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ON RELATIVE ENTROPY AND GLOBAL INDEX

FENG XU

Abstract. Certain duality of relative entropy can fail for a chiral conformal
net with nontrivial representations. In this paper we quantify such statement
by defining a quantity which measures the failure of such duality, and identify
this quantity with relative entropy and global index associated with multi-
interval subfactors for a large class of conformal nets. As a consequence of such
new formulation we show that the duality holds for a large class of conformal
nets if and only if they are holomorphic. The same argument also applies to
CFT in two dimensions. In particular we show that the duality holds for a
large class of CFT in two dimensions if and only if they are modular invariant.

We also obtain various limiting properties of relative entropies which naturally
follow from our formula.

1. Introduction

In the last few years there has been an enormous amount of work by physicists
concerning entanglement entropies in QFT, motivated by the connections with
condensed matter physics, black holes, etc.; see the references in [9] for a partial
list of references. See [8], [19], [18], [20], [21], [26], [32], and [33] for a partial list of
recent mathematical work.

For a nice introduction to various aspects of entropy, we refer the reader to
Chapters 5 and 6 of [25]. We recall some definitions there. A von Neumann entropy
for a state associated with a density matrix ρ on the space of bounded operators
on a Hilbert space H is given by

S(ρ) = −Tr(ρ log ρ) .

A von Neumann entropy can be viewed as a measure of the lack of information about
a system to which one has ascribed the state. This interpretation is in accord for
instance with the facts that S(ρ) ≥ 0 and that a pure state ρ = |Ψ〉〈Ψ| has vanishing
von Neumann entropy. A related notion is that of the relative entropy. It is defined
for two density matrices ρ, ρ′ by

(1) S(ρ, ρ′) = Tr(ρ log ρ− ρ log ρ′) .

Like S(ρ), S(ρ, ρ′) is nonnegative, and can be infinite.
A generalization of the relative entropy in the context of von Neumann algebras

of arbitrary-type was found by Araki [1] and is formulated using modular theory.
Given two faithful, normal states ω, ω′ on a von Neumann algebra A in standard
form, we choose the vector representatives in the natural cone P�, called |Ω〉, |Ω′〉.
The anti-linear operator Sω,ω′a|Ω′〉 = a∗|Ω〉, a ∈ A, is closable and one considers
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again the polar decomposition of its closure S̄ω,ω′ = JΔ
1/2
ω,ω′ . Here J is the modular

conjugation of A associated with P� and Δω,ω′ = S∗
ω,ω′ S̄ω,ω′ is the relative modular

operator w.r.t. |Ω〉, |Ω′〉. Of course, if ω = ω′, then Δω = Δω,ω′ is the usual modular
operator. The relative entropy w.r.t. ω and ω′ is defined by

(2) S(ω, ω′) = 〈Ω| logΔω,ω′ Ω〉.

S is extended to positive linear functionals that are not necessarily normalized by
the formula S(λω, λ′ω′) = λS(ω, ω′) + λ log(λ/λ′), where λ, λ′ > 0 and ω, ω′ are
normalized. If ω′ is not normal, then one sets S(ω, ω′) = ∞.

One can use relative entropy to define entropy for states on general von Neumann
algebras as in (6.9) of [25], but for type III von Nemann algebras which is the type
of von Neumann algebras we will consider in this paper, this will always be infinity
(cf. Lemma 6.9 of [25]).

This paper is motivated by a very simple fact about von Neumann entropy. In
the finite dimensional case the von Neumann entropy of a pure state for a matrix
algebra M and its commutant M ′ are equal, a simple exercise in linear algebra. In
the case of conformal net A the algebra M is replaced by the algebra of observables
localized on disjoint union of intervals I denoted by A(I). The vacuum state is
a pure state. Hence one may expect that the von Neumann entropy of vacuum
state for A(I) and its commutant are equal. But for type III factors von Neumann
entropy is always infinity so this is not very interesting. By the work of [3] and [21]
one can define a regularized von Neumann entropy (cf. Definition 2.23) for A(I),
denoted by G(I), which is finite but not positive, yet verifies equations similar to
von Neumann entropy in the finite dimensional case. When the global index of A
is one (such a conformal net is also called holomorphic), A(I)′ = A(I ′), one can
therefore ask if the regularized von Neumann entropy for A(I) and A(I)′ = A(I ′)
is the same. This is what we called a duality relation.

It was observed in §3 of [21] that the regularized von Neumann entropy for
A(I) and A(I ′) are different when the global index of A is greater than one in
some cases, and it is natural to conjecture that duality relation above holds if
and only if the conformal net has global index equal to 1 (cf. Conjecture 2.24
for a precise statement). The only currently known example that verifies such
a relation is the free fermion net for which we have explicit formulas for mutual
information in general as in [21]. One of the goals of this paper is to prove that this
conjecture is true for a large class of chiral CFT (Corollary 2.34) and also CFT in
two dimensions which are modular invariant (Corollary 3.10). For an example, it
follows from Corollary 2.34 that such a duality relation is true for conformal nets
associated with any even positive unimodular lattices. The number of such lattices
grow very fast as their rank increases (for an example there are more than a billion
such lattices with rank 32, and the number grows even greater when the rank is
greater than 32 according to [12]), demonstrating the power of our new results.

To prove such results we are led to consider a quantity called deficit, which is
simply the difference DA(I) = G(I) − G(I ′), and conjecture (cf. Conjecture 2.27)

that DA(I) is equal to another quantity D̂A which is defined by using the data
associated with the inclusion A(I) ⊂ A(I ′)′ (cf. Definition 2.13). Even though
Conjecture 2.24 is the motivating problem for this paper, the more refined Conjec-
ture 2.27 is in fact one of the key new ideas in this paper. We will (cf. Proposition
2.28) see that Conjecture 2.27 implies Conjecture 2.24. Our main observation
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is Theorem 2.29 where DA(I) − D̂A(I) remain the same for a pair of conformal

nets A ⊂ B with finite index. Note that DA(I) − D̂A(I) = 0 for free fermion
nets can be verified by explicit formulas of [21]. It follows that any conformal
net A that is chain related to free fermion net Ar, i.e., there exists a sequence
of conformal nets B1, . . . ,Bn such that B1 = A,Bn = Ar and either Bi ⊂ Bi+1 or
Bi+1 ⊂ Bi, 1 ≤ i ≤ n−1, and all inclusions of finite index must verify our conjecture
(cf. Corollaries 2.30 and 3.9).

To give the reader an idea what kind of equalities are proved in this paper let us
consider a special case of Corollary 2.30 for a conformal net A that is chain related
to free fermion net Ar. Then for I = I1 ∪ I2, I

′ = J1 ∪ J2 we have

S(ω, ωJ1
⊗ ωJ2

)− S(ω, ωI1 ⊗ ωI2)−
c

6
ln η = S(ω, ωFI)−

1

2
lnμA,

where S is the relative entropy, ω is the vacuum state, c is the central charge, μA is
the global index of A, η =

rJ1
rJ2

rI1rI2
is a cross ratio, and FI : A(J1 ∪J2)

′ → A(I1 ∪ I2)

is the conditional expectation.
Previously relations among relative entropies, central charge, and global index

were given in asymptotic form in Th. 4.2 of [21]. The above relation is an identity.
The duality condition as described above holds when the righthand side is 0. As a
simple consequence we note that since S(ω, ωFI) ≥ 0 and is monotonic increasing
with respect to I, it follows immediately that

S(ω, ωJ1
⊗ ωJ2

)− S(ω, ωI1 ⊗ ωI2)−
c

6
ln η +

1

2
lnμA ≥ 0

and is monotonic increasing with respect to I, an interesting result in its own right.
For the relation between our results and physicists computation using the replica

trick, see Remark 3.11.
The rest of this paper is as follows: In section 2, after introducing relative

entropy, spatial derivatives, and index for general von Neumann algebras, we prove a
property of relative entropy in Proposition 2.4 which is motivated by our conjecture
above. Then we consider a chiral conformal net. We include two preliminary
sections on conformal nets from [2] and [11], and some results from [21] which will
be crucial for this paper. Then we first define a quantity called deficit to measure
the failure of duality and we prove our main theorem, Theorem 2.29, and deduce
its consequences. In sections 2.4 and 2.5 we apply Theorem 2.29 to study a number
of natural problems on relative entropy.

In section 3 we consider the two dimensional CFT cases while essentially all
results of section 2 hold with small modifications.

