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Abstract—Objective: Design and optimization of statistical
models for use in methods for estimating radiofrequency ablation
(RFA) lesion depths in soft real-time performance. Methods:
Using tissue multi-frequency complex electrical impedance data
collected from a low-cost embedded system, a deep neural
network (NN) and tree-based ensembles (TEs) were trained for
estimating the RFA lesion depth via regression. Results: Addition
of frequency sweep data, previous depth data, and previous RF
power state data boosted accuracy of the statistical models. The
root mean square errors were 2 mm for NN and 0.5 mm for TEs
for previous statistical models and the root mean square errors
were 0.4 mm for NN and 0.04 mm for TEs for the statistical
models presented in this paper. Simulation ablation performance
showed a mean difference against physical measurements of
0.5+ 0.2 mm for the NN-based depth estimation method and
0.7 = 0.4 mm for the TE-based depth estimation method. Con-
clusion: The results show that multi-frequency data significantly
improves the depth estimation performance of the statistical
models. Significance: The RFA lesion depth estimation methods
presented in this work achieve millimeter-resolution accuracy
with soft real-time performance on an ARMv7-based embedded
system for potential translation to clinical RFA technologies.

Index Terms—Radiofrequency ablation, tumor, cancer, control,
monitoring, machine learning, ensemble, lesion, depth, deep
network, random forest, adaptive boosting

I. INTRODUCTION

ADIOFREQUENCY ablation (RFA) is a minimally in-

vasive, high temperature ablation method, that is applied
by exposing the undesired tissue to high-frequency alternating
current via a catheter or electrode, causing death by coag-
ulative necrosis above a certain thermal threshold [1], [2].
It has found a wide range of applications in the medical
field, one of which is the field of cardiology, where RFA is
used to treat a wide range of cardiac diseases by creating
a lesion on the arrhythmic part of myocardium through a
catheter that is placed in the heart through a vein [3], [4].
RFA has become one of the most popular methods for atrial
fibrillation, with the highest rate of success at paroxysmal type
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[5], [6]. Recent studies also show that RFA for different types
of ventricular tachycardia is a preferable option over other
types of treatment, mainly drug therapy, with lower mortality
rates on the patients who underwent ablation therapy [7]-[9].
Barrett’s Esophagus with dysplasia has been another disease
for which RFA treatment has been routinely used. Studies
show that patients with RFA treatment have higher rates of
eradication of abnormal esophageal tissue [10], [11]. RFA has
been a preferable treatment for chronic obstructive sleep apnea
as well, destroying the small part of soft tissue that collapses
to block the airways of patients [12].

RFA has proven very useful in the field of cancer treatment,
and it is used to remove tumors by thermal ablation, which will
also be the main focus of this study. The tumors on different
tissues can be removed by inducing coagulative necrosis due
to high temperature. This treatment has become more popular
especially on types of cancer for which open surgery carries
certain risks with a large group of patients. Hepatocarcinoma
(HCC) is an important example where open surgery is risky
and RFA treatment has become particularly popular [13], [14],
as well as lung cancer, where open surgery is not even a viable
option for many patients [15]. Some studies show RFA being
used together with open surgery to avoid cancer recurrence
[16].

Since RFA destroys tissue non-selectively due to its uncon-
trollable nature, real-time monitoring of the ablation extent
is essential for the success of the therapy [17]. Without an
accurate method to track the size and the location of the
ablated area, there is a considerable chance for the cancer
to recur, due to residual tumors left unablated as well as the
danger of overablation, that is the destruction of non-target
tissues and/or critical structures [18].

As of 2019, low-cost, real-time monitoring of thermal abla-
tion remains a large biotechnological problem to be solved.
Since a monitoring scheme that is non-invasive, visually-
intuitive, real-time, low-cost, and does not require significant
capital equipment is difficult due to the opacity of the tissue,
many methods utilize the changes in tissue properties; more
specifically electrical, optical and acoustic behavior under
the ablation treatment. However, in settings where feasible,
magnetic resonance (MR) thermometry is known to provide
an accurate assessment of the ablation depth for many clinical
applications such as the removal of hepatic tumors, using
the Proton Resonance Frequency shift (PRFS) method that
produces temperature images used for Thermal Dose (TD)
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calculations in real-time [19]. In 2010s, compact hardware
setups have been designed for MR thermometry to keep the
monitoring equipment as minimally invasive as possible, while
retaining the accuracy of the temperature map and increasing
the speed of the imaging process [20], [21]. Most recently,
studies on both echo-planar imaging and PRFS that produce
images for TD calculations have been used on cardiac ablation
in combination with image processing algorithms to remove
motion and magnetic artifacts for better image quality [22],
[23].

