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Abstract—Objective: Design and optimization of statistical
models for use in methods for estimating radiofrequency ablation
(RFA) lesion depths in soft real-time performance. Methods:
Using tissue multi-frequency complex electrical impedance data
collected from a low-cost embedded system, a deep neural
network (NN) and tree-based ensembles (TEs) were trained for
estimating the RFA lesion depth via regression. Results: Addition
of frequency sweep data, previous depth data, and previous RF
power state data boosted accuracy of the statistical models. The
root mean square errors were 2 mm for NN and 0.5 mm for TEs
for previous statistical models and the root mean square errors
were 0.4 mm for NN and 0.04 mm for TEs for the statistical
models presented in this paper. Simulation ablation performance
showed a mean difference against physical measurements of
0.5 ± 0.2 mm for the NN-based depth estimation method and
0.7 ± 0.4 mm for the TE-based depth estimation method. Con-
clusion: The results show that multi-frequency data significantly
improves the depth estimation performance of the statistical
models. Significance: The RFA lesion depth estimation methods
presented in this work achieve millimeter-resolution accuracy
with soft real-time performance on an ARMv7-based embedded
system for potential translation to clinical RFA technologies.

Index Terms—Radiofrequency ablation, tumor, cancer, control,
monitoring, machine learning, ensemble, lesion, depth, deep
network, random forest, adaptive boosting

I. INTRODUCTION

RADIOFREQUENCY ablation (RFA) is a minimally in-

vasive, high temperature ablation method, that is applied

by exposing the undesired tissue to high-frequency alternating

current via a catheter or electrode, causing death by coag-

ulative necrosis above a certain thermal threshold [1], [2].

It has found a wide range of applications in the medical

field, one of which is the field of cardiology, where RFA is

used to treat a wide range of cardiac diseases by creating

a lesion on the arrhythmic part of myocardium through a

catheter that is placed in the heart through a vein [3], [4].

RFA has become one of the most popular methods for atrial

fibrillation, with the highest rate of success at paroxysmal type
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[5], [6]. Recent studies also show that RFA for different types

of ventricular tachycardia is a preferable option over other

types of treatment, mainly drug therapy, with lower mortality

rates on the patients who underwent ablation therapy [7]–[9].

Barrett’s Esophagus with dysplasia has been another disease

for which RFA treatment has been routinely used. Studies

show that patients with RFA treatment have higher rates of

eradication of abnormal esophageal tissue [10], [11]. RFA has

been a preferable treatment for chronic obstructive sleep apnea

as well, destroying the small part of soft tissue that collapses

to block the airways of patients [12].

RFA has proven very useful in the field of cancer treatment,

and it is used to remove tumors by thermal ablation, which will

also be the main focus of this study. The tumors on different

tissues can be removed by inducing coagulative necrosis due

to high temperature. This treatment has become more popular

especially on types of cancer for which open surgery carries

certain risks with a large group of patients. Hepatocarcinoma

(HCC) is an important example where open surgery is risky

and RFA treatment has become particularly popular [13], [14],

as well as lung cancer, where open surgery is not even a viable

option for many patients [15]. Some studies show RFA being

used together with open surgery to avoid cancer recurrence

[16].

Since RFA destroys tissue non-selectively due to its uncon-

trollable nature, real-time monitoring of the ablation extent

is essential for the success of the therapy [17]. Without an

accurate method to track the size and the location of the

ablated area, there is a considerable chance for the cancer

to recur, due to residual tumors left unablated as well as the

danger of overablation, that is the destruction of non-target

tissues and/or critical structures [18].

As of 2019, low-cost, real-time monitoring of thermal abla-

tion remains a large biotechnological problem to be solved.

Since a monitoring scheme that is non-invasive, visually-

intuitive, real-time, low-cost, and does not require significant

capital equipment is difficult due to the opacity of the tissue,

many methods utilize the changes in tissue properties; more

specifically electrical, optical and acoustic behavior under

the ablation treatment. However, in settings where feasible,

magnetic resonance (MR) thermometry is known to provide

an accurate assessment of the ablation depth for many clinical

applications such as the removal of hepatic tumors, using

the Proton Resonance Frequency shift (PRFS) method that

produces temperature images used for Thermal Dose (TD)
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calculations in real-time [19]. In 2010s, compact hardware

setups have been designed for MR thermometry to keep the

monitoring equipment as minimally invasive as possible, while

retaining the accuracy of the temperature map and increasing

the speed of the imaging process [20], [21]. Most recently,

studies on both echo-planar imaging and PRFS that produce

images for TD calculations have been used on cardiac ablation

in combination with image processing algorithms to remove

motion and magnetic artifacts for better image quality [22],

[23].

