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Abstract

We consider the problem of optimizing heat transport through an incompress-

ible fluid layer. Modeling passive scalar transport by advection-diffusion, we

maximize the mean rate of total transport by a divergence-free velocity field.

Subject to various boundary conditions and intensity constraints, we prove that

the maximal rate of transport scales linearly in the r.m.s. kinetic energy and, up

to possible logarithmic corrections, as the one-third power of the mean enstro-

phy in the advective regime. This makes rigorous a previous prediction on the

near optimality of convection rolls for energy-constrained transport. On the other

hand, optimal designs for enstrophy-constrained transport are significantly more

difficult to describe: we introduce a “branching” flow design with an unbounded

number of degrees of freedom and prove it achieves nearly optimal transport.

The main technical tool behind these results is a variational principle for evalu-

ating the transport of candidate designs. The principle admits dual formulations

for bounding transport from above and below. While the upper bound is closely

related to the “background method,” the lower bound reveals a connection be-

tween the optimal design problems considered herein and other apparently re-

lated model problems from mathematical materials science. These connections

serve to motivate designs. © 2019 Wiley Periodicals, Inc.
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1 Introduction

1.1 The Wall-to-Wall Optimal Transport Problem

This paper concerns a class of optimal design problems from fluid dynamics

that asks to maximize the overall transport of heat through an incompressible

fluid layer. Passive scalar transport by an incompressible fluid is governed by the

advection-diffusion equation

(1.1) @tT C u � rT D ÅT

where T .x; t / is the scalar field undergoing transport, referred to as temperature

throughout, u.x; t / is the velocity vector field of the fluid, and  is the coefficient

of molecular diffusivity. In general, the velocity field u and temperature T may

depend on both space x D .x; y; ´/ and time t . Due to incompressibility, u must

remain divergence-free. Thinking of u as being in our control, we set ourselves the

task of choosing it to maximize the overall transport of heat determined by (1.1).

This is a rich class of optimal design problems and we are interested in the

dependence of any solutions, i.e., optimal designs, on various constraints that may

be imposed. We discuss specific constraints for the velocities later on, but let us

handle the temperature field first. Supposing the fluid is contained between two

impenetrable parallel planar walls at a distance h, we fix the temperature at the

walls by imposing the constant Dirichlet boundary conditions

(1.2) T j´D0 D Thot and T j´Dh D Tcold:

If the velocity field u is regular enough—eventually our constraints on it will en-

sure this—the advection-diffusion equation (1.1) admits a unique solution T satis-

fying (1.2) for every essentially bounded initial temperature field T jtD0 D T0.x/.

We see, therefore, that the overall heat transport specified by (1.1) should depend

in general on u and T0. However, as the partial differential equation (PDE) (1.1)

is dissipative, any dependence on the initial temperature T0 is eventually lost as

t ! 1, and the resulting heat transport can be thought of as being set by u alone.

In this paper, we study the optimal design of wall-to-wall heat transport in the

long-time limit, subject to various boundary conditions and intensity constraints on

the velocity field u. To simplify matters, we consider all fields to be periodic in the

wall-parallel variables x and y with periods lx and ly . That is, we take x to belong

to the domain � D T
2
xy ⇥ Œ0; hç´, identifying T

2
xy with Œ0; lxç ⇥ Œ0; ly ç in the usual

way. We turn now to discuss the precise measure of overall heat transport that will

be optimized throughout.

Finite-Time Wall-to-Wall Optimal Transport

According to the advection-diffusion equation (1.1) and the boundary conditions

(1.2), the vertically averaged rate of heat transport per unit area up to time t D ⌧ is
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given by

J⌧ D
1

⌧

1

lxlyh

Z ⌧

0

Z

�

yk � .uT � rT /dx dt

D


h
.Thot � Tcold/C

≠ ⌧

0

≠

�

wT dx dt:

Here, u D uyi C vyj C wyk and
¬

denotes an average over the integration domain.

We are interested in determining those velocity fields that maximize the overall

heat transport J⌧ . Of course, unless u is suitably constrained, the optimal transport

supJ⌧ will be infinitely large. It is natural to prescribe the overall magnitude of u,

and to enforce suitable boundary conditions at the walls @�. The resulting optimal

design problems take the form

(1.3) sup
u.x;t/

kukDU
Cb.c.

J⌧

where the parameterU sets the advective intensity of the admissible velocity fields.

We consider two classes of admissible velocity fields, which we refer to as being

“energy-” or “enstrophy-constrained.” In the energy-constrained class, we take

kuk2 D
≠ ⌧

0

≠

�

juj2 dx dt

in (1.3) so that the constraint kuk D U sets the average kinetic energy available

for advection. As for boundary conditions, the no-penetration ones

wj@� D 0

are well-suited to this class. We call the problem that results the finite-time energy-

constrained wall-to-wall optimal transport problem. The finite-time enstrophy-

constrained1 problem arises from taking

kuk2 D h2

≠ ⌧

0

≠

�

jruj2 dx dt

and enforcing the no-slip boundary conditions

uj@� D 0

in (1.3). The essential results of this paper hold as well for the stress-free boundary

conditions

wj@� D 0 and @´uj@� D @´vj@� D 0;

although our focus is mostly on the no-slip ones.

1 For various boundary conditions, including the ones considered here, the mean square rate of

strain kruk2
L2.�/

and enstrophy kr ⇥ uk2
L2.�/

are the same.
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Infinite-Time Wall-to-Wall Optimal Transport

Having introduced the finite-time energy- and enstrophy-constrained wall-to-

wall optimal transport problems, we turn to discussing their infinite-time ana-

logues, which are the focus of this paper.

Let h�i denote the (limit superior) space and long-time average

hf i D lim sup
⌧!1

≠ ⌧

0

≠

�

f .x; t /dx dt:

As an integration by parts shows, the space and long-time averaged heat transport

determined by (1.1) satisfies

lim sup
⌧!1

J⌧ D hjrT j2i:

Note this depends on u but not on the initial temperature T0 so long as it is bounded.

In direct analogy with the finite-time optimal transport problems, we define the

infinite-time energy-constrained wall-to-wall optimal transport problem by

(1.4) sup
u.x;t/

hjuj2iDU 2

wj@�D0

hjrT j2i

and the infinite-time enstrophy-constrained problem by

(1.5) sup
u.x;t/

hjruj2iD U 2

h2

uj@�D0

hjrT j2i:

It is these infinite-time optimal design problems that we study in the remainder of

this paper. As we never return to the finite-time problems, we discontinue the use

of the distinguishing phrases from now on.

A word is in order regarding the sense in which we consider (1.4) and (1.5)

to be solved. We do not claim that there must exist maximizers for either prob-

lem. Although this certainly merits investigation, and is related to questions of

Ä-convergence [4] of the finite-time problems to the infinite-time ones, we choose

in this paper to focus instead on the maximum value of transport, which is always

well-defined. To the maximum value is associated maximizing sequences, i.e., near

optimizers that we may seek to describe. Even in the steady versions of (1.4) and

(1.5)—where all fields are assumed to be independent of time and optimal designs

are guaranteed to exist—determining the maximal transport is a nontrivial task.

The energy- and enstrophy-constrained wall-to-wall optimal transport problems

(1.4) and (1.5) were introduced in [19] and studied further in [27, 39] by a com-

bination of asymptotic and numerical methods. Similar methods have since been

applied to study other related optimal transport problems [1,25,28]. A key question

left unresolved by these works is whether the local maximizers constructed therein

actually achieve heat transport comparable to that of global optimizers.
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In this paper, we present a new mathematically rigorous approach to answering

this question. Our methods do not rely on the use of Euler-Lagrange equations; as

these are nonconcave maximization problems with many local maximizers, critical

point conditions do not suffice to identify global optimizers. Rather, our starting

point is a new variational formula for evaluating wall-to-wall heat transport, which

is useful both for proving a priori upper bounds on optimal transport as well as

lower bounds on the transport of candidate designs. For the energy-constrained

problem, we prove that the convection roll designs from [19] achieve globally op-

timal heat transport up to a universal prefactor in the advection-dominated regime.

For the enstrophy-constrained problem, we construct a new class of “branching”

designs featuring a large and potentially unbounded number of degrees of free-

dom. A well-chosen branching design achieves optimal transport up to possible

logarithmic corrections.

The wall-to-wall optimal transport problem is naturally related to the study of

transport in turbulent fluids. One consequence of our results is a proof that any

flows arising in Rayleigh’s original two-dimensional model of buoyancy-driven

convection between stress-free walls [36] must achieve significantly suboptimal

rates of heat transport in the large Rayleigh number regime Ra � 1. Indeed, while

our results imply the existence of incompressible flows achieving transport con-

sistent with the proposed “ultimate scaling” law Nu ⇠ Ra1=2 (up to logarithmic

corrections), such transport is impossible in Rayleigh’s original model [44]. In

fact, our analysis leads us to wonder whether such logarithmic corrections to scal-

ing should always hold, independent of dimension or boundary conditions. Behind

these claims is a more or less explicit connection between the fluid dynamical op-

timal design problems considered herein and other apparently related model prob-

lems from the study of “energy-driven pattern formation” in materials science [23].

We discuss these considerations in detail at the end. A preliminary version of our

methods and results was announced in [40].

1.2 Main Results and Methods

Nondimensionalization

We are concerned with the dependence of energy- and enstrophy-constrained

wall-to-wall optimal transport (1.4) and (1.5) in their parameters. We make use of

two standard nondimensional quantities. The Peclét number

Pe D
Uh



is a dimensionless measure of the intensity of advection relative to that of diffusion.

Transport by (1.1) is dominated by advection when Pe � 1 and by diffusion when

Pe ⌧ 1. The Nusselt number Nu is a dimensionless measure of the enhancement

of heat transport by convection over that of pure conduction. In the fluid layer
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geometry,

Nu.u/ D

˝

jrT j2
˛


h2 .Thot � Tcold/

2
D 1C

h



1

Thot � Tcold

hwT i:

Note this does not depend on the initial temperature T0.

Such nondimensionalization reduces the number of free parameters in (1.4) and

(1.5) to three: the dimensionless group Pe and the aspect ratios of the domain lx

h

and
ly
h

. That is, it suffices to take

h D  D Thot D 1 and Tcold D 0

and study the dependence of the resulting nondimensionalized optimal transport

problems

sup
u.x;t/

hjuj2iDPe2

wj@�D0

Nu.u/ and sup
u.x;t/

hjruj2iDPe2

uj@�D0

Nu.u/

on Pe, lx , and ly . Henceforth, we understand the Nusselt number to be given by

(1.6) Nu.u/ D hjrT j2i D 1C hwT i

where T is determined from u by solving the advection-diffusion equation

(1.7) @tT C u � rT D ÅT

with Dirichlet boundary conditions

T j´D0 D 1 and T j´D1 D 0

and any essentially bounded initial data T jtD0 D T0 (the choice of which is im-

material to our results). The domain � D T
2
xy ⇥ I´ where T

2
xy is identified with

Œ0; lxç ⇥ Œ0; ly ç and I´ D Œ0; 1ç. As always, u is understood to be divergence-free.

Summary of Main Results

Our results concern the asymptotic dependence of optimal transport in the ad-

vective regime Pe � 1. Concerning energy-constrained transport, we find that

the maximal transport rate scales linearly in the r.m.s. kinetic energy as Pe ! 1.

More precisely, we prove the following result:

THEOREM 1.1. There exist positive constants C and C 0 so that

CPe  sup
u.x;t/

hjuj2iDPe2

wj@�D0

Nu.u/ 
1

2
Pe

for all Pe � C 0. The constant C is independent of all parameters and C 0 depends

only on the aspect ratios of the domain.
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As noted in [19], the a priori upper bound Nu . Pe can be proved by a quick

application of the maximum principle and the Cauchy-Schwarz inequality. On

the other hand, to prove the lower bound one must construct a certain family of

admissible velocity fields fuPeg and prove that their Nusselt numbers scale linearly

in Pe in the advective regime. Such a construction was described using methods

of matched asymptotic analysis in [19] (albeit with no attempt to control the errors

in the ensuing estimates). Our construction is inspired by that one: we consider a

convection roll system as in Figure 1.1a and choose the number of rolls to scale

optimally in Pe. Our approach to evaluating Nu allows us to rigorously justify the

predictions from [19] regarding the (near) optimality of such flows.

The enstrophy-constrained problem turns out to be much more difficult to re-

solve. We prove that the maximal enstrophy-constrained transport rate scales, up

to possible logarithmic corrections, as the two-thirds power of the r.m.s. rate-of-

strain as Pe ! 1. Furthermore, we obtain a bound on the size of any corrections

to this scaling:

THEOREM 1.2. There exist positive constants C , C 0, and C 00 so that

C
Pe2=3

log4=3 Pe
 sup

u.x;t/

hjruj2iDPe2

uj@�D0

Nu.u/  C 0Pe2=3

for all Pe � C 00. The constants C and C 0 are independent of all parameters and

C 00 depends only on the aspect ratios of the domain.

Remark 1.3. The same bounds apply to enstrophy-constrained optimal transport

between no-penetration or stress-free walls. Indeed, by a simple inclusion argu-

ment, maximal transport between impenetrable walls is never less than for stress-

free walls, and both are bounded below by maximal transport between no-slip

walls. Since the a priori upper bound Nu . Pe2=3 applies so long as wj@� D 0

(this is what is proved in Section 2), the result follows.

This result concerning the two-thirds-scaling law of enstrophy-constrained wall-

to-wall optimal transport—modulo logarithms—was first announced in our pa-

per [40]. The present paper provides all the mathematical details of the analysis

outlined there, as well as a much more complete discussion of our general approach

to the optimal design of heat transport. The bulk of it is devoted to motivating and

evaluating the branching flows depicted in Figure 1.1b, which are the key to prov-

ing the logarithmically corrected lower bound from Theorem 1.2.

After this work was completed, a computational study of the Euler-Lagrange

equations for the enstrophy-constrained wall-to-wall optimal transport problem re-

ported convincing numerical evidence for velocity fields that produce Nu ⇠ Pe2=3

in three dimensions [27]. Interestingly, numerical studies of the two-dimensional

problem have thus far failed to produce heat transport scaling of this sort [19, 28,
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39]. Whereas the velocity fields produced in these two-dimensional studies fea-

ture near-wall “recirculation zones,” which serve to enhance heat transport at mod-

erate Pe, they come nowhere near the complexity of our branching flows. The

three-dimensional computations, however, do exhibit branching of a fully three-

dimensional character. Whether such three-dimensional branching flows can be

constructed so as to eliminate the logarithmic gap in Theorem 1.2 as Pe ! 1
remains to be seen.

Outline of the Approach

Theorem 1.1 and Theorem 1.2 contain two types of statements: a priori upper

bounds on the Nusselt number Nu that hold for all velocity fields, and matching

lower bounds on Nu for suitable designs. Methods to establish rigorous upper

bounds on convective transport go back at least to Howard in the context of turbu-

lent buoyancy-driven convection [21], and Constantin and one of the authors who

developed the “background method” to prove upper bounds on Nu (albeit absent

Howard’s hypothesis of statistical stationarity) [11–13].

Although a suitably adapted background method can be applied here [39], we do

not proceed in this way. Instead, we present a new method for establishing upper

bounds based on the fact that, for steady velocity fields, there exists a variational

principle for evaluating heat transport. In the time-dependent case, this leads to

new variational bounds on Nu that imply the background method. The bound we

obtain is as follows:

(1.8) Nu.u/  inf
⌘

˝

jr⌘j2 C jrÅ�1Œ@t⌘ C div.u⌘/çj2
˛

where ⌘ must satisfy

⌘j´D0 D 1 and ⌘j´D1 D 0:

Here and throughout Å�1 denotes the inverse Laplacian operator with vanishing

Dirichlet boundary conditions. The bound (1.8) is sharp for steady flows; in that

case (1.8) becomes an equality and ⌘ need not depend on time.

In contrast, methods to establish rigorous lower bounds on Nu are far and few

between. The right-hand side of (1.8) is a convex minimization. Therefore, on

general grounds, there should exist a concave maximization that is its dual. We

find that

(1.9) Nu.u/ � 1 � sup
⇠

h2w⇠ � jr⇠j2 � jrÅ�1Œ@t⇠ C div.u⇠/çj2i

where ⇠ must satisfy

⇠j´D0 D 0 and ⇠j´D1 D 0:

As with (1.8), the bound (1.9) becomes sharp for u that do not depend on time.



