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Summary

Structural failure time models are causal models for estimating the effect of time-varying
treatments on a survival outcome. G-estimation and artificial censoring have been proposed for
estimating the model parameters in the presence of time-dependent confounding and admin-
istrative censoring. However, most existing methods require manually pre-processing data into
regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the compu-
tation and inference are challenging due to the nonsmoothness of artificial censoring. We propose
a class of continuous-time structural failure time models that respects the continuous-time nature
of the underlying data processes. Under a martingale condition of no unmeasured confounding,
we show that the model parameters are identifiable from a potentially infinite number of esti-
mating equations. Using the semiparametric efficiency theory, we derive the first semiparametric
doubly robust estimators, which are consistent if the model for the treatment process or the failure
time model, but not necessarily both, is correctly specified. Moreover, we propose using inverse
probability of censoring weighting to deal with dependent censoring. In contrast to artificial cen-
soring, our weighting strategy does not introduce nonsmoothness in estimation and ensures that
resampling methods can be used for inference.

Some key words: Causality; Cox proportional hazards model; Discretization; Observational study; Semiparametric
analysis; Survival data.

1. Introduction

Confounding by indication is common in observational studies and obscures the causal rela-
tionship between the treatment and outcome, (Robins et al., 1992). In longitudinal observational
studies, this phenomenon becomes more pronounced because of time-varying confounding, when
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124 S. Yang, K. Pieper AND F. Cools

there are time-dependent covariates that predict the subsequent treatment and outcome, and are
also affected by the past treatment history. In this case standard regression methods, whether
adjusting for confounders or not, are fallible (Robins et al., 2000; Daniel et al., 2013).

Structural failure time models (Robins & Tsiatis, 1991; Robins, 1992) and marginal
structural models (Robins, 2000; Hernán et al., 2001) have been used to handle time-varying
confounding effectively. Structural failure time models simulate the potential failure time
outcome that would have been observed in the absence of treatment, referred to as the
potential baseline failure time, by removing the treatment effect, while marginal struc-
tural models specify the marginal relationship between potential outcomes under different
treatments, possibly adjusting for the baseline covariates. Structural failure time models have
certain features that are more desirable than marginal structural models (Robins, 2000):
structural failure time models allow for the modelling of time-varying treatment modification
effects using the post-baseline time-dependent covariates; they are more flexible in terms
of translating biological hypotheses into their parameters (Robins, 1998b; Lok, 2008); and
g-estimation (Robins, 1998b) for structural failure time models does not require the probability
of receiving treatment at each time-point to be positive for all subjects.

Most structural failure time models specify deterministic relationships between the observed
failure time and the potential baseline failure time, and are therefore rank preserving (see, e.g.,
Mark & Robins, 1993a,b; Robins & Greenland, 1994; Robins, 2002; Hernán et al., 2005). More-
over, existing g-estimation approaches often use a discrete-time set-up, which requires all subjects
to be followed at the same prefixed time-points. However, in practical situations, the variables
and processes are more likely to be measured at irregularly spaced time-points, which may
not be the same for all subjects (Robins, 1998a). To use existing estimators, one needs to dis-
cretize the timeline and recreate the measurements at each time-point, for example by averaging
observations within the given time-point or by imputation if there are no observations. Such data
pre-processing may distort the relationship between variables and cast doubt on the sequential ran-
domization assumption, which is essential to justification of the discrete-time g-estimation (Zhang
et al., 2011). In the literature, much less work has addressed non-rank-preserving continuous-
time causal models; exceptions include Robins (1998b), Lok et al. (2004) and Lok (2008, 2017).
Robins (1998b) conjectured that g-estimation extends to settings with continuous-time processes,
but still relies on the rank-preserving assumption. Recently, Lok (2017) presented a formal proof
of the extension conjecture without the assumption of rank preservation.

Despite these advances, estimation for continuous-time structural failure time models is largely
underdeveloped. Existing g-estimation is singly robust, in the sense that it relies on a correct
model specification for the treatment process. In the literature of missing data analysis and causal
inference, many authors have proposed doubly robust estimators that require either one of the
two model components to be correctly specified (Robins et al., 1994; Scharfstein et al., 1999;
Van Der Laan et al., 2002; Lunceford & Davidian, 2004; Bang & Robins, 2005; Robins et al.,
2007; Cao et al., 2009; Lok & DeGruttola, 2012).Yang & Lok (2016) constructed a doubly robust
test procedure for structural nested mean models. To the best of our knowledge, a doubly robust
estimator for structural failure time models does not exist.

