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Abstract: In the framework of Quantum Field Theory, we provide a rigorous, operator
algebraic notion of entanglement entropy associated with a pair of open double cones
O ⊂ ˜O of the spacetime, where the closure of O is contained in ˜O . Given a QFT netA
of local vonNeumann algebrasA(O), we consider the vonNeumann entropy SA(O, ˜O)

of the restriction of the vacuum state to the canonical intermediate type I factor for the
inclusion of von Neumann algebras A(O) ⊂ A(˜O) (split property). We show that this
canonical entanglement entropy SA(O, ˜O) is finite for the chiral conformal net on the
circle generated by finitely many free Fermions (here double cones are intervals). To this
end, we first study the notion of von Neumann entropy of a closed real linear subspace of
a complex Hilbert space, that we then estimate for the local free fermion subspaces. We
further consider the lower entanglement entropy SA(O, ˜O), the infimum of the vacuum
von Neumann entropy ofF , whereF here runs over all the intermediate, discrete type I
von Neumann algebras. We prove that SA(O, ˜O) is finite for the local chiral conformal
net generated by finitely many commuting U (1)-currents.

1. Introduction

Von Neumann entropy is the basic concept in quantum information and extends the
classical Shannon’s information entropy notion to the non commutative setting.

As is well known, a state ω on a matrix algebra M is given by a density matrix ρ,
namely ω(T ) = Tr(ρT ), T ∈ M . The von Neumann entropy of ω is given by

S(ω) = −Tr(ρ log ρ).

Entanglement entropy is a measure of quantum information by the degree of quantum
entanglement of a quantum state.
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Let’s consider a bipartite, finite-dimensional quantum system M = A⊗ B, where A
and B are matrix algebras. Given a pure state ω on the matrix algebra M , let ρA and ρB
the density matrices associated with the restrictions of ω to A and B respectively on A
and B. The entanglement entropy of ω is defined as

−Tr(ρA log ρA) = −Tr(ρB log ρB). (1)

The above definition directly extends to the case M = ⊕

k Ak ⊗ Bk is a direct sum,
where Ak , Bk are matrix algebras and the restrictionsω|Ak⊗Bk are pure (not normalised).
It also extends to the infinite-dimensional case where Ak , Bk are type I factors; in this
last case, however, the entanglement entropy may be infinite.

Entanglement is certainly one of the main features of quantum physics and there is
a famous, long standing debate on its interpretation (EPR paradox, Bell’s inequalities,
etc.). An overview of the matter lies beyond the purpose of this introduction.

The role of entanglement in Quantum Field Theory is more recent and increasingly
important; it represents a piece of the quantum information framework in this subject.
It appears in relation with several primary research topics in theoretical physics as area
theorems, c-theorems, quantum null energy inequality, etc. (see for instance [5,6,32]
and refs. therein).

Despite the rich physical literature on the subject, the rigorous definition of entangle-
ment entropy in QFT is however not obvious. The point is that the von Neumann algebra
A(O) associated with a double cone spacetime region O is typically a factor of type
I I I , so no trace exists on A(O) and one cannot naively extends the definition (1) as
one would do with A = A(O), B = A(O ′), where O is a double cone, O ′ is its causal
complement andω the vacuum state. Due to ultraviolet divergence, such ameasure of the
vacuum entanglement would always result to be infinite. By Haag duality, that holds in
much generality,A(O ′) is the commutantA(O)′ ofA(O) on the vacuum Hilbert space
H, so the von NeumannA(O)∨A(O ′) generated byA(O) andA(O ′) is equal to B(H)

and cannot be naturally isomorphic to the von Neumann tensor productA(O)⊗A(O ′).
To get rid of short distance divergences, one may however consider a slightly larger

double cone O ⊂ ˜O , namely the closure of O is contained in the interior of ˜O . The split
property states that there is a natural isomorphism of von Neumann algebras

A(O) ∨ A(˜O ′) � A(O) ⊗ A(˜O ′),

that identifies A(O) with A(O) ⊗ 1 and A(O ′) with 1 ⊗ A(O ′).
The split property expresses the statistical independence ofA(O) andA(˜O ′); it was

verified for the free, neutral Boson QFT case in [3]. It was studied in [10] and led to
important structural features both inMathematics and inPhysics. It followsunder natural,
general physical requirements [4]. It holds automatically in chiral conformal QFT [24].
(See [16] for a discussion of its validity in topologically non trivial spacetimes).

Approaches to the entanglement entropy by means of the split property are studied
in [7,11,17,25,27,32]. In particular, [17] contains a rigorous definition via separable
states and [27] considers essentially our definition below.

The split property is a local property, in fact it is equivalent to the existence of an
intermediate type I factor F between A(O) and A(˜O)

A(O) ⊂ F ⊂ A(˜O) ; (2)

a type I factor F is a von Neumann algebra isomorphic to B(K), the algebra of all
bounded linear operators on some Hilbert space K.
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Wemay then define the entanglement entropy of the netA associated with the double
cones O ⊂ ˜O as the vacuum von Neumann entropy associated with theF as in (1); here
the global systems is B(H), the factorisation is given by F , namely A = F , B = F ′
with a tensor product decomposition

H = HA ⊗ HB, A � B(HA) ⊗ 1, B � 1 ⊗ B(HB),

and the pure state is the vacuum state.
This definition however depends on the choice of F . Actually, if the split property

holds, there are infinitely many intermediate type I factors F in (2). Yet, as shown in
[10], there is a canonical intermediate type I factorF , associated with the O, ˜O and the
vacuum vector �, given by the formula

F = A(O) ∨ JA(O)J = B(˜O) ∩ JB(˜O)J (3)

(if the local von Neumann algebras are factors), where J is the modular conjugation of
the relative commutant von Neumann algebra A(O)′ ∩ A(˜O) associated with �.

We then define the (canonical) entanglement entropy of A with respect to O, ˜O as

SA(O, ˜O) = −Tr(ρF log ρF ), (4)

whereF is the canonical intermediate type I factor (3). Here Tr is the trace ofF (namely
F = B(HA) ⊗ 1HB and Tr corresponds to the usual trace on B(HA)) and ρF is the
vacuum density matrix relative to F .

The above definition concerns a local net A. If A if a Fermi net, graded locality
rather than locality holds. In this case, the split property is still defined by (2) and the
entanglement entropy by (4). However, the canonical intermediate type I factor is to be
defined by a twisted version of formula (3), cf. (50).

A main result in this paper is that the above defined canonical entanglement entropy
is finite for the chiral conformal net M generated by a complex free fermion on S1.
Here, double cones are intervals I ⊂ ˜I of S1.

M is a second quantisation net and we first provide an abstract analysis on the one
particle Hilbert space H0. Let F ⊂ H0 be a closed, real linear subspace of H0. We
define the entropy of H as the von Neumann entropy

S(F) = S(σ ),

with σ = PF PF ′ PF , where PF is the real orthogonal projection onto F and F ′ is the
symplectic complement of F ′. Note that PF ′ PF is an “angle operator” (cf. [9,14,30]).
σ is a bounded, real linear operator. If S(σ ) < ∞, then σ has to be a (real) trace class
operator; with {λn} the (positive) proper values of σ , then S(σ ) = −∑

n λn log λn .
It turns out that

S(σ ) < ∞ ⇐⇒ S(ρF ) < ∞,

where S(ρF ) is the vacuum von Neumann entropy relative to the type I factor F as-
sociated with F in second quantisation. We shall choose a canonical type I subspace
F , intermediate between the subspaces real H(I ) ⊂ H(˜I ) of H0 associated with the
interval I ⊂ ˜I , so that S(σ ) will be the canonical entanglement entropy (4).