OPTIMAL WALL-TO-WALL TRANSPORT 2393

(A)

(B)

FIGURE 1.1. Streamlines from two families of velocity fields con-

sidered in this paper: (A) the convection roll construction and (B)

the branching construction. The former involves a single horizontal

wavenumber while the latter involves multiple horizontal wavenumbers,

the total number of which is allowed to diverge in the advective limit

Pe ! 1. Such constructions are useful for establishing (nearly) sharp

lower bounds on wall-to-wall optimal transport.
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Armed with these observations, we describe a new duality-based approach to

producing candidate designs. Consider the steady enstrophy-constrained wall-to-

wall optimal transport problem

(1.10) max
u.x/

¬

�
jruj2DPe2

uj@�D0

Nu.u/;

whose optimal value bounds the unsteady maximum from below. Appealing to the

steady version of (1.9), we find that (1.10) can be rewritten as

(1.11) min
u.x/;⇠.x/
¬

�
w⇠D1

uj@�D0; ⇠j@�D0

≠

�

jrÅ�1 div.u⇠/j2 C "

≠

�

jruj2 �

≠

�

jr⇠j2

where " D Pe�2. Indeed, the optimal values of (1.10) and (1.11) are reciprocals

and their optimizers are in correspondence. Thus, solving the steady enstrophy-

constrained problem (1.10) for Pe � 1 is equivalent to solving (1.11) for " ⌧ 1.

We refer to (1.11) as an “integral” formulation of wall-to-wall optimal transport.

The family of variational problems (1.11) is nonconvex and singularly per-

turbed. The situation shares important similarities with other model problems from

the field of “energy-driven pattern formation” in materials science [23]. These in-

clude the study of branching patterns in micromagnetics [8, 9] and wrinkling cas-

cades in thin elastic sheets [3, 22, 31]. For such problems, it is known that certain

patterns which, at a glance, look like Figure 1.1b provide nearly optimal ways of

matching low-energy states that are geometrically incompatible but forced to co-

exist. We discuss such connections further in Section 7.

Of course, (1.11) does not derive from materials science but instead from fluid

dynamics. We note the striking similarities between it and Howard’s variational

problem, the latter of which gave birth to the field of variational bounds on turbu-

lent transport [21]. It was recognized by Busse [5] that Howard’s problem should

admit multiply scaled optimizers. The resulting construction is known as Busse’s

“multi-˛” technique. After suitable modifications (wall-to-wall optimal transport

and Howard’s problem are in the end quite distinct) Busse’s techniques can also be

used to study (1.11). We consider these connections further in Section 6.

By either analogy, we are led to construct self-similar branching flows as can-

didates for (1.11). The streamlines depicted in Figure 1.1b are symmetric about

´ D 1
2

; each half of the domain is made up of n convection roll systems coupled

through n � 1 transition layers. In the bulk there are large anisotropic convection

rolls at some horizontal length scale lbulk. Streamlines refine away from the bulk

until there results an isotropic convection roll system at some much smaller length

scale lbl. The entire construction can be modeled by a single length scale func-

tion `.´/ that interpolates through the layers. In terms of `, we find the optimal
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branching construction to be picked out by the solution of

(1.12) min
`.´/

`.´bulk/Dlbulk

`.´bl/Dlbl

lbl C
Z ´bl

´bulk

.`0/2 d´C "

✓

1

l2bulk

C
Z ´bl

´bulk

1

`2
d´C

1

lbl

◆2

;

which satisfies

`.´/ ⇠ "1=6 log1=6 1

"

p
1 � ´; ´ 2 Œ´bulk; ´blç;

lbulk ⇠ "1=6 log1=6 1

"
; lbl ⇠ "1=3 log1=3 1

"
:

Although this analysis does not prove that optimal designs must exhibit fluctua-

tions according to these rules, it does yield designs sufficient to obtain the asserted

lower bounds from Theorem 1.2. The lower bounds from Theorem 1.1 on energy-

constrained optimal transport are much simpler to obtain and serve as a test case

for our approach.

1.3 Outline of the Paper

Section 2 proves the a priori upper bounds from Theorem 1.1 and Theorem 1.2

and establishes the variational principles and bounds on Nu alluded to above. The

proof of the lower bounds from Theorems 1.1 and 1.2 is spread across Sections 3,

4, and 5. In Section 3 we describe our general approach to the optimal design of

heat transport. In Section 4 we test our methods on the steady energy-constrained

problem and obtain a proof of the lower bound part of Theorem 1.1. In Section 5

we consider the steady enstrophy-constrained problem and prove the lower bound

part of Theorem 1.2. We conclude in Sections 6 and 7 with a discussion of bounds

on turbulent heat transport, and a discussion of wall-to-wall optimal transport as a

problem of energy-driven pattern formation.

1.4 Notation

Having nondimensionalized, we employ the domain � D T
2
xy⇥I´ where T

2
xy is

identified with Œ0; lxç ⇥ Œ0; ly ç and I´ D Œ0; 1ç. The spatial average of an integrable

function f on � is denoted by
≠

�

f D
1

j�j

Z

�

f .x/dx

where j�j D jT2
xy j D lxly . Generally speaking,

¬

indicates a well-defined aver-

age over the indicated domain of integration. Some distinguished averages used in

this paper include

xf D
≠

T
2
xy

f D
1

jT2
xy j

Z

T
2
xy

f .x; y; �/dx dy;



2396 C. R. DOERING AND I. TOBASCO

which averages over the periodic variables x and y; the (limit superior) space and

long-time average

hf i D lim sup
⌧!1

≠ ⌧

0

≠

�

f D lim sup
⌧!1

1

⌧

1

j�j

Z ⌧

0

Z

�

f .x; t /dx dt I

and the truncated space and time average

hf i⌧ D
≠ ⌧

0

≠

�

f D
1

⌧

1

j�j

Z ⌧

0

Z

�

f .x; t /dx dt:

We use the standard L2- and PH 1-norms for functions on �,

kf kL2.�/ D

s

Z

�

jf j2 and kf k PH 1.�/
D

s

Z

�

jrf j2:

The set of smooth and compactly supported functions on � is C1
c .�/. The

Sobolev space H 1
0 .�/ is its completion in the norm k � k PH 1.�/

. We use . � ; �/ to

denote the duality pairing of H�1 with H 1
0 . We denote by Å�1 the inverse Lapla-

cian operator with vanishing Dirichlet boundary conditions, which is well-defined

from H�1.�/ ! H 1
0 .�/.

The notationX . Y means that there exists a positive constant C not depending

on any parameters such that X  CY . We use the notations X ^ Y D minfX; Y g
and X _ Y D maxfX; Y g.

2 A Priori Bounds on Wall-to-Wall Optimal Transport

We begin our analysis of wall-to-wall optimal transport by proving the a priori

upper bounds from Theorems 1.1 and 1.2. Unless otherwise explicitly stated, we

consider throughout that hjuj2i < 1 so that (1.7) is well-posed.

The upper bound from Theorem 1.1 on energy-constrained transport is straight-

forward to prove, and we dispatch it first.

PROPOSITION 2.1. We have that

Nu.u/  1C
1

2
hjwj2i1=2

whenever wj@� D 0.

PROOF. Let us recall the argument from [19]. First, note that Nu does not de-

pend on the initial temperature T0. Thus, we can take T0 D 1� ´ and conclude by

the maximum principle that the associated solution of (1.7) satisfies

0  T  1 a.e.

Note also that because w vanishes at @�,

hwi D 0:
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Combining this with Jensen’s inequality and the definition of the Nusselt number

(1.6), we have that

Nu � 1 D hwT i D
⌧

w

✓

T �
1

2

◆�

 hjwjikT �
1

2
kL1

tx

1

2
hjwj2i1=2: ⇤

The remainder of this section is on upper bounds for enstrophy-constrained

transport. We prove the following bound:

PROPOSITION 2.2. There exists a positive constant C such that

Nu.u/  1C C hjrwj2i ^ hjrwj2i1=3

whenever wj@� D 0. This constant is independent of all parameters.

To the authors’ knowledge, there are at least three proofs of Proposition 2.2.

For one, it can be obtained via an application of the background method [39]. It

can also be seen as a consequence of Seis’ arguments from [37]. Our proof of

Proposition 2.2 is different from either of these: we obtain it via a new approach

using a Dirichlet-type variational principle for the functional Nu.u/.

It should be mentioned that we are not the first to notice the variational struc-

ture of the advection-diffusion equation. The existence of a variational principle

for advection-diffusion in bounded domains appears to have been first reported

in [30], where it was used to systematically derive “best approximation” finite el-

ement schemes. Around the same time, as described in [26], variational principles

for computing effective complex conductivities in periodic homogenization were

discovered by Gibiansky and Cherkaev (the relevant corrector equation is again

divergence-form but not self-adjoint). We learned about the existence of such prin-

ciples from the papers [2,17], whose formulas for computing effective diffusivities

in periodic homogenization inspired the formulas for Nu obtained below. Let us

also mention the related work [18], which discusses nonstandard variational princi-

ples for PDEs at large. It was a pleasant surprise to learn that the seemingly ad hoc

change of variables introduced in [19] for handling the Euler-Lagrange equations

of wall-to-wall optimal transport turn out to be similar to those employed in previ-

ous works, and that behind it all is a variational principle for Nu.

The remainder of this section is organized as follows. First we establish a varia-

tional principle for Nu in the steady case where the reasoning is most transparent.

We then extend the arguments to general unsteady flows, where the variational

principle turns into a variational bound as anticipated in (1.8). Proposition 2.2 fol-

lows immediately thereafter. Later on in Section 3, we obtain the dual formula to

bound Nu from below. In order to highlight the key step in the proof—a certain

symmetrizing change of variables for the advection-diffusion equation—we refer

to this as the “symmetrization method.”
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2.1 Symmetrization Method for Steady Velocity Fields

We start with the case where u is an arbitrary divergence-free vector field be-

longing to L2.�I R
3/. In this case,

Nu.u/ D 1C
≠

�

w✓ D 1C
≠

�

jr✓ j2

where ✓ D T �.1�´/ is the deviation of the temperature field from the conductive

state. That is, ✓ is the unique (essentially bounded) weak solution of

u � r✓ D Å✓ C w

with zero Dirichlet boundary data ✓ j@� D 0. To change variables, we let ✓˙ be the

unique weak solutions of the pair of formally adjoint PDEs

(2.1) ˙ u � r✓˙ D Å✓˙ C w

with ✓˙j@� D 0, and observe that ✓ D ✓C. Then, we define ⌘; ⇠ 2 H 1
0 .�/ by

⌘ D
1

2
.✓C � ✓�/ and ⇠ D

1

2
.✓C C ✓�/

and observe they satisfy the equivalent system of PDEs

(2.2)

(

u � r⌘ D Å⇠ C w;

u � r⇠ D Å⌘:

We claim the change of variables .✓C; ✓�/ $ .⌘; ⇠/ yields a variational formula

for Nu.

Testing the second equation in (2.2) against ⇠ and integrating by parts shows

that r⇠ ? r⌘ in L2.�/, since
Z

�

r⌘ � r⇠ D �

Z

�

u � r⇠⇠ D 0:

Therefore,

Nu � 1 D
≠

�

jr✓Cj2 D
≠

�

jr⌘j2 C jr⇠j2

or, using the first PDE in (2.2),

(2.3) Nu � 1 D
≠

�

jr⌘j2 C jrÅ�1Œu � r⌘ � wçj2:

Consider the right-hand side of (2.3) as it depends on ⌘. Since u 2 L2 and

is divergence-free, the right-hand side is well-defined for ⌘ 2 H 1
0 .�/ \ L1.�/.

Now consider the variational problem

(2.4) inf
⌘2H 1

0 .�/\L1.�/

≠

�

jr⌘j2 C jrÅ�1Œu � r⌘ � wçj2;
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which is strictly convex so that any minimizer must be unique. By a first-variation

argument, we see that ⌘ is a minimizer of (2.4) if and only if it satisfies the Euler-

Lagrange equation

Å⌘ D u � rÅ�1Œu � r⌘ � wç:

This is a rewrite of the system (2.2) with ⇠ defined by

⇠ D Å�1Œu � r⌘ � wç:

Since that system possesses solutions in the classH 1
0 \L1, it immediately follows

that (2.4) has a minimizer. It also follows that the minimal value in (2.4) is Nu � 1.

Relabeling ⌘ as ⌘C1�´ and using that u is divergence-free yields the following

variational principle for heat transport:

THEOREM 2.3. Let u.x/ be a divergence-free vector field in L2.�I R
3/. Then,

Nu.u/ D min
⌘2H 1.�/\L1.�/
⌘j´D0D1; ⌘j´D1D0

≠

�

jr⌘j2 C
ˇ

ˇrÅ�1 div.u⌘/
ˇ

ˇ

2
:

2.2 Upper Bounds on Unsteady Transport by Symmetrization

With some care, the previous argument can be adapted to the time-dependent

case. Here the useful change of variables arises from the pair of PDEs

˙.@t C u � r/✓˙ D Å✓˙ C w;

which are formally adjoint in space and time. These are in obvious analogy with

(2.1) from the steady case. However, since parabolic PDEs are generically only

well-posed forward in time, making sense of the “�” equation presents an added

difficulty. To deal with this, we will reverse the sense of time between the equa-

tions, performing the change of variables t ! ⌧ � t for appropriately chosen

⌧ � 1. In the limit ⌧ ! 1, we recover the unsteady variational bound.

Define the admissible set of test functions

A D f⌘W ⌘ 2 L1.Œ0;1/IL2.�//g
\ f⌘.t/ 2 H 1.�/ \ L1.�/; @t⌘.t/ 2 H�1.�/ a.e. tg:

THEOREM 2.4. Let u.x; t / be a divergence-free vector field with bounded mean

energy hjuj2i < 1. Then,

Nu.u/  inf
⌘2A

⌘j´D1D0; ⌘j´D0D1

˝

jr⌘j2 C jrÅ�1Œ@t⌘ C div.u⌘/çj2
˛

:

PROOF. We begin by introducing the (approximately) symmetrized variables.

Let ✓C D T � .1 � ´/ and note it solves

@t✓C C u � r✓C D Å✓C C w

on Œ0;1/⇥ � and vanishes at @�. Let ✓⌧
�

be the unique essentially bounded weak

solution of

�@t✓� � u � r✓� D Å✓� C w
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on �⌧ D Œ0; ⌧ç ⇥ � that vanishes at @� and has final time data ✓⌧
�
.⌧/ D 0. Next,

define the symmetrized variables ⌘⌧ and ⇠⌧ by

⌘⌧ D
1

2
.✓C � ✓⌧

�
/ and ⇠⌧ D

1

2
.✓C C ✓⌧

�
/:

Observe that ⌘⌧ and ⇠⌧ solve

(2.5)

(

@t⌘
⌧ C u � r⌘⌧ D Å⇠⌧ C w;

@t⇠
⌧ C u � r⇠⌧ D Å⌘⌧ ;

on �⌧ , vanish at @�, and remain bounded in L1
tx uniformly in time. In particular,

by the maximum principle,

k⌘⌧kL1
tx

_ k⇠⌧kL1
tx

. k✓CkL1
tx

_ k✓⌧
�

kL1
tx

 C.T0/:

We proceed as in the steady case, accumulating errors that vanish as ⌧ ! 1.

