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We compute the spin-structure factor of XXZ spin chains in the
Heisenberg and gapped (Ising) regimes in the high-temperature
limit for nonzero magnetization, within the framework of gener-
alized hydrodynamics, including diffusive corrections. The struc-
ture factor shows a hierarchy of timescales in the gapped phase,
owing to s-spin magnon bound states (“strings”) of various sizes.
Although short strings move ballistically, long strings move pri-
marily diffusively as a result of their collisions with short strings.
The interplay between these effects gives rise to anomalous
power-law decay of the spin-structure factor, with continuously
varying exponents, at any fixed separation in the late-time limit.
We elucidate the cross-over to diffusion (in the gapped phase)
and to superdiffusion (at the isotropic point) in the half-filling
limit. We verify our results via extensive matrix product operator
calculations.
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Many experimentally relevant 1D systems are described by
approximately integrable models, such as the Hubbard,

Heisenberg, and Lieb–Liniger models (1–3). The nonequilibrium
dynamics of integrable systems, their failure to thermalize, and
their possession of an extensive set of conservation laws have
been explored extensively (4–7). [In experiments, integrability is
approximate and gives rise to “prethermal” intermediate-time
regimes of effectively integrable dynamics (8–10).] Integrable
systems support stable, ballistically propagating quasiparticles,
even at high temperature. In the simplest cases (e.g., free
fermions), these particles carry the same quantum numbers as
the microscopic degrees of freedom and move with a velocity
set by the band structure. In interacting integrable models, how-
ever, each quasiparticle is dressed by all of the others (11). This
dressing can lead to remarkable dynamical effects, for instance,
in the “gapped” phase of the XXZ model considered here: Even
though quasiparticles move ballistically, finite-temperature spin
transport is diffusive in the absence of an external field (12–25).

Recently, a coarse-grained approach to integrable dynamics
has been developed; this approach is termed “generalized hydro-
dynamics” (GHD) (refs. 26 and 27; see also refs. 19, 20, and
28–44). A core insight of GHD is that an integrable system can
be mapped to an appropriate classical soliton gas (32). Assuming
the system is initially in local equilibrium, the velocities of these
solitons can be computed by using the thermodynamic Bethe
ansatz (26, 27, 45), which is much more tractable than exactly
simulating the full dynamics. In the initial formulation of GHD,
the dressing of quasiparticles by interactions was treated at the
“Euler” level, yielding purely ballistic hydrodynamics; recently,
adding Gaussian fluctuations on top of this treatment was shown
to give diffusive corrections to hydrodynamics (21–24). Diffusive
corrections generically occur on top of ballistic transport; how-
ever, when the ballistic term is absent, transport is dominated by
diffusion.

In this work, we show that even when ballistic transport
is present, correlation functions can decay with anomalous
exponents. We focus on the XXZ spin chain:
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∑
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where Sα = σα

2
are spin- 1

2
operators. We are concerned with the

case of easy-axis anisotropy |Δ| ≥ 1 at infinite temperature (so
the sign of Δ is irrelevant). We define η≡ cosh−1 Δ. The model
has a conserved magnetization, σz

tot =
∑

i σ
z
i ; we denote the

associated magnetization density as h =tanhμ, corresponding
to a filling f =(1+ h)/2. At half-filling (h =0), ballistic trans-
port is absent because the propagating quasiparticles carry no
spin. One can easily see this for magnons in the ferromagnetic
phase at low but nonzero temperatures: A magnon propagates
as a ↓ spin through a domain of ↑ spins, then continues as
an ↑ spin through a domain of ↓ spins, etc., so on average it
does not carry magnetization. This result, which holds gener-
ally, was first noted in the low-temperature limit (13, 15) and has
recently been incorporated into the GHD framework. Since bal-
listic transport is absent, the dominant transport mechanism is
diffusive. The diffusion constant D has been rigorously bounded
(46, 47) and computed by using GHD (23–25); D diverges in the
isotropic (Δ=1) limit, at which wavepackets spread superdiffu-
sively, with dynamical scaling x ∼ t2/3 and a non-Gaussian front
that matches the Kardar–Parisi–Zhang (KPZ) universality class
(18, 48–51). Away from half-filling, the ↑ and ↓ domains do
not precisely cancel, so magnons do carry magnetization, and
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ballistic spin transport is present. Beyond these results, the
behavior of the dynamical spin-structure factor in this high-
temperature limit are still poorly understood (but see ref. 52).
The zero temperature limit has been extensively studied (53–57),
and so has the low-energy field theory regime (12, 13, 15, 16, 58),
but as we will see, that the physics is qualitatively different at high
temperature.

