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Abstract It is well-known that there are automorphic eigenfunctions on SL(2,Z)\SL(2,R)/SO(2,R)
— such as the classical j-function — that have exponential growth and have ex-
ponentially growing Fourier coefficients (e.g., negative powers of q = e2πiz, or an
I-Bessel function). We show that this phenomenon does not occur on the quo-
tient SL(3,Z)\SL(3,R)/SO(3,R) and eigenvalues in general position (a removable
technical assumption).

More precisely, if such an automorphic eigenfunction has at most exponential
growth, it cannot have non-decaying Whittaker functions in its Fourier expansion.
This confirms part of a conjecture of Miatello and Wallach, who assert all auto-
morphic eigenfunctions on this quotient (among other rank ≥ 2 examples) always
have moderate growth. We additionally confirm their conjecture under certain nat-
ural hypotheses, such as the absolute convergence of the eigenfunction’s Fourier
expansion.

1 Introduction

Although the j-function

j(z) = e−2πiz + 744 + 196884 e2πiz + · · · (1.1)

is one of the most prominent classical modular forms, it is excluded from the mod-
ern definition of automorphic form (see [2,5]) because it does not satisfy the moder-
ate growth condition of being dominated by a polynomial in Im(z) for Im(z) large.
Put differently, an automorphic form on the upper half plane must be holomor-
phic at cusps, whereas the j-function is merely meromorphic. Indeed, the theory of
modular forms on the complex upper half plane is replete with many such impor-
tant examples, examples which have arithmetic significance despite not fitting into
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the standard representation-theoretic framework. The exponential growth comes
from the presence of nonzero Fourier coefficients for the Fourier modes e2πinz,
n < 0.

The situation for nonholomorphic Laplace eigenfunctions on the upper half
plane is completely analogous. For example, weak Maass forms (which do not
have moderate growth but instead satisfy an exponential bound) for SL(2,Z) have
Fourier expansions of the form

f(x+ iy) = c+y
1/2+ν + c−y

1/2−ν +
∑
n∈Z 6=0

e2πinx
√
y(anKν(2π|n|y) + bnIν(2π|n|y)) ,

(1.2)
where ν, c±, an, and bn are complex numbers1, Kν and Iν are the Bessel functions
defined in (3.4), and bn is nonzero for at most finitely many n. Since the K-Bessel
function decays exponentially and the I-Bessel function grows exponentially (see
(3.5)), the condition that f(x+ iy) has moderate growth is equivalent to insisting
bn = 0 for all n.

The goal of this paper is to show that this prototypical SL(2)-phenomenon
does not occur for SL(3) (see Theorem 1.9 below). Due to a technical limitation
we fall slightly short of this, in that we must assume the Satake parameter λ =
(λ1, λ2, λ3) ∈ C3 (the analog of ν – see Section 3) satisfies

λi − λj /∈ 2Z , i 6= j . (1.3)

Throughout this paper we make this standing assumption so that we can quote
results about Whittaker functions. That assumption is removable, but doing so
here is impractical due to the space it would require to develop the theory of
Whittaker functions in that context – see the paragraph after (3.6) for further
explanation.

Our results are special cases of a conjecture of Miatello and Wallach [11], who
posit that the moderate growth condition is automatically satisfied for automor-
phic eigenfunctions on higher rank groups.2 The Miatello-Wallach conjecture is
a generalization of the classical Götzky-Köcher principle [8, 10], which shows the
moderate growth of holomorphic Hilbert and Siegel modular functions. Holomorphy
is used critically in those arguments, and these results can be understood in terms
of Hartog’s theorem on the impossibility of isolated singularities for holomorphic
functions of several complex variables.

The Götzky-Köcher principle can also be understood directly using Fourier
expansions, an approach which Miatello and Wallach successfully used to prove
their conjecture in the more complicated setting of nonholomorphic automorphic
eigenfunctions on products of hyperbolic space. Their argument essentially uses
a factorization of the relevant automorphic coefficients, and deduces the inconsis-
tency of two types of different behavior that must occur for eigenfunctions lacking
moderate growth. However, this factorization cannot work in general, and certainly
fails for SL(n,R) when n > 2.

1 Strictly speaking, formula (1.2) needs to be slightly adjusted when ν = 0, by multiplying
the second term by log(y).

2 See [11, p. 415] for a precise statement, which includes some reducibility conditions to rule
out products of automorphic functions on rank one groups.
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Equally as important, all of the these Fourier expansion arguments heavily
depend on having an abelian unipotent radical, the lack of which is a serious ob-
stacle already for SL(3,R) — where tools as simple as the absolute convergence
of the Piatetski-Shapiro/Shalika expansion (1.4) are unavailable. In more detail,
automorphic forms on SL(3,Z)\SL(3,R)/SO(3,R) have a Fourier expansion of the
form

F (g) =
∑
k∈ Z

[P k,0,0F ](g) +
∞∑
`=1

∑
γ∈Γ (2)

∞ \Γ (2)

∑
k∈ Z

[P k,0,`F ]
((
γ 0
0 1

)
g
)

=
∑
`∈ Z

[P 0,0,`F ](g) +
∞∑
k=1

∑
γ∈Γ (2)

∞ \Γ (2)

∑
`∈ Z

[P k,0,`F ]
((

1 0
0 γ

)
g
)
,

(1.4)

where Γ (2) = SL(2,Z), Γ
(2)
∞ is its subgroup of unit upper triangular matrices,

and the coefficients P k,0,`F are defined in (2.9) (they are characterized as finite
linear combinations of certain special functions in Section 3). These sums are only
guaranteed to converge in the order stated.