In the second part of this paper, we provide model analysis in order to derive the
finiteness of S(σ ) in the one complex free fermion case. This is the first case where the
entanglement entropy (4) is proved to be finite, a problem that is explicit or implicit in
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various papers, [25,27]. The same finiteness result then follows for other related nets,
as in the r -fermion case or in the case of a real fermion.

Now, there is another natural definition of entanglement entropy:

SA(I, ˜I ) = inf
F

S(F),

the infimum of the the von Neumann entropy S(F) = −Tr(ρF log ρF ) over all the
intermediate type I factors F or, more generally, over all the intermediate type I dis-
crete von Neumann algebras F . Of course, the lower entanglement entropy SA(I, ˜I ) is
bounded by the canonical entanglement entropy SA(I, ˜I ).

We shall infer form our results that

SA(I, ˜I ) < ∞
also in the case of the local net generated by r free bosons on S1 (r copies of the current
algebra net). We expect the canonical entanglement entropy to be finite in this case too,
but this remains unproven in this paper.

2. Entropy of Standard Subspaces

In this first part, we discuss basic, abstract aspects concerning entropy in first and second
quantisation. We go slightly beyond what is strictly needed in the second part, with the
purpose of clarifying the general picture, that gives motivation for future work.

2.1. Trace and determinants in second quantisation. Let H be an Hilbert space and
�(H) (resp. �(H)), the Bose (resp. Fermi) Fock Hilbert space over H

�(H) =
∞

⊕

n=0

�n(H), �(H) =
∞

⊕

n=0

�n(H). (5)

If A ∈ B(H) and ||A|| ≤ 1, the second quantisation of �(A) (resp. �(A)) is the linear
contraction on �(H) (resp. �(H)) defined by

1 ⊕ A ⊕ (A ⊗ A) ⊕ (A ⊗ A ⊗ A) ⊕ · · ·
where the A ⊗ · · · ⊗ A acts on the symmetric part �k(H) (resp. anti-symmetric part
�k(H)) of H ⊗ · · · ⊗ H.

We recall the following lemma, see [19].

Lemma 2.1. If A is selfadjoint, 0 ≤ A < 1, then

Tr
(

�(A)
) = det(1 − A)−1, Tr

(

�(A)
) = det(1 + A), (6)

log Tr
(

�(A)
) = −Tr log(1 − A) , log Tr

(

�(A)
) = Tr log(1 + A). (7)

Proof. We may assume that A has discrete spectrum, otherwise all quantities in (6), (7)
are infinite. Suppose first thatH is one-dimensional, thus A = λ is a scalar 0 ≤ λ < 1. In
the Bose case, �n(H) is then one-dimensional for all n, thus we have �(A) = ⊕∞

n=0 λn ,
so Tr

(

�(A)
) = ∑∞

n=0 λn = (1 − λ)−1.
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For a general A, we may decompose H = ⊕

n Hn so that dimHn = 1 and A =
⊕

n λn . Then �(H) = ⊗{�n}
n �(Hn), where �n is the vacuum vector of �(Hn), and

�(A) = ⊗

n �(An). It follows that

Tr
(

�(A)
) =

∏

n

Tr
(

�(An)
) =

∏

n

(1 − λn)
−1 = det(1 − A)−1.

In the Fermi case, if H is one-dimensional then �n(H) = {0} if n ≥ 2 and is one-
dimensional if n = 0, 1; if A = λ we then have �(A) = 1 ⊕ λ so Tr

(

�(A)
) = 1 + λ.

Since, also in the Fermi case, there is a canonical equivalence between �
(

A ⊕ B
)

and
�(A) ⊗ �(B), we have

Tr
(

�(A)
) =

∏

n

Tr
(

�((λn)
) =

∏

n

(1 + λn) = det(1 + A),

where A = ⊕

n λn .
Concerning formulas (7), notice that

det A = eTr log A,

hence by (7) we have

log Tr
(

�(A)
) = − log det(1 − A) = −Tr

(

log(1 − A)
)

and

log Tr
(

�(A)
) = log det(1 + A) = Tr

(

log(1 + A)
)

.

��
As a consequence

Tr(A) < ∞ ⇔ Tr
(

�(A)
)

< ∞ ⇔ Tr
(

�(A)
)

. (8)

2.2. Angle between subspaces and type I property. Let H be a complex Hilbert space
and T a (complex) linear operator on H. We shall say that T ∈ Lp, p ∈ (0,∞), if
there exist orthonormal sequences of vectors {ek}, { fk} ofH and a sequence of complex
numbers λk with

∑

k |λk |p < ∞, i.e. {λk} ∈ 	p, such that

T ξ =
∑

k

λk(ek, ξ) fk, ξ ∈ H, (9)

thus T ∈ Lp iff Tr(|T |p) < ∞ and we have ||T − Tn|| → 0 with Tn ≡ ∑n
k=1(ek, ·) fk .

We set as usual ||T ||p ≡ Tr(|T |p) 1
p = (

∑∞
k=0 |λk |p)

1
p . L1-operators are also called

trace class operators and L2-operators Hilbert-Schmidt operators.
One can define Lp real linear operators between real Hilbert spaces analogously as

in (9).
We may view the complex Hilbert space H as a real Hilbert with scalar product

(ξ, η)R ≡ �(ξ, η), and denote it byHR. A complex linear operator T : H → H is also
a real linear operator T : HR → HR, that we may also denote by TR if we want to
emphasise that T is regarded as a real linear operator.
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Lemma 2.2. T : H → H is Lp as a complex linear operator iff TR : HR → HR is Lp

as a real linear operator.

Proof. Let T : H → H be Lp as a complex linear operator. For some orthonormal
families {ek} and { fk} in H and a 	p-sequence {λk} (we may assume that λk ≥ 0) we
have

T ξ =
∑

k

λk(ek, ξ) fk =
∑

k

λk�(ek, ξ) fk + i
∑

k

λk�(ek, ξ) fk

=
∑

k

λk�(ek, ξ) fk +
∑

k

λk�(ieh, ξ)i fk,

thus ||TR||pp = 2||T ||pp.
Conversely, assume that TR ∈ Lp. For some orthogonal families {ek} and { fk} inHR

we have

T ξ =
∑

k

λk�(ek, ξ) fk, T iξ =
∑

k

λk�(ek, iξ) fk = −
∑

k

λk�(ek, ξ) fk,

thus

T ξ = (1 − i)−1(T ξ − iT ξ) = 1 + i

2

∑

k

λk(ek, ξ) fk

and we have ||T ||p ≤ √
2 ||TR||p. ��

Let H be a complex Hilbert space and H ⊂ H a standard subspace, i.e. H is a closed,
real linear subspace of H with H ∩ i H = {0} and H + i H dense in H. SH ,�H , JH
denote the usual operators associated with H by the modular theory, see [21]. We denote
by EH (Z) the spectral projection of �H associated with the Borel subset Z ⊂ R, and
byHH (Z) the corresponding spectral subspace.

We shall say that H is factorial if H ∩ H ′ = {0}, with H ′ the real orthogonal of i H .
Note that H is factorial iff 1 is not an eigenvalue of �H . This is equivalent to the Bose
(resp. Fermi) second quantisation von Neumann algebra R(H) (resp. M(H)) to be a
factor.

We shall say that a factorial standard subspace H ⊂ H is of type if R(H) is a type
I factor; as we shall see in Corollary 2.9, H is of type I iffM(H) is a type I factor.

The following lemma is proved in [12] in the Bose case.

