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SUMMARY

It is important to draw causal inference from observational studies, but this becomes challeng-
ing if the confounders have missing values. Generally, causal effects are not identifiable if the
confounders are missing not at random. In this article we propose a novel framework for non-
parametric identification of causal effects with confounders subject to an outcome-independent
missingness, which means that the missing data mechanism is independent of the outcome, given
the treatment and possibly missing confounders. We then propose a nonparametric two-stage
least squares estimator and a parametric estimator for causal effects.

Some key words: Completeness; Identifiability; Ill-posed inverse problem; Integral equation; Outcome-independent
missingness; Two-stage least squares estimator.

1. INTRODUCTION

Causal inference plays an important role in biomedical studies and social sciences. If all the
confounders of the treatment-outcome relationship are observed, one can use standard techniques,
such as propensity score matching, subclassification and weighting, to adjust for confounding
(e.g., Rosenbaum & Rubin, 1983; Imbens & Rubin, 2015).

Much less work has been done on the case where confounders have missing values. Rosenbaum
& Rubin (1984) and D’Agostino Jr & Rubin (2000) developed a generalized propensity score
approach. Under a modified unconfoundedness assumption, they showed that adjusting for the
missing pattern and the observed values of confounders removes all confounding bias, and hence
the causal effects are identifiable. Moreover, the balancing property of the propensity score carries
over to the generalized propensity score. Standard propensity score methods can therefore be used
to estimate the causal effects. However, the modified unconfoundedness assumption implies that
units may have different confounders depending on the missing pattern, which is often difficult

(© 2019 Biometrika Trust

0202 Iudy Lo uo Jesn g sinboy - Atelqi IIIH H d A9 822€/2GG/S28/7/90 L A0BISe-8[011B/A8WOld/Woo"dno olwepeoe//:sdjy woly pspeojumoq



876 S. YANG, L. WANG AND P. DING

to justify scientifically. An alternative approach assumes that the confounders are missing at
random (Rubin, 1976). Under this assumption, both the full data distribution and the causal
effects are identifiable, and multiple imputation can be used to obtain estimates of the causal
effects (Rubin, 1987; Qu & Lipkovich, 2009; Crowe et al., 2010; Mitra & Reiter, 2011; Seaman
& White, 2014). In practice, however, the missing pattern often depends on the missing values
themselves, a scenario commonly known as missing not at random (Rubin, 1976). Multiple-
imputation methods may fail to provide valid inference in this scenario. See Mattei (2009) for a
comparison of various methods and Lu & Ashmead (2018) for a sensitivity analysis.

Causal inference with confounders missing not at random is challenging because neither the full
data distribution nor the causal effects are identifiable without further assumptions. We consider
anovel setting in which the confounders are subject to an outcome-independent missingness; that
is, the missing data mechanism is independent of the outcome, given the treatment and possibly
missing confounders. This outcome-independent missingness is plausible if the outcome happens
after the covariate measurements and missing data indicators. To identify the causal effects in
this setting, we formulate the identification problem as solving an integral equation, and show
that the identification of the full data distribution is equivalent to the existence of a unique
solution to an inverse problem. This new perspective allows us to establish a general condition
for identifiability of the causal effects. Our condition generalizes existing results for discrete
covariates and outcome (Ding & Geng, 2014). Motivated by the identification result, we develop
a nonparametric two-stage least squares estimator by solving the sample analogue of the integral
equation. To avoid the curse of dimensionality, we further develop parametric likelihood-based
methods.

2. SET-UP AND ASSUMPTIONS
2.1. Potential outcomes, causal effects and unconfoundedness

We use potential outcomes to define causal effects (Neyman, 1923; Rubin, 1974). Suppose
that the binary treatment is 4 € {0, 1}, with 0 and 1 being the labels for the control and active
treatments, respectively. Each level of treatment a corresponds to a possibly multi-dimensional
potential outcome Y (a), representing the outcome had the subject, possibly contrary to the fact,
been given treatment a. The observed outcome is ¥ = Y(4) = AY(1) + (1 — A)Y(0). Let
X = (X1,...,X,) be a vector of p-dimensional pre-treatment covariates. We assume that a
sample of size n consists of independent and identically distributed draws from the distribution
of {4, X, Y (0), Y(1)}. The covariate-specific causal effect is t(X) = E{Y (1) — Y(0) | X}, and
the average causal effectis = E{Y (1) — Y (0)} = E{r(X)}. We focus on t; a similar discussion
applies to the average causal effect on the treated, tarr = E{Y (1) — Y(0) | 4 =1} = E{t(X) |
A = 1}. The following assumptions are standard in causal inference with observational studies
(Rosenbaum & Rubin, 1983).

Assumption 1. We have that {Y(0), Y (1)} 1L 4 | X.

