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Abstract
Jamming can occur in frictional granular materials undergoing shear at a fixed packing fraction, � , within a range below 
the isotropic jamming point, with the amount of strain required to induce jamming, � , increasing with decreasing � . We are 
interested in how the shear jamming process is affected when the system dilates as it is sheared. We conduct experiments 
to shear a 2D granular system while continuously increasing the system volume. Below a certain dilation rate, the system 
is still able to jam for � smaller than the initial �

0
 . We measure � for different dilation rates and initial packing fractions by 

monitoring the coordination number of non-rattlers and the system pressure. We find that � is the same as the � required to 
jam a system with fixed packing fraction � via pure shear.
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1  Introduction

Granular materials are among the most commonplace 
materials in the world, being collections of disordered, 
solid particles that are ubiquitous in nature and indus-
try [1]. A granular material exhibits a rich set of complex 
behaviors, including coexistence of gas, fluid and solid 
phases [1–3]. The transition from fluid-like to solid-like 
granular states has attracted much scientific attention in 
recent years [4–6], as the nature of this “jamming” tran-
sition is an essential question in a variety of contexts, 
ranging from foams [7] to glasses [8], from colloids [9] 
to suspensions [10–12], and from polymer melts [13] to 
geo-hazards [14, 15].

For a granular system undergoing isotropic compres-
sion, the jamming transition happens at a critical packing 
fraction, �J  [4, 16]. Using photoelastic techniques, the 
internal force chain network that carries the stresses in 
the solid phase can be visualized in studies of monolay-
ers of plastic disks [17]. Under compression, an isotropic 
force network is formed and short range spatial correla-
tions are found in all directions. Jamming, in this situation, 
is induced by unavoidable formation of contacts between 
particles as the volume is decreased.

A jamming transition can also occur when a system is 
subject to pure shear [5]. In this case, the force network 
in the jammed system is anisotropic, both in the angular 
distribution of contact forces and in the spatial correlations 
of force magnitudes. A system usually enters the fragile 
regime before reaching the fully shear jammed state. In 
the fragile regime, the force network percolates in only 
one direction [18], while in the fully shear jammed state it 
percolates in both directions. The lowest packing fraction 
at which shear jammed states can form is designated �S . 
For higher packing fractions, full shear jamming occurs 
at sufficiently large shear strains. The transitions between 
unjammed, fragile, and shear jammed states can be iden-
tified through measurements of both the system pressure 
and the numbers of contacts between particles [19, 20].

In this work, we describe experiments that probe the 
structure of jammed states formed in a granular system that 
is dilating while being sheared. We conduct experiments 
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on a layer of photoelastic disks with a novel biaxial experi-
mental apparatus that allows us to independently impose 
desired shear and dilation rates, while basal friction 
effects are eliminated by floating the particles in a density 
matched solution [6]. We deform a rectangular sample of 
particles into any desired rectangular shape, compressing 
in one direction while expanding in the other. For differ-
ent dilation rates, we determine the minimum shear strain 
required to form fragile or shear jammed states. We find 
no essential difference in the critical strains associated 
with different shear-dilating protocols. Furthermore, sys-
tem pressures (as measured by the G2 technique [21]), as 
well as the average coordination numbers of non-rattlers, 
ZNR , collapses when plotted as a function of the non-rattler 
fraction, fNR.

2 � Experimental techniques

2.1 � Experimental apparatus

The 2D biaxial apparatus consists of a horizontal rectan-
gular container. The locations of the four container walls 
are individually controlled by stepper motors that can move 
them forward and backward, allowing the imposition of 
various types of deformation, including pure shear, uni-
axial compression and biaxial compression. An illustration 
of the biaxial setup is shown in Fig. 1a. For a typical pure 
shear experiment, we compress the system in one direction 
(moving two opposing walls in the directions of red arrows 
in Fig. 1a) and dilate it in the other (moving the other two 
opposing walls in the directions of blue arrows in Fig. 1a) 
while maintaining a constant total area. The granular sys-
tem in our experiments consists of bidiperse photoelastic 
disks (PSM-4 from Vishay Inc.) of diameters d = 16mm 
and 12.8mm with a number ratio 1:1, which avoids crystal-
lization of the packing. All disks have the same thickness 
6.35mm , Young’s modulus 4MPa , and friction coefficient 
� ≈ 1.05 . The total number of particles used varies from 890 
to 940, resulting in the initial packing fractions �0 between 
77.55 and 81.9% . To initialize each run, we arrange the par-
ticles randomly to generate a disordered packing with no 
inter-particle forces.