Proposition 2.3. H is of type I iff �H EH (0, 1) is L1, with EH (0, 1) the spectral pro-
jection of �H associated with the interval (0, 1).

Proof. Immediate by Corollary 2.10. ��
We denote by PH the real linear orthogonal projection from HR onto H . Note that

i PiH = PHi, PH ′ = 1 − PiH . (10)

The following relation holds [12]:

PH = 1

�H + 1
+ JH

�
1/2
H

�H + 1
. (11)
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To get the above formula, one easily checks that, with the above definition, PH ξ = ξ if
SH ξ = ξ and that SH PH ξ = PH ξ .

Now, taking into account that �H ′ = �−1
H = JH�H JH , we have

PH ′ = �H

�H + 1
+ JH

�
1/2
H

�H + 1
. (12)

Thus the angle operator between H and H ′ is given by

PH PH ′ = 2
�H

(�H + 1)2
+ 2

�
1/2
H

(�H + 1)2
JH (13)

= 2
�H

(�H + 1)2
+ 2

�H

(�H + 1)2
SH . (14)

Lemma 2.4. [12] Set AH ≡ 4 �H
(�H+1)2

. We have

PH PH ′
∣

∣

H = AH
∣

∣

H . (15)

As a consequence, PH PH ′ |H is Lp iff AH is Lp.

Proof. Formula (15) follows by (14) and the above discussion.
If AH is Lp as a complex linear operator, then AH is Lp as a real linear operator,

hence PH PH ′ |H = AH |H is Lp.
Conversely, if PH PH |H is Lp, then AH |H : H → H is Lp as real linear operator;

choose an orthonormal basis {ek} and { fk} for H w.r.t. the real part of the scalar product
and {λk} ∈ 	p such that AH ξ = ∑

k λk�(ek, ξ) fk , ξ ∈ H . Since AH is complex linear

AH (ξ + iη) = AH ξ + i AHη =
∑

k

λk�(ek, ξ) fk + i
∑

k

λk�(ek, η) fk ;

as H + i H is dense in the Hilbert space, AH is thus Lp as real linear operator, hence as
complex linear operator. ��
In the following, H is a factorial standard subspace of H.

Proposition 2.5. [1,2] H is of type I iff AH is trace class.

Proof. Since JH�H JH = �−1
H , we have that �H EH (0, 1) is L1 iff �−1

H EH (1,∞) is
L1, thus iff �H

(�H+1)2
is L1. The proposition then follows by Prop. 2.3. ��

Corollary 2.6. The following are equivalent:

• H is of type I,
• PH PH ′ is L2,
• PH PH ′ |H is L1,
• PH PH ′ PH is L1,
• [PH , i] is L2, where [PH , i] ≡ PHi − i PH ,

The eigenvalues of PH PH ′ PH and�H |HH (0,1) have equivalent asymptotic, in particular
�H |HH (0,1) is Lp iff PH PH ′ is L2p, p > 0.
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Proof. H is of type I iff AH is L1 iff PH PH ′ |H is L1 by Lemma 2.4. On the other
hand, PH PH ′ |H is L1 iff PH PH ′ PH is L1, thus iff PH PH ′ is L2 as PH PH ′ PH =
(PH ′ PH )∗PH ′ PH . So the equivalence among the first four properties follows.

Concerning the last property, it suffices to note that, by (11), we have

[PH , i] = 2JH
�

1/2
H

�H + 1
= JH A1/2

H .

The last assertion follows by Lemma 2.4. ��

2.3. Type I density matrix. Let H be a complex Hilbert space, �(H) the Bose Fock
space over H and F ⊂ H be a standard subspace. If the von Neumann algebra R(F)

on �(H) associated with F (i.e. generated by the Weyl unitaries W (h) with h ∈ F , see
[20]) is of type I , the restriction of the vacuum state ω of B

(

�(H)
)

to the type I factor
R(F) gives a density matrix ρF ∈ R(F) with respect to the trace TrF of R(F)

ω|R(F) = TrF (ρF ·),
that we aim to analyse.

Similarly, in the Fermi case, ρ′
F denotes the density matrix associated with the re-

striction of ω toM(F), whereM(F) is the von Neumann algebra on �(H) associated
with F (see [13] or Sect. 3.2), assuming it to be a type I factor.

We shall consider also the norm one normalisations

ρ̂F ≡ ρF

||ρF || , ρ̂′
F ≡ ρ′

F

||ρ′
F || ;

thus ρF ≡ ρ̂F
TrF (ρ̂F )

and ρ′
F ≡ ρ̂′

F
TrF (ρ̂′

F )
.

Lemma 2.7. Let H be a 2-dimensional complex Hilbert space and F ≡ Fλ ⊂ H a
standard subspace with sp(�F ) = {λ, λ−1}, λ ∈ (0, 1). We have:
Bose case:

(a) R(F) is a factor of type I∞.
(b) sp(ρ̂F ) = {λn, n = 0, 1, 2 . . . }− and each λn, n > 1, is an eigenvalue with multi-

plicity 1, while 0 is not in the point spectrum.
(c) TrF (ρ̂F ) = 1

1−λ
, with TrF the trace of R(F).

Fermi case:

(a) M(F) is a factor of type I2 (2 × 2 matrix algebra).
(b) sp(ρ̂′

F ) = {1, λ}.
(c) TrF (ρ̂′

F ) = 1 + λ, with TrF the trace of M(F).

Proof (Bose case).H is the direct sum of two one-dimensional complex Hilbert spaces,
H = H1 ⊕ H−1, with �ξ = λ±1ξ , ξ ∈ H±1 and J (ξ1 ⊕ ξ−1) = ξ̄−1 ⊕ ξ̄1 (with
� = �F , J = JF ). Then ξ1 ⊕ ξ−1 ∈ H iff Sξ1 ⊕ ξ−1 = ξ1 ⊕ ξ−1, thus iff

ξ1 ⊕ ξ−1 = λ−1/2ξ̄−1 ⊕ λ1/2ξ̄1,

so F = {ξ ⊕ λJξ, ξ ∈ H1}.
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The real linear map T : H1 → F , T ξ �→ (1 + λ2)−1/2(ξ ⊕ λJξ) satisfies

Tλi tξ = �i t T ξ

and, by the uniqueness of the canonical commutation relations, we have an isomorphism
 : R(H1) → R(F) with 

(

W (ξ)
) = W (T ξ) because

�(T ξ, Tη) = (1 + λ2)−1�(ξ ⊕ λJξ, η ⊕ λJη) = (1 + λ2)−1(�(ξ, η) + �(λJξ, λJη))

= (1 + λ2)−1(�(ξ, η) + λ2�(λη, λξ)) = �(ξ, η).

Now Ad�i t |R(F) is the inner automorphism implemented by the unitary ρi t where
ρ ∈ R(F) is the positive selfadjoint element ρ̂F which is unitary equivalent to �(λ).
The rest is now clear.