Assumption 2. There exist constants ¢; and ¢ such that 0 < ¢; < e(X) < ¢ < 1 almost
surely, where e(X) = pr(4 = 1 | X) is the propensity score.

Under Assumptions 1 and 2, t = E{E(Y |4 = 1,X) — E(Y | A = 0,X)} is identifiable from
the joint distribution of the observed data (4,X, Y). Rosenbaum & Rubin (1983) showed that
{Y(0),Y(1)} 1L 4 | e(X), so adjusting for the propensity score removes all confounding. We can
estimate 7 through propensity score matching, subclassification or weighting.

0202 Iudy Lo uo Jesn g sinboy - Atelqi IIIH H d A9 822€/2GG/S28/7/90 L A0BISe-8[011B/A8WOld/Woo"dno olwepeoe//:sdjy woly pspeojumoq



Causal inference with missing confounders 877

2.2. Confounders with missing values and the generalized propensity score

We consider the case where X contains missing values. Let R = (Ry, ..., R),) be the vector of
missing indicators such that R; = 1 if the jth component X; is observed and 0 if X; is missing.
Let R be a subset of all possible values of R. We use 1, to denote the p-vector of 1s and 0, the
p-vector of 0s. The missingness pattern R = r € R partitions the covariates X into X, and X7,
the observed and missing parts of X, respectively. Using the standard notation, Xp = Xops and
Xp = Xmis are the realized observed and missing covariates, respectively. For example, if Ry = 1
and R; = 0 forj = 2,...,p, then Xz = X and X = (X2,...,X)). Assume that the full data
are independent and identically distributed draws from {4, X, Y (0), Y (1), R}, and so the observed
data are independent and identically distributed draws from (4, R, Xz, Y). Rosenbaum & Rubin
(1984) introduced the following modified unconfoundedness assumption.

Assumption 3. We have that {¥(0), Y(1)} 1L A4 | (Xz, R).

Under Assumption 3, the generalized propensity score e(Xg, R) = pr(4 = 1 | Xg, R) plays
the same role as the usual propensity score e(X) = pr(4 = 1 | X) in the settings without
missing covariates. Rosenbaum & Rubin (1984) showed that adjusting for e(Xz, R) balances
(Xg, R) and removes all confounding on average. Their approach has the advantage of requiring
no assumptions on the missing data mechanism of X for the identification of causal effects.
However, Assumption 3 implies that a pre-treatment covariate can be a confounder when it is
observed, but is not a confounder when it is missing; this is often hard to justify scientifically.
Moreover, if the covariate measurement occurs after the treatment assignment, then R is a post-
treatment variable affected by 4. In this case, even if 4 is completely randomized, Assumption 3 is
unlikely to hold when conditioning on the post-treatment variable R (Frangakis & Rubin, 2002).

2.3. Missing data mechanisms of the confounders

Without Assumption 3, identification of causal effects relies on alternative assumptions on
the missing data mechanism. We now describe existing approaches under different missingness
mechanisms of the confounders, the first of which is missing completely at random (Rubin, 1976).

Assumption 4 (Missing completely at random). We have that R 1l (4,X,7Y).

Assumption 4 requires that the missingness of confounders be independent of all variables
(4,X,Y). It implies T = E{t(X) | R = 1,} and thus justifies the complete-case analysis that
uses only the units with fully observed confounders. This complete-case analysis is, however,
inefficient as it discards all units with missing confounders. Moreover, confounders are rarely
missing completely at random.

The second missingness mechanism is missing at random (Rubin, 1976).

Assumption 5 (Missing at random). We have that R 1L X | (4, 7).

Under Assumption 5, conditioning on the treatment and outcome, the missing mechanism of
confounders is independent of the missing values themselves. Assumption 5 implies f (4, X, Y) =
JUAY) (X | A,Y,R = 1,), and therefore the joint distribution /' (4, X, Y) and its functionals,
including 7, are all identifiable. Rubin (1976) showed that the missing data mechanism can be
ignored in the likelihood-based and Bayesian inferences under Assumption 5. In this case, multiple
imputation is a popular tool for causal inference (e.g., Qu & Lipkovich, 2009; Crowe et al., 2010;
Mitra & Reiter, 2011; Seaman & White, 2014).
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Fig. 1. A direct acyclic graph illustrating Assumptions 1

and 6; white nodes represent observed variables, the light

grey node represents the variable with missing values, and
the dark node represents an unmeasured variable U.

However, imputing the missing confounders based on /' (Xj | Xz, 4,Y) o f(X)f (4 | X)f (Y |
A,X) involves an outcome model in general (U.S. Department of Education, 2017), which is
contrary to the suggestion of Rubin (2007) that the outcome should not be used in the design
of an observational study. More importantly, missing at random is not plausible if the missing
pattern depends on the missing values themselves. Instead, we consider the following missing
data mechanism.

Assumption 6 (Outcome-independent missingness). We have that R LL Y | (4, X).

