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Abstract

Type Ia supernovae, calibrated by classical distance ladder methods, can be used, in conjunction with galaxy
survey two-point correlation functions, to empirically determine the size of the sound horizon rs. Assumption of the
ΛCDM model, together with data to constrain its parameters, can also be used to determine the size of the sound
horizon. Using a variety of cosmic microwave background (CMB) data sets to constrain ΛCDM parameters, we
find the model-based sound horizon to be larger than the empirically determined one with a statistical significance
of between 2σ and 3σ, depending on the data set. If reconciliation requires a change to the cosmological model, we
argue that change is likely to be important in the two decades of scale factor evolution prior to recombination.
Future CMB observations will therefore likely be able to test any such adjustments; e.g., a third-generation CMB
survey like SPT-3G can achieve a threefold improvement in the constraints on rs in the ΛCDM model extended to
allow additional light degrees of freedom.
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1. Introduction

Classical distance ladder (CDL) approaches using Cepheids
and supernovae (SNe; Riess et al. 2018b, hereafter R18) find
higher Hubble constant estimates than those derived from
cosmic microwave background (CMB) data that assume the
standard cosmological model, ΛCDM (Planck Collaboration
VI 2018). The statistical significance of this discrepancy has
grown over time with fairly steady progress on the distance
ladder (Riess et al. 2009, 2011, 2016) and with a sudden jump
in precision of the ΛCDM prediction with the first release of
the Planck cosmology data in 2013 (Planck Collaboration
XVI 2014). Comparing the R18 value of H0=73.52±
1.62 km s−1Mpc−1 with the value inferred from Planck

CMB temperature and polarization power spectra plus CMB
lensing, assuming ΛCDM, H0=67.27±0.60 km s−1Mpc−1,
there is a 3.6σ discrepancy (Planck Collaboration VI 2018).

Along with the reduction of statistical errors in the Cepheids-
plus-SNe determination of H0, other supporting evidence in
favor of a high value of H0 has been growing as well. A
number of independent analyses of the data have served to
largely confirm the conclusions of R18 (Efstathiou et al. 2014;
Cardona et al. 2017; Zhang et al. 2017; Feeney et al. 2018;
Follin & Knox 2018). Despite claims that the CDL H0 departs
significantly from the cosmic mean H0 due to a local void, Wu
& Huterer (2017) showed that within ΛCDM, the sample
variance in the R18 measurement is only 0.3 km s−1Mpc−1, or
0.2σ. In addition, Birrer et al. (2019) provided the latest
inference of H0 from the H0LiCOW (Suyu et al. 2017)
collaboration’s use of strong-lensing time delays (SLTDs):

H 72.50 2.3
2.1= -
+ km s−1Mpc−1. Combining the result of this

completely independent probe of the distance–redshift relation
at low redshift with that from R18 results in a 4.1σ discrepancy

with the Planck result quoted above. Finally, the tip of the red
giant branch distance method shows consistency with Cepheid
distances to a handful of SN host galaxies (Jang & Lee 2017;
Hatt et al. 2018a, 2018b).
Recently, Shanks et al. (2019) claimed that corrections

applied to the Gaia data (Lindegren et al. 2018) in the R18
analysis have introduced significant systematic error, a claim
that has sparked a debate (Riess et al. 2018a; Shanks et al.
2018). We simply point out here that the Riess et al. (2016)
result of H0=(73.24±1.74) km s−1Mpc−1 makes no use of
Gaia data and is thus immune to this controversy, while also
being nearly as discrepant from the ΛCDM–plus–CMB-
inferred values.
The case against systematic errors in CMB data as the source

of this discrepancy is very strong. First of all, the result from
Planck is robust to the choice of frequency channels (Planck
Collaboration et al. 2016), arguing against foreground model-
ing or any channel-specific systematic errors as a source of bias
in the H0 inference. Further, the consistency of Planck
measurements with the Wilkinson Microwave Anisotropy
Probe (WMAP) on large angular scales (Planck Collaboration
et al. 2014) and the 2500 deg2 SPT-SZ measurements on small
angular scales (Aylor et al. 2017; Hou et al. 2018) also argues
against any significant systematic errors on all angular scales
relevant for the determination of cosmological parameters from
Planck data.
Additionally, the conclusion of a low H0 from CMB data and

the assumption of ΛCDM can be reached without the use of
Planck data. The inverse distance ladder results (Percival et al.
2010; Heavens et al. 2014; Aubourg et al. 2015; Cuesta et al.
2015; Bernal et al. 2016a; DES Collaboration et al. 2018;
Verde et al. 2017b; Feeney et al. 2019; Joudaki et al. 2018;
Lemos et al. 2018) also show that the combination of
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measurement of the baryon acoustic oscillation (BAO) feature

in galaxy surveys, Type Ia supernova (SN Ia) observations, and

CMB data with or without Planck (e.g., WMAP9; Bennett et al.

2013) lead to low (Planck-like) values of H0. Finally, Addison

et al. (2018) pointed out that, assuming the ΛCDM model and

using BAO data and light-element abundance measurements as

constraints on the baryon-to-photon ratio, one infers a Planck-

like value of H0, i.e., without using any CMB anisotropy data.