Electrical impedance tomography (EIT) uses surface elec-
trodes surrounding the tissue under evaluation to measure
impedance paths that are reconstructed into tissue electrical
conductivity to provide lesion depth images that can be 90%+
accurate [17], [24]-[26]. Pairs of electrodes act as current
drivers and others measure the voltage. The components of
the voltage signals are recorded. All potential pairwise com-
binations of current pairs and voltmeter pairs can be measured.

Another method of imaging RFA progress is using acoustic
and optoacoustic modalities. Namely, ultrasound-based imag-
ing and laser-excitation ultrasound-sensing methods are used
to image [24], [27], [28]. Both imaging methods rely on
acoustic waves traveling from the target tissue to the acoustic
sensor. These waves can be emitted from the sensor itself,
in the case of ultrasound imaging, or from an optical source,
in the case of optoacoustic imaging. Acoustic-based imaging
requires minimizing air gaps within tissue, since air strongly
attenuates the acoustic wave [24]. Since RFA can potentially
reach boiling temperatures, gas bubbles can be generated
that make imaging the ablation zone with B-mode pulse-
echo ultrasound imaging difficult [24]. Also, acoustic imaging
techniques have difficulties describing the thermal behavious
of a homogenous medium above 45 °C [29].

Among the more recent and advanced methods that use
ultrasound, Nakagami-based imaging which is an operator-
friendly software addition to conventional pulse-echo system,
has been shown to provide 94% accuracy for monitoring
RFA lesions in liver tissues in real-time [24]. However, Nak-
agami imaging cannot image muscular tissue as muscle fibers
generate strong backscatter echoes. Another ultrasound-based
technique is adaptive ultrasound, which adjusts the medium
parameter in an automated manner to ameliorate the problems
of acoustic imaging techniques above a certain temperature
and beats the estimation error performance of conventional
methods [30]. In addition, a single-phase CBE (change in
backscattered energy) imaging method based on only positive
values has been developed and has been shown to outperform
the conventional CBE imaging [31], [32]. Most recently, echo
decorrelation imaging with real-time ultrasound data has been
used on microwave-induced ablation lesions in liver tissues
and achieved 88.6% accuracy [33].

Optoacoustic imaging, a combination of optical and acoustic
techniques, uses pulses of lasers to excite tissue and ultrasonic
sensor arrays to record acoustic emissions from these light
pulses [27], [28]. Optoacoustic techniques can image both
temperature and ablation status, with the ablation lesion having
a sharp signal change due to the coagulation.

While data collection is quick for the methods that utilize

the changes in tissue properties, reconstruction is complex.
Absolute EIT imaging essentially requires solving an opti-
mization problem overlaid onto the finite element problem.
Essentially, one of the methods to solve for the EIT recon-
struction solution (the tissue electrical conductivity of each
node) is to operate on a finite element model mesh [25], [34].
The electrical conductivity at each node of the mesh is fitted
until all of the conductivities of the tissue mesh reproduce
the same impedances measured with the EIT electrodes. The
nodes of the mesh that have different conductivities than
expected are then the regions of interest. Thus, computing
a single ElT-based lesion depth map requires time on the
order of seconds and minutes (time increases with accuracy
from 2+ seconds for 70% accuracy to 100+ seconds for 90%+
accuracy) [35]. Optoacoustic methods are 95%+ accurate in
the mm scale up to at least 6 mm [27]. However, the actual
construction of the three-dimensional lesion depth map from
the sensed data requires computation on the order of 400+
seconds [27], [28]. This is due to the reconstruction algorithms
being of a tomographic nature, similar to EIT, that requires the
computation of the inverse solution to the model [28].