We develop a general framework for structural failure time models with continuous-time
processes. We relax the local rank-preservation condition by specifying a distributional rather
than deterministic relationship between the treatment process and the potential baseline failure
time. We impose a martingale condition of no unmeasured confounding, which serves as the basis
for identification and estimation. Under the semiparametric model characterized by the structural
failure time model and the no unmeasured confounding assumption, we develop a class of regular
asymptotically linear estimators. This class of estimators contains the semiparametric efficient
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Structural failure time models 125

estimators (Bickel et al., 1993; Tsiatis, 2006). We further construct an optimal member among
a wide class of semiparametric estimators that are relatively simple to compute. Moreover, we
show that our estimators are doubly robust in the sense that they are consistent if either the model
for the treatment process is correctly specified or the failure time model is correctly specified, but
not necessarily both. Our framework is readily applicable to the traditional discrete-time settings.

In the presence of censoring, Robins and coauthors have introduced the notion of the potential
censoring time and proposed a way of using this information to estimate the treatment effect.
This approach may artificially terminate follow-up for some subjects before their observed failure
or censoring times, so it is often called artificial censoring. It works only for administrative
censoring when follow-up ends at a prespecified date, and it fails to provide consistent estimators
for dependent censoring (Rotnitzky & Robins, 1995), which likely occurs due to drop-out of
subjects. Moreover, the computation and inference are challenging because of the nonsmoothness
of artificial censoring (Joffe, 2001; Joffe et al., 2012). To overcome these limitations, we propose
using inverse probability of censoring weighting. In contrast to artificial censoring, our weighting
strategy is smooth and ensures that resampling methods can be used for inference, which is
straightforward to implement in practice.

2. Notation, models and assumptions

2.1. Notation

We assume that n subjects constitute a random sample from a larger population of interest
and are therefore independent and identically distributed. For notational simplicity, we suppress
the subscript i for subjects. Let T be the observed failure time. Let Lt be a multi-dimensional
covariate process, and let At be the binary treatment process, i.e., At = 1 if the subject is on
treatment at time t and At = 0 if the subject is off treatment at time t. We assume that all
subjects received treatment at baseline and may discontinue treatment during follow-up. We also
assume that treatment discontinuation is permanent, i.e., if At = 0 then Au = 0 for all u � t.
Let V be the time to treatment discontinuation or failure, whichever comes first, and let � be
the binary indicator of treatment discontinuation at time V . To ensure regularity, we assume that
all continuous-time processes are càdlàg, i.e., the processes are continuous from the right and
have limits from the left. Let Ht = (Lt , At−) be the combined covariates and treatment process,
where At− denotes the treatment just before time t. We use an overbar to denote the history; for
example, H̄t = (Hu : 0 � u � t) is the history of the covariates and treatment process until time t.
Following Cox & Oakes (1984), we assume that there exists a potential baseline failure time U ,
representing the failure time had the treatment always been withheld. The full data consist of
F = (T , H̄T ). Up until § 4 we assume that there is no censoring before T .

2.2. Structural failure time model

The structural failure time model specifies the relationship between the potential baseline
failure time U and the actual observed failure time T . We assume that given any H̄t ,

U ∼ U (ψ∗) =
∫ T

0
exp

[{ψ∗
1 + ψ∗T

2 g(Lu)}Au
]

du, (1)

where ∼ means has the same distribution as and ψ∗T = (ψ∗
1 ,ψ∗T

2 ) is a p-vector of unknown
parameters. Model (1) entails that the treatment effect is to accelerate or decelerate the failure
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126 S. Yang, K. Pieper AND F. Cools

time relative to the potential baseline failure time U . Intuitively, exp[{ψ∗
1 +ψ∗T

2 g(Lt)}At] can
be interpreted as the effect rate of the treatment on the outcome, possibly modified by the time-
varying covariate g(Lt). To aid understanding of the model, consider a simplified model U (ψ∗) =∫ T

0 exp(ψ∗
1 Au) du. The multiplicative factor exp(ψ∗

1 ) describes the relative increase or decrease
in the failure time had the subject continuously received treatment compared to had the treatment
always been withheld.

Remark 1. The rank-preserving structural failure time model specifies a deterministic rela-
tionship instead of a distributional relationship between the failure times, i.e., it uses = instead
of ∼ in model (1). Then, for subjects i and j who have the same observed treatment and covariate
history, Ti < Tj must imply Ui < Uj. This may be restrictive in practice. In contrast, we link the
distribution of the potential baseline failure time and the distribution of the actual failure time
after removing the treatment effect. Specifically, we assume that the distributions of U and U (ψ∗)
are the same given past treatment and covariates, thus avoiding the rank-preserving restriction.

2.3. No unmeasured confounding

The model parameter ψ∗ is not identifiable in general, because U is missing for all subjects.
To identify and estimate ψ∗, we impose the following assumption (Yang et al., 2018).