Assumption 6 is plausible for prospective observational studies with covariates measured long
before the outcome takes place (e.g., Hsu & Small, 2013; Hanna-Attisha et al., 2016). Figure 1
is a special causal diagram (Pearl, 1995) illustrating Assumptions 1 and 6. Graphically, 4 and Y
have no common parents except for X, encoding Assumption 1, and R and ¥ have no common
parents except 4 and X, encoding Assumption 6. Our framework allows for unmeasured common
causes of R and 4, as well as the dependence of R on the missing confounders Xj. Moreover, it
allows R to be a post-treatment variable affected by 4. We give more graphical illustrations of
Assumption 6 in the Supplementary Material.

We also make the following assumption to rule out degeneracy of the missing data mechanism.

Assumption]. Wehavethatpr(R =1, | 4,X,Y) > c3 > Oalmostsurely for some constant c3.

3. NONPARAMETRIC IDENTIFICATION
3.1. Identification strategy

Assume that the distribution of (4, X, Y,R) is absolutely continuous with respect to some
measure, with / (4, X, Y, R) being the density or probability mass function. Under Assumptions 1
and 2, the key is to identify the joint distribution of f(4,X, Y) because 7 is its functional. The
following identity relates the full data distribution to the observed data distribution:

JUAX, Y, R=1,)=fAX,Y)pr(R=1,|4,X,Y). D

The left-hand side of (1) is identifiable under Assumption 7. Therefore, the identification of
f(4,X,Y) relies on the identification of pr(R = 1, | 4,X,Y). We now discuss how to identify
pr(R=1,]4,X,Y) =pr(R =1, | 4,X) under Assumption 6.
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3.2. Integral equation representation

Under Assumption 6, let

prR=r|4A=a,X,Y) . prR=r|4=a,X)

X) = =
5ra(X) prR=1,|A=a,X,Y) prR=1,|4=aX)

(a=0,1;r e R).

It then suffices to identify &,,(X), because it determines the missing data mechanism via

PrR=r[Ad=aX,¥) &)

PriR =1 A= a X E) = o R = A= aXT) S bra)

2

The following theorem shows that &,,(X) is a key term connecting the observed data distribution
f(4,X,.,Y,R =r) and the complete-case distribution /' (4, X, Y, R = 1,). Throughout the paper,
v(-) denotes a generic measure, such as the Lebesgue measure for a continuous variable or the
counting measure for a discrete variable.

THEOREM 1. Under Assumption 6, for any r and a, the following integral equation holds:

fA=a,X,Y,R=r)= /gm(X)f(A =a,X,Y,R=1,)dv(X;). 3)

Proof. The result follows because the observed data distribution is the complete-data
distribution averaged over the missing data:

fA=a,X.Y,R=r)= /f(A = a,X,Y,R=r)dv(X;)

:/ pr( r a, £, )f(A:a,X,Y,Rzlp)dv(X;)

prR=1,Ad=a,X,Y)
— /gm(X)f(A =a,X,Y,R=1,)dv(X;). O

Theorem 1 is the basis of our identification analysis. In (3), (4 = a,X,, Y,R =r) and f(4 =
a,X,Y,R = 1,) are identifiable from the observed data. We have thus turned the identification
of &,(X) into the problem of solving for &,,(X) from (3). This requires additional technical
assumptions, given below.

3.3. Bounded completeness and identification of the joint distribution

To motivate our identification conditions, we first consider the case of discrete X and Y, so
that (3) becomes a linear system. To solve for &,,(X) from (3), we need the linear system to be
nondegenerate.

PROPOSITION 1. Under Assumption 6, suppose that X and Y are discrete, with X; €
X, oxt forj = 1,...,pand Y € {y1,...,yx}. Let ¢ = J1 X --- X Jp, and let O, be
a K x q matrix with the kth row being f (X,yi,R = 1,,A = a) evaluated at all possible values
of X. The distribution of (4, X, Y, R) is identifiable if Rank(®,) = g fora =0, 1.

We relegate the proof to the Supplementary Material. For the special case of a binary X and a
discrete Y, the rank condition in Proposition 1 is equivalentto XA ¥ | (4 =a,R=1) fora =0
and 1, which is testable based on the observed data (Ding & Geng, 2014). For general cases, we
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need to extend the rank condition that ensures the unique existence of &,,(X). We use the notion
of bounded completeness for general X and Y, which is related to the concept of a complete
statistic (Lehmann & Scheff¢, 1950; Newey & Powell, 2003). Below, we say that a function g(x)
is bounded in £1-metric if sup, |g(x)| < ¢ for some 0 < ¢ < 00.

DEFINITION 1. 4 function f(X,Y) is bounded complete in Y if f gX)fX,Y)dv(X) =0
implies g(X) = 0 almost surely for any measurable function g(X) bounded in Li-metric.