As Fig. 1b shows, the particles are floating in a density-
matched solution to remove friction between particles and 
the container base [6]. With a panel LED light source on 
the bottom, particles under stress will show intensity vari-
ations when viewed with crossed circular polarizers: one 
circular polarizer just above the light panel and the other 
just below the lens of a high resolution camera (Canon 6D, 
5472 × 3648 pixel2 ). The top polarizer can be moved by a 
stepper motor in and out of the field of view of the camera. 
The camera records two images at each deformation step, 

one with and one without the second polarizer. The latter, 
referred as a normal or unpolarized image, allows us to track 
the particle positions. The former, referred as a polarized 
image, shows the photoelastic response of all the particles, 
revealing particle-scale forces and contacts. The pressure is 
determined by computing the mean squared gradient of the 
intensity of the polarized image, 

⟨
G2

⟩
  [21, 22]. Two parti-

cles are deemed to be in contact when the distance between 
these two particles is sufficiently small and 

⟨
G2

⟩
 of the area 

around the potential contact is reliably determined to be 
above the noise level.

2.2 � Experimental protocol

The protocol for shear with dilation is based on that for 
pure shear. Starting from an initial packing fraction �0 , 
we prepare the system with a square “box” of side width 
l0 = 435mm . A certain number of disks are placed randomly 
without contact forces. For the case of pure shear, we com-
press the system in one direction and dilate it in the other 
direction, keeping the total area of the box constant. The 
pure shear strain is defined as �0 = �l∕l0 , where �l is the 
total displacement in the compression direction. To shear 
the system with dilation, the dilation step size is chosen to 

Fig. 1   a Schematic of 2D biaxial experimental apparatus. The four 
boundaries are driven by step motors to generate different protocols. 
For instance, we compress the system in one direction and dilate in 
another to shear the system. b A vertical view of the optical experi-
ment setups. c Sketch of shear with dilation. Where, l

0
 is the initial 

length for each wall and becomes lc in the compression direction and 
ld in the dilation direction, A

0
 is the initial area and becomes An at 

step n, � is the dilation rate. d The shear protocol for shear with dila-
tion. � is the real packing fraction at some shear strain, and �

0
 is the 

initial packing fraction. The vertical axis is the ratio between them. 
The dilation rate varies from 0 to 0.07% indicated by different colors 
here (color figure online)
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be larger than that required for pure shear so that the box 
area increases after the deformation. To realize a gradu-
ally dilating process, we increase the area step by step with 
a constant expansion ratio. For this type of deformation, 
shown in Fig. 1c, we first define the dilation rate, � , which 
is a constant for each step via the relation An = (1 + �)nA0 , 
where A0 and An are the box areas at step 0 (i.e. the initial 
step) and step n, respectively. The total deformation consists 
of a pure shear � = 1 − (1 + �)(−n∕2) × (1 − �0) coupled with 
an isotropic expansion characterized by �.

When � = 0 , the protocol corresponds to pure shear and 
we have � = �0 . The ratio between � at any given � and the 
initial value �0 decreases with � as shown in Fig. 1d for 
different choices of � . The maximum magnitude of shear 
strain achievable with our apparatus is �max = 17.55% . We 
have performed experiments at 8 values of � ’s between 0 
and 0.07% . For each combination of �0 and � we collect data 
from three runs.

3 � Results and discussions

3.1 � System pressure and coordination number

As shown previously  [5, 19], mechanically stable force 
and contact networks form and evolve during the process 
of shear jamming. Associated with these force and contact 
networks are increases of system pressure and coordination 
number (the average number contacts per particle). We study 
these quantities for various dilation rates 𝛿 > 0 beginning 
with a given initial packing fraction. Figure 2 shows the 
results obtained for 8 values of � and a representative initial 
packing fraction �0 = 80.16%.

The system pressure can be tracked by computing the 
average of G2 over all particles. At the beginning of each run, 
� = 0 , we observe a noise level of ⟨G⟩2 ∼ 0.26 . ⟨G⟩2 starts 
to increase rapidly after � reaches a threshold value for each 
run, as shown in Fig. 2a. The value of � where 

⟨
G2

⟩
 starts to 

increase appears to depend on � and will be discussed further 
in Sect. 3.2. The subsequent behavior of 

⟨
G2

⟩
 as a func-

tion of � depends on � . For small 𝛿 < 0.03% , 
⟨
G2

⟩
 increases 

monotonically with � , as seen in the blue and cyan curves 
in Fig. 2a, until particles undergo out-of-plane buckling, at 
which point the run is terminated. For 𝛿 > 0.05% , on the 
other hand, 

⟨
G2

⟩
 first increases with � , then decreases, as 

seen in the red curves in Fig. 2a. The latter behavior may be 
expected for all � if buckling could be avoided; at sufficiently 
high dilations, the packing cannot be jammed (unless the 
packing fraction becomes strongly inhomogeneous).