Electrical impedance tomography (EIT) uses surface elec-

trodes surrounding the tissue under evaluation to measure

impedance paths that are reconstructed into tissue electrical

conductivity to provide lesion depth images that can be 90%+

accurate [17], [24]–[26]. Pairs of electrodes act as current

drivers and others measure the voltage. The components of

the voltage signals are recorded. All potential pairwise com-

binations of current pairs and voltmeter pairs can be measured.

Another method of imaging RFA progress is using acoustic

and optoacoustic modalities. Namely, ultrasound-based imag-

ing and laser-excitation ultrasound-sensing methods are used

to image [24], [27], [28]. Both imaging methods rely on

acoustic waves traveling from the target tissue to the acoustic

sensor. These waves can be emitted from the sensor itself,

in the case of ultrasound imaging, or from an optical source,

in the case of optoacoustic imaging. Acoustic-based imaging

requires minimizing air gaps within tissue, since air strongly

attenuates the acoustic wave [24]. Since RFA can potentially

reach boiling temperatures, gas bubbles can be generated

that make imaging the ablation zone with B-mode pulse-

echo ultrasound imaging difficult [24]. Also, acoustic imaging

techniques have difficulties describing the thermal behavious

of a homogenous medium above 45 °C [29].

Among the more recent and advanced methods that use

ultrasound, Nakagami-based imaging which is an operator-

friendly software addition to conventional pulse-echo system,

has been shown to provide 94% accuracy for monitoring

RFA lesions in liver tissues in real-time [24]. However, Nak-

agami imaging cannot image muscular tissue as muscle fibers

generate strong backscatter echoes. Another ultrasound-based

technique is adaptive ultrasound, which adjusts the medium

parameter in an automated manner to ameliorate the problems

of acoustic imaging techniques above a certain temperature

and beats the estimation error performance of conventional

methods [30]. In addition, a single-phase CBE (change in

backscattered energy) imaging method based on only positive

values has been developed and has been shown to outperform

the conventional CBE imaging [31], [32]. Most recently, echo

decorrelation imaging with real-time ultrasound data has been

used on microwave-induced ablation lesions in liver tissues

and achieved 88.6% accuracy [33].

Optoacoustic imaging, a combination of optical and acoustic

techniques, uses pulses of lasers to excite tissue and ultrasonic

sensor arrays to record acoustic emissions from these light

pulses [27], [28]. Optoacoustic techniques can image both

temperature and ablation status, with the ablation lesion having

a sharp signal change due to the coagulation.

While data collection is quick for the methods that utilize

the changes in tissue properties, reconstruction is complex.

Absolute EIT imaging essentially requires solving an opti-

mization problem overlaid onto the finite element problem.

Essentially, one of the methods to solve for the EIT recon-

struction solution (the tissue electrical conductivity of each

node) is to operate on a finite element model mesh [25], [34].

The electrical conductivity at each node of the mesh is fitted

until all of the conductivities of the tissue mesh reproduce

the same impedances measured with the EIT electrodes. The

nodes of the mesh that have different conductivities than

expected are then the regions of interest. Thus, computing

a single EIT-based lesion depth map requires time on the

order of seconds and minutes (time increases with accuracy

from 2+ seconds for 70% accuracy to 100+ seconds for 90%+

accuracy) [35]. Optoacoustic methods are 95%+ accurate in

the mm scale up to at least 6 mm [27]. However, the actual

construction of the three-dimensional lesion depth map from

the sensed data requires computation on the order of 400+

seconds [27], [28]. This is due to the reconstruction algorithms

being of a tomographic nature, similar to EIT, that requires the

computation of the inverse solution to the model [28].

In this study, we are improving the Machine Learning (ML)

approach that was first introduced in Wang et al. [36], where a

pseudo-EIT method used the single-frequency impedance data

to train a feed-forward neural network and posed the ablation

depth estimation as a classification task. More recently, Besler

et al. [37], which is the most related work to this study, showed

that the estimation performance can be improved by posing

the monitoring problem as a regression task, using different

ML models and noise-free impedance data that is collected by

an embedded system-based setup. Both of these prior studies

have used single-frequency data. The major novelty in this

study is using the ability of the embedded system design

to take multi-frequency impedance measurements and using

them both to enhance the data size and to use a two-step ML

pipeline to improve the depth map reconstruction precision.