Here, we compute the dynamical spin-structure factor within
GHD. We focus on the connected correlation function C (x , t)≡
〈S z

i+x (t)S
z
i (0)〉c evaluated at infinite temperature with chem-

ical potential μ; everything we discuss will involve large x , t
but arbitrary x/t . We find that, even away from half-filling, the
local behavior of autocorrelators (i.e., for x/t 	 1, correspond-
ing to the return probability) evolves with continuously varying
exponents that depend on Δ and h (Fig. 1). There is a phase tran-
sition in the (Δ, h) plane, between ballistic (i.e., C (0, t)∼ 1/t)
and subballistic (i.e., C (0, t)∼ 1/tγ for 1/2<γ < 1) asymptotic
behavior. We compute the exponent γ as a function of (h, Δ),
and show that for Δ> 1 it universally approaches 1/2 as h → 0,
recovering (and shedding light on) diffusion at half-filling. This
coexistence of ballistic and anomalous behavior was recently
demonstrated (59) for disordered integrable spin chains (60);
here, we show that the same effect occurs in clean, strongly inter-
acting systems. At the Heisenberg point, the phase boundary in
the (Δ, h) plane intersects the ballistic–diffusive phase bound-
ary at h =0, and, in this sense, the isotropic Heisenberg point at
h =0 is a dynamical multicritical point. We write down a scaling
form for the structure factor as one approaches this critical point
at finite h .

Low-Filling Limit
Our results have an elementary interpretation in the limit in
which the density of ↑ spins f 	 1. Here, f ∼ e2μ with μ→−∞.
Nevertheless, the system is still at infinite temperature. Further,
for the present discussion, we take Δ� 1. Specifically, we take
the double limit f → 0 and Δ→∞ but assume that the product
fΔ is of order unity; this allows us to calculate the structure fac-
tor by elementary methods, invoking integrability only to treat
the quasiparticles as stable. In this double limit, the quasiparti-
cles are essentially “bare”: An s-string is a sequence of s ↑ spins
on top of a ↓ background. The collision rate between quasipar-
ticles depends on the quasiparticle density f , but the scattering
phase shift remains finite at large Δ, so the dressing of quasipar-
ticles due to collisions vanishes in the double limit. Meanwhile,
although the density of large-s strings decreases exponentially in

A B

Fig. 1. Return probability. (A) Exponent of the return probability, C(0, t) ∼
t−γ , as a function of the filling and the anisotropy. This result applies for any
fixed x as t →∞. (B) Mechanism for anomalous local relaxation: The velocity
of an s-string in the easy-axis XXZ model decreases exponentially with s.
Light strings in region B spread out ballistically; heavy strings in region A
move diffusively because of collisions with light strings. As time passes, more
strings become “light” in that their motion is chiefly ballistic.

s , we will see that all strings contribute to the autocorrelator in
the double limit. This is because an s-string can only move at sth
order in perturbation theory, so its velocity is vs ∼Δ1−s . Large-s
strings are thus both exponentially rare and exponentially slow,
and these two effects compensate each other.

As we argued above, dressing effects are suppressed by uncom-
pensated factors of f and are therefore negligible in the double
limit. Therefore, we can treat the contribution of each string to
the autocorrelator at the single-particle level. The s-strings have
free-particle dispersions of the form

εs(q)= ksΔ
1−s sin(2q), [2]

and in this limit the autocorrelation function is that of a gas
of s-strings that occur with density f s and do not interact with
one another. A single-particle calculation then yields the struc-
ture factor, as follows [see SI Appendix for thermodynamic Bethe
Ansatz formulas at infinite temperature, details of the low-
filling calculation, and more numerical results of matrix product
operator (MPO) calculations]:

C (x , t)