D’Haultfoeuille (2011) gave sufficient conditions for bounded completeness. Bounded com-
pleteness has also appeared in other identification analyses, such as nonparametric instrumental
variable regression models (Darolles et al., 2011) and measurement error models (An & Hu,
2012).

We invoke the following assumption motivated by Theorem 1 and Definition 1.

Assumption 8. The joint distribution /(4 = a,X,Y,R = 1,) is bounded complete in ¥ for
a=0,1.

Remark 1. When X and Y are discrete with finite supports, Assumption 8 is equivalent to
the rank condition in Proposition 1. For continuous X and Y, Assumption 8 requires that the
dimension of Y be at least as large as the dimension of X in general. Moreover, Assumption 8
implies Assumption 2. We give more details for these results in the Supplementary Material.

Under Assumption 7, Assumption 8 is sufficient to ensure the existence and uniqueness of
&.(X) from (3). We state the result in the following theorem.

THEOREM 2. Under Assumptions 68, the distribution of (4,X, Y, R) is identifiable.

Proof. Suppose that ér(al )(X ) and f,(az ) (X) are two solutions to (3):

fUA=aX,Y,R=r) = f EPDX)fU=aX,Y,R=1,)dv(X;) (k=1,2),

implying that f{&r(al)(X) - 5}? XA =aX,Y,R=1,)dv(X;) = 0. Integrating this identity
with respect to X, gives

/{g}a”()() —ED XY A =a,X,Y,R=1,)dv(X) =0.

Assumption 7 implies that &, (X) is bounded in £-metric, which further implies that &’ (X) —
-fr(az ) (X) is bounded in L;-metric. Under Assumption 8, Definition 1 implies that ér(a] )(X ) —

r(az ) (X) = 0 almost surely. Therefore, (3) has a unique solution &,,(X). Based on the definition
of &4(X), we can identify pr(R = 1, | 4,X,Y) by (2). Finally, we identify f(4,X, Y) through
(Dasf(4,X,Y)=fUAX,Y,R=1,)/pr(R=1, | 4,X,7). O

Ifthe distribution of (4, X, ) is identifiable, we can use a standard argument to show that t and
TaTT are identifiable under Assumption 1. In the next subsection we give explicit identification
formulas for t and tart, which form the basis for constructing the nonparametric estimator.
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3.4. Nonparametric identification formulas for average causal effects

Under Assumptions 1 and 68, we can identify 7 and taTT in two steps. First,

TX)=E(Y |A=1,X)—EY |4=0,X) 4)
—E(Y|A=1,X,R=1,)—E(Y |A=0,X,R=1,), )

where (4) follows from Assumption 1 and (5) follows from Assumption 6. Therefore, we can
identify 7(X) using a complete-case analysis based on (5).

Second, under Assumptions 6—8, Theorem 2 shows that the distribution of (4, X, ¥, R) is iden-
tifiable, which implies that the marginal distribution of X, ' (X), and the conditional distribution of
X,f(X | A =1),arealsoidentifiable. Therefore,botht = E{r(X)}and taorr = E{t(X) | 4 = 1}
are identifiable. The following theorem summarizes these results and gives the explicit formulas.

THEOREM 3. Under Assumptions 1 and 6-8, the average causal effect t is identified by

1
B fA=aXR=1p)
T = ;/ TR L A=aX) dv(X), (6)

and the average treatment effect on the treated, TaTT, is identified by

S, R=1,|4=1)
pr(R=1,|4=1X)

TATT Z/T(X) dv(X), (7

where ©(X) is identified by (5), pr(4 = a,R = 1,) and f (A = a,X,R = 1,) depend only on the
observed data, and pr(R = 1, | A = a,X) can be identified from (2) and (3) for a = 0, 1.

Proof. First, we can identify the conditional distribution of X given 4 = a by

_ fX,R=1,|A=a)

JX14=a prR=1, | A= a,X)

(a=0,1).

Averaging t(X) over f (X | A = 1) yields the identification formula (7).
Second, we can identify the marginal distribution of X by

fA=a,X,R=1,
prR=1,4=aX)

1 1
X =Y fd=ax)=>)

a=0 a=0

Averaging 7 (X) over the above distribution gives the identification formula (6). g

4. ESTIMATION OF THE AVERAGE CAUSAL EFFECT

4.1. Nonparametric two-stage least squares estimator

Theorem 3 gives the nonparametric identification formulae at the population level. Based
on (6), we propose a nonparametric two-stage least squares estimator of  with finite samples
(4i, Ri, Xg;, Yi)7_,. Estimation of tarr is similar in spirit and hence omitted. We can use stan-
dard nonparametric or machine learning methods to estimate 7(X), pr(4 = a,R = 1,) and
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fX |4 =aR=1;lett(X), pr(4 = a,R = 1) andf‘(X | A = a,R = 1,) denote the
respective estimators. Therefore, the key is to estimate pr(R = 1, | 4 = a,X) or, equivalently,
&4(X) based on (3).