The feature engineering in this study is more extensive as well,

enabling more complex ML models to be used. Even though

the types of regression models in [37] are retained in this study,

increasing their complexity by tuning their hyperparameters is

predicted to improve the overall ML performances due to the

larger multi-frequency dataset with more features. Yet another

contribution of this study is the application of an embedded

system to compute and control the actuation of the machine

learning inference-based radiofrequency ablation control in

real time.

II. MATERIALS AND METHODS

A. Ablation Hardware and Data Collection

The model that simulates breast tissue and the RFA device

that both delivers the ablation and collects the impedance

data were the same as in [36], [37]. The breast tissue model

consisted of pork loin and pork belly tissue that was butchered

and packaged on the same day by slaughterhouses in Chicago,

ground immediately before each experiment, and heated via

waterbath to near-physiological temperature of 34 °C, and

poured in a 80 mm x 80 mm x 80 mm acrylic fixture. The
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(a) (b)

(c)

Fig. 1. a) The breast tissue model is shown with the RFA device inside and the thermal module inserted on each side. (Reprinted from [36]) b) The
accessory board is shown with the parts of the embedded system indicated with different colors: The red box shows the RF generator connection socket, the
green box shows the relay-based electrode switching subsystem, the yellow box shows impedance analyzer subsystem, the orange box shows an auxiliary
temperature measurement subsystem, and the purple box shows the RFA device connection socket. (Reprinted from [37]) c) The timing diagram for the
ablation, measurement and computation is shown. Each side of the device is activated for 7 seconds to deliver the AC pulse. After that, the impedance
measurements at all 91 frequencies within a sweep are taken in 0.5 seconds per side. Lastly, the depths for all sides are calculated and the data is logged in
another 7 seconds to complete 1 cycle. (Reprinted from [36])

RFA device was a sphere with a 40 mm diameter, fabricated on

a stereolithography 3D printer using high-temperature tolerant

resin. It was placed at the center of the model, leaving a 20 mm

clearance at all directions. This entire setup is aimed to model

a post-operation application of RFA, where the device would

be inserted in the cavity opened after the tumor removal to

ablate the remaining cancerous tissue. However, the principles

of the individual-sided design in this study could also be used

inside catheters or smaller RFA needles to perform the entire

ablation process by itself. Perfusion or other tissue interfaces

were not modeled within the tissue model at this time.

A resistance thermometer detector (RTD) input module was

inserted through the clearances on each side, as shown in

Figure 1a. The temperature data for each side after ablation

was recorded using platinum 100 Ω resistance temperature

detectors on this module. The detectors were placed at 0

mm, 5 mm, 10 mm and 15 mm depths from the side of

the device. The temperature values for the depths in between

were linearly interpolated. This interpolation was based on an

assumption that the tissue between the temperature sensors is

homogeneous such that linear interpolation yields a workable

estimation [38]. Figure 2 shows temperature vs. time graph

for two different sides at four different time points from

the same ablation run. The general trend at all times shows

an exponential decay, for which a linear approximation is

used. It is apparent from the figure that this approximation

becomes more accurate for lower temperatures and deeper

tissue levels. However, for smaller depth levels, an exponential

interpolation in future studies might give a more accurate

ground truth for ablation depth. Additionally, for a more

complex model or in real-life, temperature-dependent tissue

thermal properties (specific heat and thermal conductivity) can

be utilized for spatial interpolation of tissue temperature. After

the temperature was recorded for all depth values from 0.0 mm

to 15.0 mm with a stepsize of 0.1 mm, tissue volumes at ≥

43 °C for ≥ 10 minutes, ≥ 50 °C for ≥ 5 minutes or ≥ 57 °C

for ≥ 2 seconds were considered ablated and the lesion depth

was calculated. These threshold values were based on prior

studies that tested different temperature and duration times for

cell death under thermal ablation [39]–[41]. Assuming that the

temperature at a given depth in the tissue has an upward trend,

the continuous variations in temperature over time is handled

as well by setting these thresholds.