(Fermi case.) In this case �(H) = C ⊕ H ⊕ C is 4-dimensional, so M(F) is
isomorphic to a 2 × 2 matrix algebra. Clearly sp(�M(F)) = {1, λ, λ−1}, so sp(ρ̂′

F ) =
{1, λ} and TrF (ρ̂′

F ) = 1 + λ. ��
Let F ⊂ H be a factorial standard subspace and assume that the spectrum of themodular
operator�F is discrete. Letλk be the eigenvalues of�F |HF (0,1) (withmultiplicity). Then
H is the direct sum of the 2-dimensional complexHilbert spacesHλk with corresponding
direct sum decomposition F = ⊕

k Fλk as in Lemma 2.7. Then

ρ̂F =
⊗

k

ρ̂Fλk
,

where the infinite tensor product (w.r.t. the vacuum vectors) is convergent iffR(F) is a
type I factor. In this case

TrF (ρ̂F ) =
∏

k

TrFλk
(ρ̂Fλk

) =
∏

k

(1 − λk)
−1. (16)

Similarly,
TrF (ρ̂′

F ) =
∏

k

TrFλk
(ρ̂′

Fλk
) =

∏

k

(1 + λk). (17)

Corollary 2.8. sp(�R(F)) and sp(�M(F)) are equal to the closure of the multiplicative
group generated by sp(�F )� {0}. IfR(F) (resp.M(F)) is of type I , we have sp(ρ̂F ) ⊂
sp(�R(F)) ∩ [0, 1] (resp. sp(ρ̂′

F ) ⊂ sp(�M(F)) ∩ [0, 1].
Proof. Immediate by the above discussion. ��
Corollary 2.9. R(F) is a type I factor iff M(F) is a type I factor and this is the case
iff �F EF (0, 1) is L1.

Proof. By (16), (17), we have

TrF (ρ̂F ) < ∞ ⇐⇒
∑

k

λk < ∞ ⇐⇒ TrF (ρ̂′
F ) < ∞

and the corollary follows because Tr
(

�F EF (0, 1)
) = ∑

k λk . ��
We make explicit the following direct consequence.

Corollary 2.10. Let F ⊂ H standard subspace withR(F) a type I factor. If we identify
R(F)with B(K)withK aHilbert space, then ρ̂F is unitarily equivalent to�(�F |HF (0,1))

on �(HF (0, 1)). Similarly, ρ̂′
F is unitarily equivalent to �(�F |HF (0,1)).

Proof. As in Lemma 2.7, �(�F |HF (0,1)) = ⊗

k �(λk) which is unitarily equivalent to
ρ̂F = ⊗

k ρ̂Fk . The Fermi case is analogous. ��
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2.4. Second quantisation entropy. With ρ a positive, non-singular selfadjoint linear
operator, the von Neumann entropy of ρ is defined by

S(ρ) ≡ −Tr(ρ log ρ). (18)

Here, ρ is not assumed to have trace one, note however that for λ > 0

S(ρ) < ∞ ⇐⇒ S(λρ) < ∞.

The following proposition (Fermi case) is equivalent to [8, Lemma 3.3].

Proposition 2.11. Let A be operator, 0 ≤ A < 1. The von Neumann entropy of the Bose
and Fermi second quantisation of A is given respectively by

S
(

�(A)
) = −Tr

(

A

1 − A
log A

)

Tr
(

�(A)
) = −Tr

(

A

1 − A
log A

)

det(1 − A)−1, (19)

S
(

�(A)
) = −Tr

(

A

1 + A
log A

)

Tr
(

�(A)
) = −Tr

(

A

1 + A
log A

)

det(1 + A). (20)

Proof. We use the formula

−S(ρ) = d

dα
Tr(ρα)

∣

∣

∣

α=1
,

hence we may compute S(ρ) by the logarithmic derivative

−S(ρ) =
(

d

dα
log Tr(ρα)

∣

∣

∣

α=1

)

Tr(ρ).

Since �(Aα) = �(A)α , we have

S
(

�(A)
) = −

(

d

dα
log Tr

(

�(Aα)
)∣

∣

α=1

)

Tr
(

�(A)
) =

(

d

dα
Tr

(

log(1 − Aα)
)∣

∣

α=1

)

Tr
(

�(A)
)

= Tr
( d

dα
log

(

1 − Aα)
)∣

∣

∣

α=1
Tr

(

�(A)
) = −Tr

( Aα

1 − Aα
log A

)∣

∣

∣

α=1
Tr

(

�(A)
)

= −Tr
( A

1 − A
log A

)

Tr
(

�(A)
) ;

the second equation in (19) follows by (6).
Similarly,

S
(

�(A)
) = −

(

d

dα
log Tr

(

�(Aα)
)∣

∣

α=1

)

Tr
(

�(A)
) = −

(

d

dα
Tr(log(1 + Aα))

∣

∣

α=1

)

Tr
(

�(A)
)

= −Tr
( d

dα
log

(

1 + Aα)
)∣

∣

∣

α=1
Tr

(

�(A)
) = −Tr

( Aα

1 + Aα
log A

)∣

∣

∣

α=1
Tr

(

�(A)
)

= −Tr
( A

1 + A
log A

)

Tr
(

�(A)
)

.

The second equations in (19), (20) follow by (6). ��
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With A as above, note that Tr(A) is finite iff det(1 + A) is finite and iff det(1− A)−1 is
finite. So we have:

Corollary 2.12. S(A) is finite iff S
(

�(A)
)

is finite and iff S
(

�(A)
)

is finite.

Proof. Clearly,

S(A) < ∞ ⇒ Tr(A) < ∞.

Then by (19) we have

S
(

�(A)
)

< ∞ ⇒ −Tr

(

A

1 − A
log A

)

< ∞ ⇔ S(A) < ∞.

The converse implication S(A) < ∞ ⇒ S
(

�(A)
)

< ∞ follows again by (19) and by
(8).

The equivalence S(A) < ∞ ⇔ S
(

�(A)
)

< ∞ is analogously obtained by (19) and
(8). ��
Let F ⊂ H be a factorial, type I standard subspace of H. We define the entropy S(F)

of F as
S(F) = S(PF PF ′ PF ) (21)

and the Bose (resp. Fermi) entanglement entropy of F to be the von Neumann entropy
S(ρF ) (resp. S(ρ′

F )). As above, ρF is the density matrix of the restriction of the vacuum
state toR(F) (resp. M(F)). We have

S(ρF ) = S(ρF ′), S(ρ′
F ) = S(ρ′

F ′).

Corollary 2.13.

S(ρF ) < ∞ ⇐⇒ S(ρ′
F ) < ∞ ⇐⇒ S(F) < ∞.

Proof. ByCorollary 2.10, ρ̂F is unitarily equivalent to�(PF PF ′ PF ) (after an identifica-
tion ofR(F)with B(K)); and an analogous unitary equivalence of ρ̂′

F with�(PF PF ′ PF )

holds. So the statement follows by Cor. 2.6 and Cor. 2.12. ��

2.5. Split inclusions. Recall that an inclusion of von Neumann algebras N1 ⊂ N2 is
said to be split if there exists an intermediate type I factor F , so N1 ⊂ F ⊂ N2 [10],
see this reference for more on these inclusions. In this section we begin to study split
inclusions of standard subspaces.

Let H be a Hilbert space. With K ⊂ H a closed, real linear subspace, we denote
as above by PK the real orthogonal projection onto K . Let K ⊂ H be an inclusion of
standard subspaces ofH. We shall say that K ⊂ H is split if the corresponding inclusion
of von Neumann algebras R(K ) ⊂ R(H) on the Bose Fock space is split.

Proposition 2.14. Let K ⊂ H be an inclusion of standard factorial subspaces ofHwith
K ′ ∩ H standard. The following are equivalent:

(i) K ⊂ H is split,
(ii) There exists an intermediate type I standard space F: K ⊂ F ⊂ H,
(iii) F ≡ K + JK ′∩H K = H ∩ JK ′∩H H is a canonical type I intermediate subspace.
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Proof. Clearly (i i i) ⇒ (i i) ⇒ (i) and we have to show that (i) ⇒ (i i i). Assuming
then (i), R(K ) ⊂ R(H) is split by definition. The vacuum vector � is cyclic for the
relative commutant R(K )′ ∩ R(H) = R(K ′) ∩ R(H) = R(K ′ ∩ H) because K ′ ∩ H
is standard by assumption. By [10], the von Neumann algebra

F = R(K ) ∨ JR(K )J = R(H) ∩ JR(H)J (22)

is a canonical intermediate type I factor. Here J is the modular conjugation ofR(K ′)∩
R(H) w.r.t. �.