Assumption 1 (No unmeasured confounding). The hazard of treatment discontinuation is

λV (t | F , U ) = lim
h→0

h−1pr(t � V < t + h,� = 1 | F , U , V � t)

= lim
h→0

h−1pr(t � V < t + h,� = 1 | H̄t , V � t) = λV (t | H̄t). (2)

Assumption 1 implies that λV (t | F , U ) depends only on the past treatment and covariate
history up to time t, H̄t , but not on the future variables and U . This assumption holds if the set of
historical covariates contains all prognostic factors for the failure time that affect the decision of
discontinuing treatment at time t.

For an equivalent representation of the treatment process At , we define the counting process
NV (t) = I (V � t,� = 1) and the at-risk process YV (t) = I (V � t) (Andersen et al., 1993). Let
σ(Ht) be the σ -field generated by Ht , and let σ(H̄t) be the σ -field generated by

⋃
u � t σ(Hu).

We show in the Supplementary Material that under model (1), (2) implies that

λV {t | H̄t , U (ψ∗)} = λV (t | H̄t).

Thus, under common regularity conditions for the counting process, MV (t) = NV (t)−
∫ t

0 λV (u |
H̄u)YV (u) du is a martingale with respect to σ {U (ψ∗), H̄t}, which renders ψ∗ identifiable.

3. Semiparametric estimation

We consider the semiparametric model characterized by (1) and Assumption 1. We derive a
regular asymptotically linear estimator ψ̂ of ψ∗, such that

n1/2(ψ̂ − ψ∗) = Pn�(F)+ op(1),

where Pn is the empirical measure induced by F1, . . . , Fn, i.e., Pn�(F) = n−1 ∑n
i=1�(Fi), and

�(F) is the influence function of ψ̂ , which has zero mean and finite and nonsingular variance.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/107/1/123/5609101 by N
orth C

arolina State U
niversity user on 01 April 2020



Structural failure time models 127

Let fF(T , H̄T ;ψ , θ) be the semiparametric likelihood function based on a single variable F ,
where ψ is the primary parameter of interest and θ is the infinite-dimensional nuisance param-
eter. A fundamental result of Bickel et al. (1993) states that the influence functions for regular
asymptotically linear estimators lie in the orthogonal complement of the nuisance tangent space,
denoted by�⊥. We characterize�⊥ in the following theorem, the proof of which is given in the
Supplementary Material.

Theorem 1. Under model (1) and Assumption 1, the orthogonal complement of the nuisance
tangent space for ψ∗ is

�⊥ =
{∫ ∞

0

(
hu{U (ψ∗), H̄u} − E

[
hu{U (ψ∗), H̄u}

∣∣ H̄u, V � u
])

dMV (u)

}

for all p-dimensional hu{U (ψ∗), H̄u}.
The score function of ψ∗ is Sψ(F) = ∂ log fF(T , H̄T ;ψ , θ)/∂ψ evaluated at (ψ∗, θ∗).

Following Bickel et al. (1993), the efficient score for ψ∗ is Seff (F) = 
{Sψ(F) | �⊥},
where 
 is the projection operator in the Hilbert space. The efficient influence function is
�(F) = E{Seff (F)Seff (F)T}−1Seff (F), with the variance [E{Seff (F)Seff (F)T}]−1 achieving the
semiparametric efficiency bound. However, the analytical form of Sψ(F) is intractable in general.
To facilitate estimation, we focus on a reduced class of�⊥ with hu{U (ψ∗), H̄u} = c(H̄u)U (ψ∗)
for c(H̄u) ∈ R

p, leading to the following estimating function for ψ∗:

G(ψ ; F) =
∫ ∞

0
c(H̄u)

[
U (ψ)− E{U (ψ) | H̄u, V � u}] dMV (u). (3)

Because of the no unmeasured confounding assumption, U (ψ∗)⊥⊥ MV (u) | (H̄u, V � u) and so
E{G(ψ∗; F)} = 0. We obtain the estimator of ψ∗ by solving

Pn{G(ψ ; F)} = 0. (4)

Within this class, we show that the optimal choice of c(H̄u) is

copt(H̄u) = E{∂U̇u(ψ)/∂ψ | H̄u, V = u}[var{U (ψ) | H̄u, V � u}]−1. (5)

In practice, we require working models to be posited for approximating copt(H̄u); see the example
in the simulation study. Compared to naive choices, such as c(H̄u) = {Au, Aug(Lu)

T}T for model
(1), our simulation results show that using the optimal choice yields gains in estimation efficiency.