When F is assumed to have moderate growth, meaning that∣∣∣F (( 1 x z
0 1 y
0 0 1

)( a1 0 0
0 a2 0
0 0 a3

))∣∣∣ ≤ C (a1
a3

)N , a1 ≥
√
3
2 a2 ≥ 3

4a3 > 0 , (1.5)

for some positive constants C and N depending only on F ,3 the coefficients in
(1.4) have a particularly special form, with P 1,0,1F equal to a scalar multiple of
the decaying Whittaker function Wλ(g) defined in (3.21). This is precisely analo-
gous to the condition that bn vanish in (1.2). However, in the absence of such an
assumption P k,0,`F instead merely belongs to a 6-dimensional subspace of Whit-
taker functions, of which only the scalar multiplies of a translate of Wλ(g) decay
– again, analogously to (1.2).

By comparison with the SL(2) situation, one might expect that the Miatello-
Wallach conjecture is equivalent to the absence of non-decaying Whittaker func-
tions in the Fourier expansion (1.5). Indeed one direction is clear – this absence is
necessary for moderately growing forms – but sufficiency is difficult to prove when
the maximal unipotent subgroup is nonabelian. In particular, we cannot rule out
the possibility that there is a counterexample to the Miatello-Wallach conjecture
having only decaying Whittaker functions in its Fourier expansion.

Thus our results mainly address the absence of non-decaying Whittaker func-
tions. Our first result shows that the presence of even a single non-decaying Whit-
taker function implies that the terms in (1.4) are not bounded:

Theorem 1.6. Assume (1.3). Let F ∈ C∞(SL(3,Z)\SL(3,R)/SO(3,R)) be an eigen-

function of the full ring of bi-invariant differential operators on SL(3,R). Suppose that

some [P k,0,`F ](g) in (1.4) does not have moderate growth. Then for some g ∈ SL(3,R)
one of the two Fourier expansions in (1.4) must contain unboundedly large terms, and

in particular is not absolutely convergent.

3 The particular choice of the constants
√

3
2

and 3
4

= (
√
3
2

)2 in (1.5) comes from the fact
that region described by the inequalities contains a fundamental domain for SL(3,Z), but is
not essential to the statement.
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To our knowledge, there are no examples in the theory of automorphic func-
tions of Fourier expansions having unbounded terms, much less ones that do not
converge absolutely. In Lemmas 4.13 (part 3) and 4.19 we prove stronger results
on sums of decaying Whittaker functions that allow us to conclude the Miatello-
Wallach conjecture under the assumption that the Fourier expansion has bounded
terms:

Corollary 1.7. Assume (1.3). The Miatello-Wallach conjecture is true for eigenfunc-

tions F ∈ C∞(SL(3,Z)\SL(3,R)/SO(3,R)) of the full ring of bi-invariant differential

operators on SL(3,R) for which the Fourier coefficients

[P k,0,`F ]
((
γ 0
0 1

)
g
)

and [P k,0,`F ]
((

1 0
0 γ

)
g
)
, for (k, `) 6= (0, 0), γ ∈ Γ

(2)
∞ \Γ (2),

(1.8)
from (1.4) are bounded for any fixed g ∈ SL(3,R). That is, the boundedness of (1.8)

implies that F satisfies the moderate growth condition (1.5) for some positive constants

C and N depending only on F .

Having shown the Miatello-Wallach conjecture under the assumption of bounded
Fourier expansions, we now return to the situation of (1.2) and impose an expo-
nential bound on F . Note that the Miatello-Wallach conjecture is more general in
that it allows for super-exponential growth that is excluded by the usual defini-
tion of weak modular or Maass form. Indeed, although all noteworthy automorphic
eigenfunctions for SL(2) (such as j(z)) are bounded by some exponential in Im(z),
there do exist holomorphic modular functions (such as ej(z)) which are not.

The following result shows that an exponential bound is sufficient to rule out
non-decaying Whittaker functions, and hence unlike (1.2) from the classical SL(2)
theory, there are no eigenfunctions on SL(3,Z)\SL(3,R)/SO(3,R) that have both
exponential growth and growing Whittaker functions. (However, once again we
cannot rule out the possibility that an exponentially growing automorphic eigen-
function for SL(3,Z)\SL(3,R)/SO(3,R) has only decaying Whittaker functions in
its Fourier expansion.)

Theorem 1.9. Assume (1.3). Let F ∈ C∞(SL(3,Z)\SL(3,R)/SO(3,R)) be an eigen-

function of the full ring of bi-invariant differential operators on SL(3,R), and assume

that∣∣∣F (( 1 x z
0 1 y
0 0 1

)( a1 0 0
0 a2 0
0 0 a3

))∣∣∣ ≤ C exp(K(a1
a2

+ a2
a3

)) , a1 ≥
√
3
2 a2 ≥ 3

4a3 > 0 , (1.10)

for some positive constants C and K depending only on F . Then for all integers k and

`, [P k,0,`F ](g) has moderate growth in g; that is, F ’s Fourier expansion (1.4) cannot

contain non-decaying Whittaker functions.

In Section 2 we give some background on Fourier expansions, culminating
in the Piatetski-Shapiro/Shalika formula (1.4). Sections 3 and 4 are devoted to
estimates on Whittaker functions, in particular recent results of Templier [15]
derived from Givental’s integral representation of Whittaker functions [7]. The
proofs of Theorems 1.6 and 1.9 are given in Sections 5 and 6, respectively. Finally,
Section 7 contains some material about Hecke actions on automorphic functions
not having moderate growth; in particular, it outlines a potential reduction aimed
at removing assumption (1.10).
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2 Fourier expansions on SL(3,Z)\SL(3,R)/SO(3,R)

In this section we derive Fourier expansions for automorphic functions on Γ\G,
where G = SL(3,R) ⊃ Γ = SL(3,Z) (see [3] for a general reference). We use the
standard notation N ⊂ G for the subgroup of unit upper triangular matrices, A
for the subgroup of positive diagonal matrices, and K = SO(3,R). The subgroup
A is parameterized as A = {ay1,y2 |y1, y2 > 0}, where

ay1,y2 =

(
y
2/3
1 y

1/3
2 0 0

0 y
−1/3
1 y

1/3
2 0

0 0 y
−1/3
1 y

−2/3
2

)
. (2.1)

The Iwasawa decomposition asserts that each element of g can be uniquely decom-
posed as g = nay1,y2k for some n ∈ N , y1, y2 > 0, and k ∈ K. Note that (2.1) has a

well-defined meaning as an element of G for any y1, y2 6= 0, e.g., a1,−1 =
(−1 0 0

0 −1 0
0 0 1

)
.