2. Preliminaries

2.1. Spatial derivatives, relative entropy, and index theory for general
subfactors. Let ψ be a normal state on a von Neumann algebra M acting on a
Hilbert space H and let φ′ be a normal faithful state on the von Neumann algebra
M ′. The Connes spatial derivative, usually denoted by dψ

dφ′ , is a positive operator

(cf. [5]). We will use the simplified notation of [25] and write dψ
dφ′ = Δ( ψ

φ′ ). If ψ is

faithful, we have

Δ(
ψ

φ′ )
itmΔ(

ψ

φ′ )
−it = σψ

t (m) ∀m ∈ M,Δ(
ψ

φ′ )
itmΔ(

ψ

φ′ )
−it = σφ′

−t(m) ∀m ∈ M ′,
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where σψ
t , σ

φ′

−t are modular automorphisms

[Dψ1 : ψ2]t := Δ(
ψ1

φ′ )
itΔ(

ψ2

φ′ )
−it

is independent of the choice of φ′ and is called a Connes cocycle.
Also, if ψ1 ≥ ψ2, then

Δ(
ψ1

φ′ ) ≥ Δ(
ψ2

φ′ ).

By page 476 of [30] this is equivalent to

1

1 + Δ(ψ1

φ′ )
≤ 1

1 + Δ(ψ2

φ′ )

as bounded operators.
Suppose M acts on a Hilbert space H and ω is a vector state given by Ω ∈ H.

The relative entropy (cf. 5.1 of [25]) in this case is S(ω, φ) = −〈lnΔ(φ/ω′)Ω,Ω〉
where ω′ is the vector state on M ′ defined by vector Ω and Δ(φ/ω′) := dφ

dω′ is a
Connes spatial derivative. When Ω is not in the support of φ we set S(ω, φ) = ∞.

A list of properties of relative entropies that will be used later can be found in
[25] (cf. Th. 5.3, Th. 5.15, and Cor. 5.12 of [25]).

Theorem 2.1. (1) Let M be a von Neumann algebra and let M1 be a von Neumann
subalgebra of M. Assume that there exists a faithful normal conditional expectation
E of Monto M1. If ψ and ω are states of M1 and M , respectively, then S(ω, ψ·E) =
S(ω �M1, ψ) + S(ω, ω · E).

(2) Let Mi be an increasing net of von Neumann subalgebras of M with the
property (

⋃
i Mi)

′′ = M . Then S(ω1 � Mi, ω2 � Mi) converges to S(ω1, ω2) where
ω1, ω2 are two normal states on M .

(3) Let ω and ω1 be two normal states on a von Neumann algebra M . If ω1 ≥ μω,
then S(ω, ω1) ≤ lnμ−1.

(4) Let ω and φ be two normal states on a von Neumann algebra M , and denote
by ω1 and φ1 the restrictions of ω and φ to a von Neumann subalgebra M1 ⊂ M ,
respectively. Then S(ω1, φ1) ≤ S(ω, φ).

(5) Let φ be a normal faithful state on M1 ⊗M2. Denote by φi the restriction of
φ to Mi, i = 1, 2. Let ψi be normal faithful states on Mi, i = 1, 2. Then

S(φ, ψ1 ⊗ ψ2) = S(φ1, ψ1) + S(φ2, ψ2) + S(φ, φ1 ⊗ φ2).

Let E : M → N be a normal faithful conditional expectation onto a subalgebra
N . E−1 : N ′ → M ′ is in general an operator valued weight which verifies the
following equation: for any pair of normal faithful weights ψ on N and φ′ on M ′

we have

Δ(
ψE

φ′ ) = Δ(
ψ

φ′E−1
).

Kosaki (cf. [13]) defined an index of E, denoted by IndE to be E−1(1). When 1 is
in the domain of E−1, we say that E has finite index. When both N,M are factors
and E has finite index, we have the (cf. [27]) Pimsner-Popa inequality

E(m) ≥ λm ∀m ∈ M+,

where λ = (IndE)−1. The action of the modular group σψE
t on N ′ ∩M is indepen-

dent of the choice of ψ. When E is the minimal conditional expectation such action
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is trivial on N ′ ∩ M . Also the compositions of minimal conditional expectations
are minimal (cf. [14]).

2.2. A result on relative entropy.

Lemma 2.2. Let A,B be positive unbounded operators on a Hilbert space such
that A ≥ B, and let Ω be a unit vector such that BΩ = cΩ where c > 0 is a
constant, 〈AΩ,Ω〉 = 1. Let mA be the spectral measure of A associated with Ω.
Then

∫∞
0

(lnλ)2dmA(λ) < ∞.

Proof. By page 476 of [30] we have that 1
1/n+A ≤ 1

1/n+B ∀n > 0 and it follows
∫ ∞

0

1

1/n+ λ
dmA(λ) ≤

1

1/n+ c
∀n > 0.

Let n go to infinity and by the monotone convergence theorem we have∫ ∞

0

1

λ
dmA(λ) ≤

1

c
∀n > 0.

We note that (lnλ)2 is bounded by a constant times 1/λ on (0, 1), and a constant
times λ on [1,∞). Since by assumption

∫∞
0

λdmA(λ) = 1, we have shown that∫ 1

0
(lnλ)2dmA(λ) < ∞,∫∞

1
(lnλ)2dmA(λ) < ∞, and the proof is complete. �

Lemma 2.3. Let A be a self-adjoint operator on a Hilbert space, and let Ω be a
vector in the domain of A. Let f(t) be a strong operator continuous function in a
neighborhood of 0 with value in the space of bounded operators such that f(0) is the
identity. Then

lim
t→0

−i

t
〈(eitA − 1)f(t)Ω,Ω〉 = 〈AΩ,Ω〉.

Proof. By assumption it is enough to check that

lim
t→0

−i

t
〈(eitA − 1)(f(t)− 1)Ω,Ω〉 = 0.

We note that

||−i

t
(eitA − 1)Ω||2 =

∫
|1
t
(eitλ − 1)|2dmA(λ) ≤

∫
|λ|2dmA(λ) < ∞,

||(f(t)− f(0))ω||,
goes to 0 as t goes to 0, and the lemma is proved. �

Proposition 2.4. Let M be a factor and let ω be a normal faithful state on M
acting on the standard representation space H, and let Ω be the corresponding vector
such that 〈mΩ,Ω〉 = ω(m) ∀m ∈ M. We shall use the same notation ω to denote
the vector state on B(H) and its restriction to subalgebras of B(H).

Let E1 : M → M1, E2 : M ′ → M2 be normal conditional expectation with finite
index, where M1,M2 are also factors. Then

S(ω, ωE1)− S(ω, ωE2) = S(ω, ωE1E
−1
2 )

and this equation can also be written as

S(ω, ωE1) + S(ω, ωE−1
2 ) = S(ω, ωE1E

−1
2 ).
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Proof. Ad (1): By definition we have

S(ω, ωE1)− S(ω, ωE2) = lim
t→0

−i

t
〈(Δ(

ωE2

ω
)it − (Δ(

ωE1

ω′ )it)Ω,Ω〉.

We note that

Δ(
ωE1

ω′ )itΩ = Δ(
ωE1

ω′ )itΔ(
ω

ω′ )
−itΩ = [DωE1 : Dω]tΩ,

Δ(
ωE1

ωE2
)itΔ(

ωE2

ω
)it = Δ(

ωE1

ω′ )itΔ(
ω

ω′ )
−it.

It follows that

S(ω, ωE1)− S(ω, ωE2) = lim
t→0

−i

t
〈(Δ(

ωE1

ωE2
)−it − 1)Δ(

ωE1

ω′ )itΩ,Ω〉.

Note that Δ(ωE1

ωE2
) = Δ(

ωE1E
−1
2

ω′ ) ≥ μΔ( ω
ω′ ) for some μ > 0. Here the spatial

derivative Δ( ω
ω′ ) is determined by state ω on M ′

2 and M2, respectively.
By Lemmas 2.2 and 2.3 we have proved the first equation. If we apply this

equation with E1 equal to identity we get

S(ω, ω)− S(ω, ωE2) = S(ω, ωE−1
2 )

and the second equation follows. �

It is convenient to formulate the second equation of the above proposition in the
following form.

Corollary 2.5. Let N3 ⊂ N2 ⊂ N1 be factors on a Hilbert space H and let ω be
a vector state on B(H) given by a vector Ω ∈ H. Let Fi, Ni → Ni+1, i = 1, 2 be
a conditional expectation with finite index. Assume that Ω is cyclic and separating
for N2. Then

S(ω, ωF2F1) = S(ω, ωF2) + S(ω, ωF1).