∑

s≥1
s2f s [Jx (ksΔ

1−s t)]2, [3]

where Jx denote Bessel functions of the first kind (61). A non-
trivial contribution arises if a string beginning at (0, 0) has
propagated to (x , t). To explore the asymptotics of Eq. 3, we
approximate the Bessel function as a step function and ignore
irrelevant prefactors, [Jx (ksΔ

1−s t)]2 ∼Θ(x −Δ1−s t)Δs−1/t .
Fixing a point x , and counting only those s-strings that have
reached x by the time t , we get

C (x , t)≈
∑s∗

s=1
s2

f

t
(fΔ)s−1, [4]

where s∗=1+ log(t/x )/ logΔ. There are two cases. When
fΔ< 1, contributions from large-s strings are subleading to the
1/t tail of the 1-strings. When fΔ> 1, the dominant strings
at x are the heaviest strings that have made it there; Eq. 4 is
dominated by the term of order s∗, implying

C (x , t)∼ f

t

(
t

x

)1− | log f |
log Δ

log2
(
t

x

)
∼

t�x
t
− 2|μ|

η log2 t , [5]

for 2|μ|<η. The exponent γ= 2|μ|
η

in Eq. 5 goes to unity as η�
|μ|, suggesting subdiffusion (γ < 1

2
) as Δ→∞ at the Eulerian

level.
The asymptotics 5 arises because, in the double limit, long

strings are effectively stationary for exponentially long times. We
now turn to the leading corrections to this limit, by allowing
terms with one uncompensated factor of f . Thus, we allow for
the scattering between all s-strings and the relatively abundant
1-strings, which have density ∼ f . This process will be sufficient
to prevent subdiffusion. In general, when a q-string and an s > q-
string collide, the s-string picks up a displacement of 2q sites (62,
63). Thus, all strings undergo subleading diffusive motion from
random collisions. In the low-density limit, the diffusion constant
is set by the density of 1-strings and thus scales as D ∼ f . Because
the model is integrable, diffusion takes place in addition to the
ballistic motion of s-strings. At intermediate times, an s-string
moves diffusively; it crosses over to ballistic motion at times such
that

√
ft <Δ1−s t , i.e., for strings satisfying

s � s0(t)∼ 1+
| log(ft)|
2 logΔ

. [6]
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When f ∆< 1, heavy strings are sparse, so it does not matter
whether they diffuse. When f ∆> 1, Euler-scale results remain
valid at distances x ' x0≡

√
ft , but the behavior for x / x0

is qualitatively modified, as heavy strings are diffusive, not
immobile. Thus, the autocorrelator decays as

C (x / x0, t)∼ t
− 1

2
− |µ|

η log2 t , 2 |µ|<η. [7]

The slowest that C (x , t) can decay is as 1/
√
t ; i.e., a subdif-

fusive decay of the return probability does not occur in this
model. Instead, the generic behavior is an anomalous decay with
a continuously varying power law between 1

2
and 1.

Generic Filling
The above elementary argument is restricted to large ∆ and low
filling. We now show that our main conclusion—the anomalous
decay 7 of the local autocorrelation function—holds generally
for all h whenever ∆> 1. Generally, spin transport can still be
understood in terms of a hierarchy of strings, but their interac-
tions are now important, and their velocity and effective charge
are dressed by the collisions with one another. These issues can
be addressed by using GHD: Since we are dealing with a lin-
ear response problem, we take advantage of the fact that the
quasiparticles are in local thermal equilibrium and evaluate the
dressed quasiparticle dispersion and quasiparticle distribution
function using data from the thermodynamic Bethe ansatz solu-
tion. Then, the hydrodynamic expression for the structure factor
takes the form (29, 33):

