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Abstract

- Robert P. Behringer?

Jamming can occur in frictional granular materials undergoing shear at a fixed packing fraction, ¢, within a range below
the isotropic jamming point, with the amount of strain required to induce jamming, y, increasing with decreasing ¢p. We are
interested in how the shear jamming process is affected when the system dilates as it is sheared. We conduct experiments
to shear a 2D granular system while continuously increasing the system volume. Below a certain dilation rate, the system
is still able to jam for ¢ smaller than the initial ¢,. We measure y for different dilation rates and initial packing fractions by
monitoring the coordination number of non-rattlers and the system pressure. We find that y is the same as the y required to

jam a system with fixed packing fraction ¢ via pure shear.
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1 Introduction

Granular materials are among the most commonplace
materials in the world, being collections of disordered,
solid particles that are ubiquitous in nature and indus-
try [1]. A granular material exhibits a rich set of complex
behaviors, including coexistence of gas, fluid and solid
phases [1-3]. The transition from fluid-like to solid-like
granular states has attracted much scientific attention in
recent years [4—6], as the nature of this “jamming” tran-
sition is an essential question in a variety of contexts,
ranging from foams [7] to glasses [8], from colloids [9]
to suspensions [10-12], and from polymer melts [13] to
geo-hazards [14, 15].
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For a granular system undergoing isotropic compres-
sion, the jamming transition happens at a critical packing
fraction, ¢, [4, 16]. Using photoelastic techniques, the
internal force chain network that carries the stresses in
the solid phase can be visualized in studies of monolay-
ers of plastic disks [17]. Under compression, an isotropic
force network is formed and short range spatial correla-
tions are found in all directions. Jamming, in this situation,
is induced by unavoidable formation of contacts between
particles as the volume is decreased.

A jamming transition can also occur when a system is
subject to pure shear [5]. In this case, the force network
in the jammed system is anisotropic, both in the angular
distribution of contact forces and in the spatial correlations
of force magnitudes. A system usually enters the fragile
regime before reaching the fully shear jammed state. In
the fragile regime, the force network percolates in only
one direction [18], while in the fully shear jammed state it
percolates in both directions. The lowest packing fraction
at which shear jammed states can form is designated ¢y.
For higher packing fractions, full shear jamming occurs
at sufficiently large shear strains. The transitions between
unjammed, fragile, and shear jammed states can be iden-
tified through measurements of both the system pressure
and the numbers of contacts between particles [19, 20].

In this work, we describe experiments that probe the
structure of jammed states formed in a granular system that
is dilating while being sheared. We conduct experiments
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on a layer of photoelastic disks with a novel biaxial experi-
mental apparatus that allows us to independently impose
desired shear and dilation rates, while basal friction
effects are eliminated by floating the particles in a density
matched solution [6]. We deform a rectangular sample of
particles into any desired rectangular shape, compressing
in one direction while expanding in the other. For differ-
ent dilation rates, we determine the minimum shear strain
required to form fragile or shear jammed states. We find
no essential difference in the critical strains associated
with different shear-dilating protocols. Furthermore, sys-
tem pressures (as measured by the G? technique [21]), as
well as the average coordination numbers of non-rattlers,
Zyg, collapses when plotted as a function of the non-rattler
fraction, fyg.

2 Experimental techniques
2.1 Experimental apparatus

The 2D biaxial apparatus consists of a horizontal rectan-
gular container. The locations of the four container walls
are individually controlled by stepper motors that can move
them forward and backward, allowing the imposition of
various types of deformation, including pure shear, uni-
axial compression and biaxial compression. An illustration
of the biaxial setup is shown in Fig. 1a. For a typical pure
shear experiment, we compress the system in one direction
(moving two opposing walls in the directions of red arrows
in Fig. 1a) and dilate it in the other (moving the other two
opposing walls in the directions of blue arrows in Fig. 1a)
while maintaining a constant total area. The granular sys-
tem in our experiments consists of bidiperse photoelastic
disks (PSM-4 from Vishay Inc.) of diameters d = 16 mm
and 12.8 mm with a number ratio 1:1, which avoids crystal-
lization of the packing. All disks have the same thickness
6.35 mm, Young’s modulus 4 MPa, and friction coefficient
u =~ 1.05. The total number of particles used varies from 8§90
to 940, resulting in the initial packing fractions ¢, between
77.55 and 81.9%. To initialize each run, we arrange the par-
ticles randomly to generate a disordered packing with no
inter-particle forces.