Proof. This is just a reformulation of the second equation of Proposition 2.4 by
noting that we can rename N1 = M ′

2, N2 = M,N3 = M1, F1 = (IndE2)
−1E−1

2 , F2 =
E1. �

Remark 2.6. Under the conditions of the above corollary. S(ω, ωF ) is additive
under compositions of conditional expectations, just like ln IndE. But of course
S(ω, ωF ) also depends on the state ω. This fact plays an important role in the
proof of Theorem 2.29 and Theorem 2.39 in the following.

2.3. Chiral CFT case.

2.3.1. Graded nets. This section is contained in [2] and [11]. We refer to [2] and
[11] for more details and proofs.

We shall denote by Möb the Möbius group, which is isomorphic to SL(2,R)/Z2

and acts naturally and faithfully on the circle S1.
By an interval of S1 we mean, as usual, a nonempty, nondense, open, connected

subset of S1 and we denote by I the set of all intervals. If I is an interval on the
circle on a complex plane with two end points a, b, rI := |b− a| is called the length
of I. If I ∈ I, then also I ′ ∈ I where I ′ is the interior of the complement of I.
Two intervals are disjoint if their closures are disjoint. A finite set of intervals are
disjoint if any two different intervals from the set are disjoint.
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We will denote by PI the set which consists of the union of a finite set
of disjoint intervals. Such a set will play an important role in the next section.

A net A of von Neumann algebras on S1 is a map

I ∈ I �→ A(I)

from the set of intervals to the set of von Neumann algebras on a (fixed) Hilbert
space H which verifies the isotony property :

I1 ⊂ I2 ⇒ A(I1) ⊂ A(I2),

where I1, I2 ∈ I.
A Möbius covariant net A of von Neumann algebras on S1 is a net of von Neu-

mann algebras on S1 such that the following properties hold:

1. Möbius covariance: There is a strongly continuous unitary representa-
tion U of Möb on H such that

U(g)A(I)U(g)∗ = A(gI) , g ∈ Möb, I ∈ I .

2. Positivity of the energy: The generator of the rotation one-parameter
subgroup θ �→ U(rot(θ)) (conformal Hamiltonian) is positive, namely U is
a positive energy representation.

3. Existence and uniqueness of the vacuum: There exists a unit
U-invariant vector Ω (vacuum vector), unique up to a phase, and Ω is
cyclic for the von Neumann algebra ∨I∈IA(I).

A conformal net A of von Neumann algebras on S1 is a net of von Neumann
algebras on S1 such that the above properties 2 and 3 hold, and 1 is replaced by
conformal covariance:

Conformal covariance. There exists a projective unitary representation U
of Diff(S1) on H extending the unitary representation of Möb such that for
all I ∈ I we have

U(g)A(I)U(g)∗ = A(gI), g ∈ Diff(S1),

U(g)xU(g)∗ = x, x ∈ A(I), g ∈ Diff(I ′),

where Diff(S1) denotes the group of smooth, positively oriented diffeomorphisms of
S1 and Diff(I) the subgroup of diffeomorphisms g such that g(z) = z for all z ∈ I ′.

A Z2-grading on A is an involutive automorphism g = AdΓ of A, such that
Γ2 = 1, ΓΩ = Ω,ΓA(I)Γ = A(I) for all I.

Given the grading g, an element x of A such that g(x) = ±x is called homoge-
neous, indeed a Bose or Fermi element according to the ± alternative, or simply
even or odd elements. We shall say that the degree ∂x of the homogeneous element
x is 0 in the Bose case and 1 in the Fermi case.

A Möbius covariant graded net A on S1 is a Z2-graded Möbius covariant net
satisfying graded locality, namely a Möbius covariant net of von Neumann algebras
on S1 such that the following holds.

4. Graded locality: There exists a grading automorphism g of A such
that if I1 and I2 are disjoint intervals,

[x, y] = 0, x ∈ A(I1), y ∈ A(I2) .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3522 FENG XU

Here [x, y] is the graded commutator with respect to the grading automorphism g
defined as follows: if x, y are homogeneous, then

[x, y] ≡ xy − (−1)∂x·∂yyx

and, for the general elements x, y, it is extended by linearity. When the grading is
trivial, i.e., when Γ = 1, we shall refer to A as a local net.

Note the Bose subnet Ab, namely the g-fixed point subnet Ag of degree zero
elements, is local.

Moreover, setting

Z ≡ 1− iΓ

1− i
,

we have that the unitary Z fixes Ω and

A(I ′) ⊂ ZA(I)′Z∗

(twisted locality w.r.t. Z).

Theorem 2.7. Let A be a Möbius covariant Fermi net on S1. Then Ω is cyclic
and separating for each von Neumann algebra A(I), I ∈ I.

If I ∈ I, we shall denote by ΛI the one-parameter subgroup of Möb of “dilation
associated with I ”.

Theorem 2.8. Let I ∈ I and ΔI , JI be the modular operator and the modular
conjugation of (A(I),Ω). Then we have:

(i):

(3) Δit
I = U(ΛI(−2πt)), t ∈ R,

(ii): U extends to an (anti-)unitary representation of Möb� Z2 determined by

U(rI) = ZJI , I ∈ I,
acting covariantly on A, namely

U(g)A(I)U(g)∗ = A(ġI) g ∈ Möb� Z2 I ∈ I .

Here rI : S1 → S1 is the reflection mapping I onto I ′.

Corollary 2.9. (Additivity) Let I and Ii be intervals with I ⊂ ∪iIi. Then A(I) ⊂
∨iA(Ii).

Theorem 2.10. For every I ∈ I, we have:

A(I ′) = ZA(I)′Z∗ .

In the following corollary, the grading and the graded commutator is considered
on B(H) w.r.t. AdΓ.

Corollary 2.11. A(I ′) =
{
x ∈ B(H) : [x, y] = 0 ∀y ∈ A(I)

}
.

Now let G be a simply connected compact Lie group. By Th. 3.2 of [7], the
vacuum positive energy representation of the loop group LG (cf. [28]) at level k
gives rise to an irreducible local net denoted by AGk

. By Th. 3.3 of [7], every
irreducible positive energy representation of the loop group LG at level k gives rise
to an irreducible covariant representation of AGk

. When no confusion arises
we will write AGk

simply as Gk.
As another class of conformal nets, for any positive even lattice L, one can

associate with a rational conformal net AL as in [6].
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Now we recall some definitions from [11]. Recall that I denotes the set of intervals
of S1. Let I1, I2 ∈ I. We say that I1, I2 are disjoint if Ī1 ∩ Ī2 = ∅, where Ī is the
closure of I in S1. When I1, I2 are disjoint, I1∪I2 is called a 1-disconnected interval
in [34]. Denote by I2 the set of unions of disjoint 2 elements in I. Let A be an
irreducible Möbius covariant net as in section 2.1. For E = I1 ∪ I2 ∈ I2, let I3 ∪ I4
be the interior of the complement of I1∪ I2 in S1 where I3, I4 are disjoint intervals.
Let

A(E) := A(I1)
∨

A(I2), Â(E) := (A(I3)
∨

A(I4))
′.

Note that for a local netAA(E)⊂Â(E). Recall that a netA is split ifA(I1)
∨
A(I2)

is naturally isomorphic to the tensor product of von Neumann algebras A(I1) ⊗
A(I2) for any disjoint intervals I1, I2 ∈ I. A is strongly additive if A(I1)

∨
A(I2) =

A(I) where I1 ∪ I2 is obtained by removing an interior point from I.

Definition 2.12 ([11]). A is said to be completely rational if A is split, strongly

additive, and the index [Â(E) : A(E)] is finite for some E ∈ I2. The value of

the index [Â(E) : A(E)] (it is independent of E by Prop. 5 of [11]) is denoted by

μA and is called the μ-index of A. If the index [Â(E) : A(E)] is infinity for some
E ∈ I2, we define the μ-index of A to be infinity.

Note that by [17] every irreducible, split, local conformal net with finite μ-index
is automatically strongly additive, and when A is a local conformal net, it follows
that A is always split (cf. [22]). Hence a local conformal netA is completely rational
or simply rational if the index μA is finite. μA is also known as a global index
of A.

Definition 2.13. Let A be a local rational conformal net, and let I ∈ PI be
a union of n disjoint intervals. We define FI : A(I ′)′ → A(I) as the condition
expectation of index μn−1

A (cf. [11] and [34]). When there is a pair of nets involved
we shall use the notation FI,A to avoid confusion.

Let A be a graded Möbius covariant net. For E = I1 ∪ I2 ∈ I2, let I3 ∪ I4 be the
interior of the complement of I1 ∪ I2 in S1 where I3, I4 are disjoint intervals. Let

A(E) := A(I1) ∨A(I2), Â(E) := (A(I3) ∨ A(I4))
′.