From the second PDE in (2.5) we find that

hr⌘⌧
� r⇠⌧ i⌧ D

≠ ⌧

0

1

j�j
.�Å⌘⌧ ; ⇠⌧ /dt D

≠ ⌧

0

1

j�j
.�@t⇠

⌧
� div.u⇠⌧ /; ⇠⌧ /dt

D �

≠ ⌧

0

1

j�j
d

dt

1

2
k⇠⌧k2

L2.�/
C

≠ ⌧

0

≠

�

u⇠⌧
� r⇠⌧

D
1

2⌧

1

j�j
�

k⇠⌧ .0/k2
L2.�/

� k⇠⌧ .⌧/k2
L2.�/

�

:

Therefore,

jhr⌘⌧
� r⇠⌧ i⌧ j  C.T0/

1

⌧
:

Since

Nu � 1 D hjr✓ j2i D hjr✓Cj2i
and

hjr✓Cj2i⌧ D
˝

jr⌘⌧ j2 C jr⇠⌧ j2
˛

⌧
C 2hr⌘⌧

� r⇠⌧ i⌧ ;

we conclude that

(2.6) Nu � 1 D
˝

jr⌘⌧ j2 C
ˇ

ˇrÅ�1Œ@t⌘
⌧ C u � r⌘⌧

� wç
ˇ

ˇ

2˛

⌧
CO

✓

1

⌧

◆

:

Next, we prove that ⌘⌧ is approximately minimal, with an error that vanishes

as ⌧ ! 1. Let ⌘ 2 A vanish at @� but be otherwise arbitrary, and consider the

difference

A⌧ D
˝

jr⌘j2 C
ˇ

ˇrÅ�1Œ@t⌘ C u � r⌘ � wç
ˇ

ˇ

2˛

⌧

�
˝

jr⌘⌧ j2 C
ˇ

ˇrÅ�1Œ@t⌘
⌧ C u � r⌘⌧

� wç
ˇ

ˇ

2˛

⌧
:
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Using the convexity of j � j2, we can expand around ⌘⌧ and use (2.5) to arrive at the

lower bound

A⌧

2
�

˝

r.⌘ � ⌘⌧ / � r⌘⌧

C rÅ�1.@t C u � r/.⌘ � ⌘⌧ / � rÅ�1Œ.@t C u � r/⌘⌧
� wç

˛

⌧

D �
1

j�j

≠ ⌧

0

�

.@t C u � r/⇠⌧ ; ⌘ � ⌘⌧
�

C
�

.@t C u � r/.⌘ � ⌘⌧ /; ⇠⌧
�

dt

D �
1

j�j

≠ ⌧

0

d

dt

Z

�

.⌘ � ⌘⌧ /⇠⌧

�

dt

& �
1

⌧

1

j�j
.k⌘kL1

t L2
x

_ k⌘⌧kL1
t L2

x

/ � k⇠⌧kL1
t L2

x

� �C.T0; ⌘;�/
1

⌧
:

Combining this with (2.6), we find that

Nu � 1 
˝

jr⌘j2 C jrÅ�1Œ@t⌘ C u � r⌘ � wçj2
˛

⌧
C C.T0; ⌘;�/

1

⌧
:

Taking ⌧ ! 1 yields the inequality

Nu � 1 
˝

jr⌘j2 C jrÅ�1Œ@t⌘ C u � r⌘ � wçj2
˛

:

This holds for all ⌘ 2 A that vanish at @�. Changing variables by ⌘ ! ⌘ C 1 � ´

and optimizing yields the result. ⇤

Even if u depends on time, ⌘ can be taken to be independent of time and still

used to bound Nu. The simplified version of Theorem 2.4 that results is analogous

to Theorem 2.3, but for unsteady heat transport.

COROLLARY 2.5. Let u.x; t / be a divergence-free vector field with bounded mean

energy hjuj2i < 1. Then,

(2.7) Nu.u/  inf
⌘2H 1.�/\L1.�/
⌘j´D1D0; ⌘j´D0D1

≠

�

jr⌘j2 C hjrÅ�1 div.u⌘/j2i:

2.3 Proof of Proposition 2.2

We prove Proposition 2.2 by deducing it from Corollary 2.5 with a good choice

of test function ⌘. Evidently, we must find a convenient way to bound the nonlocal

term appearing there. Since rÅ�1 div is an L2-orthogonal projection, one has the

bound

hjrÅ�1 div.u⌘/j2i  hju.⌘ � c/j2i
for an arbitrary constant c. In the case that u satisfies no-slip boundary conditions,

one can deduce Proposition 2.2 by choosing ⌘ ⇡ c, thereby localizing the right-

hand side to a small neighborhood of @�. Then, a straightforward application of

Poincaré’s inequality yields the result.

The final step in the preceding argument requires all components of u to van-

ish at @�. This is not useful for dealing with no-penetration boundary conditions.



2402 C. R. DOERING AND I. TOBASCO

Nevertheless, Proposition 2.2 holds in this more general case. The key is to ap-

proach the nonlocal term from Corollary 2.5 by duality. Observe that
Z

�

jrÅ�1 div mj2 D sup
✓2H 1

0 .�/

Z

�

2r✓ � m � jr✓ j2

whenever m 2 L2.�/. Thus, the inequality
Z

�

jrÅ�1 div mj2  C

and the statement that
Z

�

2r✓ � m  C C
Z

�

jr✓ j2 8✓ 2 H 1
0

are one and the same. Taking m D u⌘ where ⌘ depends only on ´, we conclude it

will be useful to have bounds of the form
Z

�

2w✓⌘0.´/  C C
Z

�

jr✓ j2 8✓ 2 H 1
0 :

The following preliminary result allows us to establish bounds of this type.

LEMMA 2.6. Let w; ✓ 2 H 1
0 .�/. Then,

jw✓.´/j .
j´ ^ .1 � ´/j

jT2
xy j

k@´✓kL2.�/k@´wkL2.�/ a.e.

Remark 2.7. The reader familiar with the background method may recognize that

this inequality also plays a key role in carrying out that approach to a priori bounds.

In particular, it is useful for verifying the spectral constraint. See Section 6.2 for

more on the connection between the symmetrization method and the background

method.

PROOF. By the usual approximation arguments, we can take u and ✓ to be

smooth. Differentiating and applying the Cauchy-Schwarz inequality, we find that
ˇ

ˇ

ˇ

ˇ

d

d´
w2

ˇ

ˇ

ˇ

ˇ


2

jT2
xy j

k@´wkL2.T2
xy/kwkL2.T2

xy/:

Integrating this from 0 to ´ yields

kwk2

L1.Œ0;´çIL2
xy/


2

jT2
xy j

Z ´

0

k@´w.´
0/kL2

xy
kw.´0/kL2

xy
d´0


2

jT2
xy j

k@´wkL2.�/kwkL2.Œ0;´çIL2
xy/


2

jT2
xy j

k@´wkL2.�/kwkL1.Œ0;´çIL2
xy/j´j1=2:
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Therefore,

(2.8) kwkL1.Œ0;´çIL2
xy/ 

2

jT2
xy j

j´j1=2k@´wkL2.�/:

Similarly, we find that

(2.9) k✓kL1.Œ0;´çIL2
xy/ 

2

jT2
xy j

j´j1=2k@´✓kL2.�/:

Now consider the product w✓ . We have that
ˇ

ˇ

ˇ

ˇ

d

d´
w✓

ˇ

ˇ

ˇ

ˇ

 j@´w✓ j C jw@´✓ j 
1

jT2
xy j

�

k@´wkL2
xy

k✓kL2
xy

C kwkL2
xy

k@´✓kL2
xy

�

for all ´. Therefore,

kw✓kL1.Œ0;´ç/


1

jT2
xy j

Z ´

0

k@´w.´
0/kL2

xy
k✓.´0/kL2

xy
C kw.´0/kL2

xy
k@´✓.´0/kL2

xy
d´0


1

jT2
xy j

�

k@´wkL2.�/k✓kL2.Œ0;´çIL2
xy/ C k@´✓kL2.�/kwkL2.Œ0;´çIL2

xy/

�


j´j1=2

jT2
xy j

�

k@´wkL2.�/k✓kL1.Œ0;´çIL2
xy/ C k@´✓kL2.�/kwkL1.Œ0;´çIL2

xy/

�

:

Applying (2.8) and (2.9) we find that

kw✓kL1.Œ0;´ç/ 
4j´j

jT2
xy j

k@´wkL2.�/k@´✓kL2.�/:

The argument above is symmetric under ´ ! 1� ´, so we immediately obtain the

inequality

kw✓kL1.Œ1�´;1ç/ 
4j1 � ´j
jT2

xy j
k@´wkL2.�/k@´✓kL2.�/:

These two combine to prove the result. ⇤

Now we are ready to prove Proposition 2.2, which immediately implies the up-

per bound part of Theorem 1.2. We follow the plan laid out above.

PROOF OF PROPOSITION 2.2. We apply Corollary 2.5 with an appropriate class

of test functions f⌘ıg. Given ı 2 .0; 1=2ç, we define ⌘ı by

(2.10) ⌘ı.´/ D

8

ˆ

<

ˆ

:

1 �
1

2ı
´; 0  ´  ı;

1
2
; ı  ´  1 � ı;

1
2ı
.1 � ´/; 1 � ı  ´  1:
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Note these are admissible in (2.7). Thus,

(2.11) Nu.u/  inf
ı2.0; 1

2
ç

⇢≠

�

jr⌘ı j2 C
˝

jrÅ�1 div.u⌘ı/j2
˛

�

:

The first integral appearing above is simple to estimate and it satisfies
≠

�

jr⌘ı j2 ⇠
1

ı
:

So,

(2.12) Nu . inf
ı2.0; 1

2
ç

⇢

1

ı
C hjrÅ�1 div.u⌘ı/j2i

�

:

Now we must estimate the nonlocal term. We claim that

(2.13) hjrÅ�1 div.u⌘ı/j2i . ı2hjrwj2i
for all ı 2 .0; 1

2
ç. We argue at a.e. time t . By duality,

Z

�

jrÅ�1 div.u⌘ı/j2 D sup
✓2H 1

0 .�/

2.div.u⌘ı/; ✓/ �

Z

�

jr✓ j2:

Since ⌘ı only depends on ´, div.u⌘ı/ D w⌘0
ı
, and we have by Fubini that

≠

�

jrÅ�1 div.u⌘ı/j2 D sup
✓2H 1

0 .�/

≠

I´

2✓w⌘0
ı �

≠

�

jr✓ j2:

Therefore to show (2.13) it suffices to prove the inequality
≠

I´

2✓w⌘0
ı  Cı2

≠

�

jrwj2 C
≠

�

jr✓ j2 8u 2 H 1
0 .�I R

d /; ✓ 2 H 1
0 .�/:

Recalling the formula for ⌘ı from (2.10), we see we must prove that

≠ ı

0

j✓w.´/jd´ . ı

✓≠

�

jrwj2
◆1=2✓≠

�

jr✓ j2
◆1=2

8u 2 H 1
0 .�I R

d /; ✓ 2 H 1
0 .�/:

Applying Lemma 2.6 proves this result and hence the desired estimate (2.13).
Assembling (2.12) and (2.13), we conclude that

Nu . inf
ı2.0; 1

2
ç

⇢

1

ı
C ı2hjrwj2i

�

:

If hjrwj2i � 1 we may choose ı ⇠ hjrwj2i�1=3 to conclude that

(2.14) Nu . hjrwj2i1=3:

To handle the case hjrwj2i  1 we treat the choice ı D 1
2

more carefully in the
above. Since ⌘1=2 D 1 � ´, (2.11) and (2.13) combine to prove that

(2.15) Nu  1C hjrÅ�1 div.u⌘1=2/j2i  1C C hjrwj2i:
From (2.14) and (2.15) we conclude the result. ⇤
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3 Optimal Design of Steady Wall-to-Wall Transport

This section begins the proof of the lower bounds from Theorem 1.1 and Theo-

rem 1.2. While every admissible velocity field yields a lower bound on the maximal

rate of heat transport, it is not at all clear what sorts of features are required for ve-

locity fields to achieve maximal (or nearly maximal) transport. It is natural to won-

der how the overall character of optimal designs depends on the intensity budget.

One possibility is captured by the convection rolls pictured in Figure 1.1a. This de-

sign is a relatively simple one, as the number of length scales required to describe

it remains independent of the intensity budget. A second, much more complicated

possibility is captured by the branching designs from Figure 1.1b. There, the total

number of length scales is allowed to depend on the intensity budget and can be

unbounded as Pe ! 1. In any case, one requires a general method by which to

evaluate Nu to allow for comparison between candidate designs.

The best scenario would be to develop an ansatz-free approach to evaluating

heat transport that, by its functional form, suggests optimal designs. In this section,

we achieve this for a general class of steady (i.e., time-independent) wall-to-wall

optimal transport problems, including the energy- and enstrophy-constrained ones

as special cases. The class of problems we have in mind are of the form

(3.1) sup
u.x/

kukDPe
Cb.c.

Nu.u/

where k�k denotes any norm in which the advective intensity of u may be mea-

sured. As described in the introduction, the steady energy-constrained problem

arises from employing the (volume-averaged) L2-norm

kuk D
✓≠

�

juj2
◆1=2

to measure advective intensity, while the steady enstrophy-constrained one arises

from the (volume-averaged) PH 1-norm

kuk D
✓≠

�

jruj2
◆1=2

:

In any case, we require that u 2 L2 in order that its heat transport be well-defined.

As our aim in this section is to present a general approach to intensity-constrained

optimal transport, we leave the boundary conditions unspecified. Of course, we do

not claim that there exist optimizers at this level of generality.

The principal result of this section is that the general wall-to-wall optimal trans-

port problem (3.1) can be reformulated as the double minimization

(3.2) inf
u.x/;⇠.x/
¬

�
w⇠D1

Cb.c.

≠

�

jrÅ�1 div.u⇠/j2 C
1

Pe2
kuk2

�

≠

�

jr⇠j2
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in the velocity field u and a new variable ⇠. The boundary conditions for u remain

the same as for (3.1), while ⇠ is required to vanish at @�. As will become clear, ⇠

plays a role in the analysis of Nu similar to that of ⌘ from the a priori bounds of

Section 2—in fact, these variables are dual. The optimal values in (3.1) and (3.2)

are reciprocals, and their optimizers are related through a certain change of vari-

ables. We refer the reader forward to Sections 4 and 5 for the application of these

observations to energy- and enstrophy-constrained optimal transport. Presently,

our goal is to establish the connection between (3.1) and (3.2), and to illustrate

how the latter suggests optimal designs. As in Section 2, our approach centers on

the existence of a variational principle for Nu.u/; it is dual to the one appearing

there. After achieving this duality and using it to obtain (3.2), we proceed to make

some general remarks on the construction of near optimal designs.

3.1 Dual Variational Formulations for Transport

Recall from the analysis of a priori bounds on transport in Section 2 that there

is a variational principle for heat transport in the steady case, and that Nu can be

written as the optimal value of a certain convex minimization problem:

Nu.u/ � 1 D min
⌘j@�D0

≠

�

jr⌘j2 C jrÅ�1 div.u⌘/j2:

For the precise statement, see Theorem 2.3. As this is convex it should, in principle,

admit a dual formulation.

THEOREM 3.1. Let u be a divergence-free vector field in L2.�I R
3/. Then,

(3.3) Nu.u/ � 1 D max
⇠2H 1

0 .�/\L1.�/

≠

�

2w⇠ � jr⇠j2 � jrÅ�1 div.u⇠/j2:

PROOF. Recall from the proof of Theorem 2.3 the PDE system

(3.4)

(

u � r⌘ D Å⇠ C w;

u � r⇠ D Å⌘;

and the formula

Nu � 1 D
≠

�

jr⇠j2 C jr⌘j2:

Testing the first equation in (3.4) with ⇠, the second with ⌘, and integrating by parts

yields the string of equalities
Z

�

w⇠ D
Z

�

jr⇠j2 C
Z

�

⇠u � r⌘

D
Z

�

jr⇠j2 �

Z

�

⌘u � r⇠ D
Z

�

jr⇠j2 C jr⌘j2:

Thus,

Nu � 1 D
≠

�

2w⇠ � jr⇠j2 � jr⌘j2 D
≠

�

2w⇠ � jr⇠j2 � jrÅ�1 div.u⇠/j2:
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Note in the last step we used the PDE system again.

Now consider the maximization

sup
⇠2H 1

0 .�/\L1.�/

≠

�

2w⇠ � jr⇠j2 � jrÅ�1 div.u⇠/j2:

Reasoning with its Euler-Lagrange equation just as in the proof of Theorem 2.3,

we deduce that this maximization problem is well-posed in the given admissible

class, with optimal value Nu � 1. ⇤

As claimed in the introduction, there is a corresponding result holding for un-

steady velocities that allows us to bound Nu from below, but not necessarily to

evaluate it. This result was described in (1.9), and its proof is similar to that of

Theorem 2.4. We remark that although the variational formulas for steady heat

transport from Theorem 2.3 and Theorem 3.1 are strongly dual—they provide con-

vex and concave alternatives for evaluating Nu whose optimal values agree—such

strong duality need not hold for unsteady flows. More precisely, we note that for

general velocity fields the bounds (1.8) and (1.9) need not coincide. In particular,

there will be a duality gap for any velocity field that satisfies

lim inf
⌧!1

hwT i⌧ < lim sup
⌧!1

hwT i⌧ :

These fields have the peculiar property that the lim sup and lim inf alternatives for

defining the space and long-time average heat transport Nu do not coincide.

3.2 An Integral Formulation of Wall-to-Wall Optimal Transport

Having written Nu for steady flows as the optimal value of the concave maxi-

mization problem (3.3), we can now give a useful reformulation of the entire class

of steady wall-to-wall optimal transport problems from (3.1). This “integral” for-

mulation of steady optimal transport will be used to design and evaluate nearly

optimal flows in what follows.

Let F.Pe/ denote the optimal value of the steady optimal transport problem

(3.1),

F.Pe/ D sup
u.x/

kukDPe
Cb.c.