In this study, we are improving the Machine Learning (ML)
approach that was first introduced in Wang et al. [36], where a
pseudo-EIT method used the single-frequency impedance data
to train a feed-forward neural network and posed the ablation
depth estimation as a classification task. More recently, Besler
et al. [37], which is the most related work to this study, showed
that the estimation performance can be improved by posing
the monitoring problem as a regression task, using different
ML models and noise-free impedance data that is collected by
an embedded system-based setup. Both of these prior studies
have used single-frequency data. The major novelty in this
study is using the ability of the embedded system design
to take multi-frequency impedance measurements and using
them both to enhance the data size and to use a two-step ML
pipeline to improve the depth map reconstruction precision.
The feature engineering in this study is more extensive as well,
enabling more complex ML models to be used. Even though
the types of regression models in [37] are retained in this study,
increasing their complexity by tuning their hyperparameters is
predicted to improve the overall ML performances due to the
larger multi-frequency dataset with more features. Yet another
contribution of this study is the application of an embedded
system to compute and control the actuation of the machine
learning inference-based radiofrequency ablation control in
real time.

II. MATERIALS AND METHODS
A. Ablation Hardware and Data Collection

The model that simulates breast tissue and the RFA device
that both delivers the ablation and collects the impedance
data were the same as in [36], [37]. The breast tissue model
consisted of pork loin and pork belly tissue that was butchered
and packaged on the same day by slaughterhouses in Chicago,
ground immediately before each experiment, and heated via
waterbath to near-physiological temperature of 34 °C, and
poured in a 80 mm x 80 mm x 80 mm acrylic fixture. The
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Fig. 1.

a) The breast tissue model is shown with the RFA device inside and the thermal module inserted on each side. (Reprinted from [36]) b) The

accessory board is shown with the parts of the embedded system indicated with different colors: The red box shows the RF generator connection socket, the
green box shows the relay-based electrode switching subsystem, the yellow box shows impedance analyzer subsystem, the orange box shows an auxiliary
temperature measurement subsystem, and the purple box shows the RFA device connection socket. (Reprinted from [37]) ¢) The timing diagram for the
ablation, measurement and computation is shown. Each side of the device is activated for 7 seconds to deliver the AC pulse. After that, the impedance
measurements at all 91 frequencies within a sweep are taken in 0.5 seconds per side. Lastly, the depths for all sides are calculated and the data is logged in

another 7 seconds to complete 1 cycle. (Reprinted from [36])

RFA device was a sphere with a 40 mm diameter, fabricated on
a stereolithography 3D printer using high-temperature tolerant
resin. It was placed at the center of the model, leaving a 20 mm
clearance at all directions. This entire setup is aimed to model
a post-operation application of RFA, where the device would
be inserted in the cavity opened after the tumor removal to
ablate the remaining cancerous tissue. However, the principles
of the individual-sided design in this study could also be used
inside catheters or smaller RFA needles to perform the entire
ablation process by itself. Perfusion or other tissue interfaces
were not modeled within the tissue model at this time.

A resistance thermometer detector (RTD) input module was
inserted through the clearances on each side, as shown in
Figure la. The temperature data for each side after ablation
was recorded using platinum 100 {2 resistance temperature
detectors on this module. The detectors were placed at O
mm, 5 mm, 10 mm and 15 mm depths from the side of
the device. The temperature values for the depths in between
were linearly interpolated. This interpolation was based on an
assumption that the tissue between the temperature sensors is
homogeneous such that linear interpolation yields a workable
estimation [38]. Figure 2 shows temperature vs. time graph
for two different sides at four different time points from
the same ablation run. The general trend at all times shows
an exponential decay, for which a linear approximation is

used. It is apparent from the figure that this approximation
becomes more accurate for lower temperatures and deeper
tissue levels. However, for smaller depth levels, an exponential
interpolation in future studies might give a more accurate
ground truth for ablation depth. Additionally, for a more
complex model or in real-life, temperature-dependent tissue
thermal properties (specific heat and thermal conductivity) can
be utilized for spatial interpolation of tissue temperature. After
the temperature was recorded for all depth values from 0.0 mm
to 15.0 mm with a stepsize of 0.1 mm, tissue volumes at >
43 °C for > 10 minutes, > 50 °C for > 5 minutes or > 57 °C
for > 2 seconds were considered ablated and the lesion depth
was calculated. These threshold values were based on prior
studies that tested different temperature and duration times for
cell death under thermal ablation [39]-[41]. Assuming that the
temperature at a given depth in the tissue has an upward trend,
the continuous variations in temperature over time is handled
as well by setting these thresholds.