The above results indicate that systematic errors in CMB data,

and Planck CMB data in particular, are not the major driver of

the discrepancies in inferences of H0.
Recently, some works in the literature have proposed

solutions both pre- and post-recombination to address the H0

discrepancy. For example, Karwal & Kamionkowski (2016),

Evslin et al. (2018), and Poulin et al. (2018) proposed the

existence of an early dark energy that reduces the size of the

sound horizon, subsequently increasing the CMB-inferred

value of H0; Lin et al. (2019) proposed a modified gravity

solution at the time of recombination; and Chiang & Slosar

(2018) altered the duration of the recombination to reduce the

tension between CMB and CDL results. On the other hand, Di

Valentino et al. (2016, 2017) and Joudaki et al. (2017) used an

extended parameter space and pointed out that an interacting

phantom-like dark energy with an equation of state wDE<−1

can also reduce the tension in H0 measurements.
In this paper, to further explore what can and cannot explain

this discrepancy, we follow Bernal et al. (2016b) and use the

sound horizon rs, rather than H0, as the point of comparison

between CDL and ΛCDM-based estimates. With this approach,

the BAO data are on the CDL side: Cepheids calibrate SNe Ia,

which are then used to determine distances to redshifts for

which BAO measurements of the angular size of the sound

horizon exist, thereby revealing the size of the sound horizon.

We also note that SLTDs can be used to calibrate the BAO

measurements, so we convert the H0LiCOW result into a sound

horizon constraint. For a more comprehensive use of data

sensitive to distances and the expansion rate at low redshifs

(z1), see, e.g., Bernal & Peacock (2018), which includes the

use of “cosmic clocks.”
We find use of the sound horizon as a point of comparison to

be a particularly useful way of examining the data for several

reasons. First, there is added insensitivity with this method to

extreme changes in the z<0.1 cosmology, since one does not

need to extrapolate to z=0, circumventing issues with

peculiar velocities brought up by Shanks et al. (2019). Second,

the ΛCDM predictions for the sound horizon are more robust

than those for H0. Third, as with the inverse distance ladder,

this approach clarifies that reconciliation cannot be delivered

by altering cosmology at z<1. Fourth, it serves to clarify that

the reconciliation of distance ladder, BAO, and CMB

observations via a cosmological solution is likely to include a

change to the cosmological model in the two decades of scale

factor evolution prior to recombination. Finally, σ(rs)/rs from
CMB data, assuming that ΛCDM is four times smaller than the

σ(H0)/H0 from the same data and assumed model.
Since Bernal et al. (2016b), we have new SN data available

(Scolnic et al. 2018), an updated SN absolute luminosity

calibration (R18), and results from the final data release from

Planck (Planck Collaboration VI 2018). We examine the

tension in rs given these most recent data. As mentioned above,

SLTDs can also be used to calibrate the distance to the BAO

redshifts. So we also use the latest H0LiCOW results (Birrer
et al. 2019) to produce a constraint on rs.
We find that the CDL-inferred sound horizons are in 2σ–3σ

tension with ΛCDM-determined ones.9 While a statistical fluke
could explain this discrepancy, we believe there is sufficient
evidence to motivate the exploration of cosmological solutions.
In Section 4, we argue that if there is to be a cosmological
solution to the discrepancies in rs values, it is likely to be
significantly different from ΛCDM in the two decades of scale
factor growth prior to recombination. Such model changes
are likely to lead to predictions testable with future CMB data.
We examine the rs predictions in the case of a two-parameter
extension of the standard cosmological model and forecasts for
rs errors in these extended model spaces given the survey to
come from SPT-3G, a third-generation camera outfitted on the
South Pole Telescope (Benson et al. 2014; Bender et al. 2018).

2. Models and Data

We present here the empirical CDL approach to determining
the sound horizon scale, rs, and then the more cosmological
model–dependent approach. Although the former also requires
modeling, we demonstrate with a parametric spline model for
the history of the expansion rate that the results are at most only
mildly dependent on cosmological model assumptions. We also
describe how we use the recent H0LiCOW results (Birrer et al.
2019) to determine rs.

2.1. rs Using CDL

We describe the formalisms to determine rs empirically in
this section. For this purpose, we use the BAO data from the
BOSS survey (Alam et al. 2017), SN data from the SN Ia
Pantheon sample (Scolnic et al. 2018), and Cepheid data
from R18.
The sound horizon leaves its imprint on the galaxy

distribution as a peak in the galaxy two-point correlation
function at rs, the comoving size of the sound horizon.10 In
redshift space, with galaxy positions recorded in z and angular
position on the sky, the sound horizon scale maps into
(Δz)s=H(z)rs (the difference in redshift between two galaxies
with a line-of-sight separation rs) and θs(z)=rs/DA(z) (the
angular separation of two galaxies separated by rs perpend-
icular to the line of sight), where DA(z) is the comoving angular
diameter distance. Thus, BAO surveys fundamentally constrain
these two quantities, and analyses often summarize the
constraints as constraints on H(z)rs and DA(z)/rs.
The SNe Ia are used as “standardizable” candles that, after

suitable data-dependent corrections, can be reduced to a
corrected apparent magnitude with a signal modeled by

m M D5 log Mpc 25, 1i
L
i

10= + +( ) ( )

where i runs over SNe; the first term on the right is a global,

SN-independent, corrected absolute magnitude; and the second

and third terms just follow from the inverse square law for

fluxes and the definitions of apparent and absolute magnitudes,

with DL the comoving luminosity distance.