Nu.u/:

Applying Theorem 3.1, we find that

F.Pe/ D sup
u.x/;⇠.x/
kukDPe

Cb.c.

≠

�

2w⇠ � jr⇠j2 � jrÅ�1 div.u⇠/j2:

The boundary conditions for u remain unchanged, while according to Theorem 3.1

we must require that ⇠j@� D 0. Performing the substitution

⇠ ! �⇠; � 2 R;
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and maximizing over � yields the equivalent variational problem

1

F.Pe/
D inf

u.x/;⇠.x/
kukDPe

Cb.c.

¬

� jrÅ�1 div.u⇠/j2 C jr⇠j2

.
¬

�w⇠/2
:

Changing variables via the substitutions

u ! Pe
u

kuk
and ⇠ !

kuk
Pe

⇠

allows us to eliminate the intensity constraint on u altogether so that

1

F.Pe/
D inf

u.x/;⇠.x/
Cb.c.

¬

� jrÅ�1 div.u⇠/j2 C 1

Pe2 kuk2
¬

� jr⇠j2

.
¬

�w⇠/2
:

Given the scaling symmetries of the above, we may impose the constraint
≠

�

w⇠ D 1

on the minimization without altering the result. This yields the promised integral

reformulation of wall-to-wall optimal transport

(3.5)
1

F.Pe/
D inf

u.x/;⇠.x/
¬

�
w⇠D1

Cb.c.

≠

�

jrÅ�1 div.u⇠/j2 C
1

Pe2
kuk2

�

≠

�

jr⇠j2;

and proves the equivalence between (3.1) and (3.2).

We turn to discuss the integral formulation of optimal transport just derived.

Observe (3.5) consists of two types of terms, each of which prefers a different kind

of design. The first term

(3.6)

≠

�

jrÅ�1 div.u⇠/j2

prefers u⇠ to be divergence-free and we refer to it as the “advection term” through-

out. This preference is strong in the advective regime Pe � 1, as it appears at

leading order in Pe�1 in the functional above. The remaining terms

kuk2 and

≠

�

jr⇠j2

contribute at higher order in Pe�1, and act to regularize designs. Any admissible

design must satisfy the “net flux” constraint

(3.7)

≠

�

w⇠ D 1
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as well as boundary conditions. While patterns such as the convection roll and

branching ones depicted in Figure 1.1 can be easily made to satisfy such con-

straints—see Sections 4 and 5 for details—determining the optimal length scales

for such designs requires performing an optimization as in (3.5).

Evidently, the most difficult term to evaluate is the advection one (3.6). Before

turning to discuss its analysis in detail and what it implies for near optimal designs,

we make two general remarks. In order to get a hint as to what designs (3.5)

prefers in the advective limit Pe ! 1, one can entertain the “limiting” wall-to-

wall optimal transport problem

inf
u.x/;⇠.x/
¬

�
w⇠D1

Cb.c.

≠

�

jrÅ�1 div.u⇠/j2

obtained by formally taking Pe D 1 in (3.5). This, however, is an ill-posed varia-

tional problem. Its optimal value is 0 as there exist admissible sequences f.uk; ⇠k/g
satisfying the net flux constraint (3.7) and achieving

lim
k!1

≠

�

jrÅ�1 div.uk⇠k/j2 D 0:

Yet, no smooth enough admissible pair .u; ⇠/ can satisfy the net flux constraint and

simultaneously achieve

(3.8) div.u⇠/ D 0:

Indeed, if u⇠ were divergence-free, then by averaging (3.8) in the periodic variables

x and y we would find that the flux of ⇠ by u through each slice f´ D constg is

independent of the slice, i.e.,

w⇠.´/ D
≠

T
2
x;y

w⇠

is constant in ´. By applying the boundary conditions that require at least that

⇠j@� D 0, we conclude that w⇠ must vanish throughout the entire domain. This

contradicts the net flux constraint (3.7). Therefore, wall-to-wall optimal transport

is a singularly perturbed variational problem: the regularizing terms from (3.5),

which at first glance appear to contribute at higher order in Pe�1, are crucial for

determining the character of optimal designs.

Our second observation is more straightforward: it is regarding the disappear-

ance of the intensity constraint in the passage from (3.1) to its integral formulation

(3.5). Since (3.5) is invariant under the rescaling

u ! �u and ⇠ !
1

�
⇠; � ¤ 0;
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the magnitudes of any of its minimizers are not uniquely determined. Still, if

.uPe; ⇠Pe/ achieves optimality in (3.5),

u D
Pe

kuPek
uPe

solves the wall-to-wall problem (3.1).

3.3 Analysis of the Advection Term

For a class of designs f.u˛; ⇠˛/g˛2I to compete in the minimization (3.5), it

must at least achieve

inf
˛2I

≠

�

jrÅ�1 div.u˛⇠˛/j2 D 0:

How difficult is it for an admissible pair .u; ⇠/ to make this advection term nearly

zero? First, note that in such a situation, the vertical flux of ⇠ by u through each

slice f´ D constg must be nearly independent of the slice,

d

d´
w⇠ ⇡ 0:

By the net flux constraint (3.7), it follows that

(3.9) w⇠ ⇡ 1

in nearly all of the domain. This is an example of a “design principle” for wall-to-

wall optimal transport: any nearly optimal design must achieve (3.9) with equality

in the limit Pe ! 1. Although (3.9) does not completely characterize optimal

designs, it does give a necessary condition for constructing competitive ones. This

will be particularly useful later on in Section 5, where we devise a functional form

for the branching depicted in Figure 1.1b.

The advection term (3.6) contains a wealth of information for evaluating designs

beyond (3.9), but to use it in practice one must confront its nonlocality. In the wall-

to-wall domain � D T
2
xy ⇥Œ0; 1ç´ ä Œ0; lxç⇥Œ0; ly ç⇥Œ0; 1ç, we may take advantage

of periodicity to represent a function f 2 L2.�/ via its Fourier series

f .x/ D
X

k2Z
2
lx;ly

yfk.´/e
ik�x0

where x0 D .x; y/ and

Z
2
lx ;ly

D
⇢

.kx; ky/W
lx

2⇡
kx;

ly

2⇡
ky 2 Z

�

:

We employ the Fourier transform

yfk.´/ D
≠

T
2
xy

eik�x0

f .x0; ´/dx dy

and proceed to decompose the advection term mode by mode.
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LEMMA 3.2. Let u 2 L2.�I R
3/ and ⇠ 2 L1.�/. The advection term satisfies

≠

�

jrÅ�1 div.u⇠/j2 D
≠

I´

jw⇠ �

≠

�

w⇠j2 C Q.div.u⇠//

where Q D
P

k¤0
Qk and Qk is the positive semidefinite quadratic form given

by

Qk.f / D
≠

I´⇥I´0

Gk.´; ´
0/ yfk.´/ yf ⇤

k
.´0/d´ d´0

with kernel

Gk.´; ´
0/ D

csch.jkj/
jkj

⇥

(

sinh.jkj´/ sinh.jkj.1 � ´0//; ´  ´0;

sinh.jkj´0/ sinh.jkj.1 � ´//; ´ � ´0;
k ¤ 0:

PROOF. This follows from the Green’s function representation for �Å�1 on �

with vanishing Dirichlet boundary conditions. Calling J D div.u⇠/ and applying

Parseval’s identity, we see that the advection term can be written as

≠

�

jrÅ�1 div.u⇠/j2 D
1

j�j
.J;�Å�1J / D

X

k

≠

I´

✓

�
d2

d´2
C jkj2

◆�1

yJk
yJ ⇤

k

D
X

k

≠

I´⇥I´0

Gk.´; ´
0/ yJk.´/ yJ ⇤

k
.´0/d´ d´0

where for k ¤ 0 the functions Gk are as defined above. For k D 0, we have

G0.´; ´
0/ D

(

´.1 � ´0/; ´  ´0;

´0.1 � ´/; ´ � ´0:

We must only address the form of the zeroth term now.

We recognize that
≠

I´⇥I´0

G0.´; ´
0/ yJ0.´/ yJ0.´

0/d´ d´0 D
≠

�

jrÅ�1J .´/j2:

By periodicity,

J D div.u⇠/ D
d

d´
w⇠:

Thus,

≠

�

jrÅ�1J .´/j2 D
≠

�

ˇ

ˇ

ˇ

ˇ

d

d´

✓

d

d´

◆�2 d

d´
w⇠.´/

ˇ

ˇ

ˇ

ˇ

2

D
≠

I´

ˇ

ˇ

ˇ

ˇ

w⇠ �

≠

I´

w⇠

ˇ

ˇ

ˇ

ˇ

2

D
≠

I´

ˇ

ˇ

ˇ

ˇ

w⇠ �

≠

�

w⇠

ˇ

ˇ

ˇ

ˇ

2

as required. ⇤
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As the quadratic form Q from Lemma 3.2 is nonnegative, the advection term

satisfies the lower bound

≠

�

jrÅ�1 div.u⇠/j2 �

≠

I´

ˇ

ˇ

ˇ

ˇ

w⇠ �

≠

�

w⇠

ˇ

ˇ

ˇ

ˇ

2

:

Note this quantifies the design principle (3.9). The appearance of Q in Lemma 3.2

also makes clear why this principle alone does not suffice to characterize optimal

designs.

We end this section by recording some useful estimates on the kernels fGkg
from the definition of Q. These will be used later in Section 5.

LEMMA 3.3. Let A ⇢ I´ be Borel measurable. Then,

kGkkL1.A⇥A/ .
jAj
jkj

✓

jAj ^
1

jkj

◆

k ¤ 0

and

kG0kL1.A⇥A/ . jAj2
≠

A

´ ^ .1 � ´/d´:

PROOF. To see the first estimate, observe that Gk satisfies the pointwise esti-

mate

jGk.´; ´
0/j 

1

jkj
e�jkk´�´0j; k ¤ 0:

Now,

Z

I´⇥I´

e�jkk´�´0j
1A.´/1A.´

0/d´ d´0


Z

I´

Z

R

e�jkk´�´0jd´0

�

1A.´/d´

D
2

jkj
jAj:

Therefore,

kGkkL1.A⇥A/ .
jAj
jkj2

:

On the other hand, we have that

kGkkL1.A⇥A/  kGkkL1k1A⇥AkL1 
jAj2

jkj
:

Combining these two bounds gives the first result.

Now we prove the second estimate. We need to show that

Z

G0.´; ´
0/1A.´/1A.´

0/d´ d´0 . jAj
Z

A

´ ^ .1 � ´/d´:
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By symmetry,
Z

G0.´; ´
0//1A.´/1A.´

0/d´ d´0 D 2

Z 1

0

Z ´0

0

´.1 � ´0/1A.´/1A.´
0/d´ d´0

 2

Z 1

0

Z ´0

0

´0.1 � ´0/1A´/1A.´
0/d´ d´0

 2jAj
Z 1

0

´.1 � ´/d´:

Since

´.1 � ´/  ´ ^ .1 � ´/ 8´ 2 Œ0; 1ç
we conclude the desired result. ⇤

4 Energy-Constrained Transport and Convection Roll Designs

In the previous section, we considered the general class of steady wall-to-wall

optimal transport problems (3.1) and produced their equivalent integral formu-

lations (3.2). In this section and the next, we use these formulations to study

the steady energy- and enstrophy-constrained problems. The subsequent analy-

ses are largely independent. Nevertheless, the reader may find it helpful to study

the energy-constrained problem first as its proof is much shorter and its technical

details much less burdensome.

Here we discuss energy-constrained transport. The main result of this section

is a proof of the lower bound from Theorem 1.1. Recall from Section 3 that the

steady energy-constrained optimal transport problem

(4.1) max
u.x/

¬

�
juj2DPe2

wj@�D0

Nu.u/

admits the integral formulation

(4.2) min
u.x/;⇠.x/
¬

�
w⇠D1

wj@�D⇠j@�D0

≠

�

jrÅ�1 div.u⇠/j2 C "

≠

�

juj2 �

≠

�

jr⇠j2

with " D Pe�2. The optimal values of (4.1) and (4.2) are reciprocals and their

optimizers are related through symmetrization.

Our goal now is to identify the scaling law of (4.2) in the advective regime

" ⌧ 1. Combined with the results of Section 3, this completes the proof of the

lower bound half of Theorem 1.1.

PROPOSITION 4.1. Let E."/ denote the optimal value of (4.2). Then,

E."/ ⇠ "1=2

whenever " . 1 ^ l4x ^ l4y .
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The a priori lower bound E."/ & "1=2 is implied by the corresponding bound

Nu . Pe from Theorem 1.1. The remainder of this section is regarding the upper

bound E."/ . "1=2. We prove it by constructing the convection roll designs de-

picted in Figure 1.1a. Such designs can be parametrized using two variables: the

number of rolls and their wall-to-wall extent. Carrying out the optimization from

(4.2) with respect to these variables yields the desired upper bound. The condition

that " be small enough in the statement above is required to fit what would be, in

the absence of an overall horizontal period, an optimal number of rolls inside the

domain. Given the symmetry between x and y, we may suppose that lx  ly in

what follows.

4.1 Convection Roll Designs

The integral formulation (4.2) requires designing a velocity field u and a test

function ⇠ . For the velocity field, we introduce a family of streamfunctions of the

form

 .x; ´/ D �.´/‰.x/; � 2 C1
c .I´/; ‰ 2 C1.Tx/:

Each such  gives rise to a divergence-free velocity field by

u D .�@´ ; 0; @x /:

These are two-dimensional flows as their yj-component vanishes identically. Al-

though we do not claim that optimizers must be of this form, we will prove that

such a construction suffices to capture the optimal scaling law of (4.2).

Next we must describe test functions ⇠ well suited to the velocity fields. Recall

the design principle (3.9), which states that for a design to be competitive it must

satisfy

(4.3) w⇠ ⇡

≠

�

w⇠ D 1:

This rules out taking, for instance, ⇠ D  , as it would result in zero flux through

each slice f´ D constg. We can, however, choose ⇠ to depend only on x and ´ as

does  . Then by Parseval’s identity we can rewrite the flux as

w⇠ D
X

k

ywk.´/y⇠⇤

k
.´/ D

X

k

�

ik1=2
x

y k

��

k1=2
x

y⇠k

�⇤
:

Taking
ˇ

ˇ@1=2
x ⇠

ˇ

ˇ ⇠
ˇ

ˇ@1=2
x  

ˇ

ˇ

allows us to satisfy (4.3).

Now we make the convection roll construction concrete. Given ı 2 .0; 1=2/ and

l such that
1

l
2
2⇡

lx
N;

we define

 ı;l.x; ´/ D �ı.´/ � l1=2‰

✓

x

l

◆

; ⇠ı;l.x; ´/ D �ı.´/ � l1=2‰0

✓

x

l

◆

;



OPTIMAL WALL-TO-WALL TRANSPORT 2415

where

‰.x/ D c0 cos x

and c0 is chosen so that .‰0/2 D 1. Here, the cutoff functions f�ıg ⇢ C1
c .I´/ are

required to satisfy

✏ �ı D 1 on Œı; 1 � ıç,

✏ j�ı j . 1 and j�0
ı
j . 1

ı
,

✏
¬

I´
�2

ı
D 1.

The constants in these assumptions are independent of all parameters. In what

follows, we often neglect to record the subscripts ı and l as the meaning is clear.

First, we check admissibility.

LEMMA 4.2. The convection roll construction described above is admissible for

(4.2).

PROOF. All conditions in admissibility are clear except for the net flux con-

straint, which we verify now. Given the above, we find that

w⇠ D @x ⇠ D �2
ı .‰

0/2 D �2
ı

for all ´, so that
≠

�

w⇠ D
≠

I´

w⇠ D
≠

I´

�2
ı D 1

as required. ⇤

Next, we estimate the advection term from (4.2).

LEMMA 4.3. The convection roll construction satisfies

≠

�

jrÅ�1 div.u⇠/j2 D
Z

I´

jw⇠ � 1j2 . ı:

In particular, the quadratic form Q from Lemma 3.2 vanishes on it.

PROOF. We apply Lemma 3.2. Note that since all functions entering into the

construction are independent of y, we may work with k in place of k D .kx; 0/.