Let F ∈ C∞(Γ\G) and define the projections

[Pm,nF ](g) :=

∫
(Z\R)2

F
((

1 0 z
0 1 y
0 0 1

)
g
)
e−2πi(mz+ny) dy dz (2.2)

for m,n ∈ Z, so that

F (g) =
∑

m,n∈ Z

[Pm,nF ](g) (2.3)

is an absolutely convergent Fourier series. The change of variables z = au + bv,
y = cu+ dv in (2.2) yields the identity

[Pm,nF ]
((

a b 0
c d 0
0 0 1

)
g
)

= [Pma+nc,mb+ndF ](g) ,
(
a b
c d

)
∈ SL(2,Z) . (2.4)

In particular,

[Pm,nF ](g) = [P 0,`F ]
((

a b 0
c d 0
0 0 1

)
g
)
, (2.5)

where ` = gcd(m,n), c = m
gcd(m,n) , d = n

gcd(m,n) , and a, b ∈ Z are chosen so that
ad− bc = 1.

The identity (2.5) has a number of significant implications. For example, the
smoothness of F and the Riemann-Lebesgue Lemma imply that the Fourier coef-
ficient

[P 0,`F ]
((

a b 0
c d 0
0 0 1

)
g
)
−→ 0 as c2 + d2 →∞ ; (2.6)

in fact the decay is faster than any negative power of c2 + d2. It also follows that

[P 0,`F ]
((

1 1 0
0 1 0
0 0 1

)
g
)

= [P 0,`F ](g) , (2.7)
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demonstrating that (2.5) depends only on the left-Γ
(2)
∞ coset of

(
a b
c d

)
(this also

reflects the fact that (2.5) is independent of the choice of integers a and b satisfying
ad− bc = 1). This periodicity implies the absolutely convergent Fourier expansion

[P 0,`F ](g) =
∑
k∈ Z

[P k,0,`F ](g) , (2.8)

where

[P k,0,`F ](g) :=

∫
(Z\R)3

F
((

1 x z
0 1 y
0 0 1

)
g
)
e−2πi(kx+`y) dx dy dz . (2.9)

In fact, ∫
(Z\R)

F
((

1 0 z
0 1 0
0 0 1

)
g
)
dz =

∑
k,`∈ Z

[P k,0,`F ](g) , (2.10)

hence the righthand side represents the Fourier expansion of the smooth func-
tion on the left-hand side, thereby demonstrating the absolute convergence of this
double sum.

Combining (2.3), (2.5), and (2.8) results in the Piatetski-Shapiro/Shalika Fourier
expansion [12,13]

F (g) = [P 0,0F ](g) +
∞∑
`=1

∑
γ∈Γ (2)

∞ \Γ (2)

∑
k∈ Z

[P k,0,`F ]
((
γ 0
0 1

)
g
)

=
∑
k∈ Z

[P k,0,0F ](g) +
∞∑
`=1

∑
γ∈Γ (2)

∞ \Γ (2)

∑
k∈ Z

[P k,0,`F ]
((
γ 0
0 1

)
g
)
,

(2.11)

i.e., the first line in (1.4). For later reference, if γ = ( γ11 γ12γ21 γ22 ) and g is written in

Iwasawa form as g =
(

1 x z
0 1 y
0 0 1

)
ay1,y2k, with y1, y2 > 0, and k ∈ SO(3,R), a short

SL(2) calculation shows that( γ11 γ12 0
γ21 γ22 0
0 0 1

)
g ∈ Na y1

δ(γ,x+iy1)2
,y2δ(γ,x+iy1)

K , (2.12)

where δ (( γ11 γ12γ21 γ22 ) , τ) = |γ21τ + γ22|.
In the above derivation we chose to initially integrate the variables y and

z in (2.2). Had we instead performed a Fourier expansion over the subgroup

{
(

1 x z
0 1 0
0 0 1

)
|x, z ∈ R} of SL(3,R), we would have arrived at the second line in (1.4),

F (g) =
∑
`∈ Z

[P 0,0,`F ](g) +
∞∑
k=1

∑
γ∈Γ (2)

∞ \Γ (2)

∑
`∈ Z

[P k,0,`F ]
((

1 0
0 γ

)
g
)
, (2.13)

which could also have been obtained from (2.11) via the contragredient map

g 7→
(

0 0 1
0 −1 0
1 0 0

)
(gt)−1

(
0 0 1
0 −1 0
1 0 0

)−1

. (2.14)
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Remark 2.15. It is a simple consequence of convergence of Fourier series on
Z\R and (Z\R)2 that the sum in (2.11) converges in the order stated. For the
same reason, (2.11) remains convergent if the sums over ` and γ are interchanged
(recall these arose from labeling the Fourier modes for m and n in (2.5)). How-
ever, orthogonality of the terms in (2.11) was lost after the introduction of the
γ-translate in (2.4); put differently, the x-integration for the Fourier modes in-
dexed by k in (2.9)-(2.11) is taken over different domains for different γ. In par-
ticular, it is not clear that the sum (2.11) is absolutely convergent. This distinc-
tion is important, since Corollary 1.7 establishes the Miatello-Wallach conjecture
for SL(3,Z)\SL(3,R)/SO(3,R) under the assumption of absolute convergence. It
should be stressed that there appear to be no known examples of automorphic
Fourier expansions which are not absolutely convergent.