The RFA device was divided into 6 sides (faces), each side
having 4 stainless steel electrodes to deliver the AC pulses for
ablation. These electrodes were connected to an embedded
system that both delivered the AC pulses in low RF spectrum
that realized the ablation and took the impedance measure-
ments via the electrodes. Using the same electrodes both for
ablation and for measurements eliminated the necessity to use
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Fig. 2. The measured temperature values at 0, 5, 10 and 15 mm depth for different time points after the beginning of the ablation process. The temperature
values in between are interpolated linearly. The measurements are from the same ablation run for a) superior face and b) lateral face of the ablation device.

any additional equipment that would affect the comfort of a
patient in real life. Both the ablation device and a schematic
that shows its sides are shown in Figure 3.

After one ablation cycle was complete for all 6 sides, the
impedance data was collected for all the sides through the
steel electrodes and measured at the impedance analyzer in the
accessory board that controls the entire process. The ground
truth for ablation depth was obtained after the ablation cycle
by converting the temperature data to lesion depth in the data-
logger software, using the mentioned thresholds. The side of
the activated electrodes was also added to the data as another
feature in the data logger. After the data was recorded, another
ablation step started and the whole process was repeated. The
entire timing diagram with the ablation, the measurements and
the data logging is shown in Figure Ic.

The low-cost embedded system (Figure 1b) was first intro-
duced in Besler et al. [37]. The embedded system consisted
of the Beaglebone Black (Texas Instruments, Dallas, TX) and
an accessory board that contains power switching, impedance,
and temperature measurement circuits on-board. The system
cost < $250 for the parts, including the integrated circuits, ac-
cessory board printed circuit board and microcontroller board.
The complex electrical impedance measurement subsystem
is based on the AD5933 (Analog Devices, Norwood, MA)
impedance analyzer integrated circuit, which was designed to
measure the impedance magnitude and phase within 2% error
range for a frequency range from 10 kHz to 100 kHz, follow-
ing the low-impedance-ranged CN-0217 reference design from
Analog Devices. For a given side and cycle, the impedance
measurement circuit can make 91 impedance measurements
within a frequency sweep from 10 kHz to 100 kHz, with a step
size of 1 kHz. All the results in the related previous studies so
far had been obtained with impedance measurements that were
collected at a single frequency value, 100 kHz [36], [37]. This
transition to multi-frequency measurements was the starting
point of this study and predicted to be useful in a number of
ways. Firstly, it would enable the setup to collect more data.
For every sample in the single-frequency setup, there were now
91 samples each taken at a different frequency value within
the sweep, all corresponding to the same ablation depth. Given
that the data is not noisy and there is enough computational

budget for a complex ML model to handle it, more data is
always useful for a higher estimation performance. Secondly,
the frequency became another feature of the dataset. From
an ML perspective, this was interpreted as another dimension
that could improve the predictive power of the models. From a
medical perspective, it addressed the possibility that different
frequencies can be more sensitive than others to the electrical
properties of different types of tissue.

Along with the frequency, there were four other new fea-
tures engineered in this study that were predicted to improve
the ML performance as well. The first set was a binary
feature that indicates whether the side of the RFA device
from which the impedance measurement were taken was
activated during the previous ablation cycle. The second set
of new features were the second impedance magnitude and
phase measurements. The final new feature was the ablation
depth on that side in the previous cycle. These new features,
respectively, were predicted to improve the ML performance
in the following ways: (1) tissue not undergoing heating begins
to cool, so while the impedance measurements of the tissue
may look similar to a previous depth, the state of the tissue
is that it was fully ablated, so this data should not be treated
the same as the data collected when the tissue is undergoing
active ablation; (2) there are potentially small gaps between
the device electrodes and tissue, which may move after the
first ablation cycle due to thermal expansion, so data from
the second cycle is used to confirm the initial data; and (3)
using the previous depth as an input is an attempt to prevent
the models from producing output depths smaller than the
previously-estimated depth, a problem that frequently occurred
with the previous depth estimation models.