The RFA device was divided into 6 sides (faces), each side

having 4 stainless steel electrodes to deliver the AC pulses for

ablation. These electrodes were connected to an embedded

system that both delivered the AC pulses in low RF spectrum

that realized the ablation and took the impedance measure-

ments via the electrodes. Using the same electrodes both for

ablation and for measurements eliminated the necessity to use

Authorized licensed use limited to: Northwestern University. Downloaded on April 01,2020 at 04:43:47 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2950342, IEEE

Transactions on Biomedical Engineering

IEEE TRANSACTIONS IN BIOMEDICAL ENGINEERING 4

(a) (b)

Fig. 2. The measured temperature values at 0, 5, 10 and 15 mm depth for different time points after the beginning of the ablation process. The temperature
values in between are interpolated linearly. The measurements are from the same ablation run for a) superior face and b) lateral face of the ablation device.

any additional equipment that would affect the comfort of a

patient in real life. Both the ablation device and a schematic

that shows its sides are shown in Figure 3.

After one ablation cycle was complete for all 6 sides, the

impedance data was collected for all the sides through the

steel electrodes and measured at the impedance analyzer in the

accessory board that controls the entire process. The ground

truth for ablation depth was obtained after the ablation cycle

by converting the temperature data to lesion depth in the data-

logger software, using the mentioned thresholds. The side of

the activated electrodes was also added to the data as another

feature in the data logger. After the data was recorded, another

ablation step started and the whole process was repeated. The

entire timing diagram with the ablation, the measurements and

the data logging is shown in Figure 1c.

The low-cost embedded system (Figure 1b) was first intro-

duced in Besler et al. [37]. The embedded system consisted

of the Beaglebone Black (Texas Instruments, Dallas, TX) and

an accessory board that contains power switching, impedance,

and temperature measurement circuits on-board. The system

cost < $250 for the parts, including the integrated circuits, ac-

cessory board printed circuit board and microcontroller board.

The complex electrical impedance measurement subsystem

is based on the AD5933 (Analog Devices, Norwood, MA)

impedance analyzer integrated circuit, which was designed to

measure the impedance magnitude and phase within 2% error

range for a frequency range from 10 kHz to 100 kHz, follow-

ing the low-impedance-ranged CN-0217 reference design from

Analog Devices. For a given side and cycle, the impedance

measurement circuit can make 91 impedance measurements

within a frequency sweep from 10 kHz to 100 kHz, with a step

size of 1 kHz. All the results in the related previous studies so

far had been obtained with impedance measurements that were

collected at a single frequency value, 100 kHz [36], [37]. This

transition to multi-frequency measurements was the starting

point of this study and predicted to be useful in a number of

ways. Firstly, it would enable the setup to collect more data.

For every sample in the single-frequency setup, there were now

91 samples each taken at a different frequency value within

the sweep, all corresponding to the same ablation depth. Given

that the data is not noisy and there is enough computational

budget for a complex ML model to handle it, more data is

always useful for a higher estimation performance. Secondly,

the frequency became another feature of the dataset. From

an ML perspective, this was interpreted as another dimension

that could improve the predictive power of the models. From a

medical perspective, it addressed the possibility that different

frequencies can be more sensitive than others to the electrical

properties of different types of tissue.

Along with the frequency, there were four other new fea-

tures engineered in this study that were predicted to improve

the ML performance as well. The first set was a binary

feature that indicates whether the side of the RFA device

from which the impedance measurement were taken was

activated during the previous ablation cycle. The second set

of new features were the second impedance magnitude and

phase measurements. The final new feature was the ablation

depth on that side in the previous cycle. These new features,

respectively, were predicted to improve the ML performance

in the following ways: (1) tissue not undergoing heating begins

to cool, so while the impedance measurements of the tissue

may look similar to a previous depth, the state of the tissue

is that it was fully ablated, so this data should not be treated

the same as the data collected when the tissue is undergoing

active ablation; (2) there are potentially small gaps between

the device electrodes and tissue, which may move after the

first ablation cycle due to thermal expansion, so data from

the second cycle is used to confirm the initial data; and (3)

using the previous depth as an input is an attempt to prevent

the models from producing output depths smaller than the

previously-estimated depth, a problem that frequently occurred

with the previous depth estimation models.