9
The inverse distance ladder results in a more significant tension because the

BAO error, in this case, gets added to the rs error, which is fractionally smaller
than the CDL error on H0.
10

More specifically, at the end of the baryon drag epoch, i.e., at z = zdrag, as
defined in Hu & Sugiyama (1996). This is often denoted rd, but we use rs to
avoid confusion with the diffusion scale.
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Neglecting, for the moment, the BAO constraints on H(z)rs,
the BAO and SN constraints are very similar. Both the BAO
and SN data determine a distance–redshift relationship up to
some global scaling factor. In the BAO case, the scaling factor
is rs, and in the SN case, we could take it to be
lSN≡10−(M+19)/5 Mpc.11 The two different distances are
also very simply related, assuming conservation of photon
number, via DA(z)=DL(z)/(1+z).

We can relate these observable distance ratios to H(z),
assuming a negligible mean spatial curvature, via

D z r
c

r

dz

H z

dz

H z H

H z r c H z H

D z l
c

l

dz

H z

dz

H z H

1

, 2

A

z z

A

z z

s
s 0

BAO
0 0

s
BAO

0

SN
SN 0

SN
0 0

ò ò

ò ò

b

b

b

= =

=

= =

( )
( ) [ ( ) ]

( ) [ ( ) ]

( )
( ) [ ( ) ]

( )

with βBAO≡c/(rsH0) and βSN≡c/(lSNH0).
Finally, there are the Cepheids. The Supernovae, H0, for the

Equation of State of Dark energy (SH0eS; Riess et al. 2018b)
program has used Cepheids in 19 different host galaxies with
observed SNe Ia to calibrate the mean SN absolute magnitude.
Rather than directly using that calibration, we use the value of
H0 that results from the calibration. As one can see in the
equations above, the SN data themselves are sensitive to the
combination βSN≡c/(lSNH0), so specifying H0 allows one to
determine lSN; i.e., it allows for a calibration of the SN distance
measurements.

We use the BAO, SN, and Cepheid data as just (generically)
described to infer rs, performing our analyses with two
different model spaces. One is ΛCDM with

H z H z z z1 1 ,

3

m c0
3 4r r= W + + W + + W +n gL( ) ( ) ( ) ( )

( )

/

where

z1 0 . 4m cr rW = - W - = - Wn gL ( ) ( )

here ρν(z) is calculated for a neutrino background with a

temperature today of Tν,0=2.725 K (4/11)1/3, two m=0
mass eigenstates and one with mass mν with a default value of

0.06 eV. Ωγ the energy density, in units of the critical density,

in a blackbody of photons with temperature Tγ,0=2.725 K.
The complete set of parameters of this model can be taken to be

{βBAO, βSN, H0, Ωm}. Note that the sound horizon scale is a

derived parameter given by rs=c/(βBAOH0).
The other model we call the spline model. For this model,

following Bernal et al. (2016b), H(z)/H0 is determined by
H(z) at five locations in z and cubic spline interpolation. The
complete set of parameters for the spline model is {βBAO,
βSN, H0, H1, H2, H3, H4}, where Hi≡H(zi) with z0=0,
z1=0.2, z2=0.57, z3=0.8, and z3=1.3, for which we
assume a uniform prior over the region with H(zi)>0. These
were the redshift points used by Bernal et al. (2016b). We
also consider a slightly different choice to check robustness
in Section 3.1.2.

We note that the spline model results are not completely free
of cosmological assumptions, as the relationship between H(z)

and DA(z) depends on curvature. If it were not for the BAO
constraints on H(z), then our spline model–based inferences of
rs would not have any dependence on curvature, as our H(z)
parameters can just be thought of, in that case, as a means of
parameterizing DA(z). The reconstructed H(z) would have
curvature dependence, but the recovered rs would not. The
inclusion of the BAO constraints on H(z) breaks that
degeneracy in curvature and brings some dependence of the
inferred rs on assumptions about curvature. We will discuss this
dependence in Section 3.
To perform joint analyses of the three data sets, we form a

log likelihood  (natural log of the likelihood), given by

. 5BAO SN Cepheids   = + + ( )

We now briefly describe each of these likelihoods in turn.
The log likelihood BAO has the BAO means and error

covariance matrix described in the BOSS collaboration paper
(Alam et al. 2017) for DA(z)/rs and H(z)rs at the effective
redshifts z=0.38, 0.51, and 0.61. These data points are plotted
as red squares in Figures 1 and 2 as constraints on DA(z) and
H(z), given a fiducial value of rs.
We do not include any other BAO data, such as that from the

6df galaxy survey (Beutler et al. 2011) or a BOSS DR12 Lyα
absorption cross-correlation analysis (du Mas des Bourboux
et al. 2017). While they provide useful consistency tests of the
standard cosmological model, they are not as precise as the
BOSS galaxy constraints (Alam et al. 2017), and some are also
at redshifts greater than the highest redshifts for which we have
SN distance estimates, rendering them uninformative for our
main purpose.
To construct the likelihood for SNe, we use the Scolnic et al.

(2018) data set. They reported the redshift-binned estimates of
corrected B-band SN apparent magnitudes, corrected to
improve the approximation m=μ(zβ)+M for some global M,
where μ(zβ) is the distance modulus for redshift zβ. We thus
model the data as

m z M D z5 log Mpc 25. 6L10= + +b b( ) ( ( ) ) ( )

Figure 1. Comoving angular diameter distance measurements, DA(z), together
with best-fit models. The BAO results have been converted from DA(z)/rs to
DA(z) by assumption of rs=138.09 Mpc. The SN distance moduli have been
converted to DA(z) assuming M=−19.26. In the residuals panel,
ΔDA(z)=DA(z)−DA,ΛCDM(z), where DA,ΛCDM(z) is the comoving angular
diameter distance for the best-fit ΛCDM cosmology. The gray band shows the
68% confidence interval for the spline model.