So, along with the original features of initial magnitude,
initial phase, final magnitude, final phase and the 6 one-
hot-encoded side features from [37], the frequency, previous
state, previous depth, second initial magnitude and phase were
used to create a 15-dimensional dataset. The ablation depth
was the target value. There were 1,251,432 instances in the
dataset, collected from 2,292 ablation cycles on 30 tissue
model samples. The number of cycles performed per side per
tissue sample were randomly distributed between 0 and 40
cycles, to account for all different ablation shapes possible.
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Fig. 3. a) The RFA device design with four parallel electrodes on each side.
There is a ring of electrodes at the anterior face. (Reprinted from [36]) b) The
RFA device separates the electrodes into six faces, each face representing a
side of a cube for direct geometric visualization within tissue. (Reprinted from

(361)

Each cycle was 7 seconds long. This yielded different total
ablation times per tissue sample, which is the summation of all
the ablation cycles performed per side for that tissue sample.
The total time duration of the training and simulation dataset
ablations varied between 5-40 minutes depending on the target
depths of each side of the tissue volume. This variation was
due to generation of the full spectrum of training data for
handling of cases up to 15 mm target ablation depths.

The estimation of the ablation depth was posed as a re-
gression task. It was shown in the previous studies with the
same setup that regression is a more direct approach than
classification; especially with the enhanced data size and new
features, the regression models in this study were predicted to
outperform [37].

B. Predictive Analysis with Machine Learning

The ML part of this study contains the regression models
from [37] whose utility for making depth estimations from
impedance data has already been shown in that study. The
ML models are used on the entire dataset to predict the
ablation depth for all the instances. After all the estimations
are obtained, those that pertain to the same frequency sweep
at the same cycle and side are grouped together. Each group
has 91 estimations and they belong to the instances created
by the measurements of one full frequency sweep, having the
same target depth value. These 91 estimations were merged to
get the final ablation depth.

1) Deep Neural Network: The first ML model was a Deep
Neural Network with a number of hidden layers and an output
layer that contains only one single node, predicting the abla-
tion depth as a regression task [42]. Since the dataset in this
study had more instances and newly-engineered dimensions, a
different architecture than the network in [37] was needed. The
network was made more complex by increasing the number of
nodes at each layer, so that it can handle the data without any
underfitting. Furthermore, dropout layers are added after each
fully connected layer to regulate the model during training
[43]. The details for the final architecture is given in Section
II.

For the optimization of the network, the ADAM algorithm
was used as it is repeatedly shown to be most computationally-
efficient algorithm for optimizing deep networks, combining
the advantages of different extensions of Stochastic Gradient
Descent [44]. The whole network was implemented on the
Keras library running on top of the Tensorflow backend [45].

2) Random Forest: The second ML model is a Random
Forest, an ensemble model with a Decision Tree as its base
predictor [46]. Each tree is trained with the CART algorithm
and given only a random subset of the dataset, making the
entire ensemble model more robust to changes in the dataset
[47]. After all trees are trained with different random subsets,
the estimation for a new instance can be made by averaging
the estimations of all the trees in the ensemble. Tree-based
models are generally known to be useful for a classification
task rather than regression because of the finite number of
leaf nodes but the discrete target values in this study (depth
levels between 0.0 and 15.0 mm, with a resolution of 0.1 mm)
allows tree-based models to be used with a high regression
performance.

3) Adaptive Boosting: The third and last ML model is
Adaptive Boosting, another ensemble model that is based
on decision trees, however, instead of training the trees in
parallel on random subsets of the data, the trees are trained
one after another, on the entire dataset [48]. A weight is
assigned to each instance in the dataset, and these weights
are updated after each tree is trained, increasing the weight
of the mispredicted instances. This enables the next tree in
the ensemble to pay more attention to the instances that the
previous tree mispredicted. A predictor weight is assigned to
each tree after it is trained, based on how many instances
it predicts correctly, and all the trees add up to a complex
model. After the training is complete, the estimation for a
new instance is done with a weighted average of all the
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Fig. 4. The complete estimation flowchart after the ML models are trained. Each instance in the frequency sweep has 15 features, so a 91x15 matrix is given
as the input to the ML model. The model predicts a depth value for each instance and gives a 91x1 vector as the output. The statistical measure merges these

91 depth values and returns the final depth estimation.

tree estimations, multiplying the predictor weights with the
estimations, normalizing and taking the average.