In (4), we assume that the hazard function for the treatment process and E{U (ψ) | H̄u, V � u}
are known. In practice, they are often unknown and must be modelled and estimated from the
data. We posit a proportional hazards model with time-dependent covariates,

λV (t | H̄t ; γV ) = λV ,0(t) exp{γ T
V gV (t, H̄t)},

where λV ,0(t) is unknown and nonnegative, gV (t, H̄t) is a prespecified function of t and H̄t , and
γV is a vector of unknown parameters. We also posit a working model E{U (ψ) | H̄u, V � u; ξ}
indexed by ξ . We show that the estimating equation for ψ∗ achieves the double robustness or
double protection (Rotnitzky & Vansteelandt, 2015).
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128 S. Yang, K. Pieper AND F. Cools

Theorem 2 (Double robustness). Under model (1) and Assumption 1, the estimating equation
(4) for ψ∗ is unbiased if either the model for the treatment process is correctly specified or the
failure time model E{U (ψ) | H̄u, V � u; ξ} is correctly specified, but not necessarily both.

4. Censoring

4.1. Inverse probability of censoring weighting

In most studies, the failure time is subject to right censoring. We now introduce C, the time to
censoring. The observed data are O = {X = min(T , C),
 = 1(T � C), H̄X }. In the presence
of censoring, we may not observe T , so it may not be feasible to solve the estimating equation
(4). A naive solution is to replace T in U (ψ) by X and use Ũ (ψ) = ∫ X

0 exp(ψAs) ds; however,
Ũ (ψ∗) depends on the whole treatment process and is therefore not independent of MV (t) given
(H̄t , V � t), which renders the estimating equation (4) biased (Hernán et al., 2005). Robins
(1998b) proposed a strategy for dealing with administrative censoring, a censoring mechanism
which occurs when subjects are censored due to the fact that the study ended at a known calendar
date. In this case, C is independent of all other variables. In Robins’s strategy, U (ψ) is replaced
by a function of U (ψ) and C, which is always observable. For illustration, consider U (ψ) =∫ T

0 exp(ψAu) du and

C(ψ) = min
as∈{0,1}

∫ C

0
exp(ψas) ds =

{
C, ψ � 0,

C exp(ψ), ψ < 0.

Then Ũ (ψ∗) = min{U (ψ∗), C(ψ∗)} and 
(ψ∗) = 1{U (ψ∗) < C(ψ∗)} are two functions that
are independent of MV (t) given (H̄t , V � t) and always computable; see the Supplementary
Material. The g-estimator is constructed based on Ũ (ψ) and
(ψ). In this approach, for subjects
with T < C it is possible that U (ψ) > C(ψ) and 
(ψ) = 0, i.e., those subjects who actually
were observed to fail are treated as if they were censored. Therefore, this approach is often
called artificial censoring. Artificial censoring suffers from many drawbacks. First, the resulting
estimating equation is not smooth inψ , and therefore the estimation and inference are challenging
(Joffe et al., 2012). Second, if the censoring mechanism is dependent, the estimators will be
inconsistent (Robins, 1998b). To avoid the disadvantages of artificial censoring and also allow
for more general censoring mechanisms, we consider using inverse probability of censoring
weighting. Robins (1998b) suggested and Witteman et al. (1998) applied the weighting approach
to deal with censoring by competing risks in deterministic structural failure time models with
discretized data. We now assume an ignorable censoring mechanism as follows.

Assumption 2. The hazard of censoring is

λC(t | F , T > t) = lim
h→0

h−1pr(t � C < t + h | C � t, F , T > t)

= lim
h→0

h−1pr(t � C < t + h | C � t, H̄t , T > t) = λC(t | H̄t , T > t),

written as λC(t | H̄t) for short.

Assumption 2 says that λC(t | F , T > t) depends only on the past treatment and covariate
history up to time t, but not on the future variables and failure time. This assumption holds if the
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Structural failure time models 129

set of historical covariates contains all prognostic factors for the failure time that affect the loss
to follow-up at time t. Under this assumption, the missing data due to censoring are missing at
random (Rubin, 1976). In the presence of censoring, V is redefined to be the time to treatment
discontinuation, failure or censoring, whichever comes first. We show in the Supplementary
Material thatλV (t | H̄t) is equal toλV (t | H̄t , C � t) and so can be estimated conditional on V � t
with the new definition of V . From λC(t | H̄t) we define KC(t | H̄t) = exp{− ∫ t

0 λC(u | H̄u) du},
which is the probability of the subject not being censored before time t. For regularity, we also
impose a positivity condition on KC(t | H̄t).

Assumption 3 (Positivity). There exists a constant δ such that with probability 1, KC(t | H̄t) �
δ > 0 for t in the support of T .

Under Assumptions 1–3, ψ∗ is identifiable; see the Supplementary Material for a proof.
Following Rotnitzky et al. (2009), the main idea of inverse probability of censoring weighting is
to redistribute the weights for the censored subjects to the remaining uncensored subjects.

Theorem 3. Under Assumptions 1–3, the unbiased estimating equation for ψ∗ is

Pn

{



KC(T | H̄T )
G(ψ ; F)

}
= 0, (6)

where G(ψ ; F) is as defined in (3).