3 Spherical Whittaker functions for SL(3)

We shall now make the further assumption that F is spherical, i.e., fixed under
SO(3,R):

F (gs) = F (g) , s ∈ SO(3,R) . (3.1)

Thus P k,0,`F obeys the transformation law

[P k,0,`F ]
((

1 x z
0 1 y
0 0 1

)
gs
)

= e2πi(kx+`y) [P k,0,`F ](g) ,

for x, y, z ∈ R and s ∈ SO(3,R) . (3.2)

By the Iwasawa decomposition, such a function is uniquely determined by its
restriction to the subgroup A = {ay1,y2 |y1, y2 > 0} ⊂ G of positive diagonal matri-
ces. We will also henceforth assume that F is an eigenfunction of the full ring of
bi-invariant differential operators. The rest of this section is devoted to describ-
ing the eigenfunction solutions to (3.2), along with some of their properties (see
[3, 4, 9, 14,16,18] for more details, with [3] again serving as a general reference).

Let a∗C denote the complex-valued linear functionals on A’s Lie algebra a =
{traceless 3×3 diagonal, real matrices}; under this implicit identification of a with
a subspace of R3, the elements λ of a∗C are concretely realized as triples of complex
numbers (λ1, λ2, λ3) ∈ C3 such that λ1 + λ2 + λ3 = 0. Any λ ∈ a∗C naturally lifts
to a character of A, written using exponential notation as( a1 0 0

0 a2 0
0 0 a3

)λ
= aλ1

1 aλ2
2 aλ3

3 . (3.3)

Let a(g) denote the Iwasawa A-component of g = nak ∈ SL(3,R), where n ∈ N ,
a = a(g) ∈ A, and k ∈ SO(3,R). The functions g 7→ a(g)λ+ρ, where ρ = (1, 0,−1) ∈
a∗C, are eigenfunctions of the full ring of bi-invariant differential operators. Let Ω
denote the Weyl group of SL(3,R) with respect to A, which we identify with the
symmetric group S3; it acts on λ = (λ1, λ2, λ3) by permutating the indices. The
eigenvalues of a(g)wλ+ρ under any bi-invariant differential operator are indepen-
dent of w ∈ Ω. Moreover, given any eigenfunction F of the full ring of bi-invariant
differential operators, there exists a unique Weyl orbit Ωλ ∈ a∗C such that F and
a(g)λ+ρ share the same eigenvalues under any bi-invariant differential operator.
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In particular, the automorphic eigenfunction F uniquely determines such a coset
Ωλ ∈ Ω\a∗C, known as its Satake parameter.

Fourier expansions for eigenfunctions on SL(2,Z)\SL(2,R)/SO(2,R) involve
the I-Bessel and K-Bessel functions

Iν(x) =
∞∑
n=0

(x/2)ν+2n

n!Γ (n+ ν + 1)

and Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(πν)
.

(3.4)

The I-Bessel function grows exponentially for large x, whereas the K-Bessel func-
tion decays exponentially:

Iν(u) =

√
1

2πu
eu + O(u−3/2eu) , u → ∞

Kν(u) =

√
π

2u
e−u + O(u−3/2e−u) , u → ∞ .

(3.5)

In particular, I-Bessel functions appear precisely in automorphic eigenfunctions
which disobey the moderate growth condition. We now present definitions of some
analogs for SL(3,Z)\SL(3,R)/SO(3,R). Following [9, Prop. 6], consider the non-
decaying Whittaker function

Mλ(ay1,y2) =
π3 |y1y2|

sin(π2 (λ1 − λ2)) sin(π2 (λ2 − λ3)) sin(π2 (λ3 − λ1))

×
∞∑

m=0

(π|y1|)m−λ3/2(π|y2|)m+λ1/2

m!Γ (m+ λ1−λ3
2 + 1)

Im+(λ1−λ2)/2(2π|y1|)Im+(λ2−λ3)/2(2π|y2|) .

(3.6)

The sum over m converges absolutely to an entire function of λ, and plays a role
for SL(3,R) directly analogous to that of Iν for SL(2,R). We extend Mλ to a
function of G via the transformation law (3.2) with (k, `) = (1, 1).

Let M◦λ denote the second line in (3.6). The functions M◦wλ, w ∈ Ω, are
linearly independent when (1.3) holds; this can be seen from their leading small-yi
asymptotics. However, when (1.3) fails (such as when both λ1−λ2 and λ2−λ3 are
even integers), the dimension of the span of these functions can drop to as low as
1, as can be directly verified directly from the definition and the fact that Iν = I−ν
for integral ν. (Note that there is a slight mistake in the standard references for
GL(3) Whittaker functions [3, p.24] and [4, p.27], which assert the span is 6-
dimensional whenever the λi are merely distinct.) The literature also currently
lacks a description of the other eigenfunction solutions to (3.2) we are about to
describe – not just Whittaker functions – in this degenerate case. We have elected
to make the (slightly) restrictive assumption (1.3) as a result of the impracticality
of developing such a theory here, which would significantly lengthen this paper.

Similarly, we define degenerate Whittaker functions

Mα1

degen,λ(ay1,y2) = |y1|1−λ3/2|y2|1−λ3I(λ1−λ2)/2(2π|y1|) , (3.7)
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which extend to functions on G via the transformation law (3.2) with (k, `) = (1, 0),
and

Mα2

degen,λ(ay1,y2) = |y1|1+λ1 |y2|1+λ1/2I(λ2−λ3)/2(2π|y2|) , (3.8)

which extend to functions on G via the transformation law (3.2) with (k, `) = (0, 1).
(The superscripts refer to nondegenerate roots for the character in (3.2).) The two
functions (3.7) and (3.8) are related by the contragredient map (2.14). The linear
combination

Wα1

degen,λ(g) =
π

2

Mα1

degen,λ(g) − Mα1

degen,(12)λ(g)

sin(π2 (λ2 − λ1))
, (3.9)

where (12) denotes the transposition permutation in Ω ∼= S3, has moderate growth;
in fact, it decays rapidly in the y1 → ∞ limit, as can been seen from the exact
formula

Wα1

degen,λ(ay1,y2) = |y1|1−λ3/2 |y2|1−λ3K(λ1−λ2)/2(2π|y1|) (3.10)