Next we consider some properties of the evolving con-
tact networks as a function of shear strain � . We measure 
ZNR , the average coordination number per particle excluding 
rattlers; i.e., excluding the contributions from particles that 

have fewer than two contacts. Our definition of ZNR counts 
all of the contacts of the remaining particles, including con-
tacts with the excluded particles. This definition is moti-
vated by experimental considerations. Contacts are identi-
fied by detecting photoelastic responses indicative of contact 
forces [17]. Because the particles are floating in a solution, 
there are no basal friction forces, and any particle that is 
bearing force should always have more than one contact. 
Rattlers are typically particles with no identified contacts. 
However, there may be a few particles with only one contact 
with an apparent force strong enough to be detected by our 
algorithm, which may be either a false positive or be due to 
the presence of other contacts that were not detected. We 
note that the theoretical value of this measured ZNR at the 
shear jamming transition is not precisely known due both to 
the experimental detection threshold and to the possibility 
of having portions of the stress network that are not truly 
rigid [23]. Nevertheless, the criterion ZNR = 3 is expected 
to be close to the true value for the isostatic packings and 
appears to correspond well with the onset of a change in 
behavior of 

⟨
G2

⟩
.

The relationship between ZNR and � (Fig. 2b) shows a 
behavior similar to that of 

⟨
G2

⟩
 . Given our definition of 

(a)

(b)

Fig. 2   a 
⟨
G2

⟩
 versus shear strain � for different dilation rates with ini-

tial packing fraction of 80.16%. 
⟨
G2

⟩
 is proportional to the system 

pressure. The dilation rate increases from 0 to 0.07% per step. Here, 
we include three sets of experiments for each dilation rate, marked 
as dots, triangles and stars. b The mean contact number of the non-
rattlers ZNR versus shear strain � for the same set of data. The granu-
lar system is jammed when ZNR ≥ 3 , which is shown as the purple 
region. The gray region is corresponding to unjamming state, while 
ZNR ≤ 3 (color figure online)
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ZNR , its minimum value is 2, which occurs for our initial 
unjammed packings. From there, ZNR increases with � and 
either terminates due to out-of-plane buckling of particles or 
reaches a peak and then decreases. Note that when consider-
ing the numbers of constraints associated with each contact, 
all the contacts detected in our experiments should be con-
sidered to be static rather than sliding [23]. Any sliding con-
tact will either disappear or convert to a static one because of 
the absence of basal friction and the long waiting time (more 
than 10 s) at each strain step. We define the jamming transi-
tion as occurring when ZNR reaches 3, which is the minimum 
coordination number required for mechanical stability in an 
isostatic 2D frictional system [5, 24]. The data for 

⟨
G2

⟩
 and 

ZNR clearly show a transition from a stress-free, fluid-like 
state to a rigid state, indicating that shear induced jamming 
does happen in a frictional granular system that is dilating.

The relationship between 
⟨
G2

⟩
 (or ZNR ) and � shows a clear 

dependence on �0 and � . However, it has been shown that 
fNR , the fraction of particles that are not rattlers, is a better 
control parameter than � in determining properties of force 
networks [5, 19, 25]. If we plot here all the data for 

⟨
G2

⟩
 or 

ZNR from runs with various �0 and � as a function of fNR rather 
than � , they collapse well into a single curve, as shown in 
Fig. 3. (Because the relation between ZNR and fNR is mono-
tonic and almost linear here, plots of fNR vs � would look quite 

similar to the plots of ZNR vs � in Fig. 2.) 
⟨
G2

⟩
 increases slowly 

when fNR is small ( fNR < 0.6 ) and appears to grow rapidly at 
large fNR ( fNR > 0.6 ), and ZNR increases steadily with fNR . We 
find that ZNR ≈ 3 occurs for fNR ≈ 0.83 , which is consistent 
with previous results [5, 19]. The collapse of 

⟨
G2

⟩
 or ZNR 

data by fNR strongly suggests that the geometry of the contact 
and force network induced at jamming by shear with dilation 
is independent of path taken in the space of pure shears and 
dilation to arrive at the jamming transition.

3.2 � Critical shear strain to jam the system

The above results on 
⟨
G2

⟩
 and ZNR establish the exist-

ence of shear induced jamming even in a system with 
𝛿 > 0 . We now focus more precisely on how the dilation 
rate affects the transition. Figure 4 shows the minimum 
strains needed to reach fragile and shear jammed states, 
�F and �SJ respectively, as a function of the actual packing 
fraction, � . �F is defined as the shear strain at which 

⟨
G2

⟩
 

starts to grow. The system is determined to become frag-
ile when the difference of 

⟨
G2

⟩
 between two consecutive 

(a)

(b)

Fig. 3   Data for 
⟨
G2

⟩
 of the system and mean contact number ZNR , 

versus fNR , for different dilation rates and different initial packing 
fractions. For either 

⟨
G2

⟩
 or ZNR , all data points collapse onto one 

single curve, respectively. a 
⟨
G2

⟩
 versus fNR , with a jamming phase 

transition at fNR ≈ 0.83 (see text). b The mean contact number ZNR 
versus fNR for the same set of data. The jamming transition point cor-
responds to Z ≈ 3.0

(a)

(b)

Fig. 4   a Phase boundary �F , which is extracted from the 
⟨
G2

⟩
 data. 