11
The choice of “+19” here is arbitrary; it makes lSN=1 Mpc for M=−19,

which is close to the corrected SN absolute magnitude.
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The absolute magnitude M is the more usual way of specifying

the calibration of the SNe. Taking lSN introduced above to

have the fiducial value of 1 Mpc for a fiducial value of M=
−19.3 (for specificity), Equation (6) can be rewritten to swap in

lSN for M:

m z
D z

l
5 log 5.7. 7

L

10
SN

= +b
b⎛

⎝
⎜

⎞

⎠
⎟( )

( )
( )

We form a likelihood that is Gaussian in the apparent
magnitudes, with covariance matrices that include the statistical
and systematic errors as reported in Scolnic et al. (2018). The
data points are plotted as green circles in Figure 1 as constraints
on DA(z)=DL(z)/(1+z) for a fiducial value of M.

For the “Cepheids” log likelihood, we take

H73.52

2 1.62
, 8Cepheids

0
2

2
 = -

-
´

( )
( )

where H0 is our model Hubble constant in km s−1Mpc−1 and

the numbers in the likelihood are from the R18 measurement

H0=73.52±1.62 km s−1Mpc−1. Note that, just like for rs
with the BAO data, lSN is a derived parameter given by

c/(βSNH0). The SN absolute magnitude parameter M can

likewise be derived from lSN.

2.2. rs and SLTDs

We also consider SLTD data (Birrer et al. 2019) as a means
of calibrating the BAO. A given SLTD system is sensitive to
the ratio DdDs/Dds, where Dd is the distance to the lens
(typically near z∼0.5), Ds is the distance to a lensed quasar
(typically near z∼1.5), and Dds is the distance between the
two. This quantity is inversely proportional to H0, and, in
ΛCDM, its dependence on the exact shape of H(z) (given
largely by Ωm) is weak enough to, even with very weak priors
on the matter density, produce a strong constraint on H0. We
can thus use this constraint to anchor the BAO point instead of
the Cepheids without any other additional external data. In
practice, we simply combine the constraint on βBAO, which we
get from SNe and BAO with the H0 reported by Birrer et al.
(2019), propagating Gaussian error bars in quadrature.

We note that this analysis is approximate because we have
not jointly analyzed the data sets; improved constraints on the
matter density from the SNe+BAO data could further tighten
the H0LiCOW result. However, this effect is likely to be small
given the weak dependence on the Ωm prior reported by Birrer
et al. (2019). Note that this analysis does assume ΛCDM, in
particular that the shape of H(z) follows the expectation from
ΛCDM between today and the quasar redshifts of z∼1.5.
While the SNe strongly constrain the shape at somewhat lower
redshifts, there is, at least in theory, the possibility that the
H0LiCOW inference of H0 and thus our corresponding rs
inference could be somewhat thrown off by a change to H(z)
right around z∼1.5. We have not attempted a joint spline fit of
SNe+BAO+H0LiCOW, but such a test could reveal to what
extent this is a possibility (although, of course, the H0LiCOW
and Cepheid determinations of H0 are already in good
agreement, arguing against this possibility).

2.3. rs from ΛCDM-plus-CMB Data

We have just reviewed how one can infer rs in an empirical
manner using the CDL. Here we describe how one can adopt a
model and directly calculate rs. The comoving size of the sound
horizon is given by

r c a dt a t da
c a

a H a
, 9

t a

s
0

s
0

s

2

d d

ò ò= =( ) ( )
( )

( )
( )

where cs(a) is the sound speed as a function of the scale factor

and ad is the scale factor at the end of the baryon drag epoch. In

the ΛCDM model, rs is completely determined by the baryon-

to-photon ratio for its influence on ad and cs(a) and the matter

density ωm≡Ωmh
2 for its influence on ad and H(a). With these

parameters constrained, or any other relevant parameters there

might be in extended model spaces, one can then calculate a

constraint on rs.
We use the CMB data sets from the Atacama Cosmology

Telescope (ACTPol; Louis et al. 2017), Planck (Planck
Collaboration VI 2018), the South Pole Telescope: SPT-SZ
(Aylor et al. 2017) and SPTpol (Henning et al. 2018), and the
WMAP (Bennett et al. 2013). We look at subsets of the Planck
data as well. Significant constraints on rs come from each of the
three dominant power spectra, C C,l

TT
l
TE, and Cl

EE, as well as

from Cl
TT at l<800 and Cl

TT at l>800.

3. Results and Discussion

Before presenting the constraints on rs from the different
methods described in Section 2, in Figures 1 and 2, we display
the BAO and SN data as they constrain DA(z) and H(z). For
these figures, we assume the fiducial values rs=138.09 Mpc
and M=−19.26, which are the best-fit values for the spline
model parameter space described in Section 3.1.2 given the
BAO, SN, and Cepheid data. We choose the best-fit values
from the spline model, as opposed to the ΛCDM model,
primarily for specificity and secondarily in order to have less
model dependence in the resulting distance estimates.
Examining the residuals from these fits in Figures 1 and 2,

we see no obvious problems for either the ΛCDM or spline
modes. For the ΛCDM model, we find for the best fit

SNe
2c =

39.3 and 3.5
BAO
2c = , summing to 42.8

tot
2c = for 43 degrees

of freedom (40 SN data points, six BAO data points, and
three parameters, not counting H0). For the spline model, we

Figure 2. Expansion rate measurements together with best-fit models. The
BAO data have been converted to H(z) by assumption of rs=138.09 Mpc.
The gray band shows the 68% confidence interval for the spline model.