(a consequence of the second formula in (3.4)). Likewise, we have

Wα2

degen,λ(g) =
π

2

Mα2

degen,λ(g) − Mα2

degen,(23)λ(g)

sin(π2 (λ3 − λ2))

and Wα2

degen,λ(ay1,y2) = |y1|1+λ1 |y2|1+λ1/2K(λ2−λ3)/2(2π|y2|) ,
(3.11)

consistently with (2.14).
Before listing the exact form of the eigenfunction solutions to (3.2), it is im-

portant to recall that there are more solutions listed here than appear in the
classical L2 setting (where one assumes polynomial growth rather than attempting
to deduce it as we are here). It will be useful to note that

[P k,0,`]F (ay1,y2) = [P k,0,−`F ](ay1,y2) = [P−k,0,`]F (ay1,y2) , (3.12)

as can be seen from (2.9) using the invariance of F under the elements a1,−1 =(−1 0 0
0 −1 0
0 0 1

)
and a−1,1 =

(
1 0 0
0 −1 0
0 0 −1

)
. In particular, it suffices to specify P k,0,`F for

k, ` ≥ 0. In the following λ remains a Satake parameter for F .

Both k = ` = 0

[P 0,0,0F ](g) is a linear combination
∑
w∈Ω c(0, 0, w)a(g)wλ+ρ for some coefficients

c(0, 0, w) ∈ C (the powers a(g)wλ+ρ are linearly independent by assumption (1.3)).

Precisely one of k or ` vanishes

If ` = 0 but k 6= 0, the solutions are linear combinations

[P k,0,0F ](g) =
∑
w∈Ω

c(k, 0;w)Mα1

degen,wλ(ak,1 g) (3.13)
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for some coefficients c(k, 0;w) ∈ C. Since we have assumed (1.3), the functions
Mα1

degen,wλ(ak,1 g) are linearly independent as w varies over Ω. When P k,0,0F has

moderate growth (i.e., satisfies the upper bound in (1.5)) one has that c(k, 0; (12)w) =
−c(k, 0;w) for all w ∈ Ω, and vice-versa (cf. (3.9)-(3.10)). In particular, [P k,0,0F ](g)
has moderate growth if and only if

[P k,0,0F ](g) = d(k, 0; 1)Wα1

degen,λ(ak,1 g) + d(k, 0; 2)Wα1

degen,(123)λ(ak,1 g)

+ d(k, 0; 3)Wα1

degen,(321)λ(ak,1 g)

(3.14)
for some coefficients d(k, 0; 1), c(k, 0; 2), d(k, 0; 3) ∈ C.

Likewise, if k = 0 but ` 6= 0, the solutions are linear combinations

[P 0,0,`F ](g) =
∑
w∈Ω

c(0, `;w)Mα2

degen,wλ(a1,` g) (3.15)

for some coefficients c(0, `;w) ∈ C, and the moderate growth of P 0,`,0F is equivalent
to c(0, `; (23)w) = −c(0, `;w) for all w ∈ Ω. Thus [P 0,0,`F ](g) has moderate growth
if and only if

[P 0,0,`F ](g) = d(0, `; 1)Wα2

degen,λ(a1,` g) + d(0, `; 2)Wα2

degen,(123)λ(a1,` g)

+ d(0, `; 3)Wα2

degen,(321)λ(a1,` g)

(3.16)
for some coefficients d(0, `; 1), d(0, `; 2), d(0, `; 3) ∈ C.

Actually, (3.14) and (3.16) are implied not just by moderate growth of the
Fourier coefficients, but also by anything slower than the exponential growth of
(3.7)-(3.8).

Both k, ` 6= 0

If both k, ` 6= 0, then the space of eigenfunctions satisfying the transformation law
(3.2) is 6-dimensional. We first describe this space in the special case of k = ` = 1.
For any w ∈ Ω, Mwλ(g) is also an eigenfunction solution to (3.2). Since we have
assumed (1.3), the 6 functions {Mwλ(g)|w ∈ Ω} span the 6-dimensional space of
Whittaker functions for SL(3,R)/SO(3,R).

The asymptotics for y1, y2 ≥ 1 of linear combinations of {Mwλ(ay1,y2)|w ∈ Ω}
were conjectured by Gregg Zuckerman using an insightful connection to the WKB
approximation of mathematical physics. Zuckerman’s conjectures were formulated
more generally for SL(n,R); in our case of SL(3,R) they involve the six triples of

algebraic functions in two variables (p
(m)
1 (y1, y2), p

(m)
2 (y1, y2), p

(m)
3 (y1, y2)), 1 ≤

m ≤ 6, for which

(
p
(m)
1 (y1,y2) y2

1 0

−1 p
(m)
2 (y1,y2) y2

2

0 −1 p
(m)
3 (y1,y2)

)
is a nilpotent matrix . (3.17)
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All six triples can be written explicitly; we shall number them so that

p
(1)
3 (y1, y2) − p

(1)
1 (y1, y2) = (y

2/3
1 + y

2/3
2 )3/2 ,

p
(2)
3 (y1, y2) − p

(2)
1 (y1, y2) = − (y

2/3
1 + e−2πi/3y

2/3
2 )3/2 ,

p
(3)
3 (y1, y2) − p

(3)
1 (y1, y2) = − (y

2/3
1 + e2πi/3y

2/3
2 )3/2 ,

p
(4)
3 (y1, y2) − p

(4)
1 (y1, y2) = (y

2/3
1 + e−2πi/3y

2/3
2 )3/2 ,

p
(5)
3 (y1, y2) − p

(5)
1 (y1, y2) = (y

2/3
1 + e2πi/3y

2/3
2 )3/2 ,

and p
(6)
3 (y1, y2) − p

(6)
1 (y1, y2) = − (y

2/3
1 + y

2/3
2 )3/2 .

(3.18)

Parts of Zuckerman’s conjecture were proven by To [16] in his Ph.D. Thesis. Using
Givental’s integral representation [7], Templier [15] has recently improved To’s
result:

Theorem 3.19. [15, 16] For any λ ∈ a∗C, there is a basis {φ(m)
λ (g)|1 ≤ m ≤ 6} of

eigenfunction solutions to (3.2) with k = ` = 1 such that

log(φ
(m)
λ (ay1,y2)) ∼ 2π

(
p
(m)
3 (y1, y2)− p(m)

1 (y1, y2)
)

(3.20)

for y1, y2 ≥ 1 (as either or both of y1, y2 →∞).

