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We discuss the decay rates of chaotic quantum systems coupled to noise. We model both the
Hamiltonian and the system-noise coupling by random N x N Hermitian matrices, and study the spectral
properties of the resulting Liouvillian superoperator. We consider various random-matrix ensembles, and
find that for all of them the asymptotic decay rate remains nonzero in the thermodynamic limit; i.e., the
spectrum of the superoperator is gapped as N — oo. For finite N, the probability of finding a very small gap
vanishes as P(A) ~ AN, where c is insensitive to the dissipation strength. A sharp spectral transition takes
place as the dissipation strength is increased: for dissipation beyond a critical strength, the slowest-
decaying eigenvalues of the Liouvillian correspond to isolated “midgap” states. We give evidence that
midgap states exist also for nonrandom system-noise coupling and discuss some experimental implications

of the above results.
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How nonequilibrium systems relax to steady states is a
central topic in many-body dynamics. For a system coupled
to an external environment, the rate of approach to the steady
state depends nontrivially on the system-environment cou-
pling, i.e., the dissipation strength. Weak dissipation enhan-
ces decay, but strong dissipation can suppress it through the
quantum Zeno effect [1-4]. These phenomena have been
extensively studied, both theoretically and experimentally,
for specific models [5—15]. Here, in contrast, we discuss
them within the generic setting of random matrix theory
(RMT) [16]. Historically, RMT was introduced to describe
complex dynamical systems for which a microscopic
description would be intractable [17,18]. RMT is believed
to describe the generic long-time behavior of chaotic
quantum systems [19-21]. It predicts universal features in
the density of states and level statistics that have been
verified numerically and experimentally in many settings
[22]. RMT has also been extended to open quantum
systems, mainly via scattering theory [23,24], and has been
used to model evolution under effective non-Hermitian
Hamiltonians [25]. Given this background, it is notable
that, until very recently [26,27], RMT was not applied to the
Lindblad master equation [28-30], which is the standard
framework for describing open quantum systems in fields
ranging from quantum optics to mesoscopics.

Much is known about the steady states of specific
Lindblad equations, and some notions of universality have
been developed for these states and the phase transitions
between them [13,31]. However, the issue of universality in
the dynamics of master equations, e.g., their approach to
a steady state, remains largely unexplored (see however
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Refs. [32-37]). Here, we use RMT to identify universal
dynamical properties of a class of open quantum systems:
those coupled to classical white noise, or equivalently to
purely dephasing Markovian baths [38—40].

We study such dynamical properties by exploring the
spectrum of the Liouvillian “superoperator” L (defined
below), which generates the dissipative evolution of the
system’s density matrix p. The spectrum of £ has a zero
mode (the steady state), which in the systems we consider is
unique and proportional to the identity (i.e., an infinite-
temperature state). The other eigenmodes of £ have strictly
negative real parts, which correspond to decay rates. Thus,
the eigenvalue with smallest nonzero real part sets the
timescale on which the system asymptotically approaches
its steady state. We find that in the N — oo limit this
approach is always “fast” in the sense that very small decay
rates become infinitely improbable. However, the distribu-
tion of the slow decay rates evolves nonanalytically with
the dissipation strength. While for weak dissipation the
asymptotic decay rate resides at the edge of a continuum of
low-lying L eigenstates, it, and possibly the next few
slowest rates, split from the continuum and become isolated
“midgap” states [41] beyond a critical dissipation strength,
see Fig. 1. This transition seems not to have been noticed in
previous work, although related phenomena have been
observed in the mathematical literature on classical dis-
sipative systems [42,43]. In the following we establish
these results, comment on the finite-N scaling of the gap
probability distribution, demonstrate that midgap states
appear regardless of details of the system-noise coupling
and discuss some of their experimental implications.
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FIG. 1. (a) Distribution of Liouvillian eigenvalues in the

complex plane near the origin, obtained from 60 realizations
of an N = 100 system with large dissipation, y = 50. (b) Prob-
ability density of the real part of the eigenvalues. A well-defined
crossing point in the finite-size scaling analysis identifies the
edge of the continuous spectrum, which is largely due to complex
eigenvalues. The purely real eigenvalues dominate the small |4
regime. Clearly visible is an isolated state at A~ —0.032, and
possibly another at 4 ~ —0.057. (c) Spectral gap and the edge of
the continuum as a function of dissipation y. The gap values
obtained from the largest accessible systems N = 160 and by
extrapolation from smaller sizes agree and scale as (y/2)*! for
weak/strong dissipation. For y > 6 the edge of the continuum
deviates from the gap, and the eigenvalues closest to zero become
isolated. This transition is also evident from the inset, which
shows that the gap between the first two “excited” eigenstates of
the Liouvillian shrinks with N for y < 6 and increases for y > 6.