4
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find the best fit 38.0
SNe
2c = and 3.4

BAO
2c = , with 41.4

tot
2c =

for 40 degrees of freedom (six parameters, once again not
counting H0).

Now we turn to results reporting the inferred value of rs using
the CDL approach from the ΛCDM and spline models in
Section 3.1. This is followed by the results obtained using CMB
data for the ΛCDM model in Section 3.2. Next, we discuss the
2σ–3σ tension in the value of rs obtained from these two methods
in Section 3.3. In Section 3.4, we look at a couple of model
extensions and forecast the expected constraints on rs that can be
obtained by combining Planck results with SPT-3G (Benson
et al. 2014), a stage 3 CMB temperature and polarization survey.
Finally, in Section 4, we argue that if the origin of the
discrepancies is cosmological, the cosmological solution must
make its important changes at times prior to recombination.

3.1. CDL-based Constraints

We begin our discussion with our first result of the H0

constraint (which we refer to as “Cepheids”; R18) used for
calibrating the Pantheon binned distance moduli (“SNe”;
Scolnic et al. 2018), which in turn are used to calibrate the
BAO distance and H(z) constraints from BOSS galaxies
(“BAO”; Alam et al. 2017). The CDL-based rs results are
shown as blue circles in the top panel of Figure 3.

3.1.1. CDL+ΛCDM

First, we have assumed the ΛCDM model—using it to
provide the parameterized shape of H(z)/H0. We find

r 137.6 3.45 Mpc. 10s = ( ) ( )

As a point of comparison, we mention a result from Addison
et al. (2018). They take a more comprehensive set of BAO
data, including constraints at lower redshift from galaxy

surveys (Beutler et al. 2011; Ross et al. 2015) and higher
redshift constraints from BOSS Lyα (Font-Ribera et al. 2014;
Delubac et al. 2015; Bautista et al. 2017) and find, from the
BAO data themselves, assuming the ΛCDM model, that
H0rs=(10,119±138) km s−1. Combining this with the R18
result for H0, it becomes

r 137.7 3.7 Mpc. 11s = ( ) ( )

This result is nearly the same, in mean and standard deviation,

as our own CDL+ΛCDM result. The lack of reduction in

uncertainty, despite the much greater amount of BAO data, is

due in part to the lack of use of the SN Ia data, which increases

the uncertainty in Ωm and therefore the shape of DA(z). The

other important factor in the lack of reduction is that the BOSS

galaxy data are unmatched in precision.
Our second CDL+ΛCDM result comes from replacing

Cepheids (R18) with the SLTD data from H0LiCOW (Birrer
et al. 2019), as explained in Section 2.2. From our SN Ia +

BAO data, we have βBAO≡c/(rsH0)=29.7±0.37. Com-

bining this with H 72.50 2.3
2.1= -
+ km s−1Mpc−1 from Birrer et al.

(2019), we find

r 139.3 Mpc. 12s 4.4
4.8= -

+ ( )

That uncalibrated SN, combined with BAO data, put a strong

constraint on the product rsH0 (=c/βBAO), previously men-

tioned in Verde et al. (2017b).

3.1.2. CDL+Spline

To explore the model dependence of the CDL method for rs
inference, we now drop the assumption of ΛCDM for
parameterization of the shape of H(z)/H0 and replace it with
our spline model. Because our BAO results span such a small
range of redshift, we can expect that there is very little
sensitivity of the inferred rs to the choice of parameterization,
as long as it is not varying rapidly on redshift intervals

Figure 3. Sound horizon determinations from existing data (filled symbols) and forecasts (open symbols). The numbers down the middle give the difference with the
Cepheids+SNe+BAO spline model result for rs in units of the standard deviation, with the standard deviation computed via quadrature sum. We see that the CDL
constraints (top panel) on rs come out systematically lower than the ΛCDM-based constraints (biggest panel). The three model extensions considered in the three
remaining panels do not significantly weaken the discrepancy. The code and data for this figure are available.12

12
https://github.com/marius311/sounds_discordant_plot/blob/2c4735a1

7229ec14f3e54e2a594803d2a1bb34ca/summaryplot.ipynb
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comparable to the redshift span of the BAO measurements.
With the four-parameter model described in the previous
section, we indeed find a very similar result to the ΛCDM
result:

r 138.0 3.59 Mpc. 13s = ( ) ( )

That this sound horizon result is a little bit larger is
consistent with what we see in the residuals panel of Figure 1.
Namely, the SN data largely sit above the ΛCDM best-fit curve
in the redshift interval with the BAO data. The increased
freedom of the empirical model reduces the influence of the
SNe outside of this redshift range, boosting D(z) in this interval
with the result that rs is slightly larger. Note, though, that
statistically, this is a very small shift of less than 0.2σ.

More importantly, because the ΛCDM and spline results for
rs are basically the same, including in the uncertainty, we can
conclude that the CDL sound horizon determination is highly
model-independent. In particular, it is, at most, very weakly
dependent on any assumptions about the shape of the distance–
redshift relationship. As a further check, we performed an
analysis with spline points moved to z = {0, 0.2, 0.5, 0.8, 1.1}
away from our baseline z={0, 0.2, 0.57, 0.8, 1.3} (see
Section 2.1) and obtained rs=137.7±3.60Mpc, indicating
that our results are not highly sensitive to the choice of pivotal
redshift points.