The �F for different initial packing fraction and dilation rate is fit-
ted by Eq.  3 as the dash dot line. Inset: zoomed-in part of the data 
points with an initial packing fraction of 81.03% . b Phase bound-
ary �F , which comes from the ZNR data. The �SJ for different initial 
packing fraction and dilation rate is fitted by Eq. 3 as the solid line. 
Inset: zoomed-in part of the data points with an initial packing frac-
tion of 81.03% . Different colored lines in (a) and (b) indicate different 
paths from certain initial packing fraction with different dilation rates, 
which are indicated by the color map in (b) (color figure online)
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deformation steps first exceeds a certain threshold, which 
we choose to be � = 0.5 in the arbitrary units used in 
Fig. 3. �SJ is the strain at which the coordination num-
ber just crosses ZNR = Ziso , where Ziso is the coordination 
number at isotropic jamming, taken here to be 3, as dis-
cussed in Sect. 3.1. These criteria can be expressed as

where 
⟨
G2

⟩
n
 is 

⟨
G2

⟩
 at the n-th step of deformation.

Figure 4 shows �F and �SJ as functions of � for runs begin-
ning with different �0 ’s and various values of � . For each �0 , 
data were collected from three independent runs. Colored 
plus signs represent �F and colored dots represent �SJ . Due 
to the limited maximum � allowed by the apparatus, the low-
est �0 for which �F and �SJ can be reached is approximately 
78.4% . For each �0 tested, results for different � are shown 
in different colors, with dashed lines drawn as guides to the 
eye showing � as a function of � for the given run. The 
inset in Fig. 4 shows all of the data for the specific choice 
�0 = 81.03% . Clearly, both �F and �SJ increase with �.

It appears that �F and �SJ depend only on � ; they do not 
depend on the path taken in the �-� plane to reach jamming. 
We can fit all the data with a function of the following form:

where X may be F or SJ. We find for the fragile phase 
boundary �J = 83.1 ± 0.7% ,  �S = 77.4 ± 0.3% ,  and 
�C
F
= 5.2 ± 1.0% ; and for the jamming phase boundary 

�J = 83.4 ± 1.0% , �S = 77.5 ± 0.3% , and �C
SJ

= 5.8 ± 1.2% . 
These fits are shown in Fig. 4, by the black solid line for �SJ 
and the black dashed line for �F . We also fit the data with for-
mula (7) in Ref. [26], which shows exactly the same trend—in 
the range of data available—but differs functionally/asymptot-
ically in the limits outside our data-range. The consistency of 
the fits with data from different dilation rates indicate that the 
actual packing fraction, rather than the initial packing fraction, 
controls the shear strain needed to transit from unjammed to 
fragile states, or from fragile to shear jammed states. While 
higher dilation rates do delay the transitions from a given ini-
tial state, they appear to be consistent with a single phase 
boundary curve in �-� plane for each transition.

4 � Conclusions

We have experimentally studied a 2D granular system under 
a type of deformation combining pure shear and dilation, 
referred as shear with dilation. Jamming of the granular 

(1)�F(�) = min{�(
⟨
G2

⟩
n
−
⟨
G2

⟩
n−1

≥�;�)};

(2)�SJ(�) = min{�(Zn≥Ziso;�)},

(3)�X = �C
X

√
�J − �

� − �S

,

system still occurs under this type of deformation for a 
finite range of packing fractions below the isotropic jamming 
point. For small dilation rates � , the system pressure, 

⟨
G2

⟩
 , 

and coordination number, ZNR , increase with � , and when the 
system pressure is high enough the particles tend to buckle 
out of the plane. For large � , the system may never jam or 
may pass through a jammed phase and later relax back to 
an unjammed state. Our results suggest that the onset shear 
strains needed for passing from unjammed to fragile states 
or from fragile to jammed states depend only on the cur-
rent packing fraction, regardless of the dilation rate, which 
we interpret to mean that the structure of the shear jammed 
state does not depend on the manner in which the jamming 
transition is approached. Finally, we find that plots of 

⟨
G2

⟩
 

(or ZNR ) as a function of non-rattler fraction collapse onto 
a single curve for all initial packing fractions and dilation 
rates tested.
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