C (x , t) =

∞∑
s=1

∫
du ρtots (u)θs(1− θs)(mdr

s )2ϕt [x − vs(u)t ],

[8]

where u parameterizes the rapidity of a quasiparticle; mdr
s is the

dressed magnetization of string s; ρtot(u) is the available density
of states; θs is its occupation number (Fermi factor); and vs is its
effective velocity. These quantities have closed-form expressions
for generic µ at infinite temperature (11, 47) (see SI Appendix for
thermodynamic Bethe Ansatz formulas at infinite temperature,
details of the low-filling calculation, and more numerical results
of MPO calculations). Finally, the function ϕt(ζ) is the propaga-
tor of a string with quantum numbers (s, u) from (0, 0) to (x , t).
At the Euler level, this propagator would simply be a Dirac delta

function. In principle, the full form of C (x , t), including diffu-
sive corrections and possible nonlinearities, could be ascertained
from flea-gas simulations (32). Here, we are interested in the
asymptotic behavior of this quantity. We therefore include the
dominant “diagonal” diffusive corrections by broadening ϕt(ζ)
to a Gaussian with variance 2Ds(η, u)t . The diagonal quasipar-
ticle diffusion constant Ds(η, u) was computed in refs. 21 and 22
and can be evaluated numerically. We can check explicitly that
our hydrodynamic form for the structure factor 8 is consistent
with the exact sum rule∫ ∞

−∞
dx C (x , t) =

1

4
(1− tanh2 µ), [9]

since the function ϕt(ζ) is normalized to unity (see SI Appendix
for thermodynamic Bethe Ansatz formulas at infinite tempera-
ture, details of the low-filling calculation, and more numerical
results of MPO calculations).

This GHD expression gives a closed-form result for local
relaxation—i.e., C (x , t) at fixed large x when t→∞. There are
two contributions at time t , from light strings (whose motion
is primarily ballistic) and from heavy strings (which undergo
Brownian motion from collisions with light strings). Regardless
of µ, the velocities of very heavy strings scale as vs ' e−ηs ; also, at
infinite temperature, their densities scale as ρs(u) = ρtots (u)θs ∼
e−2|µ|s (23). The dressed magnetization of the heavy strings,
meanwhile, is the same as the bare magnetization mdr

s ' s . We
see that the asymptotics of vs and ρs are identical to the low-
filling limit: For η > 2 |µ|, the return probability is dominated by
the diffusive strings, s > s0(t), where s0(t)' 1

2η
log t . It follows

that Eq. 7 applies for all µ and η > 1. (Note, however, that away
from the perturbative limit, η 6= log ∆.)

For a fixed η > 0 and µ<η/2, this asymptotic scaling sets in
on timescales t ' e2η/|µ|; at shorter times, we expect a smaller
apparent exponent, since the dominant strings at those times are
not yet exponentially suppressed (Fig. 2).

Properties Near Half-Filling
Near half-filling—i.e., for µ� 1—we can extract more quanti-
tative information about the structure factor. Again, we classify
strings as light and heavy at time t , depending on whether their
spread up to time t is primarily ballistic or diffusive. For light
strings, diffusive corrections are a subleading effect (except at
the front), so we treat light strings at the Euler level. For heavy

A B C

Fig. 2. Simulations of the structure factor. (A) Spacetime plot of the spectral intensity computed via the MPO method, for η= 1.5,µ= 0.5, indicating a
ballistically moving peak due to magnons and a slow background to heavier strings. (B) MPO simulations of the return probability vs. µ at fixed η= 0.5; the
exponent is initially close to diffusive, then shifts downward with increasing µ. (C) Comparison of exponents extracted from the MPO simulations to those
computed by numerical evaluation of Eq. 8 using various fitting windows. Evidently, the GHD result is quite slow to converge to its late-time asymptotic
behavior.
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strings near half-filling, the diffusive broadening constant has the
closed-form expression

D =
2 sinh η

9π

∞∑
s=1

(1+ s)

[
s +2

sinh ηs
− s

sinh η(s +2)

]
, [10]

which coincides with the spin-diffusion constant (23–25). This
expression is a sum over contributions from s-strings, and only
strings with sη� 1 contribute. This expression also applies for
μ<η	 1, since a nonzero μ only affects strings with s > 1/μ>
1/η, whose contributions to Eq. 10 are anyway exponentially
suppressed.