As Fig. 1b shows, the particles are floating in a density-
matched solution to remove friction between particles and
the container base [6]. With a panel LED light source on
the bottom, particles under stress will show intensity vari-
ations when viewed with crossed circular polarizers: one
circular polarizer just above the light panel and the other
just below the lens of a high resolution camera (Canon 6D,
5472 x 3648 pixel®). The top polarizer can be moved by a
stepper motor in and out of the field of view of the camera.
The camera records two images at each deformation step,
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one with and one without the second polarizer. The latter,
referred as a normal or unpolarized image, allows us to track
the particle positions. The former, referred as a polarized
image, shows the photoelastic response of all the particles,
revealing particle-scale forces and contacts. The pressure is
determined by computing the mean squared gradient of the
intensity of the polarized image, ( G?} [21, 22]. Two parti-
cles are deemed to be in contact when the distance between
these two particles is sufficiently small and <G2> of the area
around the potential contact is reliably determined to be
above the noise level.

2.2 Experimental protocol

The protocol for shear with dilation is based on that for
pure shear. Starting from an initial packing fraction ¢,
we prepare the system with a square “box” of side width
Iy = 435 mm. A certain number of disks are placed randomly
without contact forces. For the case of pure shear, we com-
press the system in one direction and dilate it in the other
direction, keeping the total area of the box constant. The
pure shear strain is defined as y, = 4l/[,, where Al is the
total displacement in the compression direction. To shear
the system with dilation, the dilation step size is chosen to
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Fig.1 a Schematic of 2D biaxial experimental apparatus. The four
boundaries are driven by step motors to generate different protocols.
For instance, we compress the system in one direction and dilate in
another to shear the system. b A vertical view of the optical experi-
ment setups. ¢ Sketch of shear with dilation. Where, [, is the initial
length for each wall and becomes /. in the compression direction and
I, in the dilation direction, A, is the initial area and becomes A, at
step n, 6 is the dilation rate. d The shear protocol for shear with dila-
tion. ¢ is the real packing fraction at some shear strain, and ¢, is the
initial packing fraction. The vertical axis is the ratio between them.
The dilation rate varies from 0 to 0.07% indicated by different colors
here (color figure online)
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be larger than that required for pure shear so that the box
area increases after the deformation. To realize a gradu-
ally dilating process, we increase the area step by step with
a constant expansion ratio. For this type of deformation,
shown in Fig. 1c, we first define the dilation rate, §, which
is a constant for each step via the relation A, = (1 + 6)"A,,
where A, and A, are the box areas at step O (i.e. the initial
step) and step n, respectively. The total deformation consists
of a pure sheary = 1 — (1 + 8)™/? x (1 — y,) coupled with
an isotropic expansion characterized by 6.

When 6 = 0, the protocol corresponds to pure shear and
we have y = y,. The ratio between ¢ at any given y and the
initial value ¢, decreases with y as shown in Fig. 1d for
different choices of 6. The maximum magnitude of shear
strain achievable with our apparatus is y,,,, = 17.55%. We
have performed experiments at 8 values of 6’s between 0
and 0.07%. For each combination of ¢, and 6 we collect data
from three runs.

3 Results and discussions
3.1 System pressure and coordination number

As shown previously [5, 19], mechanically stable force
and contact networks form and evolve during the process
of shear jamming. Associated with these force and contact
networks are increases of system pressure and coordination
number (the average number contacts per particle). We study
these quantities for various dilation rates 6 > 0 beginning
with a given initial packing fraction. Figure 2 shows the
results obtained for 8 values of § and a representative initial
packing fraction ¢, = 80.16%.

The system pressure can be tracked by computing the
average of G? over all particles. At the beginning of each run,
y = 0, we observe a noise level of (G)* ~ 0.26. (G)? starts
to increase rapidly after y reaches a threshold value for each
run, as shown in Fig. 2a. The value of y where <G2> starts to
increase appears to depend on 6 and will be discussed further
in Sect. 3.2. The subsequent behavior of <G2> as a func-
tion of y depends on é. For small 6 < 0.03%, <G2> increases
monotonically with y, as seen in the blue and cyan curves
in Fig. 2a, until particles undergo out-of-plane buckling, at
which point the run is terminated. For § > 0.05%, on the
other hand, <G2> first increases with y, then decreases, as
seen in the red curves in Fig. 2a. The latter behavior may be
expected for all 6 if buckling could be avoided; at sufficiently
high dilations, the packing cannot be jammed (unless the
packing fraction becomes strongly inhomogeneous).