Theorem 3 assumes thatλC(t | H̄t) is known.As was done forλV (t | H̄t), we posit a proportional
hazards model with time-dependent covariates,

λC(t | H̄t) = λC, 0(t) exp{γ T
CgC(t, H̄t)},

where λC, 0(t) is unknown and nonnegative, gC(t, H̄t) is a prespecified function of t and H̄t , and
γC is a vector of unknown parameters.

To summarize, the algorithm for developing an estimator of ψ∗ is as follows.

Step 1. Using the data (Vi,�i, H̄Vi , i) (i = 1, . . . , n), obtain estimators for λV (t | H̄t) =
λV , 0(t) exp{γ T

V gV (t, H̄t)} and MV (t). To estimate γV , treat the treatment discontinuation as failure
and the failure event and censoring as censored observations in the time-dependent proportional
hazards model. Once we have an estimate of γV , γ̂V , we can estimate the cumulative baseline
hazard, λV , 0(t) dt, using the Breslow estimator

λ̂V , 0(t) dt =
∑n

i=1 dNV , i(t)∑n
i=1 exp{γ̂ T

V gV (t, H̄t, i)}YVi(t)
.

Then we obtain M̂V (t) = NV (t)− ∫ t
0 exp{γ̂ T

V gV (u, H̄u)}λ̂V , 0(u)YV (u) du.

Step 2. Using the data (Xi,
i, H̄Xi , i) (i = 1, . . . , n), obtain estimators for λC(t | H̄t) =
λC, 0(t) exp{γ T

CgC(t, H̄t)} and KC(Ti | H̄Ti). To estimate γC , treat censoring as failure and the
failure event as censored observations in the time-dependent proportional hazards model. Once
we have an estimate of γC , γ̂C , we can estimate λC, 0(t) dt using the Breslow estimator

λ̂C, 0(t) dt =
∑n

i=1 dNC, i(t)∑n
i=1 exp{γ̂ T

CgC(t, H̄t, i)}YCi(t)
,
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130 S. Yang, K. Pieper AND F. Cools

where NC(t) = I (C � t,
 = 0) and YC(t) = I (C � t) are the counting process and the at-risk
process of observing censoring, respectively. Then we estimate KC(t | H̄t) by

K̂C(t | H̄t) =
∏

0�u�t

[
1 − exp{γ̂ T

CgC(u, H̄u)}λ̂C, 0(u) du
]
.

Step 3. We obtain the estimator ψ̂ of ψ by solving

Pn

{



K̂C(T | H̄T )

∫
c(H̄u)

[
U (ψ)− E{U (ψ) | H̄u, V � u; ξ̂}

]
dM̂V (u)

}
= 0, (7)

where we estimate E{U (ψ) | H̄u, V � u; ξ} by regressing K̂C(T | H̄T )
−1
U (ψ) on (X0, Lu, u)

restricted to subjects with V � u. The estimating equation (7) is continuously differentiable in
ψ , and hence can generally be solved using a Newton–Raphson procedure (Atkinson, 1989). For
example, one can use the multiroot function in R (R Development Core Team, 2020).

Remark 2. It is worth discussing the connection between the proposed framework and the
existing framework for the discrete-time setting. If the processes take observations at discrete
times {t0, . . . , tK }, then for t = tm, H̄t = {Ht1 , . . . , Htm}, dNT (t) is a binary treatment indicator,
and

∫ t
0 λT (u | H̄u)YT (u) du becomes the propensity score pr{dNT (t) = 1 | H̄t}. As a result, in

the special case where E{U (ψ) | H̄u, V � u; ξ̂} is zero, (7) simplifies to the existing estimating
equation for ψ∗. Importantly, (7) provides, for the first time in the literature, a semiparametric
doubly robust estimator ψ̂ even for the discrete-time setting, in the sense that ψ̂ is consistent if
either the model for the treatment process or the failure time model is correctly specified, under
correct model specifications for the treatment effect mechanism and the censoring mechanism.

4.2. Asymptotic theory and variance estimation

In this section we discuss the asymptotic properties of our proposed estimator; the technical
details are presented in the Supplementary Material. To reflect the dependence of the estimating
equation on the nuisance models, write (7) as Pn�(ψ , ξ̂ , M̂V , K̂C ; F) = 0, where

�(ψ , ξ , MV , KC ; F) = {KC(T | H̄T )}−1


×
∫

c(H̄u)
[
U (ψ)− E{U (ψ) | H̄u, V � u; ξ}] dMV (u).