So, along with the original features of initial magnitude,

initial phase, final magnitude, final phase and the 6 one-

hot-encoded side features from [37], the frequency, previous

state, previous depth, second initial magnitude and phase were

used to create a 15-dimensional dataset. The ablation depth

was the target value. There were 1,251,432 instances in the

dataset, collected from 2,292 ablation cycles on 30 tissue

model samples. The number of cycles performed per side per

tissue sample were randomly distributed between 0 and 40

cycles, to account for all different ablation shapes possible.
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(a)

(b)

Fig. 3. a) The RFA device design with four parallel electrodes on each side.
There is a ring of electrodes at the anterior face. (Reprinted from [36]) b) The
RFA device separates the electrodes into six faces, each face representing a
side of a cube for direct geometric visualization within tissue. (Reprinted from
[36])

Each cycle was 7 seconds long. This yielded different total

ablation times per tissue sample, which is the summation of all

the ablation cycles performed per side for that tissue sample.

The total time duration of the training and simulation dataset

ablations varied between 5-40 minutes depending on the target

depths of each side of the tissue volume. This variation was

due to generation of the full spectrum of training data for

handling of cases up to 15 mm target ablation depths.

The estimation of the ablation depth was posed as a re-

gression task. It was shown in the previous studies with the

same setup that regression is a more direct approach than

classification; especially with the enhanced data size and new

features, the regression models in this study were predicted to

outperform [37].

B. Predictive Analysis with Machine Learning

The ML part of this study contains the regression models

from [37] whose utility for making depth estimations from

impedance data has already been shown in that study. The

ML models are used on the entire dataset to predict the

ablation depth for all the instances. After all the estimations

are obtained, those that pertain to the same frequency sweep

at the same cycle and side are grouped together. Each group

has 91 estimations and they belong to the instances created

by the measurements of one full frequency sweep, having the

same target depth value. These 91 estimations were merged to

get the final ablation depth.
1) Deep Neural Network: The first ML model was a Deep

Neural Network with a number of hidden layers and an output

layer that contains only one single node, predicting the abla-

tion depth as a regression task [42]. Since the dataset in this

study had more instances and newly-engineered dimensions, a

different architecture than the network in [37] was needed. The

network was made more complex by increasing the number of

nodes at each layer, so that it can handle the data without any

underfitting. Furthermore, dropout layers are added after each

fully connected layer to regulate the model during training

[43]. The details for the final architecture is given in Section

III.

For the optimization of the network, the ADAM algorithm

was used as it is repeatedly shown to be most computationally-

efficient algorithm for optimizing deep networks, combining

the advantages of different extensions of Stochastic Gradient

Descent [44]. The whole network was implemented on the

Keras library running on top of the Tensorflow backend [45].
2) Random Forest: The second ML model is a Random

Forest, an ensemble model with a Decision Tree as its base

predictor [46]. Each tree is trained with the CART algorithm

and given only a random subset of the dataset, making the

entire ensemble model more robust to changes in the dataset

[47]. After all trees are trained with different random subsets,

the estimation for a new instance can be made by averaging

the estimations of all the trees in the ensemble. Tree-based

models are generally known to be useful for a classification

task rather than regression because of the finite number of

leaf nodes but the discrete target values in this study (depth

levels between 0.0 and 15.0 mm, with a resolution of 0.1 mm)

allows tree-based models to be used with a high regression

performance.
3) Adaptive Boosting: The third and last ML model is

Adaptive Boosting, another ensemble model that is based

on decision trees, however, instead of training the trees in

parallel on random subsets of the data, the trees are trained

one after another, on the entire dataset [48]. A weight is

assigned to each instance in the dataset, and these weights

are updated after each tree is trained, increasing the weight

of the mispredicted instances. This enables the next tree in

the ensemble to pay more attention to the instances that the

previous tree mispredicted. A predictor weight is assigned to

each tree after it is trained, based on how many instances

it predicts correctly, and all the trees add up to a complex

model. After the training is complete, the estimation for a

new instance is done with a weighted average of all the
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Fig. 4. The complete estimation flowchart after the ML models are trained. Each instance in the frequency sweep has 15 features, so a 91x15 matrix is given
as the input to the ML model. The model predicts a depth value for each instance and gives a 91x1 vector as the output. The statistical measure merges these
91 depth values and returns the final depth estimation.

tree estimations, multiplying the predictor weights with the

estimations, normalizing and taking the average.