Next we consider some properties of the evolving con-
tact networks as a function of shear strain y. We measure
Zyg, the average coordination number per particle excluding
rattlers; i.e., excluding the contributions from particles that

have fewer than two contacts. Our definition of Z,; counts
all of the contacts of the remaining particles, including con-
tacts with the excluded particles. This definition is moti-
vated by experimental considerations. Contacts are identi-
fied by detecting photoelastic responses indicative of contact
forces [17]. Because the particles are floating in a solution,
there are no basal friction forces, and any particle that is
bearing force should always have more than one contact.
Rattlers are typically particles with no identified contacts.
However, there may be a few particles with only one contact
with an apparent force strong enough to be detected by our
algorithm, which may be either a false positive or be due to
the presence of other contacts that were not detected. We
note that the theoretical value of this measured Zy; at the
shear jamming transition is not precisely known due both to
the experimental detection threshold and to the possibility
of having portions of the stress network that are not truly
rigid [23]. Nevertheless, the criterion Z;, = 3 is expected
to be close to the true value for the isostatic packings and
appears to correspond well with the onset of a change in
behavior of { G?).

The relationship between Z,; and y (Fig. 2b) shows a
behavior similar to that of <G2>. Given our definition of
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Fig.2 a <G2> versus shear strain y for different dilation rates with ini-
tial packing fraction of 80.16%. <G2> is proportional to the system
pressure. The dilation rate increases from 0 to 0.07% per step. Here,
we include three sets of experiments for each dilation rate, marked
as dots, triangles and stars. b The mean contact number of the non-
rattlers Zy, versus shear strain y for the same set of data. The granu-
lar system is jammed when Zy, > 3, which is shown as the purple
region. The gray region is corresponding to unjamming state, while
Zyg < 3 (color figure online)
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Zyg, its minimum value is 2, which occurs for our initial
unjammed packings. From there, Z,;, increases with y and
either terminates due to out-of-plane buckling of particles or
reaches a peak and then decreases. Note that when consider-
ing the numbers of constraints associated with each contact,
all the contacts detected in our experiments should be con-
sidered to be static rather than sliding [23]. Any sliding con-
tact will either disappear or convert to a static one because of
the absence of basal friction and the long waiting time (more
than 10 s) at each strain step. We define the jamming transi-
tion as occurring when Zy, reaches 3, which is the minimum
coordination number required for mechanical stability in an
isostatic 2D frictional system [5, 24]. The data for <G2> and
Zyp clearly show a transition from a stress-free, fluid-like
state to a rigid state, indicating that shear induced jamming
does happen in a frictional granular system that is dilating.

The relationship between <62 > (or Zyg) and y shows a clear
dependence on ¢, and 6. However, it has been shown that
fur» the fraction of particles that are not rattlers, is a better
control parameter than y in determining properties of force
networks [5, 19, 25]. If we plot here all the data for <G2> or
Zyg from runs with various ¢, and 6 as a function of fy, rather
than y, they collapse well into a single curve, as shown in
Fig. 3. (Because the relation between Zy, and fy, is mono-
tonic and almost linear here, plots of fy, vs y would look quite
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Fig.3 Data for <G2> of the system and mean contact number Zyg,
versus fyg, for different dilation rates and different initial packing
fractions. For either <G2> or Zyg, all data points collapse onto one
single curve, respectively. a <G2> versus fyg, with a jamming phase
transition at fy, =~ 0.83 (see text). b The mean contact number Z,,
versus fy, for the same set of data. The jamming transition point cor-
responds to Z ~ 3.0
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similar to the plots of Zy, vs y in Fig. 2.) <G2 > increases slowly
when fjy is small (fyr < 0.6) and appears to grow rapidly at
large fyg (fyr > 0.6), and Zy; increases steadily with fy,. We
find that Z, = 3 occurs for fy; ~ 0.83, which is consistent
with previous results [5, 19]. The collapse of <G2> or Zyg
data by fy strongly suggests that the geometry of the contact
and force network induced at jamming by shear with dilation
is independent of path taken in the space of pure shears and
dilation to arrive at the jamming transition.