Note that A(E) ⊂ ZÂ(E)Z−1, and its index will be denoted by μA and is called
the μ-index of A or the global index of A. This generalizes the usual μ-index of A
when A is local.

Let A be a graded Möbius net. By a Möbius subnet (cf. [16]) we shall mean a
map

I ∈ I → B(I) ⊂ A(I)

that associates to each interval I ∈ I a von Neumann subalgebra B(I) of A(I),
which is isotonic

B(I1) ⊂ A(I2), I1 ⊂ I2,

and Möbius covariant with respect to the representation U , namely

U(g)B(I)U(g)∗ = B(gI)
for all g ∈ Möb and I ∈ I, and we also require that AdΓ preserves B as a set. Note
that by Lemma 13 of [16] for each I ∈ I there exists a conditional expectation
EI : A(I) → B(I) such that EI preserves the vector state given by the vacuum of
A. Let P be the projection onto the closed subspace spanned by B(I)Ω.
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Definition 2.14. Let A be a graded Möbius covariant net and let B ⊂ A be a
subnet. We say B ⊂ A is of finite index if B(I) ⊂ A(I) is of finite index for some
(and hence all) interval I. The index will be denoted by [A : B].

The following is proved in exactly the same way as in [11] or [34].

Lemma 2.15. If B ⊂ A is a Möbius subnet such that μA is finite and [A : B] < ∞,
then μB = μA[A : B]2.
2.3.2. Some key results from [21]. In this section we recall some results from [21]
which play key roles in this paper, and also to fix our notation. Let H denote
the Hilbert space L2(S1;Cr) of square-summable Cr-valued functions on the circle.
The group LUr of smooth maps S1 → Ur, with Ur the unitary group on Cr, acts
on H multiplication operators.

Let us decompose H = H+ ⊕H−, where

H+ = {functions whose negative Fourier coeffients vanish} .
We denote by p the Hardy projection from H onto H+.

Denote by Ures(H) the group consisting of unitary operator A on H such that the
commutator [p,A] is a Hilbert-Schmidt operator. Denote by Diff+(S1) the group
of orientation preserving diffeomorphism of the circle. It follows from Propositions
6.3.1 and 6.8.2 in [28] that LUr and Diff+(S1) are subgroups of Ures(H). The
basic representation of LUr is the representation on Fermionic Fock space Fp =
Λ(pH)⊗Λ((1− p)H)∗ as defined in §10.6 of [28]. For more details, see [28] or [31].
Such a representation gives rise to a graded net as follows. Denote by Ar(I) the von
Neumann algebra generated by c(ξ)′s, with ξ ∈ L2(I,Cr). Here c(ξ) = a(ξ)+a(ξ)∗

and a(ξ) is the creation operator defined as in Chapter 1 of [31]. Let Z : Fp → Fp

be the Klein transformation given by multiplication by 1 on even forms and by i
on odd forms. It follows from §15 of chapter 2 of [31] that Ar is a graded Möbius
covariant net, and Ar will be called the net of r free fermions. It follows from Prop.
1.3.2 of [15] that Ar is strongly additive and §15 of chapter 2 of [31] that μAr

= 1.
Fix Ii ∈ PI, i = 1, 2, and I1, I2 disjoint, that is, Ī1∩ Ī2 = ∅, and I = I1∪ I2.
For bounded operators A,B : Fp → Fp, we define A+ = 1

2 (A + ΓAΓ), A− =
A− A+, where Γ is an operator on Fp given by multiplication by 1 on even forms
and −1 on odd forms. An operator A is called even (resp., odd) if A = A+ (resp.,
A = A−).

We define a graded tensor product ⊗2 by the following formula:

A⊗2 B = A⊗B+ +AΓ⊗B− ,

where A⊗2B is considered as an operator on Hilbert space tensor product Fp⊗Fp.
Let A1, A2, B1, B2 be even or odd operators, i.e., ΓAiΓ = Ai or −Ai, ΓBiΓ = Bi,

or −Bi, i = 1, 2. Define the degree d(A) = 0 or 1 if A is even or odd.
It follows from the definition of ⊗2 that:

(A1 ⊗2 B1)
∗ = (−1)d(A1)d(B1)A∗

1 ⊗2 B
∗
1 ,

(A1 ⊗2 B1) · (A2 ⊗2 B2) = (−1)d(B1)d(A2)A1A2 ⊗2 B1B2 .

For A ∈ Ar(I1), B ∈ Ar(I2), we define

ω(A⊗2 B) = 〈Ω, ABΩ〉,
where Ω is the vacuum vector in Fp.

The following is (1) of Lemma 3.1 in [21].
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Lemma 2.16. ω extends to a normal faithful state on the von Neumann algebra
{A ⊗2 B, A ∈ Ar(I1), B ∈ Ar(I2)}′′ (denoted by Ar(I1)⊗̂2Ar(I2)) on Fp ⊗ Fp.
There exists a unitary operator U1 : Fp → Fp ⊗ Fp such that:

U1ABU∗
1 = A⊗2 B for every A ∈ Ar(I1), B ∈ Ar(I2) .

Definition 2.17. We set

ω1 ⊗2 ω2(AB) = 〈Ω⊗ Ω, A⊗2B Ω⊗ Ω〉 ∀A ∈ Ar(I1), B ∈ Ar(I2) .

By Lemma 2.16 ω1 ⊗2 ω2 defines a normal state on Ar(I). We note that the
restriction of ω1 ⊗2 ω2 to Ar(I1) and Ar(I2) is the same as ω.

The mutual information we will compute is S(ω, ω1 ⊗2 ω2). When we wish
to emphasize the underlying net, we will also write the mutual information as
SAr

(ω, ω1 ⊗2 ω2). When B ⊂ Ar is a subnet, we write SB(ω, ω1 ⊗2 ω2), the mutual
information for the net B obtained by restricting ω, ω1 ⊗2 ω2 from Ar to B. Note
that by (4) of Theorem 2.1 SB(ω, ω1 ⊗2 ω2) ≤ SAr

(ω, ω1 ⊗2 ω2).

Definition 2.18. If I = (a1, b1)∪ (a2, b2)∪ . . .∪ (an, bn) ∈ PI in counterclockwise
order, define

G(I) :=
1

6

⎛
⎝∑

i,j

log |bi − aj | −
∑
i<j

log |ai − aj | −
∑
i<j

log |bi − bj |

⎞
⎠ .

The following is Theorem 3.18 of [21].

Theorem 2.19. Let I ∈ PI, I1 ∈ PI, I2 ∈ PI and I1 ∪ I2 = I, Ī1 ∩ Ī2 = ∅. Then

SAr
(ω, ω1 ⊗2 ω2) = r

(
G(I1) +G(I2)−G(I1 ∪ I2)

)
.

Now we determine the exact limit of relative entropies which are necessary for
analyzing the singularity structures of entropies. The following is Theorem 4.4 of
[21] (We note that there is a missing log in Theorem 4.4 of [21]).

Theorem 2.20. Assume that subnet B ⊂ A has finite index and B is strongly
additive. Let I1 and I2 be two intervals obtained from an interval I by removing an
interior point, and let Jn ⊂ I2, n ≥ 1 be an increasing sequence of intervals such
that ⋃

n

Jn = I2, J̄n ∩ Ī1 = ∅ .

Let En be the conditional expectation from A(I1) ∨ A(Jn) to A(I1) ∨ B(Jn) such
that En(xy) = xEI(y) ∀x ∈ A(I1), y ∈ A(Jn). Then

lim
n→∞

S(ω, ω · En) = ln[A : B] .

2.3.3. Relating relative entropy and global index. Let A be a local conformal net.
A is always split (cf. [22]). For any I = I1 ∪ I2 ∪ . . . ∪ In, I ∈ PI, ωI denotes the
restriction of ω to A(I). It follows that ωI1 ⊗ . . .⊗ ωIn is a normal state on A(I).

Since we will be concerned with relative entropy of various states, we introduce
some definitions to simplify notation. For I = I1 ∪ I2 . . . ∪ In ∈ PI where Ii are
disjoint intervals,

ω⊗ := ωI1 ⊗ ωI2 ⊗ . . .⊗ ωIn .

When A is free fermion net Ar the tensor product is defined as graded tensor
product before Lemma 2.16.
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A state ψ on A(I) is said to be related to vacuum state ω if we can partition
I into disjoint union I = J1 ∪ J2 . . . ∪ Jm, Ji ∈ PI, 1 ≤ i ≤ m, such that ψ =
ωJ1

⊗ ωJ2
⊗ . . .⊗ ωJm

.
We shall consider conformal net whose mutual information for vacuum state are

always finite.