In the first stage, we obtainf(Xr, YR=7r|A=a) andf(X, Y,R=1,| A= a)as the
nonparametric sample analogues of f(X,,Y,R =7 | 4 = a)and f(X,Y,R =1, | 4 = a).
Substituting these estimates into (3) leads to

JX Y. R=r|4=a) =/€m(X)/}(X,Y,R= lp | 4= a)dv(Xp), ®)

which is a Fredholm integral equation of the first kind. Solving (8) presents several challenges.
First, although Theorem 2 states that the population equation (3) has a unique solution, the sample
equation (8) may not have a unique solution. Second, &,,(X) is an infinite-dimensional parameter,
and its estimation often relies on some approximation. Third, solving for &,,(X) from (8) is an
ill-conditioned problem, in the sense that even a slight perturbation of i X, Y,R=r|4d=a
and j} (X,Y,R=1,| A4 = a) can lead to a large variation in the solution for &,,(X). As a result,
replacing f (X, Y,R =7 | A = a) and f(X,Y,R = 1, | 4 = a) in (3) by their consistent
estimators does not necessarily yield a consistent estimator of &,,(X) (Darolles et al., 2011).

To deal with these issues, we use a series approximation (Kress et al., 1999; Newey & Powell,
2003) in the second stage. Let the set H; = {/(X) = exp(—X"X)X% :j = 1,...,J} form
a Hermite polynomial basis, where X% = Xl}le '--kajp with 4; = (Aj1,...,4)) and || =
—1/2(X — 1) be a standardized version of X, where x and

3 are a constant vector and matrix. We approximate &,,(X) by &,(X) ~ Zle ﬁfahf (f( ). Thus,
for each missing pattern R = r, we approximate (3) by

>0, A increasing inj. Let X = X

J
JX Y. R=rd=a)~ Bl / WEfX,Y.R=1,|4=a)dv(X)
j=1
J . .
=D BuHnX V) (X Y, R=1,| 4 = a), ©)
j=1

where the conditional expectation H{a(Xr, Y) = E{W ()~( )| 4 =aX,Y,R = 1,}is over the
distribution /(X7 | 4 = a, X, Y,R = 1,).
We need the empirical versions of Hl,(X;, Y) and f(X;, Y,R = 1 p | A = a) for estimation.

First, for unit i, let gl

= E{W(X) | 4 = a,X,;, Y;,Ri = 1,) be a nonparametric estimator

of the conditional expectation. Second, we obtain f (X, Y,R = 1, | A = a), a nonparametric
estimator of f'(X,,Y,R = 1, | A = a). Although we obtain these estimators based on the
complete cases, we still need to partition the confounders into (X, X7) based on the missing
pattern R = r. Because the sample version of the approximation (9) is linear, we can estimate

the B, by minimizing the residual sum of squares

2

n J
Y IR =r) {f Koi Yo Ri=r | di=a) = Y BlaH)y f X Vi, Ri = 1, | 4; = a)
i=1 j=1

(10)
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To ensure the estimates from (10) are well-behaved asymptotically, we need a large number
of observations for each pattern » € R. To solve the ill-conditioned problem, we restrict the
parameter space of &,,(X) to a compact space, which effectively regularizes the problem, making
it well-posed. Given the approximation of &,,(X), we require the vector of coefficients S,,, the
concatenation of (,Brla, e ,B,Ja), to satisfy B, ABrs < B, where A is a positive-definite J x J
matrix and B is a positive constant. Therefore, we propose to estimate 8,, by minimizing (10)
subject to the constraint B AB,, < B. More details of the regularization are presented in the
Supplementary Material.

We then estimate &,,(X) and the probability pr(R =1, | 4 = a,X) by

-1

J
EaX) =) Bluh/(X), PrR=1,14=aX)={1+ ) &.X)

j:l V:’le

and finally estimate t by

fX|4=aR=1)
pAr(Rz lp |A=a,X)

dv(X). (11)

a=0

We now comment on some subtle technical issues in implementing the above estimator. First,
we standardize the confounders by X = ¥~ (X — ) for numerical stability. We choose i and < to
be the mean and covariance matrix of confounders for the complete cases. This choice is innocuous
because H; remains the same for other values of u and X. Second, we use the importance
sampling technique to approximate the integral in (11), because it is difficult to directly sample
from the nonparametric density estimators. Third, we use the bootstrap to construct confidence
intervals. Newey (1997) proposed a relatively simple variance estimation approach that treats
the nonparametric estimators as if they were parametric given the fixed tuning parameters. For
all bootstrap samples we use the same tuning parameters, such as the smoothing parameter in
the smoothing splines and the bandwidth in the kernel density estimator. In the Supplementary
Material, we give more technical details and illustrate the procedure with an example involving
a scalar confounder.