We now discuss the behavior of C (x , t) near half-filling along
rays with x/t �=0. For nonzero μ, at late times, there are two
different types of ballistic strings, depending on the size of sμ.
When sμ� 1, the ballistic strings behave as in the low-filling
limit: Their density and velocity are both exponentially sup-
pressed, and we recover Eq. 5. However, for lighter strings with
sμ� 1, the density is only suppressed algebraically as ρs 
 1/s3,
while the velocity is suppressed exponentially vs 
 e−ηs . There-
fore, at a fixed x , the largest string that has made it out to x
has index s∗= log(t/x )/η. The density of such strings is 1/s3∗ ,
while each carries a small dressed magnetization s2∗μ. Thus, in
this regime, we have

C (x , t)∼ μ2

η

log(t/x )

x
, e−η/|μ|	 x

t
	 1, [11]

where the regime of validity of this result is controlled by μ and
is to be understood on a logarithmic scale for x/t . At a fixed x ,
therefore, C (x , t) first grows logarithmically with time, as heav-
ier strings carrying more magnetization appear at x . Then, at a
timescale t ∼ xe−η/|μ|, the correlator begins to decay with the
Eulerian exponent 5, and finally crosses over to the asymptotic
behavior 7 when t ∼ x2/D .

Exactly at half-filling (μ=0), the structure factor simplifies
even further. All strings but the heaviest ones s →∞ become
effectively neutral as mdr

s ∼ s2μ goes to 0 for s 	μ−1, so the
structure factor reads

C (x , t)=
1

4
ϕt(x )=

1

8
√

πD(η)t
e
− x2

4D(η)t , [12]

where we have used the sum rule 9 at half-filling, and v∞=0.
At half-filling, the structure factor is thus given by the heavi-
est strings (23), which are moving purely diffusively because of
random collisions with lighter strings, with the spin diffusion
constant 10.

Isotropic Point
Finally, we briefly discuss the structure factor at the isotropic
point η=0 (Δ=1). At half-filling, Eq. 10 implies that the diffu-
sion constant diverges with the number of strings as D ∼ s . Spin
transport at half-filling is therefore superdiffusive, with anoma-
lous dynamical exponent x ∼ t2/3. By considering the approach
to half-filling at finite μ, one can retrieve this dynamical expo-
nent by a simple intuitive argument. A typical thermal state has
Gaussian spatial fluctuations of its magnetization, so the effec-
tive local magnetization fluctuates as 1/

√
L over a distance L.

On short enough length-scales, these fluctuations dominate over
the average μ. The system averages out these fluctuations and
“realizes” it is at μ �=0 on a length-scale such that μ∼ 1/

√
L—

i.e., L(μ)∼ 1/μ2. Further, as μ→ 0, magnetization is primarily
transported by the heaviest available strings, for which s∗
 1/μ
and vs∗ 
μ. The time it takes these strings to travel a distance

L(μ) is given by t(μ)∼ 1/μ3. The diffusion constant of such
strings diverges as D ∼μ−1, which also gives the same scaling
t(μ)∼ 1/μ3. It follows that L∼ t2/3. Moreover, the structure
factor near half-filling can be written in the scaling form

C (x , t)=μ2

[
Canom.(xμ

2, tμ3)+
1

t
Creg.(x/t)

]
, [13]

where the first term comes from strings with s∗∼ 1/μ and the
second from lighter strings. At precisely half-filling, the regu-
lar part vanishes as μ2, and only the anomalous part survives.
The regimes of Canom.(ζ, ξ) are as follows. When both ζ, ξ	 1,
Canom. ∼ (tμ3)−2/3f (x/t2/3), where f was numerically found to
have the KPZ form (49). When ζ� ξ, the anomalous part van-
ishes by causality. The late-time return probability ξ� 1, ζ	 ξ
is dominated by the tail of the heaviest common string—i.e., it
goes as 1/(μt). Putting these together, we have

C (0, t)= t−2/3g(μt1/3), g(y)=

{
const. y 	 1
1/y y � 1

[14]

Meanwhile, the ballistic, regular part can be calculated following
the logic of Eq. 11, so Creg.(y)∼ 1/y2 for y 	 1, implying that

C (x/t)∼μ2t/x2, μ	 (x/t)	 1. [15]