Before closing this subsection, we comment on the
dependence of the CDL result for rs on curvature. Using R16
for the H0 constraint, Betoule et al. (2014) for the SN Ia data,
and the same BOSS BAO data, Verde et al. (2017b) found, also
for a phenomenological parameterization of H(z), that
rs=138.5±4.3 Mpc assuming ΩK=0. This is consistent
with our result to within 0.2σ. When they marginalized over
ΩK, they found rs=140.8±4.9 Mpc. This is an ∼0.5σ shift,
which indicates that were we to relax our zero curvature
assumption, it might have some impact on the significance of
our results. We caution against seeing this small shift as
possibly leading to a resolution between the CMB and CDL
data. To get the full magnitude of this shift requires the
curvature to be quite far from zero. The Verde et al. (2017b)
constraint on Ωk in this analysis is ΩK=0.49±0.64. Such a
large value of Ωk is highly disfavored by CMB data; in the
ΛCDM+Ωk model, the Planck temperature and polarization
power spectra lead to ΩK=−0.044±0.034.

3.2. ΛCDM-based Constraints with and without CMB Data

We now turn to the model-based determinations of the sound
horizon, focusing first on the ΛCDM model results. To
examine the robustness of sound horizon determination, we
show results for many choices of CMB data sets (orange circles
in the biggest panel of Figure 3). We see some scatter in these
inferences of rs, with all of them between 2σ and 3σ larger than
the spline-based CDL result.

A curious feature of the scatter in the ΛCDM results is that
those data sets that lead to lower values of H0, such as using
Planck temperature power spectrum (TT) data restricted to
l>800 (+lowE), which are thus more discrepant with the
CDL value of H0, also lead to values of rs that are less
discrepant with the CDL, and vice versa. This pattern can be
understood as follows. First, recall that the comoving size of
the sound horizon is given by Equation (9), which, in the
ΛCDM model, depends only on the baryon-to-photon ratio and
the matter density ωm. The fluctuations in ΛCDM-based rs

inferences from CMB data are almost entirely driven by
fluctuations in ωm. The short explanation for the positive
correlation between H0 and rs fluctuations is that upward
fluctuations in ωm drive both rs and H0 downward.
The positive correlation between rs and H0 can be under-

stood as follows. If the radiation density were completely
negligible for the calculation of the sound horizon, then,
from the Friedmann equation, δH(a)/H(a)∝0.5δωm/ωm, so
we have δrs/rs∝−0.5δωm/ωm. The radiation softens this
response to closer to δrs/rs∝−0.25δωm/ωm (Hu et al. 2001).
To keep the angular size of the sound horizon fixed (in order to
stay at a high-CMB data likelihood), we have for the distance
from here to z=zd, δD/D=δrs/rs=−0.25δωm/ωm. For the
model to achieve this softened response of the distance to
the matter density (softened to a −0.25 exponent as opposed to
−0.5), there has to be a fluctuation in the dark energy density
that is anticorrelated with the matter density fluctuation, with
the result that δH0/H0 has the same sign from δrs/rs, as also
explained in Hou et al. (2014). Perhaps of particular note
regarding this positive correlation between rs and H0 fluctua-
tions is that those data sets that are somewhat more consistent
with the CDL for H0 than is the case for Planck are less
consistent with the CDL for rs. This is the case for Planck
TT (l<800), WMAP9+SPT+ACT(Calabrese et al. 2017),
SPT-SZ(Aylor et al. 2017), and SPTpol(Henning et al. 2018).
These fluctuations toward higher H0, if they go far enough to
reconcile with R18, end up being discrepant with BAO data
(given the ΛCDM model), as noted in Hou et al. (2014).
While the above results indicate robustness to the choice of

the CMB data, Addison et al. (2018) demonstrated that rs can
be estimated, assuming ΛCDM, without any CMB anisotropy
data at all. They used a combination of BAO data and
constraints on ωb from inferences of the primordial abundance
of deuterium relative to hydrogen (D/H; Cooke et al. 2016).
Within ΛCDM, rs is entirely determined by ωm and ωb via
Equation (9). Given the assumption of ΛCDM, the BAO data
can be used to constrain ωm. This constraining power arises
from the degeneracy-breaking power of separately parallel and
perpendicular constraints at several different redshifts. The
primordial D/H ratio resulting from big bang nucleosynthesis
(BBN) is highly sensitive to the baryon-to-photon ratio and can
therefore be used to estimate ωb. Addison et al. (2018)
combined galaxy and Lyα forest BAO with a precise estimate
of the primordial deuterium abundance (Cooke et al. 2016)
to find rs=151.6±3.4 Mpc. The BAO+BBN-based rs is
shown in Figure 3 in purple (rather than orange like CMB), as
it relies on BAO data that have also been used for the CDL
determination and whose interpretation is dependent in this
case on late-time assumptions of the ΛCDM model. This result,
like the CMB-based estimates, is also discrepant with the
CDL-measured values of rs.

3.3. Tension in rs

The tension between these two means of inferring rs, the
CDL measurement versus the ΛCDM calculation, is the main
result of this paper. Cast in terms of rs rather than H0, it is clear
—as the inverse distance ladder approach also suggests—that if
the solution to the discrepancies lies in cosmology, we need
modifications to cosmology at early times, not late times. We
need a model that, given the CMB data, produces a smaller
sound horizon. We discuss this further in Section 4.
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3.4. Extensions and Forecasts

An extension of ΛCDM often considered for its possibility
of reducing H0 tension is to let the effective number of light
and noninteracting degrees of freedom, Neff, be a variable, freed
from its ΛCDM value of 3.046. One of the hindrances to
adjustment of Neff is that it leads to a change in the ratio of
sound horizon to damping scales (Hu & White 1996;
Bashinsky & Seljak 2004; Hou et al. 2013), a change that is
not preferred by CMB data. To loosen up these damping-scale
constraints, we also consider allowing the primordial fraction
of baryonic mass in helium, YP, to be freed from its BBN-
consistent value. We see that these extensions do very little, if
anything, to relieve the tension with the CDL result. They do
increase the uncertainty significantly in rs, but the uncertainty
remains subdominant to the CDL uncertainty, so there is not
much impact on the significance of the difference.