Let the probability limits of ξ̂ , M̂V and K̂C be ξ∗, M ∗
V and K∗

C , respectively. We impose standard
regularity conditions for Z-estimators (van der Vaart & Wellner, 1996). Roughly speaking, these
conditions restrict the flexibility and convergence rates of the nuisance estimators; for example,
we assume that�(ψ , ξ , MV , KC ; F) and ∂�(ψ , ξ , MV , KC ; F)/∂ψ belong to P-Donsker classes.
The regularity conditions ensure that

E

(∫
c(H̄u)

[
E

{(
U (ψ∗)

∂U (ψ∗)/∂ψ

) ∣∣∣∣ H̄u, V � u; ξ̂
}

− E

{(
U (ψ∗)

∂U (ψ∗)/∂ψ

) ∣∣∣∣ H̄u, V � u; ξ∗
}]

d{M̂V (u)− M ∗
V (u)}

)
= o(n−1/2).

Under Assumptions 3 and further assumptions in the Supplementary Material if KC is correctly
specified and if either E{U (ψ) | H̄u, V � u} or MV is correctly specified, ψ̂ solving (7) with
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Structural failure time models 131

the estimated nuisance models is still consistent and asymptotically normal, with the influence
function �̃(ψ∗, ξ∗, M ∗

V , K∗
C ; F).

We can estimate the variance of ψ̂ either by the empirical variance of the estimated influ-
ence function or by resampling. If all the nuisance models, ξ , MV and KC , are correctly
specified, we obtain an analytical expression for �̃(ψ∗, ξ∗, M ∗

V , K∗
C ; F). We can then estimate

�̃(ψ∗, ξ∗, M ∗
V , K∗

C ; F) by plugging in estimates ofψ∗, ξ∗, M ∗
V , K∗

C and the required expectations,
denoted by �̂(ψ̂ , ξ̂ , M̂V , K̂C ; F). Then the estimated variance of n1/2(ψ̂ − ψ∗) is

Pn
{
�̂(ψ̂ , ξ̂ , M̂V , K̂C ; F)�̂(ψ̂ , ξ̂ , M̂V , K̂C ; F)T

}
. (8)

However, when one of ξ and MV is correctly specified, but not both, characterizing
�̃(ψ∗, ξ∗, M ∗

V , K∗
C ; F) is difficult, and hence approximating (8) is no longer feasible. To avoid this

technical difficulty, we recommend estimating the asymptotic variance by resampling methods
such as the bootstrap and jackknife (Efron, 1979; Efron & Stein, 1981). In this case, the resampling
works because ψ̂ is regular and asymptotically normal.

5. Simulation study

We evaluate the finite-sample performance of the proposed estimator on simulated datasets.
We generate U from Ex(0.2) and generate the covariate process (X0, Lt) had the treatment always
been withheld. We generate X0 from Ber(0.55). To generate Lt , we first generate a 1 × 3 row
vector following a multivariate normal distribution with mean 0.2U − 4 and covariance 0.7|i−j|
for i, j = 1, 2, 3. This vector represents the values of Lt at times t1 = 0, t2 = 5 and t3 = 10. We
assume that the time-dependent variable remains constant between measurements. We generate
the time until treatment discontinuation, V1, according to a proportional hazards model λV (t |
X0, L̄t) = 0.15 exp(0.15X0 + 0.15Lt). This determines the treatment process At , i.e., At = 1 if
t � V1 and At = 0 if t > V1. The observed time-dependent covariate process is Lt if t � V1 and
Lt + log(t − V1) if t > V1, to reflect the fact that the covariate process is affected after treatment
discontinuation. Let the history of covariates and treatment up to time t be H̄t = (X0, L̄t , Āt−). We
generate T according to U ∼ ∫ T

0 exp(ψ∗Au) du as follows. Let T1 = U exp(−ψ∗). If T1 < V1,
then T = T1; otherwise T = U +V1 −V1 exp(ψ∗). Under the above data-generating mechanism,
the potential failure time under āT also follows a Cox marginal structural model with the hazard
rate at u, λ0(u) exp(ψ∗Au) (Young et al., 2010). We generate C according to a proportional
hazards model with λC(t | X0, L̄t , C � t) = 0.025 exp(0.15X0 + 0.15Lt). Let X = min(T , C).
If T < C, then 
 = 1; otherwise 
 = 0. Finally, let V = min(V1, T , C) and let � be the
indicator of treatment discontinuation before the time to failure or censoring; i.e., if V = V1,
then � = 1; otherwise � = 0. The observed data are (Xi,
i, Vi,�i, H̄Xi , i) for i = 1, . . . , n. We
considerψ∗ ∈ {−0.5, 0, 0.5}. From our data-generating mechanism, 50–58% of observations are
censored, and 70–80% of treatment discontinuation times are observed before the time to failure
or censoring.