4) Merging the Estimations of a Frequency Sweep: As
briefly mentioned at the beginnning of this section, the 91
instances of a full frequency sweep all pertain to the same
depth value. The ML models were able to predict that value
accurately for most of these instances in the sweep but for
not all of them. So, these 91 estimations should be merged
into a single and accurate depth estimation and while doing
that, the correct estimations among the group should be
taken advantage of, making up for the misestimations. This
is implemented by using two basic statistical measures. The
first measure was a truncated mean that keeps the 95% of the
estimations, discards the rest on the high and low ends and
takes the average. This was expected to result with an accurate
final depth estimation for each sweep because it was assumed
that most estimations among the group would be correctly
made, pulling the average very close to the correct value.
Secondly, mode operation is used to obtain the final depth
estimation. It simply returns the most frequently occurring
term in a given set and based on the assumption of most
estimations being correct, it was predicted to almost always
return the correct estimation because the misestimations within
the frequency sweep would just be omitted.

After all the models are trained, Figure 4 has the block
diagram that shows the estimation of the final depth for a given
frequency sweep with 91 instances. The ML model estimates
91 depth values for 91 instances of one frequency sweep.
The statistical measure merges these 91 depth estimations to
a single depth value which is the final estimation.

C. Simulation Testing of Lesion Depth Estimation Models

To create test cases for the physical simulation testing,
similar ablations were performed as with the collection of the
training data. Since the biological properties would change
from tissue to tissue in a real-life scenario, it is useful to assess
the performance of a method on different tissue samples.
Therefore, these ablation experiments were all performed on
new tissue model samples in order to see how accurate the
trained ML models are on a previously unseen model. These
new ablation experiments were performed within lean pork
loin tissue, the tissue that we previously determined to yield
the worst estimation accuracy of the lesion depth estimation

models [36], [37]. However, 3 seconds of sleep time were
inserted after the impedance measurement, to simulate the
computation of the lesion depth map during the ablation pro-
cedure. Four simulation test ablations were created, yielding
24 ablation depths for testing the final physically-measured
depth against the final predicted depth of the models. This
data was set aside and not used for model training, validation,
or statistical testing.

III. RESULTS

For both datasets and ML models, 80% of the data was
used to train the models and tune the hyperparameters with
a 10-fold cross-validation. (CV) The other 20% was held
out to test how well the trained models generalize to new
data. Since the ML task at hand was regression, R? and
root mean squared error (RMSE) were used as estimation
evaluation metrics, along with the residual plots to visualize
the estimation performance.

The final neural network architecture was 4 layers with 300
nodes per layer, represented as a node graph of (10, 300, 300,
300, 300, 1). Dropout layers set to 30% dropout was used
during the training of the neural network. Bias layers were
initialized to normal random distributions and constrained to
have a maximum norm of 20 to prevent saturation. ReLU was
used as the activation function, following previous methods
for regression with deep neural networks [36], [49].

As for the tree-based ensemble models, a regularization
hyperparameter of the decision tree should be picked and tuned
in order to avoid overfitting, which tree-based predictors are
very prone to. As proven to work in the previous studies,
maximum number of leaf nodes for each tree in the ensemble
is picked to be tuned for both the Random Forest and the
Adaptive Boosting model. Another hyperparameter to tune in
both of them was the number of trees in the ensemble, on
which the complexity of the model also depends.

The ensemble hyperparameters are tuned by a 2-
dimensional grid search and the 10-fold cross-validation. The
optimal Random Forest has 50 trees and 10000 leaf nodes
maximum, whereas the Adaptive Boosting model has 20 trees
with 20000 leaf nodes maximum.

Table I has the performance evaluation of all the models
in this study, after the cross-validation and testing with the
hold-out set. These results only show how well the models
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TABLE I
OUTPUT PERFORMANCES OF ALL THE ML MODELS WHEN TRAINED, CROSS-VALIDATED AND TESTED ON THE ENTIRE DATASET