Now, J = �(JK ′∩H ), the second quantisation of the modular conjugation JK ′∩H of
K ′ ∩ H . Thus

F = R(K ) ∨ JR(K )J = R(K ) ∨ R(JK ′∩H K ) = R(F), (23)

where F = K + JK ′∩H K is an intermediate type I factor between K and H , and F if
of type I because R(F) = F is of type I . ��
Let K ⊂ H be a split inclusion of standard subspaces of H with K ′ ∩ H standard. By
Prop. 2.14, there is a canonical intermediate type I factor R(F) between R(K ) and
R(H), with F given by (23). This is indeed the canonical intermediate type I factor for
R(K ) ⊂ R(H) associated with the vacuum vector.

By Corollary 2.9, the von Neumann algebra M(F) in the Fermi quantisation of
F is also a canonical intermediate type I factor between M(K ) and M(H), that we
shall study in Section 3, where the standard subspaces are associated with intervals of
S1 (free Fermi net in first quantisation). This is a canonical intermediate type I factor
for M(K ) ⊂ M(H) associated with the vacuum vector, here constructed by a graded
version (50) of formula (22), where the relative commutant is replaced by the graded
relative commutant.

Before ending this section, we note the following proposition.

Proposition 2.15. Let K ⊂ H be an inclusion of standard factorial subspaces ofHwith
K ′ ∩ H standard. If K ⊂ H is split then PK PH ′ and PK J PH ′ are L2, with J = JK ′∩H .

Proof. Let F be an intermediate type I subspace. ByCor. 2.6 PF PF ′ PF is trace class. As
PH ′ < PF ′ , we have PF PH ′ PF < PF PF ′ PF , so PF PH ′ PF is trace class. Bymultiplying
the latter by PK from the left and from the right we see that PK PH ′ PK is trace class.
Equivalently, PH ′ PK is L2.

With F is the canonical intermediate type I subspace, we have J K ⊂ F , so J K ⊂ H
is split. By the above argument, PJK PH ′ is thus L2. As PJK = J PK J , we then have
that J PK J PH ′ , hence PK J PH ′ , is L2. ��
Let K ⊂ H be an inclusion of standard factorial subspaces ofH with K ′ ∩ H standard.
By the above proposition, and its proof, we might expect that PK PH ′ is Lp iff PF PF ′
is Lp, where F is the canonical intermediate type I subspace. A relation of this kind
would be useful for entropy computations.

3. Entanglement Entropy for Conformal Nets

In this second part, we are dealing with QFT nets of standard subspaces and of von
Neumann algebras on S1 and we state our definitions in this setting, although they
directly extends to the case of net on higher dimensional spacetimes.
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3.1. Free quantum field case. Let H : I ⊂ S1 �→ H(I ) be a SL(2, R)-covariant net
of standard subspaces of a Hilbert space H on the interval of S1. We assume that H is
local or twisted-local.

Given intervals I ⊂ ˜I of S1, with Ī contained in the interior of ˜I , and a factorial,
type I standard subspace F with H(I ) ⊂ F ⊂ H(˜I ), we set

SH (I, ˜I ; F) := S(F),

with S(F) the von Neumann entropy of F defined in (21). As seen in Sect. 2.5, there is
a canonical choice for F . We set

SH (I, ˜I ) = SH (I, ˜I ; F),

with F the canonical intermediate type I factorial standard subspace.
Analogously, let A be SL(2, R)-covariant net of von Neumann algebras on S1. We

assume that A is either local or twisted-local and the split property holds.
Let F be an intermediate type I factor between A(I ) and A(˜I ), and ρF ∈ F be the

density matrix (with trace one) associated with the restriction of the vacuum state to F .
We set

SA(I, ˜I ;F) := S(ρF ) . (24)

Now, consider the net of von Neumann algebras A(I ) associated with the Bose (resp.
Fermi) second quantisation of H , and set

SA(I, ˜I ) := SA(I, ˜I ;F),

with F the type I factor associated with the Bose (resp. Fermi) second quantisation of
the canonical intermediate type I standard subspace F .

Then, by Corollary 2.13, we have

SA(I, ˜I ) < ∞ ⇐⇒ SH (I, ˜I ) < ∞. (25)

We may also consider the lower entropy

SA(I, ˜I ) := inf
F

SA(I, ˜I ;F),

where the infimum is taken over all intermediate type I factorF or, more generally, over
all intermediate, discrete type I von Neumann algebras (countable direct sum of type I
factors).

Of course

SA(I, ˜I ) ≤ SA(I, ˜I ).

In some case, it may be easier to get a bound for SA(I, ˜I ) rather than for SA(I, ˜I ), cf.
Sect. 3.5.
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3.2. Free Fermi nets. We refer the reader to Section 3 of Chapter I and Section 13 of
Chapter II of [31] for more details.

LetH be a complex Hilbert space and K ⊂ H a standard subspace ofH. If ξ ∈ H, we
denote by a(ξ) the associated exterior multiplication operator on the Fermi Fock space
over H (5) (creation operator) and c(ξ) = a(ξ) + a∗(ξ) the Clifford multiplication.

If T is a bonded linear operator on H with ||T || ≤ 1, we denote by �(T ), as in
Sect. 2.1, the bounded linear operator on �(H) such that �(T )|�n(H) = T ∧ T · · · ∧ T ,
the n-fold tensor product of T on �k(H). Note that ||�(T )|| ≤ 1.

The Klein transform k : �(H) → �(H) is the linear operator such that k = 1 on the
even part and i on the odd part of �(H).

Let M(K ) be the von Neumann algebra generated by {c(ξ), ξ ∈ H} and JK , �K
the modular conjugation and operator of M(K ) with respect to the vacuum vector �.
Then

JK = k−1�(i jK ), �i t
K = �(δi tK ),

where jK and δK are the modular conjugation and operator of the standard subspace
K , see [1] or [31] (in this section we use use small letters to denote modular operators
and conjugations on the one-particle Hilbert space, and capital letter on the fermi Fock
Hilbert space).

We have

M(K )′ = JKM(K )JK = k−1M(K⊥)k,

with K⊥ the orthogonal of K with respect to the real part of the scalar product;M(K⊥) is
the graded commutant ofM(K ). Note that the formulas for the orthogonal projections:

jK K = K ′ = (i K )⊥, PK ′ = 1 − PiK = 1 + i PK i = −i PK⊥ i.

It follows that

Pi jK K = −i P(i K )⊥ i = −i(1 − PiK )i = PK⊥ .

We shall denote ĵK = i jK . Then

PĵK K = PK⊥ . (26)

From now on we specialise to H = L2(S1; C), with the complex structure on H given
by i(2P − 1), with P is the projection onto the Hardy space.

The net of standard subspaces on S1 is given by

I �→ L2(I ) ≡ L2(I ; C).

If K = L2(I ) with I the upper semicircle, then ĵK is given by Theorem in Section 14
of [31]:

ĵK ( f ) = 1

z
f (z−1). (27)
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3.2.1. Explicit formula in a special case On S1, we consider the following four “sym-
metric intervals"

I1 = {

eiθ : 0 < θ <
π

2

}

, I2 = {

eiθ : −π

2
< θ < 0

}

, (28)

−I1 = {

e−iθ : 0 < θ <
π

2

}

, −I2 = {

e−iθ : −π

2
< θ < 0

}

. (29)

We note that I 21 = (−I1)2 = I = {eiθ : 0 ≤ θ ≤ π}, where I 21 = {z2 : z ∈ I1}. We
denote by χ1, χ2, χ−1, χ−2 the characteristic functions of I1, I2,−I1,−I2 respectively.