Master equation.—We consider the Lindblad equation

. "y -
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k=1

where H is its Hamiltonian, L; are “jump operators”
representing the coupling of the system to its environment,
and y is the dissipation strength. We focus on the case
where the Hamiltonian is an N x N random matrix from
the Gaussian Orthogonal Ensemble (GOE), whose
elements have zero mean and variance (H;Hy) =
(1/2N) (661 + 6;6x), and where there is a single jump
operator (n; = 1), statistically independent of H and also
drawn from the GOE. Other cases will be addressed briefly
at the end (and in [44,45]). Note that we have scaled the
distribution such that the N — oo spectra of H and L reside
in [—\/Z \/5] We concentrate on the large-N limit, but also
discuss some nonperturbative features that arise at finite N.

General properties.—The right-hand side of Eq. (1) is a
linear “superoperator” acting on p, allowing us to set up the
eigenvalue problem Lp = Ap. The Liouvillian £ is a
completely positive trace preserving map, and for y > 0
all eigenvalues A satisfy Red < 0, with at least one eigen-
value at 1 = 0. For the model considered here, the steady
state is unique and given by the infinite temperature thermal
state proportional to the identity.

Furthermore, the evolution under the generator £ does
not take states out of the space of density matrices, which
requires it to preserve both trace and Hermiticity. It then
follows that (Lp)" = L(p") and as an N> x N? matrix its
components obey the relation Lj;; = L7, This “conju-
gation” symmetry can be used to show that the eigenvalues
of £ come in complex conjugate pairs [45], which can
collide at an “exceptional point” and become purely real
[50], or vice versa. A nontrivial property of the model is
that at least N eigenvalues are necessarily purely real. This
property follows from combining the conjugation sym-
metry noted above with the additional symmetry of the
Liouvillian L;;; = Ly;; which follows when H and L are
real symmetric matrices [45].

Weak dissipation.—In the absence of dissipation
the dynamics is governed by the operator —i[H,].
The Liouvillian eigenvalues correspond to differences,
—i(E, — Ep), between Hamiltonian eigenenergies. This
spectrum has N eigenstates of the form |a) (a| with eigen-
value zero, and N(N — 1) states of the form |a)(f| with
imaginary nonzero eigenvalues that come in complex con-
jugate pairs. In the language of nuclear magnetic resonance,
the former correspond to “populations” and the latter to
“coherences” [51]. Level repulsion in the spectrum of H
manifests itself as a suppression of the density of eigenvalues
with small nonzero imaginary parts |[Im(4)| < 1/N.

When y is small, we can treat it perturbatively. To first
order the populations and coherences decouple. In the N-
dimensional subspace of populations one obtains a sym-
metric classical master equation, in which the off-diagonal
terms are y|L,s/* with L,z = (a|L|f), while the diagonal
terms are determined by the constraint that each column
should sum to zero. Every term in this matrix is sign definite,
so one can disorder average the master equation to get a
matrix element (i.e., a transition rate) (|L.4|*) ~1/(2N)
between any pair of populations. The resulting spectrum in
the population subspace contains a unique steady state
and N — 1 degenerate states with eigenvalue A = —y/2.
Meanwhile, at first order and up to 1/N corrections, each
coherence |a)(f3| picks up a (real) perturbative shift of the
form —(y/2) ", (ILay|* +|Lg,|*) ==y /2. Therefore, N* -1
states rigidly move away from the steady state by an amount
—y/2. Since there is a hard gap at first order in y, we expect it
to be robust, provided that higher-order perturbative correc-
tions do not diverge in the large-N limit. We have checked
this to order y* [45].
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Strong dissipation.—As y — oo the spectrum of L
becomes A,, = —(y/2)(x, —k;,)?, where k, are the L
eigenvalues. Here too, there are N “diagonal” zero modes
of the form |a){a|, which we call “L-populations.” We dub
the remaining eigenstates, of the form |a)(b|, “L-coher-
ences.” In this limit the spectrum is real and gapless, with
bandwidth 4y and level spacing ~y/N?2.

Next, we perturb in the Hamiltonian, taking N — oo
at large but finite y. At first order, an L-coherence
la)(b| picks up a purely imaginary O(1/4/N) shift
7. = i((b|H|D) — (a|H|a)), with the result

ﬂab = _g<Ka - Kb>2 + iTab' (2)

The L-populations, however, remain exact zero modes to
first order. To resolve these degeneracies, one must go to
second order in the Hamiltonian where populations and
coherences mix. One can disentangle the subspaces via a
Schrieffer-Wolff transformation [47]. Each L-population
connects to 2(N — 1) coherences, obtained by changing
one (but not both) of its indices. Consequently, any two
populations, |a)(a| and |b)(b| are connected by the second
order matrix element

Gup = — |Hah|2 _ |Huh|2 :i |Hab|2(’<a - Kb)z (3)
¢ /Iab /IZb 14 (Ka - Kb>4 + (2/7)2712117

One may worry that since many [O(N¥*)] of the
L-coherences which are coupled to a population have
eigenvalues that are smaller than a typical H,, the
coherences are strongly coupled to the populations and
there is no way to separate them. However, note that the
matrix elements (3) vanish for pairs of L-populations with
very similar eigenvalues «, = k. Consequently, coherences
with small |4,,| do not couple strongly to the populations
and the required separation between the two sets can be
carried out to second order in H [45].