4.2. Parametric estimation: likelihood-based and Bayesian inferences

The nonparametric estimator above suffers from the curse of dimensionality. We propose a
parametric approach for moderate- or high-dimensional covariates. Let Z; = (4;,X;, Yi, R;) be
the complete data and Zg; = (4;,R;, Xr;, Y;) the observed data for unit i. The complete-data
likelihood is L(O | Z1,...,Z,) = ]_[l’.’:lf(Z,'; 0), where 6 = («, Bo, B1, N0, N1, ) and

S (Z;i;0) =pr(R; | Ai, Xisna) f(Yi | Ai, Xi; Ba;) pr(d; | Xis o)f (X5 A). (12)
The observed-data likelihood is

n
um&bwﬁw=ﬂ{

i=1

}:H&:ﬂo/f@;mdw&o}.

reR

Under Assumptions 6—8 as in Theorem 2, 6 is identifiable if the parametric models in (12) are not
overparameterized. The bounded completeness condition holds for many commonly used models,
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such as generalized linear models and a location family of absolutely continuous distributions
with compact support; see Blundell et al. (2007), Hu & Shiu (2018) and the Supplementary
Material for additional examples. Moreover, parametric assumptions can further help to identify
the model parameters even without the bounded completeness assumption. We illustrate this later.

We first discuss likelihood-based inference. Let t(X;;0) = E(Y; | 4; = 1,X;;61) — E(Y; |
A; = 1, X;; Bo) be the covariate-specific average causal effect, and let

20)=n"' Y t(Xi0), T=1() = E(t(X;:0)) = E{2(6)}.
i=1

We first obtain the maximum likelihood estimate § and then estimate 7 by r(é). The formula
7(0) involves integrating over the distribution of the confounders. To avoid this complexity, we
use 7(0) to estimate 7. The bootstrap can be used to construct confidence intervals.

Next, we discuss Bayesian inference. Suppose that we can simulate the posterior distributions
of the missing confounders and the parameter 6. These further induce posterior distributions of
7(0) and T = 7(0). Technically, the posterior distribution of 7 (@) is different from that of 7. The
former depends on the observed confounder values, but the latter does not. See Ding & Li (2018)
for more discussion.

We give more computational details in the Supplementary Material, including a fractional
imputation algorithm (Yang & Kim, 2016) and a Bayesian procedure for a parametric model. In
future work we will develop multiple-imputation methods under Assumptions 6—8. From (12),
we need to use both treatment and outcome models in the imputation step as in the full Bayesian
procedure.

5. SIMULATION

5.1. Design of the simulation

We use simulation to compare our estimators with existing ones. First, we consider the
unadjusted estimator, which is the simple difference-in-means of the outcomes between the
treated and control groups. We use it to quantify the degree of confounding. Second, we consider
the generalized propensity score weighting estimator, with the generalized propensity scores
estimated separately by a logistic regression for each missing pattern (Rosenbaum & Rubin,
1984). Third, we consider three multiple-imputation estimators. The first uses the outcome in the
imputation model, but the second does not (Mitra & Reiter, 2011); the third estimator uses the
missingness pattern in the propensity score model (Qu & Lipkovich, 2009).

We evaluate the finite-sample performance of these estimators with the missingness of con-
founders satisfying Assumption 6. In the first setting, in § 5.2, one confounder has missing values
and we investigate the performance of the proposed nonparametric estimator and the sensitivity
to the choice of tuning parameters. In the second setting, in § 5.3, multiple confounders have
missing values and we investigate the performance of the proposed parametric estimator. In each
setting, we choose the sample size to be n = 400, 800 and 1600, and we generate 2000 Monte
Carlo samples for each sample size. For the multiple-imputation estimators, we generate 100
imputed datasets. For all estimators, we use the bootstrap with 500 replicates to estimate the
variances.

5.2. One confounder subject to missingness

The confounders X; = (Xj;,X>;) follow X1; ~ N(1,1) and Xp; ~ Ber(0.5). The potential
outcomes follow Y;(0) = 0.5 + 2X7; + Xo; + €;(0) and Y;(1) = 3X1; + 2X2; + €;(1), where
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Table 1. Simulation results: bias (x10~2) and variance (x1073) of the point estimator of t,
variance estimate (x1073), and coverage (%) of 95% confidence intervals

Method Bias Var VE Cvg Bias Var VE Cvg Bias Var VE Cvg

(a) Comparing the nonparametric estimator with existing estimators

n = 400 n =800 n = 1600
Unadj —127.5 774 737 03 —1274 38.0 375 00 -—1272 175 18,6 0.0
GPSW —55.1 424 442 222 —549 209 207 5.8 —54.4 9.5 99 04
MI1 41.5 354 36.7 40.6 41.0 155 17.2 9.5 40.8 7.6 8.3 0.5
MI2 —10.8 60.0 638 914 —-9.2 288 308 914 9.1 137 149 86.6
MIMP 293 73.5 71.5 837 28.5 337 326 650 283 149 160 308
NonPara 1.2 19.4 18.8  95.1 09 96 81 952 0.8 3.9 3.8 949

