for sι+1,
we have

sup
s∈
(
∪1≤j≤ι T̂2h� (j)

)c
|D(s)|∞ ≤ ν.

In other words, {ι̂ = ι} ⊂ A. Thus (20) is proved.
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Proof of Theorem 2. We adopt the notations in the proof of Theorem 1 and assume that E holds.
Similar to Lemma 3, we have that by Lemma 2, for any t ∈ (0, 1),∣∣Σ̂(t)−EΣ̂(t)

∣∣
∞ = OP(u),

where u = C4
(

MX,qν2qB−1
n (pvq,A(Bn))1/q + ν4NX(log p/Bn)1/2) for a large enough constant C4.

Since under E , Tb(j) ⊂ T̂b+h2�
(j). For t ∈

(
∪1≤j≤ι T̂b+h2�

(j)
)c ∩ [b, 1− b], we have that for all

1 ≤ j, k ≤ p,∣∣∣Eσ̂jk(t)− σjk(t)
∣∣∣ = ∫ 1

−1
K(u)[σjk(ub + t)− σjk(t)]du + O

(
B−1

n

)
= bσ′jk(t)

∫ 1

−1
uK(u)du +

(1
2

b2σ′′jk(t) + o(b2)
) ∫ 1

−1
u2K(u)du + O

(
B−1

n

)
= O(b2 + B−1

n ).

On the other hand, for t ∈ ∪1≤j≤ι

(
T̂b+h2�

(j) ∩ T c
h2�
(j)
)
∪ [0, b] ∪ [1− b, 1], due to reflection, we no

longer have that differentiability. As a result of the Lipschitz continuity, we get∣∣∣Eσ̂jk(t)− σjk(t)
∣∣∣ = ∫ 1

−1
K(u)[σjk(ub + t)− σjk(t)]du + O

(
B−1

n

)
= O(b + B−1

n ).

The result (22) follows by the choices of b. The rest of the proof are similar to that of Proposition 1
and Theorem 2.
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