Estimation Metrics for Regression

ML Model Test RMSE (mm) Test R? CV-Average RMSE (mm)  CV-Average R2
Deep Network 0.35 99.3% 0.35 99.3%
Random Forest 0.044 99.9% 0.034 99.9%
Adaptive Boosting 0.033 99.9% 0.021 99.9%

do before the estimations of the same frequency sweep are
merged. So, it serves as a performance comparison between

the ML models. ol &
. . @
After the models were trained and their performance tested,
they were run with the entire dataset to obtain all the depth i
estimations. As explained in Section II-A, the estimations for E 3 *
the instances of the same frequency sweep were grouped and 3 2
. . . . . B 24 <
merged into final depth estimations by taking their mode and g ' N
truncated mean. This merging was done with the estimations 14
of all three ML models separately. The RMSE values after the o “L“
. . . L '--" bl
merging for all the frequency sweeps in the dataset is shown "'
in Table II. i |
B 10 12 14
True Depth (mm)
TABLE II . .
FINAL RMSES (IN MM) FOR ALL THE ML MODELS AFTER THEIR (a) Raw data (All instances in the dataset)
ESTIMATIONS ARE GROUPED AND MERGED
Final RMSEs by Merging Function (mm)
®
ML Model Truncated Mean Mode = .'
Deep Network 0.40 0.35 o
Random Forest 0.01 0.01
Adaptive Boosting 0.01 0.00 T 5 L4 s
E
2 2 ¢ (]
On top of the numeric results, the residual plots of all ¢ .
the ML estimations, both before and after the merging, are
shown in Figures 5 and 6. Figure 5 has the plots for the
Deep Network and Figure 6 has the tree-based model plots. z
The plots for the Deep Network and the tree-based models 0 3 T & 8 1 1 1
were shown in separate figures for visualization purposes and TSI e

because of the difference in the scales of the y-axes. In both (b) Merged by truncated mean
figures, the first row has the residual plots of the entire dataset
(all 1,251,432 instances) with their depth values predicted by
the ML models. The second and third rows have the residual

plots of the estimations for 13,752 frequency sweeps, merged - .-'
by truncated mean and mode operations, respectively.

Lastly, the performance of the ML models against the *
physical measurements collected from the simulation testing E 3y * 3
ablations are in Table III. g, : . .

= 14 [ ’ 2
IV. DISCUSSION “L“

Before the results, the limitations of this study in compari- i g
son to a real-life scenario should be discussed. As mentioned a1
in Section II-A, the tissue model presented within this study o 2 4 & 8 1 12 1
does not model perfusion or tissue interface issues. One roe pepth
of the reasons this decision was made was to focus on a (c) Merged by mode

proof-of-concept study for multi-frequency, low-cost embed-  Fig. 5. The residual plots of the Deep Network and its merged estimations
ded system-driven ablation lesion depth estimation. In future

works, especially when considering other tissue models, the
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Fig. 6. The residual maps of both tree-based models and their merged estimations

physical modeling of perfusion will be very important due
to the heat sink effect. We expect a few changes within the
system are required to detect and handle perfusion as well as
interfaces in heterogenous tissue: (1) detection of large blood
vessels present within tissue in a subvolume similar to the
classification of different tissue types performed by Laufer et

al. [50], [51]; (2) characterizing the change in tissue electrical
properties as it undergoes simultaneous heating through the
RFA applicator and cooling through the blood vessel heat
sink; and (3) handling the change in tissue electrical properties
within the machine learning model, either through additional
training data for direct statistical handling or manual logic-
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TABLE III
SIMULATION ABLATION LESION DEPTH MEASUREMENT PERFORMANCE OF ML MODELS AGAINST FINAL PHYSICAL LESION DEPTH MEASUREMENTS.

ML Model Samples Measured ~ Mean Difference (mm)  Standard Error (mm)
Deep Network 24 0.5 0.2
Adaptive Boosting 24 0.7 0.4

based handling.

Additionally, the ex-vivo tissue model used within this
study was processed by a slaughterhouse, such that the tissue
electrical properties (especially with regards to capacitance)
differ slightly from in-vivo tissues. Our study attempted to
provide near-physiological simulation for the temperature-
dependent conductivity magnitude by heating the tissue model
to near-physiological temperature. However, it is likely that
cell activity, particularly with the cell membrane, will affect
the imaginary component of the complex electrical impedance
measurements.

As for the results, when trained with the entire dataset in this
study, both the Deep Network and the tree-based ensembles
outperform the models in Besler et al. [37], which were
based on training data collected with the impedance data at
a single frequency. Therefore, it can be said that adding the
new features introduced in Section II-A as well as enhancing
the data size with multi-frequency measurements improved
the performance of all three ML models. The RMSE of the
tree-based models decreased by an order of 10. However,
the biggest improvement belongs to the Deep Network when
compared to the one in [37], which makes sense because even
though it is generally the most powerful non-linear model, a
network needs much more data than the tree-based non-linear
models. The measurement method in this study maintains the
big data that the network needs.