As μ→ 0, spatial fluctuations of the magnetization dominate the
dynamics. If we imagine dividing the system into hydrodynamic
cells with magnetization m(x , t), each cell will have a fluctuating
diffusion constant D [m]∼ 1/m and ballistic spin transport coef-
ficient jballistic[m]∼ v [m]m ∼m2 set by its instantaneous mag-
netization (repeating the argument above with m instead of μ as
the cutoff). Combining these contributions into a hydrodynamic
equation for m yields a Burgers equation with a diffusion con-
stant that is singular at low density (see also ref. 25). We expect
this to be compatible with KPZ scaling (50): Over a distance �,
Gaussian fluctuations in the initial state lead to m ∼ 1/

√
�, imply-

ing a diffusion constant D ∼√
� and velocity v ∼ 1/

√
�, both

implying t(�)∼ �3/2. Moreover, the dominant nonlinearities in
the Burgers equation involve anomalous high-density regions,
for which the diffusion coefficient is well-behaved, so one might
conjecture that the KPZ scaling function is also unaffected, as
the numerical evidence (49) suggests. However, developing this
nonlinear fluctuating hydrodynamics (64) for integrable systems
is outside the scope of the present work.

Matrix Product Operator Calculations
We tested these predictions by computing the structure factor
C (x , t) in the Heisenberg picture by time evolving S z

i using
MPO techniques and the time-dependent density matrix renor-
malization group (tDMRG) (65–69) (Materials and Methods).
Following ref. 49 (see also refs. 70 and 71), we also computed
C (x , t) using a linear response quench setup when the system
was initially prepared in a nonequilibrium state with chemical
potential μ+ δμ/2 in the left half of the system and μ− δμ/2 in
the right half. We then computed the density matrix ρ(t) at time
t using MPO methods. Working at fixed truncation error, this
approach allows us to reach similar time scales t ∼ 20 to obtain
fully converged results. If we work instead with fixed bond dimen-
sion MPOs, the quench time traces deviate from the exact MPO
time trace at times t � 20 for the return probability, though they
give reasonably converged spatial profiles for x �=0 out to late
times (see SI Appendix for thermodynamic Bethe Ansatz formu-
las at infinite temperature, details of the low-filling calculation,
and more numerical results of MPO calculations), as noted in
refs. 18 and 49.
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These results are plotted in Fig. 2. For µ= 0.5 and η= 1.5,
one sees a clear ballistic front due to magnons, with a broad
diffuse feature behind it, as GHD predicts. Fig. 2B shows the
local autocorrelator (i.e., return probability) as a function of µ at
fixed η= 0.5. Its behavior is consistent with a continuously vary-
ing power law that goes from ∼1/2 (in fact, closer to 0.6 due to
the proximity to the isotropic point ∆ = 1) at µ= 0 to nearly one
at large µ. The numerically extracted exponent γ is much smaller
than the asymptotic GHD prediction. We accounted for this dis-
crepancy by numerically evaluating the GHD expression, Eq. 8.
As discussed above, GHD predicts that the apparent exponent
drifts with time (Fig. 2C). If we fit the GHD prediction to a power
law over timescales t ≈ 20, we find that the GHD and MPO
exponents are in reasonable agreement. Note that GHD is not
expected to be quantitatively accurate at such short times, as it
does not capture the oscillations observed numerically. Although
much longer times would be needed to test the asymptotics Eq. 7,
our numerical results are consistent with a continuously evolving
exponent between 1

2
and 1.

Discussion
In this work, we used GHD and its diffusive corrections to
characterize the structure factor of the XXZ model in the easy-
axis regime and at the isotropic Heisenberg point. We argued
that even at nonzero magnetization, where ballistic transport
is present, the local behavior of the autocorrelation function
exhibits rich structure due to heavy “string” quasiparticles. In
particular, the autocorrelation function for x�

√
Dt—i.e., the

“return probability”—vanishes with an anomalous exponent γ=

min( 1
2

+ |µ|
η

, 1) throughout this phase. In many experimental
situations, it is more natural to consider Fourier-transformed
variables—i.e., to evaluate the dynamical structure factor S(q ,ω)
(which is the Fourier transform of C (x , t))—and behaves as (see
SI Appendix for thermodynamic Bethe Ansatz formulas at infi-
nite temperature, details of the low-filling calculation, and more
numerical results of MPO calculations)

S(q ,ω) =
Dq2(Dq)2|µ|/η log2(Dq)

ω2 + (Dq2)2
+Sb , [16]

where the contribution Sb comes from ballistic strings and is
subleading when ω�Dq2 and 2|µ|<η. The optical conductiv-
ity follows from this as σ(q ,ω) = (ω/q)2S(q ,ω). At a fixed q , the
ω-dependence is regular, being a sum of ballistic and diffusive
contributions; however, fixed-x correlators behave nonanalyti-
cally because of the integral over q .