To give an example of robustness to changes to late-time
cosmology, we also show results for the extension to free mean
curvature, ΛCDM+ΩK. As expected, allowing curvature to
float has very little impact, if any, on the inference of rs.

Next, we forecast the expected constraints on rs to come
from a combination of Planck and the final results of the SPT-
3G survey that is currently underway. The constraints are
presented in Figure 3 as open circles.

In the ΛCDM+Neff model space, the error in Neff will reduce
by a factor of 2 compared to Planck-only results. The resulting
reduction in rs follows from this σ(Neff) reduction plus
reduction in the matter density uncertainty as well. In the
ΛCDM+Neff+YP model space, the area of the 68% confidence
region is reduced by a factor of 2.8 with the inclusion of SPT-
3G compared to Planck alone. Because there is no degeneracy
between ΩK and rs, the improvement of the constraint on rs in
the ΛCDM+ΩK model space is less dramatic.

We also see that constraints from current CMB data on rs do
not change much with the extension from ΛCDM to
ΛCDM+ΩK. This is expected, as the inference is not sensitive
to the distance to the last scattering surface. This insensitivity to
late-time physics was previously noted by Verde et al. (2017a).

4. Cosmological Solutions

The inverse distance ladder papers we cited earlier, and
also Poulin et al. (2018), indicate that the combination
of BAO and SN data makes a cosmological solution
unlikely, with changes restricted to z1. Here we go
further and argue that any viable cosmological solution to
sound horizon discrepancies is likely to differ significantly
from the standard cosmological model in the two decades of
scale factor expansion immediately prior to recombination.
Changes that are only important earlier cannot reduce the
sound horizon significantly. This is because, in the standard
cosmological model, near the best-fit location in parameter
space given Planck data, greater than 95% of rs is generated
in the final two decades of scale factor growth prior to
recombination.

What about changes after recombination? These would
have to make a fractional change in rs of δrs/rs=x,
where x;−0.07, to bring the model rs values in line with
the CDL values. If the changes are only important after
recombination, then our rs calculation is unchanged, so we still
have δrs/rs;−0.25δ ωm/ωm, and we need δωm/ωm=
−4x. To preserve θs (which we would need to do to stay at

high likelihood given the CMB data; e.g., Pan et al. 2016),
we would also need to change the angular diameter distance to
last scattering by δD/D=x. However, another important
length scale for interpretation of CMB data, the comoving size
of the horizon at matter-radiation equality, rEQ=c/(aEQHEQ),
responds much more rapidly to changes in ωm. We find,
assuming ΛCDM, as is appropriate here, δrEQ/rEQ=
−3δωm/ωm=12x; therefore, the change in distance required
to keep θEQ=rEQ/D from changing would be 12 times greater
than that required to keep θs fixed. We cannot make changes to
the late-time cosmology, and therefore D, that keeps both of
these angular scales fixed. To make this work, the changes in
the post-recombination cosmology would have to introduce
new anisotropies that would confuse our inference of θEQ
and/or θs. The consistency of the ΛCDM results for rs (which
depend primarily on ωm, which is inferred from θEQ; see, e.g.,
Section 4 of Planck Collaboration et al. 2017) across the
angular scale argue against this possibility. We find it to be
highly unlikely that whatever confuses our interpretation of
the l<800 TT data (perhaps ISW effects) would also similarly
confuse our interpretation of the l>800 TT data, as well as
our interpretation of other data selections, such as TE+lowE.
Our claim in this section, that any viable cosmological

solution is likely to include significant changes from ΛCDM in
the epoch immediately prior to recombination, is an interesting
one, as this is an epoch that we will probe better with improved
measurements of CMB polarization (and also temperature on
small angular scales). It has this exciting implication: viable
cosmological solutions are likely to make predictions that are
testable by so-called stage 3 CMB experiments, as well as
CMB-S4.
Soon after we posted this paper on the arXiv (and prior to

publication), Poulin et al. (2018) appeared on the arXiv. This
paper presents a cosmological solution reconciling CMB,
BAO, and Cepheid-calibrated SN data. The solution is
consistent with our analysis here: namely, it has an early dark
energy component contributing significantly in the scale factor
window we have just described. It also leads to predictions that
appear to be testable by future measurements of CMB
polarization.

5. Conclusions

Following Bernal et al. (2016b), we have compared, using
more recent data, an empirical CDL determination of rs with
its inference assuming the ΛCDM model and given a variety
of CMB data sets. Casting the tension between the CDL and
ΛCDM+CMB data sets in terms of rs, as opposed to H0,
weakens the statistical significance but helps to clarify the
space of possible cosmologies that could reconcile these
data sets. As the inverse distance ladder analyses have
pointed out, modifying the shape of DA(z) at z<1 can at
most be a subdominant part of the solution.
Because SNe cover the range of redshifts of the BOSS

galaxy BAO data, our CDL inferences of rs are highly model-
independent. For the spline model, which we prefer for this
purpose over ΛCDM due to its modest cosmological model
assumptions,13 from the Cepheid, SN, and BAO data sets, we
find rs=137.7±3.6Mpc.