We start with the k D 0 term from Lemma 3.2: it satisfies the estimate
Z

I´

jw⇠ � 1j2 D
Z

I´

j�2
� 1j2 . ı:

Now we address the k ¤ 0 terms. We must compute the quadratic form Q from

Lemma 3.2, and to do so we must compute yJk for k ¤ 0 where J D u � r⇠ . Note
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that by the form of the convection roll construction,

J D r? � r⇠ D �@´ @x⇠ C @x @´⇠

D �

⇣

�0
ı.´/ � l1=2‰

⇣x

l

⌘⌘

✓

�ı.´/ �
1

l1=2
‰00

⇣x

l

⌘

◆

C
✓

�ı.´/
1

l1=2
‰0

⇣x

l

⌘

◆

⇣

�0
ı.´/ � l1=2‰0

⇣x

l

⌘⌘

D
1

2

�

�2
ı

�0
.´/ �‚

⇣x

l

⌘

where ‚ D .‰0/2 �‰‰00. Since ‚ D c2
0 sin2 Cc2

0 cos2 D c2
0 ,

J D
1

2

�

�2
ı

�0
.´/;

which is entirely a function of ´. This shows that yJk D 0 for k ¤ 0. Hence, Q

vanishes on the convection roll construction. ⇤

Continuing, we estimate the higher-order terms from (4.2).

LEMMA 4.4. The convection roll construction satisfies

≠

�

jr⇠j2 _
≠

�

juj2 .
l

ı
C
1

l
:

PROOF. Clearly,
≠

�

jr⇠j2 ⇠

≠

�

jr j2

since k‰.k/kL2.Tx/ ⇠ 1 for all k. Noting that

≠

�

juj2 D
≠

�

jr j2 D
≠

�

.�0
ı/

2l‰2 C �ı

1

l
.‰0/2 .

l

ı
C
1

l
;

we conclude the result. ⇤

Combining the above yields the following estimate on

E."I ı; l/ D
≠

�

jrÅ�1 div.uı;l⇠ı;l/j2 C "

≠

�

juı;l j2 �

≠

�

jr⇠ı;l j2:

COROLLARY 4.5. The convection roll construction satisfies

E."I ı; l/ . ı C "

✓

l

ı
C
1

l

◆2

:
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4.2 Proof of Proposition 4.1

Finally we choose ı and l to prove the desired bound.

PROOF OF PROPOSITION 4.1. Corollary 4.5 holds for all admissible ı and l ,

i.e., so long as ı 2 .0; 1
2
/ and l�1 2 2⇡l�1

x N. To optimize the result, we take

l ⇠

p
ı and ı ⇠ "1=2

which we can do so as long as " . 1 ^ l4x . Under this condition,

inf
ı;l
E."I ı; l/ . "1=2: ⇤

5 Enstrophy-Constrained Transport and Branched Flow Designs

We now consider the steady enstrophy-constrained wall-to-wall optimal trans-

port problem in the framework of Section 3. The main result of this section is a

proof of the lower bound from Theorem 1.2. As in the previous section on energy-

constrained transport, we exploit the fact that the enstrophy-constrained problem

(5.1) max
u.x/

¬

�
jruj2DPe2

uj@�D0

Nu.u/

can be written in integral form as

(5.2) min
u.x/;⇠.x/
¬

�
w⇠D1

uj@�D0;⇠j@�D0

≠

�

jrÅ�1 div.u⇠/j2 C "

≠

�

jruj2 �

≠

�

jr⇠j2

where " D Pe�2. This form of the problem suggests the possibility of analyzing

a certain multiple-scales ansatz for u and ⇠ (we explain the intuition behind this

further in Sections 6 and 7). As proved below, such an ansatz turns out to capture

the scaling of the optimal value of (5.2) in " up to possible logarithmic corrections.

The precise statement is as follows:

PROPOSITION 5.1. Let E."/ denote the optimal value of (5.2). Then,

"1=3 . E."/ . "1=3 log4=3 1

"

whenever " . 1 and " log 1
"

. l6x ^ l6y .

The a priori lower bound E."/ & "1=3 is implied by the upper bound Nu . Pe2=3

from Theorem 1.2. (For a proof which is more self-contained, see the discussion

surrounding (6.11).) To prove the upper bound E."/ . "1=3 log4=3 1
"

, we must

construct a suitable class of designs and estimate their heat transport. The success-

ful ones are as depicted in Figure 1.1b. In contrast to the convection roll designs

considered previously, such “branching” designs are evidently more complicated

to analyze. The main challenge of course lies with estimating the advection term.
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Here, we make use of Lemmas 3.2 and 3.3. Note the requirement that " be small

enough is to ensure that our construction fits into the given domain. As in the

previous section, we need only consider the case lx  ly by symmetry.

Combined with the results of Section 3, Proposition 5.1 completes the proof of

the lower bound from Theorem 1.1.

5.1 The Branching Construction

The integral formulation (5.2) requires the construction of a divergence-free ve-

locity field u and a test function ⇠ (the latter of which plays the role of temperature

in this approach). For the velocity fields, we will use a streamfunction  .x; ´/

whose streamlines are as in Figure 1.1b. That figure can be thought of as consist-

ing of many individual convection roll systems that have been carefully fit together.

In the bulk, there are large anisotropic convection rolls at some horizontal length

scale lbulk. At the walls, there are much smaller isotropic convection rolls at some

other length scale lbl ⌧ lbulk. Between the bulk and the walls, streamlines branch

and refine through several transition layers, a single one of which is shown in Fig-

ure 5.1. As the construction is symmetric about ´ D 1
2

, we only need describe it

for ´ 2 Œ1
2
; 1ç.

Counting upwards from the bulk, we understand by the j th transition layer that

part of the domain where ´ 2 Œ j́ ; j́ C1ç. The points f j́ gn
j D1 marking the edges

of the layers satisfy

(5.3)
1

2
< ´bulk D ´1 < � � � < ´n D ´bl < 1:

At the horizontal slice f´ D j́ g the velocity components fluctuate at length scale

lj . These decrease monotonically according as

(5.4) lbulk D l1 > � � � > ln D lbl:

In what follows, we think of the parameters f j́ gn
j D1 and flj gn

j D1 as playing a

distinguished role in specifying the branching design.

Given such a streamfunction  and its corresponding two-dimensional velocity

field

u D .�@´ ; 0; @x /;

we must choose a “temperature” field ⇠ well suited to the minimization (5.2). Re-

call the design principle (3.9) discussed in Section 3, which requires that

w⇠ ⇡

≠

�

w⇠ D 1

throughout the domain. For our purposes, it will suffice to set

(5.5) ⇠ D w

and enforce that w2 ⇡ 1. Such considerations significantly constrain the way

that streamlines may branch. We note that while (5.5) may not necessarily hold

for optimal designs, it greatly simplifies the ensuing analysis. And, as claimed in
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FIGURE 5.1. Streamlines from a period doubling transition layer.

Proposition 5.1 and proved below, such a choice introduces at most a logarithmic

error in our estimates of enstrophy-constrained optimal transport.

We are now ready to give the precise functional form of our branching construc-

tion. Let points f j́ gn
j D1 satisfying (5.3) and length scales flj gn

j D1 satisfying

1

lj
2
2⇡

lx
N

and (5.4) be given. Let

(5.6) ‰.x/ D c0 cos x

where c0 is chosen so that .‰0/2 D 1. We define f j gn
j D1 by

 j .x/ D lj‰

✓

x

lj

◆

and set

 .x; ´/ D  1.x/ for ´ 2


1

2
; ´1

�

;

which corresponds to the bulk. In the boundary layer, we set

 .x; ´/ D g

✓

´ � ´n

1 � ´n

◆

 n.x/ for ´ 2 Œ´n; 1ç:

Here, g 2 C1.Œ0; 1ç/ is a fixed cutoff function satisfying the matching conditions

g.0/ D 1, g.1/ D 0, g0.0/ D g0.1/ D 0, as well as the integral condition

(5.7)

Z 1

0

.g.t//2 dt D 1:

In the j th transition layer we take

 .x; ´/ D f

✓

´ � j́

j́ C1 � j́

◆

 j .x/Cf
✓

j́ C1 � ´

j́ C1 � j́

◆

 j C1.x/ for ´ 2 Œ j́ ; j́ C1ç

where f 2 C1.Œ0; 1ç/ is a second fixed cutoff function. We require it to satisfy

the Pythagorean condition

(5.8) .f .t//2 C .f .1 � t //2 D 1 for t 2 Œ0; 1ç
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and the same is true for products of derivatives thereof. Note also that by (5.8),

(5.11)

n
X

j D1

�2
j D 1; ´ 2 Œ1 � ´bl; ´blç;

and by (5.7),

(5.12)

≠ 1

´bl

�2
n d´ D 1:

LEMMA 5.2. The branching construction defined above is admissible for (5.2).

PROOF. That the boundary conditions for u and ⇠ are met is clear. Here, we

check that the net flux constraint
¬

�w⇠ D 1 is satisfied. Since

@x D
n

X

j D1

�j 
0
j

and f 0
j gn

j D1 forms an L2-orthonormal set, we can write that

≠

�

w⇠ D
≠

�

.@x /
2 D

Z

I´

n
X

j D1

�2
j d´:

By (5.11), the integrand is equal to 1 for ´ 2 Œ1 � ´bl; ´blç. Since

Z 1

´bl

�2
n d´ D 1 � ´bl

by (5.12), we conclude that

≠

�

w⇠ D 2

✓Z ´bl

1
2

C
Z 1

´bl

◆ n
X

j D1

�2
j d´ D 2

✓

´bl �
1

2
C 1 � ´bl

◆

D 1: ⇤

Next, we record some technical requirements that will greatly simplify the iden-

tification of an optimal branching construction. These requirements are compatible

with the upper bound from Proposition 5.1, and we have not been able to improve

upon the scaling of this result by removing them. First, we require the transition

layer thicknesses fıkgn
kD1

, which are defined by

ık D ´kC1 � ´k; 1  k  n � 1; and ıbl D ın D 1 � ´n;

and the horizontal length scales flkgn
kD1

to satisfy the relations

(5.13) ı1 & � � � & ın

and

(5.14) lk . ık; 1  k  n � 1; and ın ⇠ ln:
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The latter guarantees that a certain anisotropy is present throughout the construc-

tion that will simplify, amongst other things, the estimation of the higher-order

terms from (5.2). Second, we require that

(5.15) ıbulk D ´bulk �
1

2
⇠ 1:

Note the constants implicit in (5.13)–(5.15) are not allowed to depend on any pa-

rameters. Third, we require that the refinement of length scale through each tran-

sition layer occur by period doubling, i.e.,

(5.16) lkC1 D
1

2
lk; 1  k  n � 1:

This last requirement will serve to simplify the Fourier analysis involved in esti-

mating the nonlocal advection term.

5.3 Estimating the Efficiency of Branching

In this section we estimate each of the terms from (5.2) for the branching con-

struction. The requirements laid out in Section 5.1 and Section 5.2 are understood

to hold. The constants appearing below are only allowed to depend on those im-

plicit in (5.13)–(5.15), and so do not depend on any parameters.

First, we deal with the advection term. By Lemma 3.2,
≠

�

jrÅ�1 div.u⇠/j2 D
≠

I´

jw⇠ � 1j2 d´C Q.u � r⇠/

where Q D
P

k¤0
Qk and

Qk.f / D
≠

I´⇥I´0

Gk.´; ´
0/ yfk.´/ yf ⇤

k
.´0/d´ d´0:

As the construction is two-dimensional, ky does not play a role. For ease of read-

ing, we denote k D .kx; 0/ simply by k in what follows.

LEMMA 5.3. The branching construction satisfies

Q.u � r⇠/ D
n�1
X

iD1

Qksum
i
.u � r⇠/C Qkdiff

i
.u � r⇠/

where

ksum
i D

1

liC1
C
1

li
and kdiff

i D
1

liC1
�
1

li
for 1  i  n � 1:

PROOF. Using the formula for the branching construction given in (5.9),

J D r? � r@x D
X

j;j 0

r?.�i i / � r@x.�j j /

D
X

jj �j 0j1

r?.�j j / � r@x.�j 0 j 0/ D
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D
n

X

j D1

r?.�j j / � r@x.�j j /

C
n�1
X

j D1

r?.�j j / � r@x.�j C1 j C1/C r?.�j C1 j C1/ � r@x.�j j /

D Jself C Jnbr:

Given our choice of fundamental streamfunction (5.6), these expressions can be

made explicit and we do so now.

The general term in the first sum, Jself, satisfies

r?.�j j / � r@x.�j j / D
�

��0
j j ; �j 

0
j

�

�
�

�j 
00
j ; �

0
j 

0
j

�

D ��0
j �j j 

00
j C �j �0

j 
0
j 

0
j D

1

2

�

�2
j

�0
.´/ �‚

✓

x

lj

◆

where ‚ D .‰0/2 �‰‰00. Using (5.6), we see that ‚ D c2
0.cos2 C sin2/ D c2

0 so

that

(5.17) Jself D c2
0

n
X

iD1

�

�2
i

�0
:

In particular, we find that Jself is constant in the periodic variable x, so that the

Fourier coefficient ŒJselfç
^
k

vanishes identically except for when k D 0. For k D 0,

note that

ŒJselfç
^
0 D Jself D xJ D

1

2

d

d´
.@x /2:

Continuing, we see that the general term in the second sum, Jnbr, satisfies

r?.�j j / � r@x.�j C1 j C1/C r?.�j C1 j C1/ � r@x.�j j /

D �
�

�0
j j ; �j 

0
j

�

�
�

�j C1 
00
j C1; �

0
j C1 

0
j C1

�

�
�

�0
j C1 j C1; �j C1 

0
j C1

�

�
�

�j 
00
j ; �

0
j 

0
j

�

D ��0
j j �j C1 

00
j C1 C �j 

0
j �0

j C1 
0
j C1 � �0

j C1 j C1�j 
00
j

C �j C1 
0
j C1�0

j 
0
j

D �j �0
j C1‚j;j C1 C �0

j �j C1‚j C1;j

where

‚j;j C1 D  0
j 

0
j C1 �  00

j  j C1; ‚j C1;j D  0
j C1 

0
j �  00

j C1 j :

Given (5.6), we find that

‚j;j C1 D sin

✓

x

lj

◆

sin

✓

x

lj C1

◆

C
lj C1

lj
cos

✓

x

lj

◆

cos

✓

x

lj C1

◆

:

‚j C1;j D sin

✓

x

lj

◆

sin

✓

x

lj C1

◆

C
lj

lj C1
cos

✓

x

lj

◆

cos

✓

x

lj C1

◆

:
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Applying standard trigonometric identities,

‚j;j C1 D
1

2

✓

1C
lj C1

lj

◆

cos
�

kdiff
j x

�

C
1

2

✓

lj C1

lj
� 1

◆

cos
�

ksum
j x

�

;

‚j C1;j D
1

2

✓

1C
lj

lj C1

◆

cos
�

kdiff
j x

�

C
1

2

✓

lj

lj C1
� 1

◆

cos
�

ksum
j x

�

;

where kdiff
j and ksum

j are as in the statement of the result. In sum,

(5.18) Jnbr D
n

X

j D1

�j �0
j C1‚j;j C1 C

n
X

j D1

�0
j �j C1‚j C1;j :

From (5.17), (5.18), and the decomposition J D Jself C Jnbr, it is clear which

wavenumbers are present in Q. We see that yJk is not identically 0 if and only if

k 2 f0g [
˚

kdiff
j W 1  j  n � 1

 

[
˚

ksum
j W 1  j  n � 1

 

:

Since lj C1 ¤ lj , we see that

0 …
˚

kdiff
j W 1  j  n � 1

 

[
˚

ksum
j W 1  j  n � 1

 

:

For general choices of length scales flj g these two sets of wavenumbers may

intersect; however, given our special choices of length scales in (5.16), we find that

(5.19) fkdiff
j W 1  j  n � 1g \ fksum

j W 1  j  n � 1g D ¿:

(If ksum
i D kdiff

j then 2iC1 C2i D 2j C1
�2j from which the contradiction 3 �2i D

2j follows.) Therefore,

Q.u � r⇠/ D
X

k¤0

Qk.u � r⇠/ D
n�1
X

j D1

Qksum
j
.u � r⇠/C Qkdiff

j
.u � r⇠/: ⇤

Now we estimate each of the nonzero contributions to the advection term picked

out by Lemma 5.3.