Now let K = L2(I1) ⊕ L2(−I1). Our goal is to have an explicit formula for ĵK : this
is based on the formula for the modular operator for disjoint intervals in the free fermion
case in [22,29] and [7].

We will start with the following linear isomorphism from H ⊕ H to H which is
inspired by Prop. 3 in [29]

⎧

⎪

⎨

⎪

⎩

β
(

(φ1(z), φ2(z))
) = ψ(z) = φ1(z2) + zφ2(z2)

φ1(z2) = 1
2

(

ψ(z) + ψ(−z)
)

φ2(z2) = 1
2z

(

ψ(z) − ψ(−z)
)

(30)

where (φ1, φ2) ∈ H⊕H, ψ is inH = L2(S1; C). In terms of basis one can check from
the above definition that

β(zn, 0) = z2n, β(0, zn) = z2n+1

for all integers n.
Note that βP ⊕ P = Pβ where P is the projection onto the Hardy space.
The inverse of β is given by

β−1(ψ(z)
) = (

φ1(z), φ2(z)
)

. (31)

Now, for the free fermion net associated with φ1, if K = L2(I ) with I the upper
semicircle, we have ĵK ( f ) = 1

z f (z
−1) by (27).

Using (30) and (31), we can transform the diagonal action of ĵK on H ⊕ H to an
action of j on ψ(z) such that j = β ĵKβ−1.

We arrive at the following

( j f )(z) =
(

1

2
+

1

2z2

)

f (z−1) −
(

1

2
− 1

2z2

)

f (−z−1). (32)

Note that j maps L2(I1) to L2(I2 ∪ −I2). We will denote by MI the multiplication
operator by χI .

By definition, MI1 and jMI1 j are orthogonal projections whose ranges L
2(I1) and

j L2(I1) are also orthogonal. Hence P12 := MI1 + jMI1 j is a projection.
Note that L2(I1) ⊕ j L2(I1) is the canonical type I standard subspace which is

intermediate between L2(I1) and L2(I1 ∪ I2 ∪ −I2).
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Theorem 3.1.

P12 = Mg + MhR on L2(S1),

where

g(z) = 1

4z2
(z2 + 1)2χ2 − 1

4z2
(z2 − 1)2χ−2 + χ1, (33)

h(z) = 1

4z2
(z4 − 1)(χ2 − χ−2), (34)

R( f )(z) = f (−z). (35)

Proof. By (32) we have

jMI1 j f =
( 1

4z2
(z2 +1)2χ2 − 1

4z2
(z2 −1)2χ−2

)

f (z)+
( 1

4z2
(z4 −1)χ2 −χ−2

)

f (−z)

(36)
and the theorem follows. ��
It is now useful to examine the Fourier modes of g and h.

Proposition 3.2. Consider the Fourier series g(z) = ∑

n gnz
n and h(z) = ∑

n hnz
n

where g, h are as in Th. 3.1. Then |gn| = O(n−3) and |hn| = O(n−2).

Proof. Consider the Fourier expansion χI1(z) = ∑

n γnzn . Then

γn = 1

2π

∫ π
2

0
e−inθdθ = 1

2π

i

n
(e−inπ/2 − 1).

Thus

g(z) =
∑

p

(

(1

4
γ2−p +

1

2
γ−p +

1

4
γ−2−p

) − (1

4
γ2−p − 1

2
γ−p +

1

4
γ−2−p

)

(−1)p + γp

)

z p,

so gn = 0 when n is even as γn = −γ−n if n ≥ 0 is even.
When n is odd

gn = 1

2
(γ2−n + γ−2−n) + γn (37)

= i

2π
(e

−iπn
2 − 1)

(1

n
− 1

2

( 1

n − 2
+

1

n + 2

)

)

= i

2π
(e

−iπn
2 − 1)

−4

n(n2 − 4)
= O(n−3).

(38)

As h(z) = ∑

n(−γ−2−n + γ2−n)zn , we have

hn = −γ−2−n + γ2−n = O(n−2).

��
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3.2.2. General symmetric interval case On S1, we consider the following general four
“symmetric intervals”

I1 = {eiθ : 0 < θ < φ}, I2 = {eiθ : φ − π < θ < 0}, (39)

−I1 = {e−iθ : 0 < θ < φ}, −I2 = {e−iθ : φ − π < θ < 0}, 0 < φ < π. (40)

We note that all results in this section simplify in the previous section when φ = π/2.
Denote by I0 := {eiθ : 0 < θ < 2φ}. We shall consider the action of SU (1, 1) on

S1 which is given by z → az+b
b̄z+ā

with |a|2 − |b|2 = ±1. The Möbius group Möb is the

subgroup of SU (1, 1) of elements with determinant |a|2 − |b|2 = 1. The action z → 1
z

is orientation reversing.
If m(z) = az+b

b̄z+ā
, the unitary action of m on S1 is given by (See Section 4 of [31])

(Um f )(z) = (a − b̄z)−1 f (m−1z). (41)

Since (a− b̄z)−1 is holomorphic for |z| < 1 and |a| > |b|,Um commutes with the Hardy
space projection P . The flip map (F1 f )(z) = 1

z f (
1
z ) clearly satisfies PF1P = 1 − P .

By combining this we get an action of SU (1, 1) on H which is of the form

(Um f )(z) = αm(z) f (m−1z), (42)

where m(z) = az+b
b̄z+ā

, αm(z) = (a − b̄z)−1.

Let m ∈ Möb be such that mI0 is the upper half circle. Let m1 = m−1F1m. It is
straightforward to see that

m1(e
iφ) = z(1 + e2iφ)/2 − e2iφ

z − (1 + e2iφ)/2
. (43)

Define

(F0 f )(z) = αm1(z) f (m
−1
1 z). (44)

Using (30) and (31), we can transform the diagonal action of F0 onH⊕H to an action
j onH such that j = βF0β−1.

We then arrive at the following expression

( j f )(z) = αm1(z
2)

(

1

2
+

z

2u

)

f (u) + αm1(z
2)

(

1

2
− z

2u

)

f (−u), (45)

where u2 = m1(z2).
Note that j maps L2(I1) to L2(I2 ∪ −I2). We will denote by MI the multiplication

operator by χI , the characteristic function of interval I .
By definition, MI1 and jMI1 j are orthogonal projections whose ranges L

2(I1) and
j L2(I1) are also orthogonal. Hence P12 := MI1 + jMI1 j is a projection.

Note that L2(I1) ⊕ j L2(I1) is the canonical type I standard subspace which is
intermediate between L2(I1) and L2(I1 ∪ I2 ∪ −I2).
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Theorem 3.3.

P12 = Mg + MhR on L2(S1),

where

g(z) = (u + z)2

4uz
χI1(u) − (u − z)2

4uz
χI1(−u) + χI1(z), (46)

h(z) = z2 − u2

4uz
(χI1(u) − χI1(−u)), (47)

(R( f )(z) = f (−z), u2 = m1(z
2). (48)

Proof. This follows directly from (45). ��
To get a generalisation of Prop. 3.2 we need the following lemma:

Lemma 3.4. Let f (z) be a continuous function, where z = eiθ and the support of f lies
in θ ∈ [a, b] ⊂ [0, 2π ]. Suppose that f ′′ exists except for finitely many points in [a, b],
and | f ′′(z)| ≤ M < ∞. Suppose that f = ∑

n fnzn, z = eiθ . Then fn = O(n−2).