Each φ
(m)
λ can be written as a linear combination of {Mwλ(g)|w ∈ Ω} with

coefficients that are meromorphic in λ. We write

Wλ(g) =
∑
w∈Ω

Mwλ(g) = φ(6)(g) (3.21)

for the unique decaying solution, which appears prominently in the classical setting
of moderate growth. Vinogradov-Takhtajan [18] proved the integral formula

Wλ(ay1,y2) = 4 |y1|1−λ2/2|y2|1+λ2/2 ×∫ ∞
0

K(λ1−λ3)/2(2π|y1|
√

1 + x)K(λ1−λ3)/2(2π|y2|
√

1 + x−1)x−3λ2/4 dx

x
. (3.22)

It follows from this integral and the inequalities |Kν(x)| ≤ KRe(ν)(x) > 0 that

|Wλ(ay1,y2)| ≤ WRe(λ)(ay1,y2) , (3.23)

where the right-hand side is in fact positive.
Theorem 3.19 describes the eigenfunction solutions to (3.2) with k = ` = 1.

For k, ` 6= 0, each function φ
(m)
λ (ak,`g) satisfies the transformation law (3.2). In

light of this observation and (3.12), we may thus write P k,0,`F for k, ` 6= 0 as

[P k,0,`F ](g) =
6∑

m=1

c(k, `,m)φ
(m)
λ (ak,` g) . (3.24)

Each of the first five lines in (3.18) has unbounded real part on the domain
{y1, y2 ≥ 1}. Thus if P k,0,`(ay1,y2), k, ` 6= 0, is bounded for y1, y2 ≥ 1 (or in
fact even if it merely has moderate growth – or even any growth slower than that
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of the growing Whittaker functions), it must be a scalar multiple of the decaying
Whittaker function (3.21),

[P k,0,`F ](g) = c(k, `)Wλ(ak,` g) , (3.25)

where c(k, `) = c(k, `, 6) = c(±k,±`) (see (3.12)).

We close this section with a result from the second named author’s Ph.D.
thesis [17] on the asymptotics of [P k,0,`F ](g) as g varies along the image of a
simple coroot:

Theorem 3.26 (Trinh [17]). Let k, ` 6= 0 and suppose that [P k,0,`F ](g) in (3.24)

satisfies the estimates

[P k,0,`F ](at−2,t) , [P k,0,`F ](at,t−2) = O(1) (3.27)

for an infinite sequence of values of t tending to ∞. Then [P k,0,`F ](g) is a multiple of

the decaying Whittaker function Wλ(ak,`g), i.e., (3.25) holds.

For completeness, we include a sketch of the proof, starting with the well-known
facts that Iν(x) > 0 and ∂

∂ν Iν(x) < 0 for positive values of ν and x. Consider the
integral representation

Iµ(x) Iν(x) =
2

π

∫ π/2

0

Iµ+ν(2x cos θ) cos((µ− ν)θ) dθ , Re µ+ ν > −1 (3.28)

([6, 10.32.15]), and specialize µ = σ + it and ν = µ̄ = σ − it, where σ, t ≥ 0.
Then differentiation under the integral sign shows that ∂

∂σ |Iσ+it(x)|2 < 0 and
∂
∂t |Iσ+it(x)|2 > 0 for σ > 0, i.e., |Iν(x)| decreases in Re(ν) and increases in Im(ν)
for Re(ν) > 0. In terms of definition (3.6), the large t-asymptotics of

Mλ(akt−2,`t) =
π3 |k|m+1−λ3/2 |`|m+1+λ1/2

sin(π2 (λ1 − λ2)) sin(π2 (λ2 − λ3)) sin(π2 (λ3 − λ1))

×
∞∑

m=0

π2m+λ1+λ2/2t−m−1+λ3+λ1/2

m!Γ (m+ λ1−λ3
2 + 1)

Im+(λ1−λ2)/2(2π|k|t−2)Im+(λ2−λ3)/2(2π|`|t)

(3.29)

are thus manifest from (3.4)-(3.5) as

Mλ(akt−2,`t) ∼ d(k, `, λ) t−3/2(λ1+1) e2π|`|t , (3.30)

for some nonzero constant d(k, `, λ) expressible as powers of π, |k|, and |`|. Write
[P k,0,`F ](g) as a linear combination of the Mwλ(ak,`g), w ∈ Ω. Since we have
assumed (1.3), the λi are distinct and the only way to avoid exponential growth
in sums of (3.30) is if the appropriate proportionality of the coefficients of Mwλ

and M(12)wλ holds. The identical analysis applied to Mλ(akt,`t−2) produces con-
straints between the coefficients of Mwλ and M(23)wλ; combined, the coefficients
are proportional to those in (3.21), forcing (3.25) to hold.
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4 Estimates on decaying Whittaker functions and Fourier coefficients

In this section we give a rather crude estimate on the decaying spherical Whittaker
function (3.21), and apply it to properties of the Fourier expansion (1.4). Far finer
estimates are possible (see, for example, [4, Theorem 1]), but Lemma 4.1 — which
has a relatively simple derivation that we include for completeness — suffices for
our purposes.

Lemma 4.1. 1) There exist positive constants Y0, c0, and N depending on λ such that

|Wλ(ay1,y2) | � (y1y2)−N e−c0(y1+y2) � e−2c0(y1+y2) (4.2)

whenever y1, y2 > Y0, where the implied constant depends only on λ.

2) There exists an integer N (again depending on λ) such that

|Wλ(ay1,y2) | � (yN1 + y−N1 )(yN2 + y−N2 ) e−2π(y1+y2) � (y1y2)−N e−π(y1+y2)

(4.3)
for any y1, y2 > 0, where the implied constant depends only on λ.