LEMMA 5.4. The branching construction satisfies
≠

I´

jw⇠ � 1j2 d´ . ın

and

Qksum
j
.u � r⇠/ _ Qkdiff

j
.u � r⇠/ .

l2j

ıj
; 1  j  n � 1:

PROOF. We begin with the k D 0 term. Since

w⇠ D
n

X

j D1

�2
j
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we find that
Z

I´

jw⇠ � 1j2 d´ . ın:

Next we wish to estimate Qksum
j

and Qkdiff
j

. Recall that

Qksum
j

D
Z

I´⇥I 0
´

Gksum
j
.´; ´0/ yJksum

j
.´/ yJ ⇤

ksum
j
.´0/d´ d´0;

Qkdiff
j

D
Z

I´⇥I 0
´

Gkdiff
j
.´; ´0/ yJkdiff

j
.´/ yJ ⇤

kdiff
j

.´0/d´ d´0:

By (5.17) and (5.18),

yJk D ŒJnbrç
^
k D

n
X

j D1

�j �
0

j C1
2‚j;j C1.k/C �

0

j �j C1
2‚j C1;j .k/

for k ¤ 0. It follows from (5.19) that

yJksum
j

D
1

2

✓

lj C1

lj
� 1

◆

�j �0
j C1 C

1

2

✓

lj

lj C1
� 1

◆

�0
j �j C1;

yJkdiff
j

D
1

2

✓

1C
lj C1

lj

◆

�j �0
j C1 C

1

2

✓

1C
lj

lj C1

◆

�0
j �j C1:

In particular,

supp yJksum
j

[ supp yJksum
j

⇢ supp �j �0
j C1 [ supp �0

j �j C1

⇢ Œ j́ ; j́ C1ç [ Œ1 � j́ C1; 1 � j́ ç D Ij

by (5.10). Thus,

Qksum
j

D
Z

Ij ⇥Ij

Gksum
j
.´; ´0/ yJksum

j
.´/ yJ ⇤

ksum
j
.´0/d´ d´0;

Qkdiff
i

D
Z

Ij ⇥Ij

Gkdiff
j
.´; ´0/ yJkdiff

j
.´/ yJkdiff

j
.´0/d´ d´0:

Now we estimate these quadratic forms. By Hölder’s inequality,

Qksum
j

 kGksum
j

kL1.Ij ⇥Ij /k yJksum
j

k2
L1 ; Qkdiff

j
 kGkdiff

j
kL1.Ij ⇥Ij /k yJkdiff

j
k2

L1 :

Observe that

k�j �0
j C1kL1 _ k�0

j �j C1kL1 .
1

ıj
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as a result of (5.13). Combining this with the first part of Lemma 3.3 applied with

A D Ij , we find that

Qksum
j

.
ıj

ksum
j

✓

ıj ^
1

ksum
j

◆

�

✓

lj

lj C1

1

ıj

◆2

;

Qkdiff
j

.
ıj

kdiff
j

✓

ıj ^
1

kdiff
j

◆

�

✓

lj

lj C1

1

ıj

◆2

:

It follows from (5.16) that
1

lj
. ksum

j ^ kdiff
j ;

so we can simplify these estimates to

Qksum
j

_ Qkdiff
j

. ıj lj .ıj ^ lj / �

✓

lj

lj C1

1

ıj

◆2

:

Using the first part of (5.14) followed by (5.16), we conclude that

Qksum
j

_ Qkdiff
j

.
l4j

ıj l
2
j C1

.
l2j

ıj
:

This completes the proof. ⇤

We turn to estimate the higher-order terms from (5.2).

LEMMA 5.5. The branching construction satisfies

≠

�

jruj2 _
≠

�

jr⇠j2 .
1

l21
C

n�1
X

j D1

ıj

l2j C1

C
l2n
ı3

n

:

PROOF. Note that

@xx D
n

X

j D1

�j 
00
j ; @x´ D

n
X

j D1

�0
j 

0
j ; and @´´ D

n
X

j D1

�00
j j :

Therefore, by orthogonality,

≠

�

jrr j2 D
n

X

j D1

≠

�

j�j 
00
j j2 C 2j�0

j 
0
j j2 C j�00

j j j2:

For j ¤ 1, we see from an application of (5.13) that
≠

�

j�j 
00
j j2 D k�j k2

L2.I´/
. 00

j /
2 .

ıj C ıj �1

l2j
.
ıj �1

l2j
:

For j D 1, we have instead that
≠

�

j�1 
00
1 j2 D k�1k2

L2.I´/
. 00

1 /
2 .

1

l21
:
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Similarly, we find that
≠

�

j�0
j 

0
j j2 D k�0

j k2
L2.I´/

. 0
j /

2 .
1

ıj �1
C
1

ıj
.
1

ıj
;

≠

�

j�00
j j j2 D k�00

j k2
L2.I´/

. j /2 .

✓

1

ı3
j �1

C
1

ı3
j

◆

l2j .
l2j

ı3
j

;

for all j . Therefore,

≠

�

jrr j2 .
1

l21
C

n�1
X

j D1

✓

ıj

l2j C1

C
1

ıj
C
l2j

ı3
j

◆

C
1

ın
C
l2n
ı3

n

:

By (5.14),

ıj

l2j C1

&
1

ıj
_
l2j

ı3
j

and
l2n
ı3

n

&
1

ın
:

The result follows. ⇤

We now assemble the previous estimates. Let

E."I f´kg; flkg/ D
≠

�

jrÅ�1 div.u⇠/j2 C "

≠

�

jruj2 �

≠

�

jr⇠j2

where .u; ⇠/ are constructed from f´kgn
kD1

and flkgn
kD1

as described in Section

5.1. It will be convenient in what follows to think of estimating E in terms of some

smoothly interpolated version of these parameters.

COROLLARY 5.6. Let `.´/be any smooth, monotonic function defined on Œ´bulk; ´blç

that satisfies

`.´k/ D lk; 1  k  n:

Then, the branching construction corresponding to f´kgn
kD1

and flkgn
kD1

satisfies

E."I f´kg; flkg/ . lbl C
Z ´bl

´bulk

.`0.´//2 d´C "

✓

1

l2bulk

C
Z ´bl

´bulk

1

.`.´//2
d´C

1

lbl

◆2

:

PROOF. Collecting the results above and using (5.16), we conclude that

≠

�

jrÅ�1 div.u⇠/j2 . lbl C
n�1
X

j D1

l2j

ıj
⇠ lbl C

n�1
X

j D1

ˇ

ˇ

ˇ

ˇ

lj C1 � lj

ıj

ˇ

ˇ

ˇ

ˇ

2

ıj

and

≠

�

jruj2 _
≠

�

jr⇠j2 .
1

l21
C

n�1
X

j D1

ıj

l2j C1

C
l2n
ı3

n

⇠
ıbulk

l2bulk

C
n�1
X

j D1

1

l2j
ıj C

1

lbl

:
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By Jensen’s inequality and the definition of `.´/,

ˇ

ˇ

ˇ

ˇ

lj C1 � lj

ıj

ˇ

ˇ

ˇ

ˇ

2

D
ˇ

ˇ

ˇ

ˇ

≠

j́ C1

j́

`0.´/d´

ˇ

ˇ

ˇ

ˇ

2



≠

j́ C1

j́

j`0j2 d´

so that

≠

�

jrÅ�1 div.u⇠/j2 . lbl C
n�1
X

j D1

Z

j́ C1

j́

j`0j2 d´ D lbl C
Z ´bl

´bulk

.`0/2 d´:

Also, as lj C1 ⇠ lj by (5.16),

1

l2j
ıj D

Z

j́ C1

j́

1

l2j
d´ ⇠

Z

j́ C1

j́

1

`2
d´:

Therefore,

≠

�

jruj2_
≠

�

jr⇠j2 .
ıbulk

l2bulk

C
n�1
X

j D1

Z

j́ C1

j́

1

`2
d´C

1

lbl

D
ıbulk

l2bulk

C
Z ´bl

´bulk

1

`2
d´C

1

lbl

:

⇤

5.4 Proof of Proposition 5.1

The result of the previous analysis is that the branching construction from Sec-

tion 5.1 satisfies the efficiency estimate

E."I f´kg; flkg/ . lbl C
Z ´bl

´bulk

.`0/2 d´C "

✓

1

l2bulk

C
Z ´bl

´bulk

1

.`/2
d´C

1

lbl

◆2

where `.´/ is obtained from flkgn
kD1

by smooth and monotonic interpolation. Now

to prove Proposition 5.1, we will optimize the right-hand side in the free parameters

`.´/, lbulk, and lbl, and then back out admissible choices of f´kgn
kD1

and flkgn
kD1

from the result. To ensure that the requirements from Section 5.1 and Section 5.2

hold, we must carry out this optimization under the constraint that

(5.20) 0  `0.´/ . 1; ´ 2 Œ´bulk; ´blç:

That the minimizer of

(5.21) min
`.´/

l.´bulk/Dlbulk

`.´bl/Dlbl

lbl C
Z ´bl

´bulk

.`0/2 d´C "

✓

1

l2bulk

C
Z ´bl

´bulk

1

.`/2
d´C

1

lbl

◆2

satisfies (5.20) will be verified later on.

First, let us determine the optimal form of `.´/. We consider that " ⌧ 1

throughout this preliminary discussion, which should serve to motivate the choices

made in the formal proof that follows. Consider the contributions to (5.21) coming
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from the transition layers where ´ 2 Œ´bulk; ´blç. We can identify the scaling of

their minimum value by balancing the corresponding integrands. This yields

(5.22) `0.´/ ⇠ "1=2

✓Z ´bl

´bulk

1

`2
d´

◆1=2 1

`.´/
:

It is natural to impose the boundary condition `.1/ D 0 to determine `. We find

that

`.´/ ⇠ c."/.1 � ´/1=2

where c."/ must be determined by substitution into (5.22). Thus,

c."/ ⇠ "1=6

✓Z ´bl

´bulk

1

1 � ´
d´

◆1=6

D "1=6 log1=6

✓

1 � ´bulk

1 � ´bl

◆

:

Since

lbl ⇠ c."/.1 � ´bl/
1=2 and lbulk ⇠ c."/.1 � ´bulk/

1=2

we conclude that
1 � ´bulk

1 � ´bl

⇠
lbulk

lbl

:

Anticipating that lbl ⌧ lbulk for " ⌧ 1, we conclude that the optimal form of the

smooth length scale function `.´/ is given by

(5.23) `.´/ ⇠ "1=6 log1=6

✓

lbulk

lbl

◆

.1 � ´/1=2; ´ 2 Œ´bulk; ´blç:

Such an ` yields the estimates
Z ´bl

´bulk

.`0/2 d´ ⇠ "

✓Z ´bl

´bulk

1

`2
d´

◆2

⇠ "1=3 log1=3

✓

lbulk

lbl

◆Z ´bl

´bulk

1

1 � ´
d´

D "1=3 log1=3

✓

lbulk

lbl

◆

log

✓

1 � ´bulk

1 � ´bl

◆

⇠ "1=3 log4=3

✓

lbulk

lbl

◆

for " ⌧ 1.

Next, we determine the optimal choices for lbulk and lbl in this asymptotic re-

gime. Plugging (5.23) back into (5.21) yields the resulting minimization

min
l.´bulk/Dlbulk

`.´bl/Dlbl

lbl C "1=3 log4=3

✓

lbulk

lbl

◆

C "

✓

1

l2bulk

C
1

lbl

◆2

:

Critical point tests yield the optimal scalings

(5.24) lbulk ⇠ "1=6 log1=6 1

"
and lbl ⇠ "1=3 log1=3 1

"

for " ⌧ 1. Note this is consistent with the hypothesis that lbl ⌧ lbulk in this regime.

To summarize, the smooth length scale function `.´/ picked out by our analysis of

(5.21) scales as

(5.25) `.´/ ⇠ "1=6 log1=6 1

"
.1 � ´/1=2; ´ 2 Œ´bulk; ´blç;
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where

1 � ´bulk ⇠ 1 and 1 � ´bl ⇠ "1=3 log1=3 1

"
:

We are now ready to prove the upper bound from Proposition 5.1.

PROOF OF PROPOSITION 5.1. Our plan is to verify the existence of a branching

construction, as described in Section 5.1, whose parameters f´kgn
kD1

and flkgn
kD1

are consistent with the optimal smooth length scale function `.´/ from (5.25).

Once we verify the requirements of Section 5.1 and Section 5.2 hold, the desired

bound E."I f´kg; flkg/ . "1=3 log4=3 1
"

follows as above. For the reader’s conve-

nience, we recall the requirements that must be checked: these are (5.3), (5.4), and

(5.13)–(5.16).

We start by defining

(5.26) `.´/ D "1=6 log1=6 1

"
.1 � ´/1=2 ´ 2



1

2
; 1

�

in obvious analogy with (5.25). To choose the horizontal length scales flkgn
kD1

,

we set

lbulk D
lx

2⇡

1

kbulk

where kbulk 2 N satisfies

(5.27) kbulk � 1 <
lx

⇡

1

"1=6 log1=6 1
"

 kbulk;

and take

lk D
lbulk

2k�1
; k D 1; : : : ; n:

Note to ensure kbulk � 1 we must require that "1=6 log1=6 1
"

. lx . This condition

is given in the statement of Proposition 5.1. Note also that (5.4) and (5.16) hold.

Now as (5.26) is strictly decreasing, we may define the points f´kgn
kD1

by

(5.28) `.´k/ D lk; k D 1; : : : ; n:

This gives

´k D 1 � c1
1

22.k�1/
; k D 1; : : : ; n;

where

c1 D
✓

lbulk

"1=6 log1=6 1
"

◆2

D
1

4⇡2

1

"1=3 log1=3 1
"

l2x

k2
bulk

:

By (5.27), c1 
1
4

so that ´1 D 1 � c1 �
3
4

as required by (5.15). Note (5.3) and

(5.13) are satisfied as well.

Finally, we fix n 2 N by enforcing (5.24), which states here that

lbulk

2n�1
⇠ "1=3 log1=3 1

"
:
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To achieve this, let us define n 2 N via the inequalities

n � 1 < log2

✓

2⇡

"1=3 log1=3 1
"

1

kbulk

◆

 n:

Having chosen f´kgn
kD1

and flkgn
kD1

, we may invoke the definitions from Sec-

tion 5.1 to produce a branching construction .u; ⇠/. Note we have checked each

requirement from Sections 5.1 and 5.2 except for (5.14). That ln ⇠ ın follows

from (5.24) and (5.25).

Now we show that lk . ık for all k. Since ık D ´kC1�´k and lk ⇠ jlkC1�lkj,
this requires showing that

1 .

ˇ

ˇ

ˇ

ˇ

´kC1 � ´k

lkC1 � lk

ˇ

ˇ

ˇ

ˇ

for all k: Noting ´0.`/ < 0, we only need to show that

1 . j´0.`/j; ` 2 Œlbl; lbulkç:

Differentiating (5.26) implicitly, we find that

j´0.`/j D 2
.1 � ´/1=2

"1=6 log1=6 1
"

&
ı

1=2
bl

"1=6 log1=6 1
"

⇠
l
1=2
bl

"1=6 log1=6 1
"

⇠ 1

as required.

In sum, we have produced a branching construction .u; ⇠/ consistent with the

requirements of Sections 5.1 and 5.2 whose parameters f´kgn
kD1

and flkgn
kD1

in-

terpolate the desired smooth length scale function `.´/ from (5.25). The estimates

proved in Section 5.3 apply, and we may immediately conclude from Corollary 5.6

and the discussion surrounding (5.24) and (5.25) that

E."I f´kg; flkg/

D
≠

�

jrÅ�1 div.u⇠/j2 C "

≠

�

jruj2 �

≠

�

jr⇠j2

. lbl C
Z ´bl

´bulk

.`0/2 d´C "

✓

1

l2bulk

C
Z ´bl

´bulk

1

.`/2
d´C

1

lbl

◆2

. "1=3 log1=3 1

"
C "1=3 log4=3

✓

"1=6 log1=6 1
"

"1=3 log1=3 1
"

◆

C "

✓

2

"1=3 log1=3 1
"

◆2

. "1=3 log1=3 1

"
C "1=3 log4=3 1

"
C

"1=3

log2=3 1
"

. "1=3 log4=3 1

"

for " . 1. Thus, Proposition 5.1 is proved. ⇤

6 Implications for the Analysis of Turbulent Heat Transport

There is a long history, originating in the works of Malkus [24] and Howard

[21], of variational methods for the analysis of turbulent heat transport, the pri-

mary focus of which has been on absolute or a priori upper bounds. Consider
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the usual setup of Rayleigh-Bénard convection (RBC), wherein an incompress-

ible fluid layer is heated from below and cooled from above, and is subjected to

a constant downwards-pointing gravitational force. The temperature field T .x; t /

undergoes transport by means of advection-diffusion,

(6.1) @tT C u � rT D ÅT:

The advecting velocity u.x; t / is coupled back to temperature field T through a

suitable momentum equation. This could be, for instance, Darcy’s law as it is for

convection in a fluid-saturated porous layer. Here, we are concerned with convec-

tion in a fluid layer for which, in the Bousinessq approximation, (6.1) is supple-

mented with the buoyancy forced incompressible Navier-Stokes equations

(6.2) @tu C u � ru C rp D PrÅu C PrRaykT
and

(6.3) div u D 0:

The two nondimensional parameters are the Prandtl number Pr, the ratio of the

fluid’s kinematic viscosity to its thermal diffusivity, and the Rayleigh number Ra, a

ratio of the intensities of driving to damping forces that is proportional here to the

bulk buoyancy force across the layer. Altogether, (6.1)–(6.3) constitute the equa-

tions of Rayleigh-Bénard convection in a fluid layer [36]. For boundary conditions

we continue to assume that the temperature field is imposed at the top and bottom

of the layer by

T j´D1 D 0 and T j´D0 D 1;

while the velocity field is taken to satisfy either the no-slip boundary conditions

uj@� D 0

or the stress-free boundary conditions

wj@� D 0 and @´uj@� D @´vj@� D 0:

All fields are assumed to be periodic in the xy-plane.