Even though there is considerable estimation improvement
with the new features and data size, it is also apparent that
there is still some room for improvement, especially after
looking at the residual plots of both tree-based models in
Figure 6. Most residues are close to zero, however there are
still many instances where the inaccuracy is over 2 mm. This
would be problematic for a real-time RFA scenario. Especially
the buildup of inaccurate estimations for a true depth of 0 mm
should be taken care of because if the estimation returns a high
non-zero value when the true depth is O mm, it will leave a
significantly large volume of the tumor unablated, increasing
the possibility of cancer to recur. These considerations justify
the need to merge the estimations of frequency sweeps.

After the 91 estimations of each frequency sweep is merged
into one final depth estimation, there is considerable further
improvement for the tree-based ensemble models. The RMSEs
drop by yet another order of 10 when all the estimations
of the frequency sweeps (in the entire dataset) are merged
by taking their truncated mean. When merged by taking
the mode, the Random Forest performance gets even better
and the Adaptive Boosting algorithm reaches a perfect depth
estimation performance for the entire dataset. This shows
that the estimations for some frequencies are indeed better
than others and furthermore, the lower RMSE after merging

means that the models in fact predict the depth correctly for
the samples at most frequencies and this majority of correct
estimations is able to make up for the false estimations within
the frequency sweep. This pattern cannot be observed for the
Deep Network results. As can be seen in Figure 5, neither the
residual map, nor the RMSE change much with the merging
of the estimations within a frequency sweep, meaning that the
estimation error is about the same at all the frequencies.

Lastly, the performance of the ML models on the physical
simulation data gives an idea on how they would perform in a
real-time ablation procedure. The results on Table II show that
some of the models experience the problem of generalizing
to a real-world scenario. Even though the mean of the depth
estimations for all the runs and all the sides are at an acceptable
level, they are not as good as the final depth estimations that
were obtained during model training.

The Deep Network model proves to be the most success-
ful at generalizing to physical simulations with a 0.5 mean
difference, outperforming the Adaptive Boosting algorithm
even though the AB model reached a near-perfect estimation
performance for both training and test data. So, the Deep
Network proved itself to be robust under a different set of data,
that is common for neural network models with a complex
architecture and enough data to train on. The performance drop
of Adaptive Boosting can be explained with the most common
handicap of the tree-based models that is overfitting to the data
they were trained on (even though they are regularized) and not
performing as expected when tested on a separately collected
data. Another example to this would be the performance of the
Random Forest model on the physical simulation test, which
is omitted in Table II because it had the worst estimation
performance. So, after the first two simulation runs, it was not
used anymore to predict the ablation depth for the simulations.

On the simulation data, all ML models performed more
poorly than they did on the validation and test sets. While
this can be explained with the ML concept of generalization
to new data, another possibility is that the ground truth for
ablation depth in the training data is not accurate enough.
One major step to improve the accuracy would be to take the
temperature measurements at more depth levels in the tissue
with a better quality RTD module and more importantly, to use
a more complex fit than linear interpolation for the temperature
vs depth graph, before mapping the temperature data to the
depth values.

As for temperature-depth mapping, another approach that
can give a better ground truth would be thermal dose calcula-
tion, that takes the time integral over the recorded temperature
values and thresholds the integral sum, which is the thermal
dose, instead of the temperature. Its application to this setup
is beyond the scope of this study, however it is certainly an
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idea to explore for further studies [52], [53].

V. CONCLUSION

The results in this study show that a real-time monitor-
ing scheme for Radiofrequency Ablation can be successfully
implemented on a non-perfused breast tissue model with a
pipeline of an non-linear ML model and a statistical merging
operation. Taking advantage of the multi-frequency impedance
measurements of the embedded system design helped the
entire pipeline to achieve better results and it is also tested
that the successful estimation performance can be generalized
to a real-time ablation simulation. Future studies will focus on
development of the multi-frequency depth estimation system
with better ground truth for target depth values and also within
a more realistic tissue model, taking perfusion and interface
issues into account. Lastly, in-vivo experiments are a logical
further step beyond the in-vitro measurements in this study.
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