(b) Comparing the parametric estimator with existing estimators

n =400 n =800 n = 1600
Unadj 322 85.2 858 815 322 443 429 658 31.9 203 21.6 43.1
GPSW 84 1746 246.1 972 88 842 942 949 83 400 440 924
MI1 7.7 180.5 238.0 96.1 7.1 935 1064 952 69 475 548 934
MI2 3.0 162.1 2099 973 3.1 842 94.1 958 26 428 491 946
MIMP 129 177.0 2392 957 122 939 1075 938 12.1 474 550 0918
Para 1.6 954 954 953 0.4 483 48.0 95.0 0.0 23.0 242 954

Var, variance of the point estimator of t; VE, variance estimate; Cvg, coverage of 95% confidence intervals; Unadj,
the unadjusted estimator; GPSW, the generalized propensity score weighting estimator; NonPara, the proposed
nonparametric estimator; Para, the proposed parametric estimator; for the multiple-imputation estimators, MI1 uses
the outcome in the imputation, MI2 does not use the outcome in the imputation, and MIMP is the multiple-imputation
missingness pattern method of Qu & Lipkovich (2009).

€;(0) ~ N(0,1) and €;(1) ~ N (0, 1). The average causal effect 7 is 1. The treatment indicator
A; follows Ber(rr;), where logit(rr;) = 1.25 — 0.5X1; — 0.5X3;. The missing indicator of Xy;, Ry;,
follows Ber(p;), where logit(p;) = —2 +2X}; +A4;(1.5+ X>;). The average response rate is about
67%. Other variables do not have missing values.

For the proposed nonparametric estimator, we estimate 7 (X) using cubic splines with five
knots and estimate the density functions using kernel-based estimators with the Gaussian kernel.
We use ten-fold crossvalidation to choose the smoothing parameters in the smoothing spline
estimator and the bandwidths in the kernel-based estimators. For ém(X ), we choose J = 5
Hermite polynomial basis functions and B = 50 as the bound for regularization.

Table 1(a) compares the nonparametric estimator with the existing estimators. The
unadjusted estimator, the propensity score weighting estimator and multiple-imputation esti-
mators are biased. As a result, the coverage rates of the confidence intervals for these methods
are quite poor. Our proposed method has negligible biases and good coverages, with variances
decreasing with the sample size.

To assess the sensitivity of the nonparametric estimator to the choice of the tuning parame-
ters J and B, we specify a 4 x 3 design with (J,B) € {(3,50), (3,100), (5,50), (5,100)} and
n € {400, 800, 1600}. Table 2 shows the mean squared errors. For each (J, B), the mean squared
error decreases with the sample size. The mean squared error decreases with J, is relatively
insensitive to the choice of B, and remains small across all cases.

5.3. Multiple confounders subject to missingness
Let X; = (X1;, . . ., X6i). We generate X1; and X; from N (1, 1), X3; and Xy; from {Ber(0.5) —
0.5}/0.5, Xs; = X1; + Xoi + Xzi + Xai + €57 with €s5; ~ N (0, 1), and Xg; from Ber(pgs;) with
logit(ps;) = —Xs;. The potential outcomes follow Y;(0) = (l,Xl.T),BO + €;(0) and Y;(1) =
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Table 2. Simulation results for different tuning parameters: mean
squared errors (x1073) of the proposed estimator of T for different
choices of (J, B) based on 2000 Monte Carlo samples

(,B) n = 400 n = 800 n = 1600
(3, 50) 26.8 13.9 8.3
(3,100) 27.0 14.1 8.7
(5, 50) 19.5 9.7 4.1
(5,100) 21.3 10.2 4.5

(LXDB1 + €(1), where By = (—=1.5,1,—-1,1,-1,1,D)7, g1 = (0,—1,1,-1,1,—1,—D)7,
€;(0) ~ N(0,1) and €;(1) ~ N(0, 1). The average treatment effect is t = —0.5. The treatment
indicator 4; follows Ber(r;), where logit(m;) = (1, X)) and @ = 0.5 x (2,1,1,1,1,-2,-2)".
Covariates Xs; and Xg; have missing values, but the other variables do not. The missingness pat-
tern for Xs5; and Xg;, R; = (Rs;, Rgi) € {(11),(10), (01), (00)}, follows a multinomial distribution
with parameters (p11,i, P10,i>P01,i> P00,;) Where

logit(p11,) = [1 + 3 exp{(1,4:, Xn}17Y,  logit(p,) = [exp{—(1,4;, Xn} + 317!

for kI € {10,01,00}, with n = 0.25 x (—4,1,1,1,1,1,—1,—1)". The average percentages of
these missingness patterns are about 49%, 17%, 17% and 17%, respectively.