Proof To simplify the calculations in this proof, we rescale y1 and y2 by 2π. Since
the terms outside the integral in (3.22) can be absorbed into the constant and
polynomial factors, it suffices to consider the integral∫ ∞

0

Kν(y1
√

1 + x)Kν(y2
√

1 + x−1)x−3λ2/4−1 dx , (4.4)

with ν = (λ1 − λ3)/2.
We begin with first estimate in statement 2); the second estimate of course

follows from it. According to (3.5), euKν(u) is bounded for large u. Formula (3.4)
shows that Kν(u) is bounded by |u|−q for some q > 0 as u → 0. Consequently,

ey1
√
1+xKν(y1

√
1 + x)ey2

√
1+x−1

Kν(y2
√

1 + x−1) is bounded by some fixed power
of (1 + y−1

1 )(1 + y−1
2 ) for all x ≥ 0, and it thus suffices to show that∫ ∞

0

exp(−y1
√

1 + x− y2
√

1 + x−1)xp dx � (y1y2)N e−y1−y2 (4.5)

for some N > 0 and p ∈ R.
We now split the range of integration into three pieces: 0 < x < 1/2, 1/2 ≤ x ≤

2, and 2 < x <∞. In the middle range, the integrand is O(e−y1−y2), as is its integral

over [1/2, 2]. In the third range, the integrand is bounded by e−y1
√
1+x−y2xp.

Changing variables x = u2 + 2u, we bound its integral over (2,∞) by

e−y1−y2
∫ ∞
√
3−1

(u(u+ 2))p (2u+ 2) e−y1u du �

e−y1−y2
∫ ∞
√
3−1

u2p+1 e−y1u du ≤ e−y1−y2 y−2p′−2
1 Γ (2p′ + 2) , (4.6)

where p′ = max(0, p) and the implied constant that depends only on λ. Finally,
the integral over the first range 0 < x < 1/2 has the same form as that over the
third range 2 < x <∞, though with a different value of p. This establishes 2).
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Assertion 1) follows by a similar analysis (or from Theorem 3.19). We give

a proof that results in the non-optimal value of c0 = 2π(
√

3 +
√

3
2 ) using the

asymptotic lower bound for the K-Bessel function provided by (3.5). Rewrite (4.4)
as

∫ ∞
0

Kν(y1
√

1 + x)Kν(y2
√

1 + x−1)xp dx =

π

2
√
y1y2

(I + O(I1) + O(I2) + O(I3)) , (4.7)

where

I =

∫ ∞
0

exp(−y1
√

1 + x− y2
√

1 + x−1)

(1 + x)1/4 (1 + x−1)1/4
xp dx ,

I1 =
1

y1

∫ ∞
0

exp(−y1
√

1 + x− y2
√

1 + x−1)

(1 + x)3/4 (1 + x−1)1/4
xp dx ,

I2 =
1

y2

∫ ∞
0

exp(−y1
√

1 + x− y2
√

1 + x−1)

(1 + x)1/4 (1 + x−1)3/4
xp dx , and

I3 =
1

y1y2

∫ ∞
0

exp(−y1
√

1 + x− y2
√

1 + x−1)

(1 + x)3/4 (1 + x−1)3/4
xp dx

(4.8)

and p = −3λ2
4 −1. Noting that x ≥ 0, we now choose a sufficiently large value of Y0

so that each of the three integrals I1, I2, and I3 is bounded by 1
6I for y1, y2 ≥ Y0. In

this situation (4.4) is hence at least π
4
√
y1y2

I in absolute value. There is no loss of

generality in assuming that y2 ≥ y1 ≥ Y0, owing to the inherent symmetry present
in (4.2) and in (4.7). Then by restricting the range of integration of I in (4.8) to
an interval, we obtain the lower bound

∣∣∣∣∫ ∞
0

Kν(y1
√

1 + x)Kν(y2
√

1 + x−1)xp dx

∣∣∣∣ �
1

√
y1y2

∫ 1+(y2/y1)
2/3

(y2/y1)2/3

e−y1
√
x+1−y2

√
1+x−1

√
x+ 1

xp+
1
4 dx . (4.9)

The exponent −y1
√
x+ 1−y2

√
x−1 + 1 in this last integral has a global maximum

at x = (y2/y1)2/3, so

(4.9) � (y1y2)−1/2 (y2y1 )(4p−1)/6e−y2 σ(y2/y1) , (4.10)

where σ(r) =
√
r2/3+2
r +

√
r2/3+2
r2/3+1

. Since

σ′(r) = −
r5/3

(
r2/3 + 1

)−3/2
+ 2 r2/3 + 6

3 r2
√
r2/3 + 2

(4.11)
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is negative for positive values of r, σ(y2/y1) ≤ σ(1) = c0
2π =

√
3 +

√
3
2 . Thus we

conclude from (4.9) and (4.10) that∫ ∞
0

Kν(y1
√

1 + x)Kν(y2
√

1 + x−1)xp dx

� (y1y2)−1/2 (y2y1 )(4p−1)/6 e−σ(1) y2 ≥ (y1y2)−1/2 (y2y1 )(4p−1)/6 e−σ(1) (y1+y2) ,

(4.12)

under the assumption that y2 ≥ y1 ≥ Y0. Finally, the exponent N in (4.2) can be
adjusted to absorb the remaining powers of y1 and y2 (as it was for those remaining
from (3.22) at the beginning of the proof).

Recall the Fourier coefficients c(k, `) defined in (3.25), for those k, ` 6= 0 having
c(k, `, 1) = · · · = c(k, `, 5) = 0 in (3.24). For k, ` 6= 0 for which the respective Fourier
coefficient has moderate growth, we also defined coefficients d(k, 0; j) and d(0, `; j),
j = 1, 2, 3, in (3.14) and (3.16). The following result crucially uses the lower bound
in part 1) of Lemma 4.1 to give upper bounds on these Fourier coefficients, which
in turn will be essential for showing the moderate growth of Fourier expansions in
Lemma 4.19.

Lemma 4.13. Assume (1.3).