Definition 2.21. A conformal net A is said to have finite mutual information if
S(ω, ω⊗

I ) < ∞ ∀I ∈ PI .

Suppose A ⊂ B is an inclusion of conformal nets with finite index. We shall
denote by EI : B(I) → A(I) the unique conditional expectation which preserves
the vacuum state when I is an interval. When I = I1 ∪ I2 ∪ . . . ∪ In is a union
of disjoint n intervals, we shall use EI to denote EI1 ⊗ . . . ⊗ EIn which is
the unique conditional expectation from B(I) to A(I) which preserves
ωI1 ⊗ . . .⊗ ωIn .

Lemma 2.22. (1) If A has finite mutual information, then S(ω, ψ) < ∞ for all ψ
on A(I) that is related to vacuum state ω.

(2) If A ⊂ B and B has finite mutual information, then A also has finite mutual
information.

(3) If A ⊂ B has finite index and A has finite mutual information, then B also
has finite mutual information.

Proof. By (5) of Theorem 2.1 we have

S(ω, ω⊗
I∪J ) = S(ω, ω⊗

I ) + S(ω, ω⊗
J ) + S(ω, ωI ⊗ ωI)

and
S(ω, ψI ⊗ φJ ) = S(ω, ψI) + S(ω, φJ) + S(ω, ωI ⊗ ωI).

It follows that any S(ω, ψ) can be expressed as a linear combination of S(ω, ω⊗
J )

for suitable intervals J ⊂ I and (1) is proved.
(2) follows from the definition and monoticity of relative entropy in Theorem 2.1.
By Theorem 2.1 SB(ω, ω

⊗
I ) − SA(ω, ω

⊗
I ) = S(ω, ωEI). Since S(ω, ωEI) ≤

ln(IndEI), (3) is proved. �
It is proved on page 13 of [33] that most of known conformal net (and probably

all) has finite mutual information. We refer the reader to page 13 of [33] for precise
statements.

Two conformal nets A and B are said to be chain related if there exists a
sequence of conformal nets B1, . . . ,Bn such that B1 = A,Bn = B and either Bi ⊂
Bi+1 or Bi+1 ⊂ Bi, 1 ≤ i ≤ n − 1, and all inclusions are of finite index. See §4 of
[21] for a large class of conformal nets that are chain related to free fermion nets.

Definition 2.23. For a conformal net A with central charge c and finite mutual
information, the regularized von Neumann entropy of vacuum state for A(I), I ∈ PI
is defined as follows: For an interval I we let G(I) := c/6 ln rI , rI is the length of
interval I, and if I1 ∪ I2 ∪ . . . ∪ In is a union of disjoint intervals

G(I1 ∪ I2 ∪ . . . ∪ In) = G(I1) + . . .+G(In)− S(ω, ωI1 ⊗ ωI2 ⊗ . . .⊗ ωIn).

Note that von Neumann entropy for type III factors are always infinity, and
regularized von Neumann entropy as defined are motivated by the results of [3] and
§4.1 of [21]. Note unlike relative entropy, the regularized von Neumann entropy
is not always nonnegative and not invariant under the conformal transformations
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on intervals, but otherwise verifies many interesting properties of von Neumann
entropy as discussed in detail in §4.1 of [21].

When μA = 1, A(I) = A(I ′)′ ∀I ∈ PI, and the vacuum state ω is a pure
vector state, we expect that the von Neumann entropy of ω for A(I), I ∈ PI and
A(I ′), I ∈ PI should be the same. Of course both are infinity, but what is more
interesting is to conjecture the following.

Conjecture 2.24. For a rational conformal net A with finite mutual information

G(I) = G(I ′) ∀I ∈ PI
if and only if μA = 1.

One reason for such a conjecture is that in §4.2.1 of [21] we have shown that in
some cases

G(I) �= G(I ′)

if μA > 1. Hence we expect that

G(I) = G(I ′) ∀I ∈ PI
if and only if μA = 1. At present the only known example which verifies μA = 1
and

G(I) = G(I ′) ∀I ∈ PI
is the free fermion net for which G(I) ∀I ∈ PI is known as in Theorem 2.19. To
investigate the general cases we define the following.

Definition 2.25. Let A be a conformal net with finite mutual information. We
define the deficit for A(I), I ∈ PI to be DA(I) := GA(I)−GA(I

′).

Definition 2.26. Let A be a local rational conformal net, and let I ∈ PI be a
disjoint union of n intervals. Define

D̂A(I) := S(ω, ωFI)−
n− 1

2
lnμA.

Where FI is defined as in Definition 2.13. For free fermion net Ar we will set

D̂Ar(I) = 0.

The main conjecture of this paper is the following.

Conjecture 2.27. For a rational conformal net A with finite mutual information

DA(I) = D̂A(I).

In the rest of this section we will prove that in many cases the above conjecture
is true. For simplicity we will assume that in the rest of this section all
conformal nets are local rational with finite mutual information unless
stated otherwise. The only nonlocal conformal net will be free fermion
net Ar which is treated separately.

Proposition 2.28. For a rational conformal net A with finite mutual information
we have Conjecture 2.27 implies Conjecture 2.24.

Proof. Note that when μA = 1, Conjecture 2.27 implies that

G(I) = G(I ′) ∀I ∈ PI.
Now suppose that

G(I) = G(I ′) ∀I ∈ PI.
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Conjecture 2.27 implies that

S(ω, ωFI) =
n− 1

2
lnμA ∀I ∈ PI.

Take Ik to be a disjoint union of two intervals I1(k), I2(k), and consider a contacting
sequence along an interval between I1(k) and I2(k) as in Theorem 2.39. By Theorem
2.39 we obtain

lim
k

S(ω, ωFIk) = lnμA.

Hence

lnμA =
1

2
lnμA

which implies μA = 1. �

Suppose A ⊂ B is an inclusion of conformal nets with finite index. Recall that
EI : B(I) → A(I) is the unique conditional expectation which preserves the vacuum
state when I is an interval. When I = I1 ∪ I2 ∪ . . . ∪ In is a disjoint union of n
intervals, EI denotes EI1 ⊗ . . . ⊗ EIn which is the unique conditional expectation
from B(I) to A(I) which preserves ωI1 ⊗ . . .⊗ ωIn .

We will prove Conjecture 2.27 for a large class of conformal nets. The idea is the
following : Since we have an important example of free fermion net Ar for which
we already know

DAr
(I) = D̂Ar

(I) = 0

by Theorem 2.19, and there are many conformal nets that are chain related to Ar,
if we can show that for a pair of conformal nets A ⊂ B with finite index that

DA(I)− D̂A(I) = DB(I)− D̂B(I),

then it follows that Conjecture 2.27 is true for conformal nets that are chain related
to Ar. To state the theorem in more general terms, we note that

DA(I)− D̂A(I) = DB(I)− D̂B(I)

is equivalent to

DA(I)−DB(I) = D̂A(I)− D̂B(I).

But by definition and (1) of Theorem 2.1

DA(I)−DB(I) = S(ω, ωEI)− S(ω, ωEI′).

Hence it is enough to show

S(ω, ωEI)− S(ω, ωEI′) = D̂A(I)− D̂B(I).

Then the following theorem does exactly this (we note that in the theorem we
are not assuming that A,B have finite mutual information).

Theorem 2.29. (1) Let A ⊂ B be rational local conformal nets with finite index;
then

S(ω, ωEI)− S(ω, ωEI′) = D̂A(I)− D̂B(I).

(2) (1) also holds when B is free fermion net Ar, more precisely in this case we
have

S(ω, ωEI)− S(ω, ωEI′) = D̂A(I).
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Proof. Fix I ∈ PI which is a disjoint union of n intervals.
Ad (1): Let E := (IndEI′IndFI′,B)

−1EIF
−1
I′,BE

−1
I′ be the condition expectation

from A(I ′)′ → A(I).
Set E1 := EIF

−1
I′,BE

−1
I′ .

Let us compute S(ω, ωEI)−S(ω, ωFI′,B)−S(ω, ωEI′). Note that Ω is separating
and cyclic for B(I)′. By Proposition 2.4 we have

S(ω, ωEI)− S(ω, ωFI′,B)− S(ω, ωEI′) = S(ω, ωE1).