We consider the following estimators of ψ∗: (i) a naive estimator ψ̂naive obtained by solving
(4) with T in U (ψ) = ∫ T

0 exp(ψ∗Au) du replaced by X ; (ii) an inverse probability of weighting
estimator ψ̂msm for the Cox marginal structural model in continuous time (Yang et al., 2018);
(iii) a simple inverse probability of censoring weighting estimator ψ̂ipcw obtained by solving
Pn[{K̂C(T | H̄T )}−1


∫
c(H̄u)U (ψ) dMV (u)] = 0; and (iv) the proposed doubly robust estimator

ψ̂dr obtained by solving (7) with E{U (ψ) | H̄u, V � u} reduced to a tractable function E{U (ψ) |
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Table 1. Simulation results: bias, standard deviation, root mean squared error, and coverage
rate of 95% confidence intervals for exp(ψ∗) over 1000 simulated datasets

ψ∗ = −0.5 ψ∗ = 0 ψ∗ = 0.5
Bias SE CR Bias SE CR Bias SE CR

ψ̂naive
c 0.06 0.048 76.8 0.02 0.069 95.6 −0.06 0.112 92.4
copt 0.05 0.043 78.4 0.02 0.063 95.0 −0.05 0.107 91.8

ψ̂ipcw
c −0.01 0.089 95.2 −0.02 0.123 97.2 −0.02 0.191 95.6

Scenario 1 copt −0.01 0.070 96.4 −0.02 0.095 97.0 −0.02 0.148 95.6

ψ̂dr
c 0.00 0.053 95.2 −0.00 0.076 96.8 −0.01 0.125 95.4
copt 0.00 0.049 95.4 −0.00 0.071 96.0 −0.00 0.118 94.8

ψ̂msm — −0.00 0.050 95.8 0.00 0.081 96.4 0.00 0.148 95.2
ψ̂disc — −0.37 0.041 0.0 −0.61 0.055 0.0 −1.01 0.092 0.6

ψ̂naive
c 0.22 0.065 4.8 0.24 0.097 30.4 0.26 0.164 66.0
copt 0.22 0.066 5.4 0.24 0.097 31.8 0.26 0.163 68.2

ψ̂ipcw
c 0.16 0.098 62.4 0.23 0.140 64.4 0.33 0.239 79.6

Scenario 2 copt 0.16 0.098 62.2 0.23 0.140 65.8 0.33 0.234 79.4

ψ̂dr
c 0.01 0.048 95.0 0.00 0.070 96.4 0.00 0.115 95.4
copt 0.01 0.048 95.4 0.00 0.070 96.6 0.00 0.115 95.2

ψ̂msm — 0.13 0.069 54.4 −0.40 0.051 57.6 0.36 0.217 75.6
ψ̂disc — −0.25 0.035 0.0 0.22 0.118 0.0 −0.72 0.092 1.0

Scenario 1, the treatment discontinuation model is correctly specified; Scenario 2, the treatment discontinuation
model is misspecified; SE, standard error; CR, coverage rate of 95% confidence intervals.

H̄0}. Note that ψ̂ipcw is the special case of ψ̂dr with E{U (ψ) | H̄u, V � u} misspecified as
zero. Moreover, to demonstrate the effect of data discretization, we include the discrete-time
g-estimator ψ̂disc applied to the pre-processed data with grid size 51. The details for ψ̂msm and
ψ̂disc are presented in the Supplementary Material. For estimators requiring a choice of c(H̄u),
we compare the simple choice c(H̄u) = Au− and the optimal choice copt(H̄u) in (5), where
E{∂U̇u(ψ)/∂ψ | H̄u, V = u} = E(V −u | H̄u, V � u). We approximate E(V −u | H̄u, V � u) by
the mean of the exponential distribution with rate λ̂V (u) and assume that var{U (ψ) | H̄u, V � u}
is a constant, which is common practice in the generalized estimating equation literature. We
approximate E{U (ψ) | H̄u, V � u} by regressing K̂C(T | H̄T )

−1
U (ψ) on (X0, L0). To evaluate
the double robustness, we consider two specifications for the hazard of treatment discontinuation:
(a) the true proportional hazards model, and (b) a misspecified Kaplan–Meier model (Kaplan &
Meier, 1958). In calculating the censoring weights, we specify the censoring model as the true
proportional hazards model. We assess the impact of misspecification of the censoring model
in the Supplementary Material. For standard errors, we consider the delete-a-group jackknife
variance estimator with 500 groups (Kott, 1998).