4) Merging the Estimations of a Frequency Sweep: As

briefly mentioned at the beginnning of this section, the 91

instances of a full frequency sweep all pertain to the same

depth value. The ML models were able to predict that value

accurately for most of these instances in the sweep but for

not all of them. So, these 91 estimations should be merged

into a single and accurate depth estimation and while doing

that, the correct estimations among the group should be

taken advantage of, making up for the misestimations. This

is implemented by using two basic statistical measures. The

first measure was a truncated mean that keeps the 95% of the

estimations, discards the rest on the high and low ends and

takes the average. This was expected to result with an accurate

final depth estimation for each sweep because it was assumed

that most estimations among the group would be correctly

made, pulling the average very close to the correct value.

Secondly, mode operation is used to obtain the final depth

estimation. It simply returns the most frequently occurring

term in a given set and based on the assumption of most

estimations being correct, it was predicted to almost always

return the correct estimation because the misestimations within

the frequency sweep would just be omitted.

After all the models are trained, Figure 4 has the block

diagram that shows the estimation of the final depth for a given

frequency sweep with 91 instances. The ML model estimates

91 depth values for 91 instances of one frequency sweep.

The statistical measure merges these 91 depth estimations to

a single depth value which is the final estimation.

C. Simulation Testing of Lesion Depth Estimation Models

To create test cases for the physical simulation testing,

similar ablations were performed as with the collection of the

training data. Since the biological properties would change

from tissue to tissue in a real-life scenario, it is useful to assess

the performance of a method on different tissue samples.

Therefore, these ablation experiments were all performed on

new tissue model samples in order to see how accurate the

trained ML models are on a previously unseen model. These

new ablation experiments were performed within lean pork

loin tissue, the tissue that we previously determined to yield

the worst estimation accuracy of the lesion depth estimation

models [36], [37]. However, 3 seconds of sleep time were

inserted after the impedance measurement, to simulate the

computation of the lesion depth map during the ablation pro-

cedure. Four simulation test ablations were created, yielding

24 ablation depths for testing the final physically-measured

depth against the final predicted depth of the models. This

data was set aside and not used for model training, validation,

or statistical testing.

III. RESULTS

For both datasets and ML models, 80% of the data was

used to train the models and tune the hyperparameters with

a 10-fold cross-validation. (CV) The other 20% was held

out to test how well the trained models generalize to new

data. Since the ML task at hand was regression, R2 and

root mean squared error (RMSE) were used as estimation

evaluation metrics, along with the residual plots to visualize

the estimation performance.

The final neural network architecture was 4 layers with 300

nodes per layer, represented as a node graph of (10, 300, 300,

300, 300, 1). Dropout layers set to 30% dropout was used

during the training of the neural network. Bias layers were

initialized to normal random distributions and constrained to

have a maximum norm of 20 to prevent saturation. ReLU was

used as the activation function, following previous methods

for regression with deep neural networks [36], [49].

As for the tree-based ensemble models, a regularization

hyperparameter of the decision tree should be picked and tuned

in order to avoid overfitting, which tree-based predictors are

very prone to. As proven to work in the previous studies,

maximum number of leaf nodes for each tree in the ensemble

is picked to be tuned for both the Random Forest and the

Adaptive Boosting model. Another hyperparameter to tune in

both of them was the number of trees in the ensemble, on

which the complexity of the model also depends.

The ensemble hyperparameters are tuned by a 2-

dimensional grid search and the 10-fold cross-validation. The

optimal Random Forest has 50 trees and 10000 leaf nodes

maximum, whereas the Adaptive Boosting model has 20 trees

with 20000 leaf nodes maximum.

Table I has the performance evaluation of all the models

in this study, after the cross-validation and testing with the

hold-out set. These results only show how well the models

Authorized licensed use limited to: Northwestern University. Downloaded on April 01,2020 at 04:43:47 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2950342, IEEE

Transactions on Biomedical Engineering

IEEE TRANSACTIONS IN BIOMEDICAL ENGINEERING 7

TABLE I
OUTPUT PERFORMANCES OF ALL THE ML MODELS WHEN TRAINED, CROSS-VALIDATED AND TESTED ON THE ENTIRE DATASET

Estimation Metrics for Regression

ML Model Test RMSE (mm) Test R2 CV-Average RMSE (mm) CV-Average R2

Deep Network 0.35 99.3% 0.35 99.3%
Random Forest 0.044 99.9% 0.034 99.9%
Adaptive Boosting 0.033 99.9% 0.021 99.9%

do before the estimations of the same frequency sweep are

merged. So, it serves as a performance comparison between

the ML models.