The rate of heat transport in RBC can be measured by the Nusselt number Nu,

which evidently depends on Pr and Ra in some unknown and complicated way. (It

can also depend on the initial data, as well as on the aspect ratios of the fluid layer.)

Determining this relationship and/or establishing absolute bounds on it continues

to be the subject of numerous works across the physical and mathematical litera-

tures. To date, the best known upper bound holding uniformly in Pr and for no-slip

velocity boundary conditions states that

(6.4) Nu . Ra1=2

for Ra � 1 [13, 21, 37]. This bound also holds for stress-free velocity boundary

conditions in the three-dimensional layer � D T
2
xy ⇥ I´, but more is known in

the two-dimensional case where � D Tx ⇥ I´: in two dimensions with stress-free

boundary conditions, one has that Nu . Ra5=12 uniformly in Pr for Ra � 1 [44].
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(In the formal limit where Pr D 1 and (6.2) is replaced with Stoke’s equation,

the situation is quite different [14, 16, 29, 33, 45].) There is little to no evidence,

however, that any of these finite Pr bounds are in fact sharp, i.e., that there exist

solutions of the equations of motion (6.1)–(6.3) satisfying Nu ⇠ Ra1=2 as Ra ! 1
(or Nu ⇠ Ra5=12 for stress-free boundaries in two dimensions).

In light of all this, we note that the main fluid dynamical contribution of this pa-

per is a proof that when the momentum equation (6.2) is replaced by the enstrophy-

constraint

(6.5) hjruj2i D Ra.Nu � 1/;

which it implies, the upper bound Nu . Ra1=2 becomes asymptotically sharp up

to logarithmic corrections. That is, for all large enough Ra there exist velocity

and temperature fields satisfying (6.1), (6.3), and (6.5) along with the requisite

boundary conditions such that

(6.6)
Ra1=2

log2 Ra
. Nu . Ra1=2:

This follows from Theorem 1.2 upon taking Pe2 D Ra.Nu � 1/. Therefore, either

the well-known bound (6.4) on RBC is asymptotically sharp as Ra ! 1 and Pr

is fixed, or details from the momentum equation (6.2) beyond the balance (6.5) are

essential for determining the scaling law of maximal turbulent heat transport.

The remainder of this section places our analysis of wall-to-wall optimal trans-

port into its proper fluid dynamical context. To keep the discussion at a reasonable

length, we do not attempt to summarize the vast literature on the subject but in-

stead focus on two of the most well-known methods for proving a priori bounds

on transport: the variational approach of Howard, and the background method of

Constantin-Doering. Our plan is to recall just enough about these methods to al-

low for comparison with the techniques developed in this paper. For Howard’s

approach, see Section 6.1, while for the background method, see Section 6.2. Sec-

tion 6.3 concerns the role of the momentum equation.

Before we proceed, let us mention the existence of the recently developed “aux-

iliary functional” method for producing bounds on time-averaged quantities [7].

While the background method may ultimately be derived by a particular choice

of auxiliary functional—the same is apparently true [6] for the recently proposed

method of Seis [37] —it is not yet clear if there exists any auxiliary functional that

yields an improvement to scaling beyond Nu . Ra1=2. Although for ordinary dif-

ferential equations the auxiliary functional method always yields sharp bounds on

long-time averages [41], it remains to be seen if such a situation holds for general

PDEs.
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6.1 On the Variational Approach of Howard

Howard’s Variational Problem

If RBC is to be taken as a predictive model for turbulent convection, one nat-

urally asks: which of its solutions are realizable in experiments? Setting aside

dynamical stability as a possible selection principle, Malkus introduced in [24] the

idea that perhaps amongst all possible solutions of the equations of motion, those

that are realized maximize their heat transport overall. An operational approach

to establishing upper bounds inspired by Malkus’ idea is to search for a larger

admissible set of velocity and temperature fields, which contains all solutions of

RBC, amongst which the maximal transport can analytically be determined. This

is Howard’s variational approach.

Following Howard [21], we observe that if u and T arise in RBC, they must

satisfy two identities known as the “power integrals.” To derive the first of these,

dot the momentum equation (6.2) into u, integrate by parts, and average in space

and time. Changing variables by ✓ D T � .1 � ´/ yields the first of Howard’s

identities

(6.7) Rahw✓i D hjruj2i:

(Note that this is simply a restatement of (6.5) from above.) A similar manipulation

involving the temperature equation (6.1) yields the second identity

(6.8) hw✓i C hw✓i2
� hjw✓ j2i D

˝

jr✓ j2
˛

:

Consider now the problem of maximizing Nu amongst all divergence-free vector

fields u and scalar fields ✓ that vanish at the walls and furthermore satisfy (6.7) and

(6.8). Since the equations of motion of RBC imply these constraints, the resulting

maximum sets an upper bound on Nu for RBC.

Setting aside matters of statistical stationarity [21], one can give an equivalent

formulation of the variational problem described above that makes it tractable for

analysis. Under certain further assumptions on the solutions of RBC (the “require-

ments of homogeneity” from [21]), Howard deduced that the minimization

(6.9) min
u.x/;✓.x/
¬

�
w✓D1

uj@�D0; ✓ j@�D0

≠

�

jw✓ � 1j2 C "

≠

�

jruj2
≠

�

jr✓ j2

is equivalent to the maximization sup Nu described above, and that its optimal

value can be used to produce an a priori bound on RBC (the algebraic manipula-

tions in the proof of this are like those performed in Section 3 in the derivation of

the integral formulation of steady wall-to-wall optimal transport).

The minimization (6.9) is known as Howard’s problem. It bears striking re-

semblance to our integral formulation of steady enstrophy-constrained wall-to-wall
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transport

(6.10) min
u.x/;⇠.x/
¬

�
w⇠D1

uj@�D0; ⇠j@�D0

≠

�

jrÅ�1 div.u⇠/j2 C "

≠

�

jruj2
≠

�

jr⇠j2;

obtained in Section 3. To find the relationship between (6.9) and (6.10), we ap-

ply Lemma 3.2 along with the net flux constraint
¬

�w⇠ D 1 and decompose the

advection term as
≠

�

jrÅ�1 div.u⇠/j2 D
≠

�

jw⇠ � 1j2 C Q.div.u⇠//

where Q is the positive semidefinite quadratic form defined in Lemma 3.2.

This last equation reveals the precise distinction between Howard’s problem

(6.9) and our integral formulation in (6.10). Because Q is positive semidefinite, it

is evident that the minimum in (6.9) is not smaller than the minimum in (6.10). As

a result, Howard’s upper bound on heat transport is not lower than ours. Though the

improvement in scaling in our approach is limited by (6.6) to at most a logarithmic

correction, it remains to be seen whether such a correction holds as an absolute

upper bound. We turn now to consider the difference between the optimizers of

(6.9) and (6.10).

Busse’s Multi-˛ Technique

As shown by Howard and Busse [5,21], the optimal value of Howard’s problem

(6.9) scales as "1=3 for " ⌧ 1. Thus, Howard’s approach to bounds on RBC yields

Nu . Ra1=2 and no better. The a priori lower bound implicit in this result is due to

Howard; the upper bound was obtained by Busse as an application of his “multi-

˛” technique, which seeks to produce asymptotically valid solutions of the Euler-

Lagrange equations of (6.9) involving multiple horizontal wave numbers. Busse’s

multi-˛ analysis turns out to share parallels with our construction of branching

flows, which we would like to discuss now.

We start by recalling Howard’s lower bound:

(6.11) min
u.x/;✓.x/
¬

�
w✓D1

uj@�D0; ✓ j@�D0

≠

�

jw✓ � 1j2 C "

≠

�

jruj2
≠

�

jr✓ j2 & "1=3

for " ⌧ 1. Let .u; ✓/ be admissible, which we can take to be smooth. Let ı 2
.0; 1

2
/ be such that

0  jw✓ j 
1

2
for ´ 2 Œ0; ıç and w✓.ı/ D

1

2
:

(If there does not exist such a ı, then
¬

� jw✓ � 1j2 & 1 � "2=3.) By its definition,
≠

�

jw✓ � 1j2 �
1

jI´j

Z ı

0

jw✓ � 1j2 & ı:
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Lemma 2.6 states that

1

jT2
xy j

k@´✓kL2.�/k@´wkL2.�/ &
jw✓.´/j

j´ ^ .1 � ´/j
8´:

Taking ´ D ı and squaring, we conclude that
≠

�

jruj2
≠

�

jr✓ j2 &
1

ı2
:

Therefore, the optimal value in the left-hand side of (6.11) is bounded below by

inf
ı2.0; 1

2
/

⇢

ı C "
1

ı2

�

⇠ "1=3

for " ⌧ 1, and (6.11) is proved.

Now we discuss Busse’s upper bound: it asserts the existence of admissible pairs

f.u"; ✓"/g satisfying

(6.12)

≠

�

jw"✓" � 1j2 C "

≠

�

jru"j2
≠

�

jr✓"j2 . "1=3

for " ⌧ 1. Busse’s multi-˛ technique is analogous to our branching construction

from Section 5. Arguing as in that section, we find that our branching construction

with length scale `.´/ satisfies the estimates

≠

�

jw✓ � 1j2 . lbl and

≠

�

jruj2
≠

�

jr✓ j2 .

✓

1

l2bulk

C
Z ´bl

´bulk

1

`2
d´C

1

lbl

◆2

so long as 0  `0.´/ . 1. Since branching is admissible for Howard’s problem,

we find its optimal value is bounded above by

(6.13) min
`.´/

`.´bulk/Dlbulk

`.´bl/Dlbl

0`0.´/.1

lbl C "

✓

1

l2bulk

C
Z ´bl

´bulk

1

`2
d´C

1

lbl

◆2

:

Choosing

`.´/ ⇠ 1 � ´; ´ 2 Œ´bulk; ´blç; lbulk ⇠ 1; and lbl ⇠ "1=3

yields (6.12). Although Busse’s construction is usually described in terms of dis-

crete wavenumbers f˛kgn
kD1

and points f´kgn
kD1

, for " ⌧ 1 these can be seen to

arise from interpolation of the continuous length scale `.´/ ⇠ 1� ´, similar to the

presentation in Section 5.

Coming back to wall-to-wall optimal transport, we can now discuss the differ-

ence between the optimizers of Howard’s problem (6.9) and our integral formu-

lation in (6.10). As the analysis in Section 5 indicates, adding Q to Howard’s

problem (6.9) should change the preferred length scale for branching from Busse’s
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linear law ` ⇠ 1 � ´ to our square root law ` ⇠ c."/
p
1 � ´. The estimates

obtained there show that

(6.14) Q ⇠

Z ´bl

´bulk

.`0/2 d´:

Thus, the one-dimensional problem (6.13) for selecting the length scale function `

turns into (1.12) for wall-to-wall optimal transport. It remains to be seen whether

the true optimizers of (6.10) exhibit branching with these preferred length scales.

Presumably, developing such fine detailed knowledge of the minimizers would help

resolve the question of logarithmic corrections to scaling.

6.2 On the Background Method

Background Method for RBC

In [13], Constantin and one of the authors introduced an alternate method to

Howard’s for establishing a priori bounds on RBC, which can be applied without

any assumptions of statistical stationarity or homogeneity. We recall the argument

now, with the goal of connecting it to the symmetrization method from Section 2.

We follow the presentation in [15].

Let u and T arise from RBC and decompose the temperature field into the sum

of stationary “background” and fluctuating parts,

T .x; t / D ⌧.´/C ✓.x; t /;

where ⌧.0/ D 1 and ⌧.1/ D 0. Then,

1

2

d

dt

✓≠

�

j✓ j2 C
1

PrRa

≠

�

juj2
◆

C
1

2

≠

�

jrT j2 D
1

2

Z 1

0

j⌧ 0j2 �H⌧ .u; ✓/

where H⌧ is the quadratic form

H⌧ .u; ✓/ D
≠

�

1

Ra
jruj2 C

1

2
jr✓ j2 C w✓.⌧ 0

� 1/:

Provided that H⌧ � 0 for all divergence-free vector fields u.x/ and scalar fields

✓.x/ vanishing at @�, we can drop the last term from the dissipation equation and

take a long-time average to find the inequality

hjrT j2i 

Z 1

0

j⌧ 0j2:

This proves the following variational bound:

(6.15) Nu  inf
⌧.´/

⌧.0/D1; ⌧.1/D0
H⌧ �0

Z 1

0

j⌧ 0j2:

Those background fields ⌧ that satisfy H⌧ � 0 are known as spectrally stable.
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As proved in [15], there exist spectrally stable background fields f⌧ıg satisfying

Z 1

0

j⌧ 0
ı j2 ⇠

1

ı

for all ı  Ra�1=2. Minimizing the resulting bound Nu . 1
ı

over this range of ı

proves that Nu . Ra1=2: There is a remarkable similarity between the background

fields ⌧ı constructed in [15] and our fields ⌘ı constructed for the symmetrization

method in (2.10). This hints that the upper bounds produced by these two ap-

proaches may in fact coincide. We turn to discuss this now.

Background Method for Optimal Transport

As observed in [39], one can obtain a priori bounds on optimal transport via a

suitable modification of the background method. Here, our goal is to show that the

symmetrization method from Section 2, when properly abstracted and optimized,

yields an a priori bound on transport whose value is exactly the same as that ob-

tained in [39]. This begs the question of whether better background fields might be

constructed to improve upon the scaling Nu . Ra1=2 (albeit by at most a logarith-

mic amount). Numerical evidence points in the opposite direction, as the optimal

bounds found in [35] scale ⇠ Ra1=2. We are not aware of a proof demonstrating

this at the present time.

The modified background method from [39] is as follows. Let T solve the

advection-diffusion equation (6.1). Performing the background decomposition

T .x; t / D ⌧.´/C ✓.x; t /

with ⌧.0/ D 1 and ⌧.1/ D 0 and introducing a Lagrange multiplier � 2 R, we find

that

(6.16)
1

2

d

dt

≠

�

j✓ j2 C
1

2

≠

�

jrT j2 D
1

2

Z 1

0

j⌧ 0j2 C
�

2
Pe2

�H⌧;�.u; ✓/

where H⌧;� is the quadratic form

H⌧;�.u; ✓/ D
≠

�

�

2
jruj2 C

1

2
jr✓ j2 C w✓⌧ 0:

If H⌧;� � 0 for all divergence-free vector fields u.x/ and scalar fields ✓.x/ van-

ishing at @�, the dissipation equation (6.16) implies that

hjrT j2i 

Z 1

0

j⌧ 0j2 C �Pe2:

Thus,

(6.17) Nu  inf
⌧.´/;�

⌧.0/D1; ⌧.1/D0
H⌧;��0

⇢Z 1

0

j⌧ 0j2 C �Pe2

�
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In parallel with the background method discussed above, we refer to background

fields ⌧ satisfying H⌧;� � 0 as being spectrally stable at Lagrange multiplier �.

On the other hand, the symmetrization method from Section 2 yields the bound

(6.18) sup
u.x;t/

hjruj2iDPe2

uj@�D0

Nu.u/ 

inf
⌘.x/

⌘j´D0D1
⌘j´D1D0

⇢≠

�

jr⌘j2 C Pe2 sup
u.x/

uj@�D0
¬

�
jruj2D1

≠

�

jrÅ�1 div.u⌘/j2
�

when carried out optimally. As it turns out, these bounds are one and the same.

LEMMA 6.1. Let Ubm.Pe/ and Usymm.Pe/ denote the optimal values appearing on

the right-hand sides of (6.17) and (6.18), respectively. We have that Ubm D Usymm.

Remark 6.2. As the following proof shows, the minimization in (6.18) can be per-

formed over ⌘ depending on ´ alone without changing the resulting value.