Table 1(b) compares the parametric maximum likelihood estimator with the existing estima-
tors. The unadjusted estimator has large biases due to confounding. The multiple-imputation
estimators have large biases, although the coverages of confidence intervals seem good due to the
overestimation of variances. In contrast, our estimator has negligible biases and good coverages.

6. APPLICATION
6.1. The causal effect of smoking on blood lead level

We use a dataset from the 2015-2016 U.S. National Health and Nutrition Examination Survey
to estimate the causal effect of smoking on blood lead level (Hsu & Small, 2013). The dataset
includes 2949 adults, consisting of 1102 smokers, denoted by 4 = 1, and 1847 nonsmokers,
denoted by 4 = 0. All subjects were at least 15 years old and had no tobacco use besides
cigarette smoking in the previous five days. The outcome Y is the lead level in blood, ranging
from 0.05 to 23.51 pg/dl. The confounders X include the income-to-poverty level ratio, age and
gender. The income-to-poverty level ratio has missing values, but the other variables do not.
The missingness of income-to-poverty level is likely to be not at random because subjects with
high incomes may be less likely to disclose their income information (Davern et al., 2005). It is
plausible that Assumption 6 holds, i.e., that this missingness is unrelated to the blood lead level
after controlling for income information. The missing rate of income-to-poverty level is 14.0%
for smokers and 15.2% for nonsmokers. We apply the proposed procedure to obtain estimates
separately for groups stratified by age and gender, and then average over the empirical distribution
of age and gender.

Table 3(a) shows the results. Note the substantial differences in point estimates between our
estimator and the competitors, illustrating the impact of the missing data assumption on causal
inference in the presence of missing confounders. In contrast to the existing estimators, our esti-
mator is better able to handle the confounders missing not at random. Based on the nonparametric
estimator, smoking increases blood lead level by 0.20 pg/dl on average.
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Table 3. Results from the analysis of datasets: point estimate, standard error by the bootstrap,
and 95% confidence interval

Est SE 95% CI Est SE 95% CI
(a) The causal effect of smoking on blood lead level in § 6.1
Unadj 0.44 0.05 (0.35,0.54) MI1 0.34 0.05 (0.25,0.44)
PSW 0.12 0.05 (0.02,0.22) MI2 0.35 0.05 (0.25,0.44)
NonPara 0.20 0.07 (0.05,0.36) MIMP 0.35 0.05 (0.25,0.44)
(b) The causal effect of education on general health satisfaction in § 6.2
Unadj —0.57 0.034 (—0.64,—-0.51) MI1 —0.24 0.057 (—0.36,—0.13)
GPSW —0.25 0.054 (—0.36,—0.14) MI2 —0.26 0.057 (—0.38,—0.15)
Para —0.32 0.051 (—-0.41,-0.21) MIMP —0.23 0.057 (—0.34,—-0.11)

Est, point estimate; SE, standard error; CI, confidence interval; Unadj, the unadjusted estimator; GPSW, the generalized
propensity score weighting estimator; NonPara, the proposed nonparametric estimator; Para, the proposed parametric
estimator; for the multiple-imputation estimators, MI1 uses the outcome in the imputation, MI2 does not use the
outcome in the imputation, and MIMP is the multiple-imputation missingness pattern method of Qu & Lipkovich
(2009).

6.2. The causal effect of education on general health satisfaction

We use a dataset from the 2015-2016 U.S. National Health and Nutrition Examination Survey
to estimate the average causal effect of education on general health satisfaction. The dataset
includes 4845 subjects. Among them, 76% have at least high school education, denotedby 4 = 1,
and 24% do not, denoted by 4 = 0. The outcome Y is the general health satisfaction score, which
ranges from 1 to 5, with lower values indicating greater satisfaction. The observed outcomes have
mean 2.88 and standard deviation 0.96. The confounders X include age, gender, race, marital
status, income-to-poverty level ratio, and an indicator of ever having risk of prediabetes. The
income-to-poverty level and prediabetes risk variables have missing values, whereas the other
variables do not. The missingness of the income-to-poverty level ratio and the prediabetes risk
variable is likely to be related to the missing values themselves. It is plausible that this missingness
is unrelated to the outcome value conditioning on the treatment and confounders.

Table 3(b) reports the results. Although qualitatively all estimators show that education is
beneficial in improving general health satisfaction, differences can be observed in the point
estimates of our estimator and the competitors. This illustrates the impact of the missing data
assumption on causal inference with missing confounders. Based on the parametric estimator,
education improves general health satisfaction by 0.32 on average.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional proofs, further
discussions on the nonparametric and parametric estimators, and additional simulations.
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