After the models were trained and their performance tested,

they were run with the entire dataset to obtain all the depth

estimations. As explained in Section II-A, the estimations for

the instances of the same frequency sweep were grouped and

merged into final depth estimations by taking their mode and

truncated mean. This merging was done with the estimations

of all three ML models separately. The RMSE values after the

merging for all the frequency sweeps in the dataset is shown

in Table II.

TABLE II
FINAL RMSES (IN MM) FOR ALL THE ML MODELS AFTER THEIR

ESTIMATIONS ARE GROUPED AND MERGED

Final RMSEs by Merging Function (mm)

ML Model Truncated Mean Mode

Deep Network 0.40 0.35
Random Forest 0.01 0.01
Adaptive Boosting 0.01 0.00

On top of the numeric results, the residual plots of all

the ML estimations, both before and after the merging, are

shown in Figures 5 and 6. Figure 5 has the plots for the

Deep Network and Figure 6 has the tree-based model plots.

The plots for the Deep Network and the tree-based models

were shown in separate figures for visualization purposes and

because of the difference in the scales of the y-axes. In both

figures, the first row has the residual plots of the entire dataset

(all 1,251,432 instances) with their depth values predicted by

the ML models. The second and third rows have the residual

plots of the estimations for 13,752 frequency sweeps, merged

by truncated mean and mode operations, respectively.

Lastly, the performance of the ML models against the

physical measurements collected from the simulation testing

ablations are in Table III.

IV. DISCUSSION

Before the results, the limitations of this study in compari-

son to a real-life scenario should be discussed. As mentioned

in Section II-A, the tissue model presented within this study

does not model perfusion or tissue interface issues. One

of the reasons this decision was made was to focus on a

proof-of-concept study for multi-frequency, low-cost embed-

ded system-driven ablation lesion depth estimation. In future

works, especially when considering other tissue models, the

(a) Raw data (All instances in the dataset)

(b) Merged by truncated mean

(c) Merged by mode

Fig. 5. The residual plots of the Deep Network and its merged estimations
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(a) Raw data with Random Forest (b) Raw data with Adaptive Boosting

(c) Random Forest estimations merged by truncated

mean

(d) Adaptive Boosting estimations merged by trun-

cated mean

(e) Random Forest estimations merged by mode (f) Adaptive Boosting estimations merged by mode

Fig. 6. The residual maps of both tree-based models and their merged estimations

physical modeling of perfusion will be very important due

to the heat sink effect. We expect a few changes within the

system are required to detect and handle perfusion as well as

interfaces in heterogenous tissue: (1) detection of large blood

vessels present within tissue in a subvolume similar to the

classification of different tissue types performed by Laufer et

al. [50], [51]; (2) characterizing the change in tissue electrical

properties as it undergoes simultaneous heating through the

RFA applicator and cooling through the blood vessel heat

sink; and (3) handling the change in tissue electrical properties

within the machine learning model, either through additional

training data for direct statistical handling or manual logic-
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TABLE III
SIMULATION ABLATION LESION DEPTH MEASUREMENT PERFORMANCE OF ML MODELS AGAINST FINAL PHYSICAL LESION DEPTH MEASUREMENTS.

ML Model Samples Measured Mean Difference (mm) Standard Error (mm)

Deep Network 24 0.5 0.2
Adaptive Boosting 24 0.7 0.4

based handling.

Additionally, the ex-vivo tissue model used within this

study was processed by a slaughterhouse, such that the tissue

electrical properties (especially with regards to capacitance)

differ slightly from in-vivo tissues. Our study attempted to

provide near-physiological simulation for the temperature-

dependent conductivity magnitude by heating the tissue model

to near-physiological temperature. However, it is likely that

cell activity, particularly with the cell membrane, will affect

the imaginary component of the complex electrical impedance

measurements.

As for the results, when trained with the entire dataset in this

study, both the Deep Network and the tree-based ensembles

outperform the models in Besler et al. [37], which were

based on training data collected with the impedance data at

a single frequency. Therefore, it can be said that adding the

new features introduced in Section II-A as well as enhancing

the data size with multi-frequency measurements improved

the performance of all three ML models. The RMSE of the

tree-based models decreased by an order of 10. However,

the biggest improvement belongs to the Deep Network when

compared to the one in [37], which makes sense because even

though it is generally the most powerful non-linear model, a

network needs much more data than the tree-based non-linear

models. The measurement method in this study maintains the

big data that the network needs.