Table 1 summarizes the simulation results with n = 1000. The naive estimator ψ̂naive is
biased, and its bias becomes larger as |ψ∗| increases. In scenario 1, where the treatment process
model is correctly specified, ψ̂ipcw, ψ̂dr and ψ̂msm show small biases across all scenarios
with different values of ψ∗. Note that ψ̂ipcw is a special case of the proposed estimator with
E{U (ψ) | H̄u, V � u} misspecified as zero. This demonstrates that the proposed estimator is
robust to misspecification of E{U (ψ) | H̄u, V � u} given that the treatment process model is
correctly specified. If additionally E{U (ψ) | H̄u, V � u} is well approximated, ψ̂dr achieves
gains in estimation efficiency over ψ̂ipcw. Moreover, ψ̂dr with copt is more efficient than with c. In
scenario 1, ψ̂dr has smaller standard errors than ψ̂msm. This is because ψ̂msm involves weighting
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Table 2. Results of the effect of oral anticoagulant therapy on the
composite outcome; exp(ψ∗) is the causal estimand

Est SE CI p-value

Naive method 0.68 0.176 (0.34, 1.03) 0.07
Proposed method 0.64 0.179 (0.29, 0.99) 0.04

Est, estimate of exp(ψ∗); SE, standard error; CI, 95% confidence interval.

directly by the inverse of the propensity score, whereas ψ̂dr utilizes the propensity score not in the
form of inverse weights and therefore avoids the possibly large variability due to weighting. In
scenario 2, where the treatment process model is misspecified, ψ̂ipcw and ψ̂msm show large biases;
however, ψ̂dr still has small biases, confirming its double robustness. The jackknife variance esti-
mation performs well for ψ̂dr and produces coverage rates close to the nominal level. Large biases
in the discrete-time g-estimator ψ̂disc illustrate the consequences of data pre-processing for the
subsequent analysis.

6. Application to the GARFIELD data

We analyse data from the Global Anticoagulant Registry in the FIELD with Atrial Fib-
rillation, GARFIELD-AF, registry study, an observational study of patients newly diagnosed
with atrial fibrillation; see the study website at http://www.garfieldregistry.org/
for details. Our analysis includes 22 811 patients who were enrolled between April 2013 and
August 2016, and received oral anticoagulant therapy for stroke prevention. The goal is to
investigate the effect of discontinuation of oral anticoagulant therapy in patients with atrial
fibrillation. The primary endpoint is the composite clinical outcome, including death, non-
haemorrhagic stroke, systemic embolism and myocardial infarction. Treatment discontinuation
at time t is defined as treatment being stopped at time t and never restarted afterwards. In
our study, 9.5% of patients discontinued oral anticoagulant therapy over a median follow-up
of 710 days with an interquartile range of (487, 731) days; 43.8% of discontinuations were
within the first four months of beginning treatment. Among patients who discontinued treat-
ment, 512 stopped the treatment for more than seven days and then went back on treatment.
We censor these patients at the time of restarting treatment. This censoring mechanism is not
likely to be completely at random, because patients with poor prognosis may be more likely to
restart. We assume a dependent censoring mechanism and use inverse probability of censoring
weighting.

To answer the clinical question of interest, we consider the structural failure time model
U (ψ∗) = ∫ T

0 exp(ψ∗Au) du. Under this model, if a patient had been on treatment continuously,
T = U (ψ∗) exp(−ψ∗), so U (ψ∗){exp(−ψ∗)− 1} is the time gained or lost while on treatment.
We focus on estimating the multiplicative factor exp(ψ∗). Table 2 reports the results obtained
from using the naive estimator and the proposed doubly robust estimator as described in § 5.
The details of the nuisance models are given in the Supplementary Material. Although the effect
sizes may be a little different between the naive analysis and the proposed analysis, qualitatively
they all suggest that treatment is beneficial for prolonging the time to clinical events, and thus
that treatment discontinuation is harmful. If a patient had been on treatment continuously, the
time to clinical outcomes would have been exp(−ψ̂) = 1/0.64 = 1.56 times longer than if the
patient had never received treatment. Importantly, the proposed analysis is designed to address
the well-formulated question for investigating the effect of treatment discontinuation.
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7. Discussion

The proposed framework of structural failure time models can be used to adjust for time-varying
confounding and selection bias with irregularly spaced observations under the three assumptions
of no unmeasured confounders, ignorability of censoring, and positivity. As discussed previously,
the first and second assumptions hold in the scenario of adjusting for all variables that are related to
both treatment discontinuation and outcome, and all variables that are related to both censoring and
outcome. Although essential, these assumptions are not verifiable based on the observed data, but
rely on subject-matter experts’ assessments of their plausibility. Future work will investigate the
sensitivity to these assumptions using the methods of Yang & Lok (2017). The third assumption is
that all subjects have nonzero probabilities of staying on study before the failure time; it requires
the absence of predictors that are deterministic in relation to censoring and outcome. Practitioners
should carefully examine the question at hand to eliminate deterministic violations of positivity.

Our framework can also be extended in the following directions. First, the proposed doubly
robust estimator still relies on a correct specification of the censoring mechanism. If the censoring
model is misspecified, the proposed estimator may be biased; see the additional simulation results
in the Supplementary Material. It would be interesting to construct an improved estimator that is
multiply robust in the sense that it is consistent in the union of the three models (Molina et al.,
2017). Second, it is critical to derive test procedures for evaluating the goodness-of-fit of the
treatment effect model (Yang & Lok, 2016).
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