Proof. First suppose that f ′′ exists except at a, b. We have

fn = 1

2π

∫ 2π

0
f (z)z−n−1dz = lim

ε→0+

1

2π

∫ b−ε

a+ε

f (z)z−n−1dz.

By doing integration by parts once and use the continuity of f at a, b we get

fn = 1

n + 2

1

2π
lim

ε→0+

∫ b−ε

a+ε

f ′(z)z−n−2dz.

Integration by part one more time and use our assumption we conclude that fn =
O(n−2). In general if f ′′ does not exist for z1, ..., zk , we can divide the interval [a, b]
into a union of finitely many intervals where f ′′ exists on each interval except at end
points, and apply the argument above. ��

We note that the continuity assumption in the above Lemma is crucial. For example
χI1 verifies the assumption of the above Lemma except continuity, and the conclusion
of the Lemma does not hold for χI1 .

Proposition 3.5. Consider the Fourier series g(z) = ∑

n gnz
n and h(z) = ∑

n hnz
n

where g, h are as in Th. 3.3. Then |gn| = O(n−2) and |hn| = O(n−2).

Proof. It is sufficient to check that g and h verify Lemma 3.4. Let us check this for g.
First let us check g(z) is continuous. It suffices to do this at the end points of intervals
I1, I2,−I2. At these endpoints by construction u = ±z, and it is easy to see that g is
continuous by using the fact that g is invariant under u → −u. For an example let us
show that the right limit and left limit of g are equal to each other at eiφ. Let z = eiθ and
suppose that θ → φ−. Note that u ∈ I2 or u ∈ −I2, hence g(z) = 1. When θ → φ+,
since g is invariant under u → −u, we can assume that u ∈ I1 and u → eiφ. By the
formula for g(z) it follows that limθ→φ+ g(z) = 1. Similarly one can show continuity
of g at all other end points.

Let us show that g′′ exists and is bounded except possibly at the end points of intervals
I1, I2,−I2. Fix such z which are not the end points of intervals I1, I2,−I2.
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Note that u2 = m1(z2), we can choose u = √

m1(z2) (cf. equation (43) for an
explicit formula of m1(z)) that is smooth in a neighbourhood of z. g is independent of
such choice. It is also clear that g′′ exists and is bounded on such points, since m1(z)
is a smooth rational function on the unit circle and |m1(z)| = 1. Similarly h verifies
Lemma 3.4. ��

3.3. Hankel operator. Let K1 = L2(I1), K2 = L2(I1∪ I2∪ I−2), F = L2(I1)+ j L2(I1)
as in the beginning of section 3.2.2.We shall prove that (1−P)PF P ∈ Lq for 2

3 < q < 1,
where Lq denotes the class of von Neumann-Schatten operators. Recall that Lq is an
ideal which consists of bounded operators T with

||T ||q := (
∑

n

|λn|q
) 1
q < ∞,

where λn are the singular values of T (cf. Sect. 2.2).

Lemma 3.6. If (1 − P)PF P ∈ Lq , 0 < q < 1, then the von Neumann entropy S(σ ) <

∞, where σ = PF PF ′ PF .

Proof. We note that

PF PF ′ PF = PF (2P − 1)(1 − PF )(2P − 1)PF
= 4[PF , P](1 − PF )[P, PF ]

and

[PF , P] = (1 − P)PF P − PPF (1 − P) = (1 − P)PF P − (

(1 − P)PF P
)∗

.

Hence, if (1 − P)PF P ∈ Lq , then PF PF ′ PF ∈ Lq .
Let {λn} be the singular values of PF PF ′ PF ; then S(PF PF ′ PF ) = −∑

n λn log λn .
Since

∑

n λ
q
n < ∞, and −x log x < xq when x is close to zero, the lemma is proved. ��

By Lemma 3.6, we need to look at

(1 − P)PF P = (1 − P)P12P = (1 − P)MgP + (1 − P)MhRP.

Note that RP = PR = (1 − P)MgP + (1 − P)MhRP .
In terms of the basis zn of L2(S1), we have

PMg(1 − P)(zn) =
∑

k≥0

gk−nz
k,

these are Hankel operators (cf. [28]).

Theorem 3.7. Suppose f = ∑

n fnzn, fn = O(n−α)with α > 3
2 . Then PM f (1− P) ∈

Lq with 1 > q > 1
α− 1

2
.
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Proof. (First proof.) As in [18], let ξn = ∑

k≥0 fk+nzk , n > 0,

PM f (1 − P)(zn) =
∑

k≥0

fk−nz
k = ξ−n, n < 0.

It follows that

PM f (1 − P) =
∑

n<0

(·, zn)ξ−n =
∑

n>0

(·, z−n)ξn .

By [28, Appendix 1], we have ||T + R||qq ≤ ||T ||qq + ||R||qq for 0 < q < 1. It follows
that

||PM f (1 − P)||qq ≤
∑

n≥0

||ξn||q .

Note that ||ξn|| = (∑

k≥0 | fk+n|2
) 1
2 = O(n−α+ 1

2 ), so the theorem follows.
(Second proof.) According to Page 243 of [28] PM f (1 − P) ∈ Lq if the function

f 1(z) = ∑

n≥0 fn+1zn is in the Besoz space Bq , i.e.

(

1 − |z|2)k f 1(k)
(z) ∈ L p(D, d A/(1 − |z|2),

for any integer pk > 1. Here d A is the Lebesgue measure on the disk D.
Let us show that if fn = O(n−α), then f 1 ∈ Bq .
Let k = k1 + k2 with qk1 > 1, 0 < q < 1. Then, by the Cauchy-Schwarz inequality,

we have
∫∫

D

(1 − |z|2)k1q((1 − |z|2)k2 | f 1(k)
(z)

)q 1

(1 − |z|2)2 d A

≤
(∫∫

D

(1 − |z|2)k1q
(1 − |z|2)2

(

(1 − |z|2)k2 | f 1(k)
(z)|)2d A

)
1
2
(∫∫

D

(1 − |z|2)k1q−2d A

) 1
2

.

It is sufficient to check that
∫∫

D

(1 − |z|2)k1q−2((1 − |z|2)2k2 | f 1(k)
(z)|)2d A < ∞.

We have
∫∫

D

(1 − |z|2)k1q−2((1 − |z|2)2k2 | f 1(k)
(z)|)2d A

≤ c1

∫∫

D

(1 − |z|2)k1q−2+2k2
∑

n≥1

n2k−2α|z|2nd A

≤ c2
∑

n≥1

n2k−2α ·
∫∫

D

(1 − |z|2)k1q−2+2k2d A
∫∫

D

(1 − |z|2)k1q−2+2k2d A.

Using polar coordinates, we have
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∫∫

D

(1 − |z|2)k1q−2+2k2 |z|2nd A = 2π
∫ 1

0
(1 − r2)k1q−2+2k2r2nrdr

= 2π

2

∫ 1

0
(1 − r2)k1q−2+2k2rndr

= π
�(k1q + 2k2 − 1)�(n + 1)

�(k1q + 2k2 − 1 + n − 1)
.