Even though there is considerable estimation improvement

with the new features and data size, it is also apparent that

there is still some room for improvement, especially after

looking at the residual plots of both tree-based models in

Figure 6. Most residues are close to zero, however there are

still many instances where the inaccuracy is over 2 mm. This

would be problematic for a real-time RFA scenario. Especially

the buildup of inaccurate estimations for a true depth of 0 mm

should be taken care of because if the estimation returns a high

non-zero value when the true depth is 0 mm, it will leave a

significantly large volume of the tumor unablated, increasing

the possibility of cancer to recur. These considerations justify

the need to merge the estimations of frequency sweeps.

After the 91 estimations of each frequency sweep is merged

into one final depth estimation, there is considerable further

improvement for the tree-based ensemble models. The RMSEs

drop by yet another order of 10 when all the estimations

of the frequency sweeps (in the entire dataset) are merged

by taking their truncated mean. When merged by taking

the mode, the Random Forest performance gets even better

and the Adaptive Boosting algorithm reaches a perfect depth

estimation performance for the entire dataset. This shows

that the estimations for some frequencies are indeed better

than others and furthermore, the lower RMSE after merging

means that the models in fact predict the depth correctly for

the samples at most frequencies and this majority of correct

estimations is able to make up for the false estimations within

the frequency sweep. This pattern cannot be observed for the

Deep Network results. As can be seen in Figure 5, neither the

residual map, nor the RMSE change much with the merging

of the estimations within a frequency sweep, meaning that the

estimation error is about the same at all the frequencies.

Lastly, the performance of the ML models on the physical

simulation data gives an idea on how they would perform in a

real-time ablation procedure. The results on Table II show that

some of the models experience the problem of generalizing

to a real-world scenario. Even though the mean of the depth

estimations for all the runs and all the sides are at an acceptable

level, they are not as good as the final depth estimations that

were obtained during model training.

The Deep Network model proves to be the most success-

ful at generalizing to physical simulations with a 0.5 mean

difference, outperforming the Adaptive Boosting algorithm

even though the AB model reached a near-perfect estimation

performance for both training and test data. So, the Deep

Network proved itself to be robust under a different set of data,

that is common for neural network models with a complex

architecture and enough data to train on. The performance drop

of Adaptive Boosting can be explained with the most common

handicap of the tree-based models that is overfitting to the data

they were trained on (even though they are regularized) and not

performing as expected when tested on a separately collected

data. Another example to this would be the performance of the

Random Forest model on the physical simulation test, which

is omitted in Table II because it had the worst estimation

performance. So, after the first two simulation runs, it was not

used anymore to predict the ablation depth for the simulations.

On the simulation data, all ML models performed more

poorly than they did on the validation and test sets. While

this can be explained with the ML concept of generalization

to new data, another possibility is that the ground truth for

ablation depth in the training data is not accurate enough.

One major step to improve the accuracy would be to take the

temperature measurements at more depth levels in the tissue

with a better quality RTD module and more importantly, to use

a more complex fit than linear interpolation for the temperature

vs depth graph, before mapping the temperature data to the

depth values.

As for temperature-depth mapping, another approach that

can give a better ground truth would be thermal dose calcula-

tion, that takes the time integral over the recorded temperature

values and thresholds the integral sum, which is the thermal

dose, instead of the temperature. Its application to this setup

is beyond the scope of this study, however it is certainly an
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idea to explore for further studies [52], [53].

V. CONCLUSION

The results in this study show that a real-time monitor-

ing scheme for Radiofrequency Ablation can be successfully

implemented on a non-perfused breast tissue model with a

pipeline of an non-linear ML model and a statistical merging

operation. Taking advantage of the multi-frequency impedance

measurements of the embedded system design helped the

entire pipeline to achieve better results and it is also tested

that the successful estimation performance can be generalized

to a real-time ablation simulation. Future studies will focus on

development of the multi-frequency depth estimation system

with better ground truth for target depth values and also within

a more realistic tissue model, taking perfusion and interface

issues into account. Lastly, in-vivo experiments are a logical

further step beyond the in-vitro measurements in this study.
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