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We congratulate the authors on presenting this stimulating
article. The article proposes a novel estimation of the average
causal effects of the treatment strategies in the presence of time-
dependent confounding by indication. Causal inference under
the potential outcomes framework can be viewed from a missing
data perspective. The article extends the penalized spline of
propensity methods in handling missing data to causal inference
incorporating a temporal element into consideration.

Under the sequential randomization assumption, Robins and
his colleagues have proposed different approaches to handle
time-varying confounding, such as g-computation (Robins
and Greenland 1992) and marginal structural models (MSMs,
Robins 2000) using (augmented) inverse probability weighting
(A/IPW). However, g-computation is fully parametric and
therefore is sensitive to model assumptions. Weighting requires
the positivity assumption that the probability of receiving each
treatment is strictly positive for all subjects. In many practices,
the weights for some subjects can become extremely large,
leading to both bias and large variability. In contrast with
the predominantly propensity score weighting approaches, the
authors have used the propensity score as the predictors in the
outcome mean model in addition to the individual covariates.
In particular, the authors adopt penalized splines for propensity
scores to provide a flexible model for imputing time-varying
potential outcomes; thus, the estimated treatment effects are
likely immune to the misspecification of the propensity score
when the imputation model is correctly specified. The proposed
estimation method successfully avoids the drawbacks of the
existing competitors: (i) it does not involve weighting by the
inverse of the propensity score and therefore avoids the possibly
large variability due to weighting, and (ii) it improves the
robustness to model misspecification.

Structural nested models: We would like to bring to the
authors’ attention another class of structural models that has
been proposed in the literature for a while to estimate the
treatment effect in longitudinal observational studies, namely
the structural nested models (SNMs). SNMs allow modeling
time-varying treatment modification effects using the post
baseline time-dependent covariates. For example, the structural
nested mean model for a continuous outcome specifies the
effect of treatments through yz, (L o) = E(Y{ — YO |
Li; o), where Ly = (X;,Z;—1). The g-estimation calculates

Hi(Yg) = Yy — Yz, (Lt; ¥o) that mimics the potential outcome

Y?, in the sense that E{H;(yo) | L} = E(Y? | L). As a
result, by the sequential moralization assumption, we have
E{H;(¥0) | Li,Z;} = E{H;(yn0) | L}, which serves the basis
for construction unbiased estimating equations. A general class
of estimating functions for v is

T
G(o) = Y g(L)[H (o) — E{H;(¥0) | Lss Bo}]
t=1

x {Zy — P(Zy = 1| L ap)}, (1)

for any g(L;). This framework shares the same appealing prop-
erties (i) and (ii). Specially, the propensity score enters the
estimating equation not in a form of inverse weights. Moreover,
G(¥o) is unbiased of zero if either E{H;(¥o) | Lo} or
P(Z; = 1| Ly; ap) is correctly specified, but not necessarily both.
Although SNMs have substantial promise, their applications in
applied research are still relatively unpopular (Vansteelandt and
Jofte 2014), partly because of its typically strongly theoretical
presentation and challenging implementation. For comparing
the aforementioned methods, we continue with the simulation
study with the two-time-point treatment scenarios specified
in Table 2 in the paper. We obtain the g-estimator by solving
the empirical version of (1) with the optimal form of g(L;) in
Yang and Lok (2016, 2018). The resulting g-estimator achieves
the semiparametric efficiency bound (Bickel et al. 1993) under
the treatment effect model and the sequential randomization
assumption. Table 1 presents the simulation results from 1000
replicates for sample size of 500. Under Scenarios (A) and (B)
when the propensity score model is correctly specified, the g-
estimator offers more reduction of the mean square error com-
pared to the proposed estimator, while under Scenario (C) when
the propensity score model is misspecified and the prediction
model is correctly specified, the g-estimator may produce larger
mean square errors. We think this research direction is promis-
ing, especially when the time points increase that necessities
modeling the treatment effects as raised in the discussion of the
paper.

Spline versus kernel: To avoid the wrong imputation when the
propensity score model is misspecified, the authors propose a
penalized spline for the derived propensity scores. However, the
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Table 1. Ratios of empirical RMSE from g-estimation to RMSE of PENCOMP under (A) correctly specified propensity and prediction models; (B) a correctly specified

propensity score model only; (C) a correctly specified prediction model only.

A A1 Ao
Low Mod High Low Mod High Low Mod High
Linear outcome

Ratio (x 100) A 54 55 57 52 48 41 55 57 58
B 48 45 48 49 34 29 39 41 48

C 65 137 214 274 371 389 180 130 120

Nonlinear outcome

Ratio (x 100) A 68 68 73 72 81 91 95 92 95
B 53 50 47 57 63 46 53 85 135

C 78 80 83 80 87 96 113 107 113

choice of the splines and knots can be a challenge in practice,
especially when the estimated propensity scores are distributed
unevenly, which is a common situation when some predictors
are discrete. Alternatively, kernel based estimation can be useful
to maintain nonparametric relationship between the imputed
outcome and propensity scores. In other words, the imputation
model can be built locally around each fixed propensity score,
say x, where the local region is specified by assigning weights
to each observed propensity score, say x;, and the weights are
determined by a,, 'K{(x — x;)/a,}. The choice of K(-) includes
the Gaussian kernel or Epanichikov kernel if the bounded sup-
portis desired. The bandwidth a,, for the kernel can be flexible to
be different for different x so we allow the support of the propen-
sity scores to have both continuous and discrete ranges. The
kernel-based imputation was used in Zeng (2004) and Zeng and
Chen (2010) for missing data. Furthermore, in these papers, the
imputation for the missing outcomes was the mean imputation
using a two-dimensional local kernel weights around not only
the propensity score but also the prediction score derived from
the posited model for the missing outcome. They showed that
the derived estimators also possess double robust property and
are demonstrated to be numerically more reliable than weighted
estimators or their augmentation version. It would be interested
that the proposed penalized spline approach can be compared
with the kernel based approach.

Machine learning for prediction: The models for the propensity
score and missing potential outcomes are parametric, although
the latter is partially nonparametric for the included propensity
score. These models are likely to be misspecified when the
dimension of the observed confounders is large and the number
of the stages increases. On the other hand, many algorithms
from the machine learning field are powerful to produce fairly
accurate prediction using complex and high-dimensional data.
For example, random forest, support vector machine and deep
learning algorithms are widely used for producing scores for
predicting binary response (the treatment indicator in this
paper) and continuous outcomes (the potential outcomes in
this paper). It will be very interesting to see that the proposed
method can incorporate different machine learning algorithms
to improve the accuracy of propensity score estimation and
imputation. Finally, for all these algorithms including the

parametric models used in the paper, how to tune algorithms
in machine learning or retain important predictors in the
parametric models will remain to be a challenging issue, given
that the eventual goal is to obtain a valid and precise estimate of
the average treatment effects.

Summary: Many different modeling and algorithms exist for
predicting propensity scores and missing outcomes, and differ-
ent approaches can be adopted to incorporate the propensity
score (weighting, covariate adjustment and g-estimation). It
is natural to ask which model or method should be chosen
for a typical application. We would like to hear the thoughts
from the authors. We congratulate the authors again on this
nice work.
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