13
There is an implicit assumption of zero mean curvature. As discussed above,

we expect that if we relaxed this assumption, our results would only shift a
small amount, as was the case for a similar analysis (Verde et al. 2017b).
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This result is 2.6σ lower than the result from Planck TT+TE
+EE+lowE (which we have referred to simply as Planck). We
calculated the statistical significance of the difference between
the CDL result and the ΛCDM+CMB data results for a variety
of CMB data sets and found that they ranged from 2.1σ to 3.0σ.
Perhaps of particular interest, the combination of the highest-
precision non-Planck data, WMAP9+SPT-SZ+ACT, gives an
rs that is 3.0σ discrepant from the above CDL result. It is clear
that the sound horizon differences cannot be explained by an
unknown systematic error in the Planck data.

Expanding the model space to ΛCDM+Neff does not reduce
the tension of the CDL rs with the Planck rs. Although the error
bar for the Planck-determined rs increases considerably, the
CDL error remains larger, and the central value for the Planck-
determined rs shifts to a slightly higher value. Expanding
further to ΛCDM+Neff+YP only reduces the tension from 2.6σ
to 2.3σ. The CMB data have no significant preference for these
extensions.

While the CMB data show no preference for these particular
extensions, we point out here that there are hints/weak
evidence of inconsistencies of the CMB data with the ΛCDM
model. Parameter constraints derived from different angular
scales, such as the Planck temperature power spectra at l<800
compared to l>800, are uncomfortably different, with a
statistical significance that varies between 1.5σ and 2.9σ
depending on the details of the analysis and how the question
of consistency is posed (Addison et al. 2016; Planck
Collaboration et al. 2017; Kable et al. 2019). Driven by small
angular scales better measured by the South Pole Telescope,
there is a 2.1σ tension between the SPT-SZ’s determination of
cosmological parameters and those from Planck (Aylor et al.
2017). It is possible that these are hints relevant to the sound
horizon discrepancy, but current data are not yet clear on the
matter, and no model has been discovered, to our knowledge,
that both addresses the sound horizon discrepancy and
improves CMB internal consistency.

We argued that viable cosmological model solutions are
likely to include important changes from ΛCDM in the two
decades of scale factor growth prior to recombination. This
statement is interesting because it has an exciting implication:
significant changes in this time period are likely to lead to
consequences observable with near-future precision observa-
tions of CMB polarization.

We produced forecasts for one such model adjustment:
allowing Neff to be a free parameter, which directly alters pre-
recombination dynamics. We found a threefold improvement in
the constraints on rs when combining Planck with the SPT-3G
(Benson et al. 2014) data set. Whether or not the solution to the
discrepancy is cosmological, we can expect future observations
of the CMB from SPT-3G and other future CMB surveys, such
as AdvACT (Henderson et al. 2016), Simons Observatory (The
Simons Observatory Collaboration et al. 2018), CMB-S4
(CMB-S4 Collaboration et al. 2016), and PICO (Young et al.
2018), to reveal further clues via their sensitivity to the

acoustic dynamics of the plasma.
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Appendix
Forecast Inputs

In Section 3, we presented the expected constraints on
rs that can be achieved by SPT-3G (Benson et al. 2014)
for two extensions of the ΛCDM model: ΛCDM+Neff and
ΛCDM+Neff+Yp. Here we describe the inputs for the forecast.
The third-generation millimeter-wave camera on the South

Pole Telescope(Carlstrom et al. 2002), SPT-3G commenced
operations in early 2018 and is currently observing a 1500 deg2

sky patch in the Southern Hemisphere. It is expected to achieve
projected levels of noise in intensity maps of 3.0, 2.2, and
8.8 μK-arcmin at 95, 150, and 220 GHz, respectively, at the
end of 5 yr (Bender et al. 2018). A primary goal of this SPT-3G
survey is to produce a high signal-to-noise ratio (S/N) CMB
lensing map for delensing the BICEP Array (Hui et al. 2018)
observations that overlap with the SPT-3G 1500 deg2 patch.
When completed, it will be the deepest high-resolution CMB
survey of any patch of this size or larger.
For the Fisher forecast, we use TT, TE, EE, and ff power

spectra as inputs. We construct the covariance matrix assuming
that the T- and E-mode maps are fully delensed and therefore
not correlated by lensing. To model the noise, we use the
projected SPT-3G noise levels ( 2 higher in polarization) to
construct a foreground-reduced estimate of Nl using the internal
linear combination method as described in Raghunathan et al.
(2017). We add a 1/l knee at lknee=1200, 2200, and 2300 for
the three channels in T and lknee=300 for the channels in P to
model large angular scale noise. For the lensing spectrum C

l

ff,
we compute the noise with the minimum-variance combination
of TT, TE, EE, TE, and EB quadratic estimators(Hu &
Okamoto 2002). We do not model the covariance of the
common patch between Planck and SPT-3G because SPT-3G’s
patch is much smaller than Planckʼs and the high-S/N mode
coverages for each experiment overlap little.
To include Planck constraints in the forecast, we “Fisher-

ize” the Planck chain from the relevant parameter space:
estimating the parameter covariance matrix from the chain and
then inverting it to get the parameter Fisher matrix. We then
add this to the SPT-3G Fisher matrix to get our final Fisher
matrix. The Planck chains we use are for the data combination
TT+TE+EE+lowE, as explained in Planck Collaboration
VI (2018).
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