In the subspace of L-populations the spectrum consists
of two types of states. The lowest few eigenstates are
isolated and remain separate from the continuum even after
disorder averaging. Their form and their eigenvalues
A, = —(2/y)n, with integer 0 < n < n,,,,, can be obtained
analytically [45], see Fig. 2 for comparison with numerical
results. For more negative A, the peaks corresponding to
individual eigenvalues become more closely spaced,
broader, and merge into a continuum upon disorder
averaging [45]. Concomitantly, in the L-coherences sub-
space, second-order perturbation theory shifts states near
A = 0 by an amount —c/y [45], with ¢ a constant, resulting
in an overall gapped spectrum. Numerically, we find ¢ > 2
such that the 4, state (with possibly additional n > 1 levels)
always appears to the right of the continuum, leading to the
large-y behavior of the gap A = 2/y, in accord with the
quantum Zeno effect.

(a), BRCN
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FIG. 2. The first (a) and second (b) “excited” eigenstates of the
Liouvillian, obtained from averaging over 60 realizations of an
N = 100 system with y = 50. Shown are components along the
L-populations |«) (x|, parametrized by their L eigenvalue, k. The
components along the L-coherences are down by 2-3 orders of
magnitude and are negligible in (a). Their spectral weight in
(b) is accounted for by rescaling the eigenstate. The expected N,
y — oo behavior in terms of the Chebyshev polynomials
U,(x/+/2) is shown in red.

Numerical results.—Figure 1(c) presents numerical
results on the distribution of gaps at various values of y
and N. Since the results obtained by finite-size extrapola-
tion agree well with those obtained for the largest manage-
able systems (N = 160) using the Arnoldi method, we
expect that the calculated gap values are close to the
thermodynamic limit. Both methods give a transition from
A =y/2 at weak dissipation to A = 2/y at large dissipa-
tion with a maximum around y = 3.5.

We used finite-size scaling to locate the edge of
the continuous spectrum of L. Within our numerical
constraints we were able to detect, in the range
0.1 <y <100, sharpening of the density of states (DOS)
edge with system size, giving a well-defined crossing point
[Fig. 1(b)]. This is consistent with the conjecture that the
DOS jumps discontinuously at the edge of the spectrum.
When y < 6 the jump in the DOS occurs at the gap, but for
larger y the jump is at a larger value of |1| than the gap. In
this regime, it seems that there is at least one isolated state,
and possibly multiple states, at decay rates appreciably
lower than the edge of the continuous spectrum. These can
clearly be seen as isolated peaks in the DOS for the larger
system sizes in Fig. 1(b).

To better locate this transition, we computed the y
dependence of the distance between the two smallest (in
absolute value) nonzero eigenvalues of L. A clear flow
reversal is seen in the inset of Fig. 1(c), indicating a phase
transition at y,. = 6. Fory < 6 the two eigenvalues approach
each other with increasing system size, as expected for
continuum states. For larger y, however, they move away
from each other with increasing N, the DOS jump steepens
and the isolated eigenvalue becomes more clearly separated
from the continuum.

Finite-size corrections.—Our results indicate that as
N — oo the disorder-averaged density of states is zero at
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FIG. 3. FEigenvalue density close to A =0 at y = 2 for small

system sizes, N = 3, 5, 7, averaged over 5 x 10° realizations; the
behavior is consistent with Eq. (4) (straight lines).

sufficiently small |1|. We now discuss how this hard gap
sets in, by considering finite-size systems. We argue on
general grounds that the density of states as A — 0 is
sensitive to the symmetry classes of H and L, as well as to
the size of the Hilbert space N and the number of distinct
jump operators L;; however, its 4 — 0 shape is y inde-
pendent. For the case of n,; jump operators, the probability
of finding a gap A scales as

P(A) ~ APra(N=1)/2-1 (4)

where f = 1, 2, 4 for orthogonal, unitary, and symplectic
ensembles. This prediction is compared with numerics for
the orthogonal ensemble (Fig. 3), where results for other
ensembles are shown in [45]. The figures plot the asymp-
totic density of eigenvalues, and show that it compares
favorably with the scaling behavior, Eq. (4). When the
Hamiltonian and jump operators belong to different ensem-
bles, the appropriate value of f is that corresponding to the
lower-symmetry (higher ) ensemble.