By §4 of [13] and [14] E restricts to trace on A(I)′∩A(I ′)′. Let PA be the projection
in A(I)′ ∩A(I ′)′ which projects onto the closure of A(I)Ω. Then we have

Δ(
ωE

ω′ )
itPAΔ(

ωE

ω′ )
−it = PA ∀t,

where ω′ is the state on A(I ′) given by Ω. It follows that Δ(ωE
ω′ ) commutes with

PA. We note that when restricted to PAA(I ′)′PA, ωE is given by E(PA)ωEPA

where

EPA : PAA(I ′)′PA → PAA(I)

is the unique conditional expectation and can be identified with FI,A : A(I ′)′ →
A(I) where the algebras are on PAHB = HA. Note that E(PA) = [B : A]−1 =

μ
1/2
B

μ
1/2
A

.

Hence

〈lnΔ(
ωE

ω′ )Ω,Ω〉 = lnE(PA)+ 〈lnΔ(
ωEPA

ω′ )Ω,Ω〉 = lnE(PA)+ 〈lnΔ(
ωFI,A
ω′ )Ω,Ω〉.

Note that

IndEI = (
μA
μB

)n/2, IndFI′,B = μn−1
B .

Putting the above pieces together we have shown that

S(ω, ωEI)− S(ω, ωFI′,B)− S(ω, ωEI′) = S(ω, ωFI,A)−
n− 1

2
(lnμA + lnμB).

Finally, by Proposition 2.4 we have

−S(ω, ωFI,B) = S(ω, ω)−S(ω, ωFI,B) = S(ω, ωF−1
I,B) = S(ω, ωFI′,B)− (n−1) lnμB

and the proof of the theorem is complete.
Ad (2): We need to evaluate

S(ω, ωEI)− S(ω, ωEI′).

Note that E−1
I′ : A(I ′)′ → Ar(I

′)′ = kAr(I)k
−1 where k is the Klein transform.

Let us define

ÊI(kak
−1) = EI(a) ∀a ∈ Ar(I).

Since kΩ = Ω, it follows that

ω(ÊI(kak
−1)) = ω(EI(a)), ω(kak

−1) = ω(a)

and S(ω, ωEI) = S(ω, ωÊI). Hence by (2) of Prop. 2.4

S(ω, ωEI)− S(ω, ωEI′) = S(ω, ωÊI)− S(ω, ωEI′) = S(ω, ωÊIE
−1
I′ ).

The rest of the proof is the same as in (1) above. �

By Theorem 2.29 we immediately have the following.
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Corollary 2.30. If a local conformal net A is chain related to Ar, then Conjecture
2.27 is true for A.

We also have the following.

Corollary 2.31. If a local conformal net A is chain related to a rational local
conformal net B, and B has finite mutual information and verifies Conjecture 2.27,
then Conjecture 2.27 is true for A.

Proof. Under the assumption B has finite mutual information and A is chain related
to B, by (2) and (3) of Lemma 2.22,

DA(I), D̂A(I), DB(I), D̂B(I)

are finite; then

DA(I)− D̂A(I) = DB(I)− D̂B(I)

is equivalent to

DA(I)−DB(I) = D̂A(I)− D̂B(I).

But by definition and (1) of Theorem 2.1

DA(I)−DB(I) = S(ω, ωEI)− S(ω, ωEI′)

and the corollary follows from Theorem 2.29. �

Corollary 2.32. Conjecture 2.27 is true for conformal nets associated with even
positive definite lattices.

Proof. First we prove this for rank 1 lattices. Such a lattice has basis vector α with
inner product 〈α, α〉 = a, where a is a positive even integer. The corresponding
conformal net is usually denoted by AU(1)a or simply by U(1)a if no confusion

arises. Denote by D1(a) := DAU(1)a
(I) − D̂AU(1)a

(I). We prove by induction on k
that

D1(ka) = D1(a) ∀k ≥ 1.

When k = 1 this is trivial. Also AU(1)1 is one free fermion net and by Theorem
2.19 D1(1) = 0.

Assume the above equation is true for k. Consider the following finite index
inclusions (for simplicity we will use U(1)a to denote the corresponding conformal
net AU(1)a):

U(1)(k+1)a × U(1)(k+1)ka ⊂ U(1)ka × U(1)a,

where U(1)(k+1)a is diagonally embedded in U(1)ka × U(1)a and its commutant in
U(1)ka × U(1)a is U(1)(k+1)ka. This can be seen as follows: Suppose the lattices
correspond to U(1)a and U(1)ka are spanned by α and β, respectively, with inner
products 〈α, α〉 = a, 〈β, β〉 = ka, 〈α, β〉 = 0. Then the diagonal rank 1 lattice
spanned by α+β corresponds to U(1)(k+1)a. The orthogonal complement of rank 1
lattice spanned by α+β in the rank 2 lattice spanned by α, β is spanned by −kα+β,
and since 〈−kα+ β,−kα+ β〉 = k(k + 1)a, this corresponds to U(1)(k+1)ka.

By Theorem 2.29 and induction hypothesis we have

2D1((k + 1)a) = 2D1(a)

and it follows by induction we have proved

D1(ka) = D1(a) ∀k ≥ 1.
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Now from the inclusion

U(1)2 × U(1)2 ⊂ U(1)1 × U(1)1

and Theorem 2.29 we conclude that 2D1(2) = 2D1(1) = 0. It follows thatD1(a) = 0
for all even a.

Now assume that the corollary is proved for rank k even positive definite lattices.
If L is an even positive definite lattice, choose a nonzero element e ∈ L and consider
sublattices L1 = Ze of L and L2 of L which is orthogonal to L1 with rank equal to
k. Denote by L1×L2 the sublattice of L generated by L1, L2. Note that the vacuum
representation of AL decomposes into finitely many irreducible representations of
AL1

⊗AL2
which are in one-to-one correspondence with finite abelian group L/L1×

L2, and each has index 1 by Section 3 of [6].
Applying Theorem 2.29 to the finite index inclusions

AL1
⊗AL2

⊂ AL

and induction hypothesis, we have proved the corollary. �
By Theorem 2.29 and Corollary 2.32 we have the following.

Corollary 2.33. If a local conformal net A is chain related to AL where L is a
positive even lattice, then Conjecture 2.27 is true for A.

By §3 of [6] μAL
= 1 if and only if L is an even positive definite unimodular

lattice, hence Corollary 2.32 implies the following.

Corollary 2.34. DAL
= 0 if and only if L is an even positive definite unimodular

lattice.

2.4. Some continuous properties. Let us first fix a rational conformal net
A with finite mutual information.

By (2) of Theorem 2.1 relative entropies are continuous from “inside”. As an
application of Theorem 2.29, we will prove that relative entropies in Theorem 2.29
are also continuous from “outside”. First we have the following.

Lemma 2.35. If I ⊂ J, I, J ∈ PI, then FJ restrict to FI on A(I) and hence
S(ω, ωFI) increase with I.

Proof. This is proved in §2 of [11] for n = 2, but the same argument works for
any n. �
Corollary 2.36. Let A ⊂ B be as in Theorem 2.29. Then S(ω, ωEI) is continuous
from “outside”, i.e., if In is a decreasing sequence of intervals such that

⋂
In = I,

and EI′ restrict to EI′
n
, then

lim
n→∞

S(ω, ωEIn) = S(ω, ωEI).

Proof. This follows from Theorem 2.29 and Lemma 2.35. �
2.5. Singular limits. Let us again fix a rational conformal net A with
finite mutual information.

It is usually an interesting problem to study the limiting properties of relative
entropies when intervals get close together. One can find such studies in §§3 and 4
of [21]. In the same spirit we will consider such singular limits for related entropy
S(ω, ωFI) for a conformal net A.

The following proposition is a reformulation of Proposition 4.5 of [21].
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Proposition 2.37. Assume that Mn is an increasing sequence of factors acting on
a fixed Hilbert space, Nn ⊂ Mn are subfactors, and ω is a vector state associated
with a vector Ω. Suppose that En : Mn → Nn, n ≥ 1 is a sequence of conditional
expectations such that when restricting to Mn, En+1 = En, n ≥ 1, and IndEn = λ−1

is a positive real number independent of n. Set φn := ωEn. If strong operator closure
of

⋃
n Nn contains M1, then given any ε > 0, we can find e ∈ Mn for sufficiently

large n, such that

|ω(e)− 1| < ε, |ω(e∗)− 1| < ε, |ω(e∗e)− 1| < ε, |φn(ee
∗)− λ| < ε .