PROOF. We prove this in two steps: first we show that Usymm  Ubm, and then

we prove the reverse inequality. In both cases, we will use the fact that

(6.19)

Z

�

jrÅ�1 div mj2 D sup
✓.x/

✓ j@�D0

Z

�

2m � r✓ � jr✓ j2

for all m 2 L2.�I R
3/.

We begin by showing that Usymm  Ubm. Taking m D u⌧ in (6.19), we see that

a background field ⌧.´/ satisfies H⌧;� � 0 if and only if

Z

�

jrÅ�1 div u⌧ j2  �

Z

�

jruj2

for all divergence-free u that vanish at @�. Therefore,

Ubm � inf
⌧.´/;�

⌧.0/D1;⌧.1/D0
H⌧;��0

⇢Z 1

0

j⌧ 0j2 C Pe2 sup
u.x/

uj@�D0
¬

�
jruj2D1

≠

�

jrÅ�1 div.u⌧/j2
�

� Usymm

since enlarging the admissible set only decreases the resulting minimal value.

Now we prove that Usymm � Ubm. Parametrizing the admissible set from (6.18)

via the level sets of

M.⌘/ D sup
u.x/

uj@�D0
¬

�
jruj2D1

≠

�

jrÅ�1 div.u⌘/j2;
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we can write that

Usymm D inf
�

inf
⌘.x/

⌘j´D0D1; ⌘j´D1D0
M.⌘/D�

⇢≠

�

jr⌘j2 C Pe2�

�

:

Extend the definition of H⌧;� to functions of x by taking

H⌘;�.u; ✓/ D
≠

�

�

2
jruj2 C

1

2
jr✓ j2 C u✓ � r⌘:

By (6.19),

M.⌘/ D � ” inf
u.x/; ✓.x/

uj@�D0;✓ j@�D0

H⌘;�.u; ✓/ D 0;

and the latter happens if and only if H⌘;� � 0. Using that
¬

� jr⌘j2 is convex in ⌘

and that f⌘W H⌘;� � 0g is also convex, we can replace ⌘ with its periodic average

⌧ D ⌘ to deduce that

Usymm � inf
�

inf
⌧.´/

⌧ j´D0D1; ⌧ j´D1D0
H⌧;��0

⇢≠

�

j⌧ 0j2 C Pe2�

�

D Ubm

as desired. ⇤

While, in the end, the symmetrization method yields the same Pe2=3 or Ra1=2

upper bound as does the background method applied to optimal transport or RBC,

its formulation is what ultimately led us to discover the relation between the op-

timal design of heat transport and Howard’s variational approach as discussed in

Section 6.1. This is not to say that a more careful analysis of the wall-to-wall op-

timal transport problem may not ultimately lead to new, logarithmically corrected

upper bounds. Whether such corrections hold remains to be seen.

6.3 On the Realizability of Optimal Heat Transport

by Buoyancy-Driven Convection

We return to the full system (6.1)–(6.3) to discuss the role of the momentum

equation (6.2). One may wonder if buoyancy forces are capable of producing flows,

time-dependent or steady, that realize near-optimal heat transport. The answer

depends upon the way in which flow intensity is constrained.

First, we note that the energy-constrained wall-to-wall optimal transport prob-

lem corresponds to RBC in a fluid-saturated porous layer where the Navier-Stokes

momentum equation (6.2) is replaced by Darcy’s law. This implies the balance

law hjuj2i D Ra.Nu � 1/, which, when combined with the result of Theorem 1.1,

yields the optimal scaling Nu ⇠ Ra in this setting. Direct numerical simulations

of time-dependent high-Ra porous medium convection [20, 32] are consistent with

this scaling, indicating that buoyancy forces can produce flows realizing optimal

heat transport insofar as scaling is concerned. On the other hand, asymptotic and
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numerical investigations indicate that the best possible transport by steady flows

satisfies Nu ⇠ Ra0:6 [43].

Second, we observe that the enstrophy-constrained optimal transport problem

corresponds to Rayleigh’s original model of buoyancy-driven convection in a fluid

layer [36]. There, steady convection also appears to be strongly suboptimal with

the highest computationally observed scaling being Nu ⇠ Ra0:31 [38, 42]. To

date, there are no turbulent high-Ra direct numerical simulations indicating heat

transport scaling much higher than Nu ⇠ Ra1=3.

We close our discussion of fluid dynamical implications by commenting on the

certain suboptimality of heat transport in Rayleigh’s original model. Rayleigh im-

posed (6.1)–(6.3) in two-dimensions with stress-free velocity boundary conditions

and the usual Dirichlet temperature ones. Although RBC in a fluid layer must obey

the bound Nu . Ra1=2 in any dimension and for any boundary conditions, the re-

sult of [44] is that in two-dimensions and with stress-free boundaries Nu . Ra5=12.

Nevertheless, by combining the relevant balance law hjruj2i D Ra.Nu � 1/ im-

plied by the Navier-Stokes momentum equation (6.2) with the result of Theorem

1.2 and the remark immediately thereafter, we conclude that optimal heat transport

in the setting of Rayleigh’s model must satisfy Nu ⇠ Ra1=2 (up to logarithmic cor-

rections). Our analysis is consistent with all the requirements of Rayleigh’s model

except for the Navier-Stokes momentum equation (6.2). Thus, buoyancy-driven

convection in two-dimensions between stress-free boundaries must yield strongly

suboptimal rates of heat transport as compared with what happens if (6.2) is not im-

posed. This underscores the importance of using the momentum equation—rather

than only a balance law it implies—for determining the asymptotic heat transport

of turbulent RBC.

7 Optimal Transport as Energy-Driven Pattern Formation

There is a second scientific context, other than the fluid dynamical one, in which

the methods behind our analysis of wall-to-wall optimal heat transport have played

a fundamental role. This is the subject of “energy-driven pattern formation” in

mathematical materials science [23].

Perhaps the key methodological contribution of this paper is the reformulation

of the general steady wall-to-wall optimal transport problem

(7.1) sup
u.x/

kukDPe
Cb.c.

Nu.u/

in its integral form

(7.2) inf
u.x/;⇠.x/
¬

�
w⇠D1

Cb.c.

≠

�

jrÅ�1 div.u⇠/j2 C "kuk2

≠

�

jr⇠j2:
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This change of viewpoint, accomplished in Section 3, hinges on the fact that the

Nusselt number of a steady velocity field u can be written as the maximal value

of a certain nonlocal functional in ⇠. The resulting problem (7.2) is equivalent to

the original one (7.1), and optimizers correspond. In the examples of energy- and

enstrophy-constrained optimal transport considered in Sections 4 and 5, where k�k
is the (volume-averaged) L2- or PH 1-norm, the integral formulation (7.2) plays a

key role in the construction of divergence-free velocity fields that achieve nearly

optimal transport. As that analysis shows, the complexity of the successful con-

struction—whether it can be described using few length scales or many—depends

strongly on the choice of norm.

Besides its practical use for the estimation of optimal transport, (7.2) shares stri-

king similarities with other nonconvex and singularly perturbed variational prob-

lems from mathematical materials science. The study of patterns selected by energy

minimization principles in this field is known as energy-driven pattern formation.

It is important to note that the wall-to-wall optimal transport problem is variational

by definition. Thus, our observation is not that there exists some variational formu-

lation for it, but rather that the specific formulation (7.2) is reminiscent of various

model problems from energy-driven pattern formation. From this point of view, it

is no surprise that the (nearly) optimal patterns constructed in this paper for wall-to-

wall transport—convection rolls and branching flows—bear similarities with other

well appreciated patterns from materials science including domain branching in

micromagnetics [8,9] and wrinkling cascades in thin elastic sheets [3,22,31]. What

(7.2) offers is a functional analytic framework in which to make such connections

precise.

We discuss below two model problems from energy-driven pattern formation

and their connections to wall-to-wall optimal transport. We leave their general

scientific introduction to the references therein, focusing instead on the salient fea-

tures of their analysis. This discussion provides an alternate viewpoint on the role

of branching patterns in the variational analysis of transport, which complements

the older purely fluid dynamical arguments of Busse [5]. We hope these remarks

prove useful to the reader interested in our approach.

7.1 Magnetic Domain Branching in a Uniaxial Ferromagnet

Our first example comes from micromagnetics and concerns the patterns formed

by magnetic domains in a uniaxial ferromagnet. The energetic description is as

follows. We take as the magnet the domain � D .�L;L/x ⇥ Œ0; 1ç2y;´ where

x is the the preferred direction of magnetization and L is the magnet’s (nondi-

mensionalized) length. On � we define a magnetization vector field m.x/ D
m1

yi C m2
yj C m3

yk, which is required to be of unit size jmj D 1 and is extended

by zero to the rest of space R
3n�. The micromagnetic energy that results is

(7.3)

Z

all space

jrÅ�1 div mj2 C
Z

magnet

Q
�

1 �m2
1

�

C "jrmj
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where the divergence is understood in the distributional sense. Strictly speaking,

this is a “sharp interface” model in which the total variation norm

Z

�

jrmj D
3

X

iD1

Z

�

jrmi j D
3

X

iD1

sup
v2C 1

c .�IRn/
kvkL1.�/1

Z

�

mi div v

features instead of the PH 1-norm (for more on this reduction see [8]). The first

term appearing in (7.3) is called the magnetostatic energy; it accounts for the cost

of the magnetic field induced by m in the ambient space. The second term is

the anisotropy energy, and it arises from an underlying crystalline anisotropy that

prefers m to be ˙yi. The third term is the interfacial energy. It permits m to be

discontinuous, but limits the total area of any interfaces across which m jumps. The

parameters Q and " set the relative strengths of these effects. The magnetostatic

and interfacial energies have direct analogues in the wall-to-wall problem (7.2); the

anisotropy term does not. Note that, due to the constraint jmj D 1, this functional

is nonconvex.

There are various designs for m one can entertain in minimizing (7.3). One

is the so-called Kittel structure, in which m is independent of x and ˙yi-valued

throughout the magnet, alternating between these at some to be determined length

scale l in the y´-plane. This design costs no anisotropic energy and the optimal l

is selected by minimizing its magnetostatic and interfacial costs. Another impor-

tant design is the Landau-Lifshitz structure, in which m is independent of x and

˙yi-valued except for in a thin boundary layer near x D ˙L. There, it is taken

to be perpendicular to yi in such a way as to eliminate the magnetostatic energy

completely, thus coupling the thickness of the boundary layer to the length scale l

of oscillations in the bulk. This is a sharp-interface version of the convection roll

design described in Section 4.

Finally, there is the Privorotskiı̆ construction, which plays the role of the branch-

ing flows from Section 5. It too involves a very large number of distinct length

scales that interpolate between a preferred length scale in the bulk lbulk and a sig-

nificantly smaller one at the boundary lbl. We refer the reader for more details

to [8, 9], including a description of the relevant regimes.

What can be proved regarding this nonconvex, nonlocal minimization problem?

Following the reference [9] we assume that m.x; y; ´/ is periodic in .y; ´/ and

identify Œ0; 1ç2y;´ with T
2
y;´. Then there exist positive constants C and C 0 such that

the minimum micromagnetic energy satisfies

CQ1=3"2=3L1=3
 minimum micromagnetic energy  C 0Q1=3"2=3L1=3

for all sufficiently large Q and sufficiently small "=L. The proof of this result

requires two kinds of arguments. The upper bound comes from estimating the cost

of an optimal Privorotskiı̆ construction (the conditions on Q, ", and L ensure that

the result is significantly less than those obtained by the Kittel and Landau-Lifshitz



2444 C. R. DOERING AND I. TOBASCO

structures). The lower bound asserts that the Privorotskiı̆ construction cannot be

beat as far as scaling is concerned. The original proof of it can be found in [9],

but we note the existence of a second, more recent proof in [10], which utilizes the

endpoint Gagliardo-Nirenberg interpolation inequality

kf kL4=3.T2/ . krf k1=2

L1.T2/
kf k1=2

H �1.T2/

holding for all mean-zero and periodic functions f .

7.2 Blistering Patterns in Thin Elastic Sheets

Our second example comes from elasticity theory. Consider a thin elastic sheet

of (nondimensional) thickness h that is strongly bonded to the top of a large rubber

block except for on some known subdomain � ⇢ R
2. Applying biaxial compres-

sion to the block causes the sheet to blister in the unbonded domain. The result

is a complex pattern of wrinkles and folds whose details can be modeled through

the minimization of a certain nonconvex and singularly perturbed variational prob-

lem. As in [3, 22], we consider minimization of the internal elastic energy under

clamped boundary conditions. In the Föppl–von Karman model, the elastic energy

(per unit thickness) is given by

(7.4)

Z

blistered
region

je.v/C
1

2
r� ˝ r�j2 C h2jrr�j2

where the “in-plane” displacement parallel to the top of the block is v.x/ and the

“out-of-plane” displacement perpendicular to it is �.x/. Here, e.v/ denotes the

symmetric part of the in-plane displacement gradient rv . Taken together, the in-

and out-of-plane displacements yield the map .x; 0/ 7! .x C v.x/; �.x// which

describes the deformation of the blister. At the edge of the blister @� we impose

the clamped boundary conditions

v j@� D ��x; �j@� D 0; and @⌫�j@� D 0:

The parameter � is positive and sets the amount of overall compressive strain. The

first term in the energy is called the membrane term. It prefers the in-plane strain

e.v/ C 1
2
r� ˝ r� to vanish. The second one is called the bending term, and it

prefers the out-of-plane displacement to vary on longer length scales or not at all.

The relative strength of these effects is determined by the parameter h, which is

understood to be small.

There are significant parallels between the elastic energy functional (7.4) and

the integral formulation of wall-to-wall transport (7.2). Of course, the bending term

from (7.4) and the higher-order terms from (7.2) act to regularize designs. More in-

terestingly, we observe a similarity between the membrane term from (7.4) and the

advection term and net flux constraint from (7.2). Let us introduce a streamfunc-

tion  for the divergence-free velocity field u (we work with a two-dimensional
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fluid layer now) and rewrite the advection term as

(7.5)

≠

fluid layer

jrÅ�1 div.u⇠/j2 D
≠

fluid layer

jrÅ�1J. ; ⇠/j2

where J. ; ⇠/ D r? � r⇠. Recall also that the net flux constraint requires that

(7.6)

≠

fluid layer

w⇠ D 1:

As pointed out in Section 3.2—see the discussion surrounding (3.8)—for smooth

enough designs .u; ⇠/ the advection term cannot vanish while the net flux con-

straint and boundary conditions wj@� D ⇠j@� D 0 hold. As (7.2) makes clear,

wall-to-wall optimal transport is precisely about balancing these competing ef-

fects. Regarding elasticity, we ask: what does it take for the membrane term to

nearly vanish? This can be answered with the aid of the lower bound

≠

blistered
region

ˇ

ˇ

ˇ

ˇ

e.v/C
1

2
r� ˝ r�

ˇ

ˇ

ˇ

ˇ

2

&

≠

blistered
region

jrr.ÅÅ/�1 det rr�j2

C
ˇ

ˇ

ˇ

ˇ

≠

blistered
region

1

2
r� ˝ r� � �Id2⇥2

ˇ

ˇ

ˇ

ˇ

2

;

(7.7)

which we compare with (7.5) and (7.6). For the in-plane strain to nearly vanish, the

bulk average of 1
2
r� ˝ r� must be nearly constant and equal to a known multiple

of the identity. At the same time, � must nearly satisfy the degenerate Monge-

Ampère equation det rr� D 0. It follows from the results of [34] that these are

incompatible constraints, i.e., the membrane term cannot vanish while the bending

term remains finite. The situation is remarkably similar to that of wall-to-wall

optimal transport.

The scaling law of the minimum energy for blistering is known. As proved

in [3, 22], there exist constants C and C 0 depending only on � so that

(7.8) Ch  minimum elastic energy  C 0h

for small enough h. The upper bound comes from a branching construction in-

volving finer and finer oscillations in r� at a certain length scale depending on the

distance from the blister edge @�. As opposed to the corresponding result for the

wall-to-wall problem, there is no logarithmic correction to scaling in (7.8). This

can be explained with the help of (7.5) and (7.7): whereas the advection term has

a �1 scaling in its quadratic nonlinearity J. ; ⇠/, the membrane term has a �2

scaling in det rr� and therefore permits much stronger oscillations. As a result,

branching can be more easily accommodated in blistering than in optimal transport.

The lower bound from (7.8) asserts that branching indeed achieves the minimum

energy up to a prefactor depending only on the domain. Its proof reminds one

of the proof of Howard’s lower bound given after (6.11). For details we refer the

reader to [22] for the case where � is a square with periodic boundary conditions
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at opposite sides, and to [3] for the more general case of an arbitrary domain �

with suitably smooth boundary.
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