By using Sterling’s formula �(n + 1) ∼ √
2πn

( n
e

)n , we have

�(k1q + 2k2 − 1)�(n + 1)

�(k1q + 2k2 − 1 + n − 1)
≤ c3 n

1−k1q−2k2

when n → ∞.
It follows that

∫∫

D

(1 − |z|2)k1q−2((1 − |z|2)2k2 | f 1(k)
(z)|)2d A ≤ c4

∑

nn≥1

n2k−2α+1−k1q−2k2 < ∞

if −k1q + 2k2 − 1 + 2α − 2k > 1. Note that k1q > 1.
These two inequalities imply that

1

q
< k1 <

2α − 2

2 − q
,

which is possible iff 2α−2
2−q − 1

q > 0 iff q > 1
α− 1

2
. ��

3.4. Finiteness of von Neumann entropy for free Fermi nets. Let K1 = L2(I1), K2 =
L2(I1 ∪ I2 ∪−I2), F = L2(I1)+ j L2(I1) as in the beginning of section 3.2.2. Note that
we have the inclusion

M(K1) ⊂ M(F) ⊂ M(K2).

Theorem 3.8. (1) (1 − P)PF P ∈ Lq for 2
3 < q < 1 .

(1) The von Neumann entropy associated withM(F),�, denote by S(F), is finite.

Proof. (1) follows by Theorem 3.3, Proposition 3.5 and Theorem 3.7. (2) follows from
(1), Lemma 3.6 and Corollary 2.13.

Remark 3.9. (1) It is an interesting question to calculate the entropy in Th. 3.8. Note that
by Th. 3.18 of [23] that the entropy in Th. 3.8 is bounded from below by 1

6 ln
1

cos(φ/2) .
We expect that the theory of Hankel operators as in [28] will be useful in solving
this question. For heuristic computations using replica methods in some holographic
models, see [11].

(2) Since any open intervals I, ˜I with Ī ⊂ ˜I can be mapped to the symmetric intervals
in the above theorem by elements in Möb, it follows that the above theorem is also
true for K1 = L2(I ), K2 = L2(˜I ).
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3.4.1. Real fermion case Define conjugate linear operator Q = Mz−1C onHwhereC is
complex conjugation and Mz−1 is multiplication by z−1. We have (Q f )(z) = z−1 f (z).
On basis zn of H we have

Q(zn) = z−n−1. (49)

Lemma 3.10. (1) Q2 = I and Q commutes with Um as defined in equation (41) and
flip operator F1 as defined after equation (41);

(2) QPQ = 1 − P, Qi(2P − I )Q = i(2P − I );
(3) QM f Q = M f and Q commutes with P12 as in Th. 3.8.

Proof. (1) follows from definitions. For (2), it is enough to check that QPQ = 1 − P
since Q is conjugate linear. One checks easily that QPQ = 1− P on zn from equation
(49). To prove (3), note that g = g, h = −h where g, h are as in Th. 3.8. (3) follows
from CMgC = Mg, CMhC = −Mh, CR = RC, RMz−1R = −Mz−1 . ��
Denote by Q±1 := 1

2 (I ± Q) the projections fromH to the eigenspacesH±1 of Q with
eigenvalues ±1. Note thatH = H+1 ⊕H−1 while by slightly abuse of notations in this
section only we use ⊕ to mean orthogonal with respect to the real part of inner product
onH. Note that M−iH+1 = H−1 since Q is conjugate linear.

For an interval I we let L2(I )±1 = L2(I )∩H±1. The real free fermion net associates
to interval I the von neumann algebra M(L2(I )+1) generated by a( f ) + a( f )∗,∀ f ∈
L2(I )+1. We note that M(L2(I )) is the graded tensor product of M(L2(I )+1) and
M(L2(I )−1).

Let K1 = L2(I1), K2 = L2(I1∪ I2∪−I2), F = L2(I1)+ j L2(I1) as in the beginning
of section 3.2.2. Note by Lemma 3.10 K1, K2, F are Q-invariant. Let (K1)±1 := K1 ∩
H±1, (K2)±1 := K2∩H±1, F±1 := F∩H±1. ThenwehaveM((K1)±1) ⊂ M(F±1) ⊂
M((K2)±1), where M(F±1) is the canonical type I factor. Note that we have S(F) =
S(F+1) + S(F−1). Since M(F−1) = �(−i)M(F−1)�(i) and the vacuum is preserved
by �(i), it follows that S(F+1) = S(F−1) = 1

2 S(F). We have therefore proved the
following:

Theorem 3.11. We have M((K1)±1) ⊂ M(F±1) ⊂ M((K2)±1), and S(F+1) =
S(F−1) = 1

2 S(F) < ∞ where S(F) is the von Neumann entropy in Th. 3.8.

3.5. Passing to free bosons. Note first that

M(F) = M(

L2(I1)
) ∨ k JM(K1)c∩M(K2)M

(

L2(I1)
)

JM(K1)c∩M(K2)k
−1, (50)

where M(K1)
c denotes the graded commutant of M(K1), and k is the Klein transfor-

mation.
Let g be an automorphism of the net M(L2(I )) implemented by a unitary U (g)

on �(H) which commutes with grading operator. This means U (g)� = � and U (g)
M(L2(I ))U (g)∗ = M(L2(I )) and U (g) commutes with � = k2 with k the Klein
transformation. It is clear that such adjoint action of U (g) preserves M(F) as a set.

Example of such automorphisms are � = k2 with k the Klein transformation and
more generally the automorphisms implemented by the multiplication by λ, |λ| = 1, on
L2(I ). This is the action of U (1) on free fermion net. In fact one can also check from
Th. 3.3 that the automorphisms implemented by this U (1) action preserves M(F) as a
set.

In the notation of [33], the free fermion net is written as AU (1)1 . The free bosonic
net with central charge c = 1 is the U (1) the fixed point net of AU (1)1 under the
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action of U (1) as described above (cf. Page 186 of [33]). Denote by G := U (1). Then
U (g)MFU (g)∗ = M(F), g ∈ G.

We have

M(K1)
G ⊂ M(F)G ⊂ M(K2)

G,

whereM(F)G is the fixed point ofM(F) under the action of G. AsM(F) is a type I
factor and G is compact,M(F)G is a type I von Neumann algebra, butM(F)G is not
a factor, rather M(F)G is the direct sum of countably many type I factors.

Since the vacuum state ω = (�, ·�) is preserved by the action of G, by Proposition
6.7 of [26] we have

S(ω|M(F)G ) ≤ S(ω|M(F)) < ∞,

where last inequality follows by Theorem 3.8. By the remark (2) after Theorem 3.8 we
have therefore proved the following:

Theorem 3.12. Let I, ˜I be open intervals with Ī ⊂ ˜I . For the free bosonic net AG
U (1)1

we have that

AG
U (1)1(I ) ⊂ M(F)G ⊂ AG

U (1)1(
˜I ),

whereM(F)G is a type I discrete, von Neumann algebra and the vacuum von Neumann
entropy

S
(

ω|M(F)G
)

< ∞.

Remark 3.13. By taking the graded tensor product of r -copies of the net AG
U (1)1

, The-
orems 3.8 and 3.12 immediately generalise to the case of the conformal net of r free
fermions.

4. Conclusion

Let OR denote the double cone in the Minkowski spacetime that is the causal envelop
of a time zero ball of radius R > 0 centered at the origin. We have shown a natural
way to define rigorously the entanglement entropy SA(OR′, OR) of a QFT net of von
Neumann algebrasA associated with an inclusion OR′ ⊂ OR , R′ < R. We have shown
that SA(OR′, OR) is finite, in particular in low dimensional free models.

It will be natural to establish that this entropy is finite, also for higher dimensional
models, in a model independent ground. We expect that SA(OR′, OR) is finite if the
modular nuclearity condition holds, see [15].

As R′ → R, the entropy SA(OR′, OR) should diverge. However, the divergence
leading term should grow proportionally to the area of the sphere of radius R, according
to a seemingly universal feature (area theorems).

Results in this direction would put several fundamental issues in theoretical physics
on a rigorous mathematical ground.
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