Proof. Let e1 ∈ M1 be the Jones projection for E1 : M1 → N1, and let v ∈ N1 be
the isometry such that λ−1v∗e1v = 1. By assumptions we can find a sequence of
elements en ∈ Nn, n ≥ 2 which converges in strong star topology to e1. Now choose
xn = λ−1v∗e1env. Then xn → 1 in strong star topology, and so ω(xn), ω(xnx

∗
n)

converges to 1. On the other hand by definition

En(x
∗
nxn) = v∗e∗nenv

converges to v∗e1v = λ strongly. Hence given any ε > 0, we can choose n sufficiently
large such that if we set e = x∗

n, then e ∈ Mn, and

|ω(e)− 1| < ε, |ω(e∗)− 1| < ε, |ω(e∗e)− 1| < ε, |φn(ee
∗)− λ| < ε .

�

Theorem 2.38. Assume that Mn is an increasing sequence of factors act on a
fixed Hilbert space, Nn ⊂ Mn are subfactors, and ω is a vector state associated
with a vector Ω. Suppose that En : Mn → Nn, n ≥ 1 is a sequence of conditional
expectations such that when restricting to Mn, En+1 = En, n ≥ 1, IndEn = λ−1

is a positive real number independent of n. If strong operator closure of
⋃

n Nn

contains M1, then

lim
n→∞

S(ω, ωEn) = − lnλ.

Proof. Set φn := ωEn. By Pimsner-Popa inequality, En(x) ≥ λx for any positive
x ∈ Mn, it follows that φn ≥ λω, and hence by Theorem 2.1

S(ω, ω · En) ≤ − lnλ.

Note that by monotonicity of relative entropy S(ω, ω ·En) increases with n, hence
limn→∞ S(ω, ω · En) exists and is less than or equal to − lnλ.

Hence we need to show that S(ω, ωEn) can get arbitrarily close to − lnλ when n
is sufficiently large. The key ideas are the same as explained in Sections 4.3.1 and
4.3.2 of [21]. We provide full details in the following for the reader’s convenience.

Denote φn = ω · En. By Kosaki’s formula (cf. [13])

S(ω, ω · En) = sup
m∈N

sup
xt+yt=1

(
ln k −

∫ ∞

k−1

(
ω(x∗

txt)
1

t
+ φn(yty

∗
t )

1

t2

)
dt

)
,

where xt is a step function which is equal to 0 when t is sufficiently large. To
motivate the proof, it is instructive to see how we can get S(ω, λω) = − lnλ, 0 <
λ < 1 from Kosaki’s formula. By tracing the proof in [13], one can see that the
path which gives approximation to − lnλ is given by the following continuous path:

x(t) =
λ

λ+ t
, y(t) =

t

λ+ t
, t ≥ k−1
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and with such a choice we have

ln k −
∫ ∞

k−1

(
ω(x∗

txt)
1

t
+ φn(yty

∗
t )

1

t2

)
dt = − ln(λ+ 1/k)

which tends to − lnλ as k goes to ∞. This suggests that for the proof we need to

choose path xt, yt such that ω(x∗
txt) and φn(yty

∗
t ) are close to

(
λ

λ+t

)2
and λ

(
t

λ+t

)2
,

respectively.
By Kosaki’s formula

S(ω, ω · En) = sup
m∈N

sup
xt+yt=1

(
ln k −

∫ ∞

k−1

(
ω(x∗

txt)
1

t
+ φn(yty

∗
t )

1

t2

)
dt

)
,

where xt is a step function which is equal to 0 when t is sufficiently large. Since we
can approximate any continuous function with step functions in the strong topology
and vice versa, we can assume that xt is continuous and is equal to 0 when t is
sufficiently large. Given ε > 0, for fixed k,m ∈ N choose e as in Proposition 2.37
and

xt = 1− t

λ+ t
e, k−1 ≤ t ≤ m .

We have

ω(x∗
txt) = 1− t

λ+ t
ω(e)− t

λ+ t
ω(e∗) +

(
t

λ+ t

)2

ω(e∗e)

and

φn(yty
∗
t ) =

(
t

λ+ t

)2

φn(ee
∗) .

By Proposition 2.37 we can choose n large enough such that∫ m

k−1

∣∣∣ω(xtx
∗
t )−

( λ

λ+ t

)2∣∣∣dt
t

≤ ε ,

∫ m

k−1

∣∣∣φn(yty
∗
t )− λ

( t

λ+ t

)2∣∣∣dt
t2

≤ ε ,

and with such a choice of n we have:

ln k −
∫ ∞

k−1

(
ω(x∗

txt)
1

t
+ φn(yty

∗
t )

1

t2

)
dt

≥ ln k −
∫ m

k−1

(( λ

λ+ t

)2 1

t
+
( t

λ+ t

)2 λ

t2

)
dt+ 1/m− 2ε

= ln
( k

kλ+ 1

)
− ln

( m

λ+m

)
+ 1/m− 2ε .

It follows that

lim
n→∞

S(ω, ω · En) ≥ ln
( k

kλ+ 1

)
− ln

( m

λ+m

)
+ 1/m− 2ε .

Letting k,m go to ∞ and ε go to 0, we have proved theorem. �

Let I = I1 ∪ I2 ∪ . . .∪ In ∈ PI and I ′ = Î1 ∪ Î2 ∪ . . .∪ În. Let us arrange indices
such that Îi share end points with Ii, Ii+1, 1 ≤ i ≤ n − 1. We are interested in
shrinking I ′. Let us first introduce some terminology. By a contraction of I along

Î1 we mean keep I1 ∪ Î1 ∪ I2 := I12 fixed and let the length of Î1 go to 0. We will
use a sequence I1(k), Î1(k), I2(k) such that Î1(k) is decreasing to describe such a

process. Such a sequence is called a contraction sequence along Î1. An element
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of such a sequence will be denoted by Ik. We will use (Ik)′ to denote the interior
of the complement of Ik.

Let C1(I) = I12 ∪ I3 . . . ∪ In ∈ PI.

Theorem 2.39. Choose a contracting I1(k), Î1(k), I2(k) sequence along Î1. Then

lim
k→∞

S(ω, ωFIk) = S(ω, ωFC1(I)) + lnμA.

Proof. Observe that when restricting FC1(I) to A((Ik)′)′, we get a conditional

expectation simply denoted only in the proof by Fk : A((Ik)′)′ → A(C1(I)) ∩
A(Î1(k))

′. Let Ek : A(C1(I)) ∩ A(Î1(k))
′ → A(Ik) be the conditional expectation

such that Ek restricts to identity on A(I3 ∪ . . . ∪ In), and on A(I12) ∩ A(Î1(k))
′

is the unique conditional expectation onto A(I1(k) ∪ I2(k)). Note that the index

of Ek is μA. Notice that Ω is cyclic and separating for A(C1(I)) ∩ A(Î1(k))
′. By

Corollary 2.5 we have

S(ω, ωFIk) = S(ω, ωEkFk) = S(ω, ωEk) + S(ω, ωFk).

By (2) of Theorem 2.1 we have limk S(ω, ωFk) = S(ω, ωFC1(I)). To finish the
proof it is sufficient to show that

lim
k

S(ω, ωEk) = lnμA.

Since
⋃

k I1(k)∪I2(k) is equal to I12 minus a point, it follows that
⋃

k A(I1(k)∪I2(k))
is strongly dense in A(I12), and

lim
k

S(ω, ωEk) = lnμA

follows from Theorem 2.38. �

Remark 2.40. We note that we can apply Theorem 2.39 a few times to shrink
intervals Î2, . . . , În−1 successively. This way we see that

lim
k

S(ω, ωFIk) = (n− 1) lnμA,

where one takes an increasing sequence of n disjoint intervals Ik, such that
⋃

k Ik
is equal to S1 minus finitely many points. This can of course be proved directly
using Theorem 2.38.

Now consider the case of A ⊂ B with finite index. By Lemma 2.15 the index of
this inclusion is given by (μA

μB
)

1
2 .

Lemma 2.41. Choose a contracting I1(k), Î1(k), I2(k) sequence along Î1. Then

lim
k→∞

S(ω, ωEIk) = 1/2(lnμA − lnμB) + S(ω, ωEC1(I)).

Proof. For the ease of notation we set ω2 := ωI3 ⊗ . . .⊗ωIn . By (5) of Theorem 2.1

S(ω, ωI1(k)⊗ωI2(k)⊗ω2) = S(ω, ωI1(k)⊗ωI2(k))+S(ω, ω2)+S(ω, ωI1(k)∪I2(k)⊗ω2).

We note that as k goes to infinity, I1(k) ∪ I2(k) increase to I12, hence

lim
k

S(ω, ωI1(k)∪I2(k) ⊗ ω2) = S(ω, ωI12 ⊗ ω2).

Hence
lim
k

S(ω, ωEIk) = lim
k

S(ω, ωEI1(k)∪I2(k)) + S(ω, ωEC1(I)).