Our predictions based on GHD are consistent with extensive
simulations using MPO methods (Fig. 2). In addition, at the
isotropic point, we wrote down a scaling form for the structure
factor and provided an elementary derivation of the dynamical
critical exponent (24, 25). While our results have a particularly
simple form at T =∞, the main qualitative features persist for
all T > 0. Many possible extensions present themselves, includ-
ing a systematic derivation of fluctuating hydrodynamics and

long-time tails near half-filling and an understanding of the scal-
ing properties as one approaches ∆→ 1 from the easy-plane
(“gapless”) regime.

Materials and Methods
We have explored two approaches for computing the structure factor
C(x, t) = 〈Sz

x(t)Sz
0(0)〉c numerically. The first is to directly time-evolve the

operator Sz in the Heisenberg picture, as an MPO and the tDMRG (65–
69). We find that a fixed truncation error ε= 10−8 is enough to obtain
converged results, and we used a fourth-order Trotter decomposition
with time step dt = 0.1. Our calculations were stopped when the bond
dimension reached χ ∼ 2,000. This approach corresponds precisely to
performing the linear response calculation, so we refer to it as the equi-
librium approach. In addition to being strictly in the linear response
regime, the equilibrium approach has the advantage that one can study
µ-dependence systematically with minimal computational effort: Since

C(x, t,µ) = Tr[e−2
∑

i µSz
i Sz

x(t)Sz
0(0)]/Z−〈S2

z〉, the MPO Sz
x(t) only needs to be

computed once. In practice, this computation can be further sped up (72)
by instead evaluating Tr[e−2

∑
i µSz

i Sz
x(t/2)Sz

0(−t/2)]. These MPOs are only
evolved for half as long and therefore have much lower bond dimension
than Sz

x(t).
Instead of this direct method, the structure factor can also be com-

puted by using a linear-response quantum quench. Following ref. 49,
we considered an initial density matrix ρ(t = 0)∝ (e(µ+δµ/2)σz )⊗L/2⊗
(e(µ−δµ/2)σz )⊗L/2. The equilibrium (connected) spin-structure factor can
then be expressed as (49)

C(x, t) =
1

4
lim
δµ→0

〈σz
x−1(t)〉quench−〈σz

x (t)〉quench

δµ
, [17]

where 〈. . .〉quench refers to expectation values in this quench setting. We
used MPO methods to time-evolve the initial density matrix ρ(t = 0) and to
evaluate expectation values of the spin. This provides another way to com-
pute the spin-structure factor. The quench setup could possibly allow us to
reach longer times. While the bond dimension appears to grow more slowly
in the quench setting, we find that very small truncation errors (less than
ε= 10−10) are required to obtain converged results for the return proba-
bility (x = 0) for δµ= 0.01 (a value small enough to make Eq. 17 correct up
to negligible errors). On the other hand, as noted in refs. 18 and 49, work-
ing with fixed bond dimension χ in the quench setup (with bond dimensions
χ= 100, 200, 300, 400) appears to lead to relatively small errors for small val-
ues of η, yielding reasonably converged results for the full shape of C(x, t)
up to very long times t∼ 200—especially near the front, where truncation
errors are less important. In contrast, the return probability C(x = 0, t) does
seem sensitive to truncation errors, and even fixed χ= 400 appears to devi-
ate from the numerically exact equilibrium result at short times t∼ 15 (SI
Appendix). In this work, we thus used the quench setup with fixed bond
dimension to compute the full profile of C(x, t), as this yields reasonably
converged results away from x = 0 up to long times, and we restricted our-
selves to fixed truncation error data computed directly in equilibrium for
the return probability.
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