3.2 Critical shear strain to jam the system

The above results on <G2> and Zy, establish the exist-
ence of shear induced jamming even in a system with
6 > 0. We now focus more precisely on how the dilation
rate affects the transition. Figure 4 shows the minimum
strains needed to reach fragile and shear jammed states,
7r and yg; respectively, as a function of the actual packing
fraction, ¢. y is defined as the shear strain at which <G2>
starts to grow. The system is determined to become frag-
ile when the difference of<Gz> between two consecutive
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Fig.4 a Phase boundary yp, which is extracted from the (Gz) data.
The y, for different initial packing fraction and dilation rate is fit-
ted by Eq. 3 as the dash dot line. Inset: zoomed-in part of the data
points with an initial packing fraction of 81.03%. b Phase bound-
ary yp, which comes from the Z,, data. The yg, for different initial
packing fraction and dilation rate is fitted by Eq. 3 as the solid line.
Inset: zoomed-in part of the data points with an initial packing frac-
tion of 81.03%. Different colored lines in (a) and (b) indicate different
paths from certain initial packing fraction with different dilation rates,
which are indicated by the color map in (b) (color figure online)
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deformation steps first exceeds a certain threshold, which
we choose to be 4 =0.5 in the arbitrary units used in
Fig. 3. yg; is the strain at which the coordination num-
ber just crosses Zyp = Z,,,, where Z;, is the coordination

number at isotropic jamming, taken here to be 3, as dis-
cussed in Sect. 3.1. These criteria can be expressed as

yr(¢) = min{y({G*) —(G*), _ 24:¢)}; 1)
vss(#) = min{y(Z,2Z;,:$)}, )
where (G?) is (G?) at the n-th step of deformation.

Figure 4 shows y, and y; as functions of ¢ for runs begin-
ning with different ¢,’s and various values of 6. For each ¢,
data were collected from three independent runs. Colored
plus signs represent y, and colored dots represent yg;. Due
to the limited maximum y allowed by the apparatus, the low-
est ¢, for which y, and yg; can be reached is approximately
78.4%. For each ¢, tested, results for different § are shown
in different colors, with dashed lines drawn as guides to the
eye showing y as a function of ¢ for the given run. The
inset in Fig. 4 shows all of the data for the specific choice
¢y = 81.03%. Clearly, both y, and yg; increase with 6.

It appears that y, and y; depend only on ¢; they do not
depend on the path taken in the y-¢ plane to reach jamming.
We can fit all the data with a function of the following form:

¢, —¢

¢ 3
Py ©

rx =75

where X may be F or SJ. We find for the fragile phase
boundary ¢; =83.1+0.7%, ¢3=774+03%, and
yg =52+ 1.0%; and for the jamming phase boundary
¢; =83.4+1.0%, pg =77.5+0.3%, and ySCJ =5.8+1.2%.
These fits are shown in Fig. 4, by the black solid line for yg,
and the black dashed line for y,. We also fit the data with for-
mula (7) in Ref. [26], which shows exactly the same trend—in
the range of data available—but differs functionally/asymptot-
ically in the limits outside our data-range. The consistency of
the fits with data from different dilation rates indicate that the
actual packing fraction, rather than the initial packing fraction,
controls the shear strain needed to transit from unjammed to
fragile states, or from fragile to shear jammed states. While
higher dilation rates do delay the transitions from a given ini-
tial state, they appear to be consistent with a single phase
boundary curve in ¢-y plane for each transition.

4 Conclusions

We have experimentally studied a 2D granular system under
a type of deformation combining pure shear and dilation,
referred as shear with dilation. Jamming of the granular

system still occurs under this type of deformation for a
finite range of packing fractions below the isotropic jamming
point. For small dilation rates 6, the system pressure, <G2>,
and coordination number, Z,, increase with y, and when the
system pressure is high enough the particles tend to buckle
out of the plane. For large 6, the system may never jam or
may pass through a jammed phase and later relax back to
an unjammed state. Our results suggest that the onset shear
strains needed for passing from unjammed to fragile states
or from fragile to jammed states depend only on the cur-
rent packing fraction, regardless of the dilation rate, which
we interpret to mean that the structure of the shear jammed
state does not depend on the manner in which the jamming
transition is approached. Finally, we find that plots of ( G2>
(or Zyg) as a function of non-rattler fraction collapse onto
a single curve for all initial packing fractions and dilation
rates tested.
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