The lemma now follows from Theorem 2.20. �
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Proposition 2.42. Let A ⊂ B be as in Theorem 2.29. Choose a contracting I1(k),

Î1(k), I2(k) sequence along Î1. Then

lim
k→∞

S(ω, ωE(Ik)′) = S(ω, ωEC1(I′)).

This follows from Theorems 2.29 and 2.39 and Lemma 2.41. �
The above corollary can be phrased as follows: Let Ik = I1k ∪ I2 ∪ . . .∪ In ∈ PI

be such that I1k is a decreasing sequence such that the length of I1k tends to 0 as
n goes to infinity. Then

lim
k→∞

S(ω, ωEIk) = S(ω, ωEI2∪...∪In).

It follows that if either A or B has the property that

lim
k→∞

S(ω, ω⊗
Ik
) = S(ω, ω⊗

I2∪...∪In
),

then the other net also has this property. In particular all conformal nets that are
chain related to free fermion nets have this property since free fermion nets verify
such property. It will be interesting to see if this can be proved under more general
conditions.

3. CFT in two dimensions

Since the results in this section are very similar to the previous section, we will
be brief and discuss only the necessary modifications.

For a formulation of CFT in two dimensions we refer to §2 of [10] or §2 of [29]
for more details.

A two dimensional local conformal quantum field theory is given by a net B de-
fined on a covering manifold M̂ of Minkowski space-time M = R(1,1). This manifold
is obtained as follows. One first considers Minkowski space-time as the Cartesian
product R ×R of its two chiral light-cone directions. On each light-cone, the Möb
group PSL(2, R) acts by the rational transformations x → ax+b

cx+d , and we need to

consider the compactification of R to S1 by addition of the point at ∞. In the quan-
tum field theory, the chiralMöb are only projectively represented, leading to a cover-
ing of S1 (in which R will be identified with the interval (0, 2π)). The covering man-

ifold M̂ is the Cartesian product of the coverings of the two chiral S1, quotiented by
the identification (xL, xR) ≡ (xL+2π, xR−2π). Each subset (a, a+2π)×(b, b+2π)

represents one copy of Minkowski space-time M within M̂ . The covering manifold
M̂ possesses a global causal structure such that the causal complement of a double
cone O = (a, b) × (c, d) (we always assume that 0 < b − a < 2π, 0 < d − c < 2π)
is the double cone O′ = (b, a + 2π) × (d − 2π, c) ≡ (b − 2π, a) × (d, c + 2π), and
(O′)

′
= O. Let eix × eiy : R × R → S1 × S1 be the covering map. Let OS be the

image of double cone O = (a, b) × (c, d) under this covering map. For the ease
of notation we shall drop the subscript S and simply write OS as O, and
simply call them double cones on S1 × S1.

So we will consider double cone C on S1 × S1 which is I × J where I, J are
intervals on the circle S1. A finite set of double cones C1, C2, . . . Cn are disjoint if
the closure of Ci is in the casual complement of Cj for all i �= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n.
To make contact with the previous section, suppose a finite set of disjoint double
cones C1, C2, . . . , Cn are given. By shuffling indices if necessary we can assume that
Ci = Ii×Ji, 1 ≤ i ≤ n, and I1, . . . , In are arranged in counterclockwise order on one
circle. Then J1, . . . , Jn are arranged in counterclockwise order on another circle.
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Let I = I1 ∪ I2 ∪ . . . ∪ In ∈ PI and I′ = Î1 ∪ Î2 ∪ . . . ∪ În ∈ PI, such that Îi share
end points with Ii, Ii+1, 1 ≤ i ≤ n − 1. Similarly J = J1 ∪ J2 ∪ . . . ∪ Jn ∈ PI and

J′ = Ĵ1∪Ĵ2∪. . .∪Ĵn ∈ PI, such that Ĵi share end points with Ji, Ji+1, 1 ≤ i ≤ n−1.

Definition 3.1. We will use notation C(I×J) to denote the union C1∪C2∪. . .∪Cn.

Denote by PC the set which consists of finite union of disjoint double cones. We
shall use C ′ to denote the casual complement of C ∈ PC. Our Definition 3.1 is
designed such that

C(I× J)′ = C(I′ × J′).

We note that the concept of contraction as introduced in section 2.5 can now
be defined similarly for C(I × J), we just define contractions along Î1 × Ĵ1 to be

contractions of I along Î1 together with contractions of J along Ĵ1.
As in §2 of [10] (also cf. [29]) there is a canonical tensor product net A =

AL ×AR ⊂ B.
In this section we will consider the case A ⊂ B where A(I × J) =

AL(I) × AR(J), both AL and AR are rational local conformal net with
finite mutual information, and A ⊂ B has finite index, and B is rational
as defined in §2.1 of [10]. Denote by cL, cR the central charges of AL and AR,
and as usual ω is the vacuum state.

Definition 3.2. For a double cone C = I×J we let G(C) := cL/6 ln rI+cR/6 ln rJ .
If a finite set of double cones C1, C2, . . . , Cn are disjoint, we define

G(C1 ∪ C2 ∪ . . . ∪ Cn) = G(C1) + . . .+G(Cn)− S(ω, ωC1
⊗ ωC2

⊗ . . .⊗ ωCn
).

Definition 3.3. We define the deficit for B(C), C ∈ PC to be DB(C) := GB(C)−
GB(C

′).

Note that in the case when the two dimensional net is tensor product AL ⊗AR,
and C = C1 ∪ C2 ∪ . . . ∪ Cn, Ci = Ii × Ji, 1 ≤ i ≤ n, are disjoint, we have

GAL⊗AR
(C) = GAL

(I1 ∪ I2 ∪ . . . ∪ In) +GAL
(J1 ∪ J2 ∪ . . . ∪ Jn).

Let FC : B(C ′)′ → B(C) be the condition expectation of index μn−1
B .

Definition 3.4. When C is a union of n disjoint double cones, define

D̂B(C) := S(ω, ωFC)−
n− 1

2
lnμB.

The analogue of Conjecture 2.27 for B is now the following.

Conjecture 3.5. For a rational two dimensional conformal net B
DB(C) = D̂B(C) ∀C ∈ PC.

The analogue of Conjecture 2.24 for B is now the following.

Conjecture 3.6. For a rational two dimensional conformal net B
DB(C) = 0 ∀C ∈ PC

if and only if μB = 1.

The proof of Proposition 2.28 apples verbatim to the case of two dimensional
conformal net and we have the following.

Proposition 3.7. Conjecture 3.5 implies Conjecture 3.6.
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Similarly the proof of Theorem 2.29 applies verbatim to the case of two dimen-
sional conformal nets A ⊂ B, with intervals replaced by double cones, and we have
the following.

Theorem 3.8. (1) Let A ⊂ B be rational two dimensional conformal nets with
finite index; then

S(ω, ωEC)− S(ω, ωEC′) = D̂A(C)− D̂B(C) ∀C ∈ PC.

By Theorem 3.8 and Corollary 2.33 we have the following.

Corollary 3.9. Suppose B is chain related to AL ⊗ AR, where both AL and AR

are chain related to Ar or a conformal net associated with an even positive lattice.
Then Conjecture 3.5 is true for B.

We also have the following.

Corollary 3.10. (1) Suppose B is chain related to AL ⊗AR, where both AL and
AR are chain related to Ar; then DB = 0 if and only if μB = 1.

(2) Suppose that AL ⊗ AR ⊂ B, and both AL and AR are chain related to Ar;
then DB = 0 if and only if B is modular invariant.

Proof. (1) follows from Corollary 3.9 and Proposition 3.7. For the proof of (2),
we note that by our assumptions the representations of AL and AR give rise to
two modular tensor categories CL, CR, respectively. By the comments in the second
paragraph of page 4 of [23](also cf. Th. 3.1 of [10]), μB = 1 if and only if B is
modular invariant. �

A large class of examples with μB = 1 can be obtained as follows: take any
conformal net A which is chain related to free fermion net and take the Longo-
Rehren two dimensional net (which corresponds to identity modular invariant). It
follows by the above corollary that such net verifies DB = 0.

Remark 3.11. The computation of entropies in physics literature is usually done (cf.
[4]) with the replica trick using path integrals, and when the underlying CFT can be
described by a Lagrangian it is usually assumed that the CFT is modular invariant.
In cases where such computations are done, one finds that the deficit vanishes.
Hence (2) of the above corollary is a rigorous formulation of such intuitions.

We note that Theorem 2.39 holds in the case of two dimensional conformal net,
where contraction is defined in the paragraph after Definition 3.1. In fact all other
results of sections 2.4 and 2.5 apply to two dimensional conformal nets as well, with
essentially the same proof.
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