Equation (4) can be understood via a golden-rule argu-
ment. For simplicity we first treat the case of areal (f = 1)
H and L with n; = 1. Consider a system initialized in the
eigenstate |n) of the Hamiltonian. In the presence of a
Markovian bath (which has an energy-independent density
of states) its decay rate is given by I', = >, ., [(n|L|m)|%,
where m runs over all other eigenstates of H. There are
N — 1 matrix elements in this expression, and (given that H
and L are mutually uncorrelated and taken from the GOE)
L,, = (n|Llm) can be regarded as independent real
Gaussian random numbers. For I', to be small we need
all matrix elements to be small. One can approximate the
cumulative probability distribution

P, < A)~ [ P2, < ) « (VA (5)

m

from which Eq. (4) follows by differentiation. The other
cases are simple generalizations. For example, in the
unitary ensemble, each matrix element is a complex
number, and is only small when its real and imaginary

2
Q.
-0.3 -0.2 -0.1 0 10 20 50 100 200
Re(A) t
FIG. 4. (a) Probability density of the real part of the Liouvillian

eigenvalues near the origin for a model whose H is drawn from
the GOE and where the eigenvalues of the jump operator, L, are
regularly spaced in [—\/f, \/5] The results are for y = 50 and
averaged over 100 realizations. (b) The first two “excited”
eigenstates of the Liouvillian with N = 60. Shown are compo-
nents along the L-populations |x){k|, parametrized by their L
eigenvalue, k. (c) Autocorrelations in a model with GOE H and
L, y =200 and N = 60, averaged over 100 realizations. The
solid line depicts 1/¢ decay.

parts are separately small, yielding a factor of two in the
exponent. In general, therefore, the disorder-averaged DOS
at a given small A vanishes exponentially in N.
Discussion.—In this Letter we have explored the spectral
structure of low-lying (i.e., long-lived) states of a dephasing
Lindblad master equation with random Hamiltonian and
jump operator. While the conditions under which a random-
matrix Hamiltonian captures the essential features of a
physical system are well understood and generic, the con-
ditions for the system-bath coupling to permit an RMT
description are less clear. Hence, we have checked that our
main results, i.e., the gap in the £ spectrum and the
appearance of midgap states for large y, are robust to details
of the coupling. Indeed, we find that L-level repulsion is
inessential since a model with uniformly distributed L
eigenvalues yields similar results [45]. Moreover, the cou-
pling need not be random at all, as shown by Fig. 4(a) where a
gap and midgap states appear for a jump operator with evenly
spaced eigenvalues. Rather, the key ingredients are (1) that
both H and L have bounded spectra, and (2) that eigenvectors
of L look random in the eigenbasis of H and vice versa [45].
The most direct experimental consequence of our results
is the nonanalytic behavior of the approach to steady state
as dissipation increases. Furthermore, our analysis implies
two outcomes for systems in the strong-dissipation regime.
First, the decay of an initial L-population, |x){x|, has a
specific functional form on long timescales. This can be
probed by measuring the observable which determines the
system-bath coupling (e.g., the dipole moment of a chaotic
quantum dot coupled to electromagnetic noise). The system
then collapses to an L-population, which for large y
subsequently evolves via hopping in the subspace of
L-populations. Due to the relatively local structure of the
hopping (3), probability spreads ballistically, eventually

234103-4



PHYSICAL REVIEW LETTERS 123, 234103 (2019)

becoming uniform. This is reflected by the autocorrelations
between consecutive measurements outcomes C(f) =
Tr[|x) (k|e"|x)(x|], which decays as 1/t for y/2nm <
t <y/2, as follows from expanding |k)(k| in the L
eigenmodes [45], see Fig. 4(c). Here, n,,,, is the number
of states separated from the continuum, which we find
grows with N [45]. Second, the late-time distribution of the
measurement outcome is determined by the slowest-
decaying modes, and its deviation from the distribution
in the steady state is given by the distribution of
L-populations in the midgap states. We have obtained
explicit expressions for the latter within the model studied,
illustrating that they correspond to the longest-wavelength
modulations of the L-populations, see Fig. 2. We have also
checked that their general form is insensitive to the choice
of model, as shown by Fig. 4(b) and in [45].

This work has focused on the GOE because of its
simplicity and its direct relation to noisy dynamics. A
companion paper [44] finds similar features for ensembles
of non-Hermitian L with no symmetries. A natural question
is how far these results extend to other random matrix
ensembles, as well as to systems with locality constraints
[52], such as band matrices.
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Note added.—Recently, Ref. [27] has appeared which
studies spectral properties of random Lindblad generators
with N2 — 1 jump operators with no symmetries, and no
Hamiltonian.
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