1) The coefficient c(k, `) is subexponential in k and `, i.e., c(k, `) = Oε(e
ε|k|+ε|`|)

for any fixed ε > 0.

2) The coefficients d(k, 0; j), j = 1, 2, 3, are subexponential in |k|, i.e., d(k, 0; j) =
Oε(e

ε|k|) for any fixed ε > 0. Likewise, the coefficients d(0, `; j), j = 1, 2, 3, are subex-

ponential in |`|.
3) Assume the boundedness of (1.8) for any fixed g ∈ SL(3,R). Then for any ε > 0,

c(k, `) = Oε(e
εmax(|k|,|`|)1/3 min(|k|,|`|)2/3).

Proof First we prove coefficient bounds using the fact that [P k,0,`F ](g) is uniformly
bounded on compacta in g, uniformly for k, ` 6= 0, which is immediate from apply-
ing absolute values to the integral in (2.9). First take g to have the form g = ay1,y2 ,
where y2 is at least the constant Y0 guaranteed by part 1) of Lemma 4.1. Taking
y1 sufficiently small (depending on ε) and comparing (3.25) with (4.2) results in
the estimates

c(k, `) = Oε,`(e
ε|k|) for fixed ` and c(k, `) = Oε,k(eε|`|) for fixed k , (4.14)

the second bound following from the same logic but reversing the roles of y1
and y2. Taking both y1 and y2 to be sufficiently small gives the bound c(k, `) =
Oε(e

ε|k|+ε|`|) for sufficiently large |k| and |`|. Part 1) follows by combining these
estimates.

The proof of part 2) is slightly more complicated because (3.14) is the sum of
three different terms. Inserting formula (3.10) into it and evaluating at g = ay1,y2
gives the formula

[P k,0,0F ](ay1,y2) = d(k, 0; 1) |ky1|1−λ3/2 |y2|1−λ3 K(λ1−λ2)/2(2π|ky1|)

+ d(k, 0; 2) |ky1|1−λ2/2 |y2|1−λ2 K(λ3−λ1)/2(2π|ky1|)

+ d(k, 0; 3) |ky1|1−λ1/2 |y2|1−λ1 K(λ2−λ3)/2(2π|ky1|) ,
(4.15)
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an expression which is again bounded in k when y1 and y2 are constrained to any
fixed compact set. Each of the three terms on the righthand side is a power of |y2|
times a function of y1 and k. Since the powers |y2|1−λj , j = 1, 2, 3, are linearly
independent due to our assumption (1.3), these three terms are each individually
bounded in k for any fixed y1, y2 > 0. Then taking y1 to be arbitrarily small as in
the proof of part 1) and using the lower bound in the asymptotics (3.5) results in
the bound claimed in part 2).

Because of the contragredient symmetry it suffices to prove 3) when |k| ≥ |`|, in

which case its estimate reads c(k, `) = Oε(e
ε|k|1/3|`|2/3). The assumed boundedness

and (3.25) give the estimate∣∣ c(k, `)Wλ

(
ak,`

(
γ 0
0 1

)
ay1,y2

) ∣∣ = Oy1,y2(1) (4.16)

for any k, ` 6= 0 and γ ∈ Γ (2)
∞ \Γ (2). Using (2.12) and the transformation law (3.2),

the left-hand side has absolute value |c(k, `)Wλ(a |k|y1
δ(γ,iy1)2

,|`|y2δ(γ,iy1)
)|. Take y1 < 1

and choose γ ∈ SL(2,Z) so that 1
2 |
k
` |

1/3 < δ(γ, iy1) < 2|k` |
1/3.4 Then

4−1 |k|1/3 |`|2/3 y1 <
|k| y1

δ(γ, iy1)2
< 4 |k|1/3 |`|2/3 y1

and 2−1 |k|1/3 |`|2/3 y2 < |`| y2 δ(γ, iy1) < 2 |k|1/3 |`|2/3 y2 .
(4.17)

As ` 6= 0, |k|1/3|`|2/3 ≥ |k|1/3; hence for sufficiently large values of |k| (depending
only on y1, y2, and λ), part 1) of Lemma 4.1 guarantees that∣∣∣∣Wλ(a |k|y1

δ(γ,iy1)2
,|`|y2δ(γ,iy1)

)

∣∣∣∣ � e−c1|k|
1/3|`|2/3(y1+y2) (4.18)

for some constant c1 > 0 depending only on λ. The claimed estimate now follows
from (4.16) by choosing small enough y1 and y2 so that c1(y1 + y2) < ε.

It is clear that if F ∈ C∞(SL(3,Z)\SL(3,R)/SO(3,R)) is an automorphic eigen-
function of moderate growth, then the unipotent Fourier coefficients [P k,0,`F ](g)
defined in (2.9) all inherit this moderate growth. The following Lemma presents
a converse, but under the somewhat unsatisfactory assumption d) below on the
growth of F ’s abelian Fourier coefficients c(k, `):

Lemma 4.19. Suppose that an automorphic eigenfunction F on the quotient SL(3,Z)\SL(3,R)/SO(3,R))
satisfies

a) (3.14) for all k 6= 0,

b) (3.16) for all ` 6= 0, and

c) (3.25) for all k, ` 6= 0.

Suppose furthermore that

d) F ’s abelian Fourier coefficients c(k, `) satisfy a bound of the form c(k, `) = O(e
1
8
max(|k|,|`|)1/3 min(|k|,|`|)2/3).

Then F satisfies the moderate growth condition (1.5).

4 The existence of such a γ is equivalent to that of a relatively prime pair of integers (c, d)

for which c2y21 + d2 lies in the interval ( 1
4
| k
`
|2/3, 4| k

`
|2/3); since |k| ≥ |`| and y1 < 1, one can

take (c, d) = (0, 1) when | k
`
| < 8 and (c, d) = (1, d| k

`
|1/3e) when | k

`
| ≥ 8.
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Remark: As we mentioned in the introduction, the presence of assumption d) pre-
vents us from proving the full Miatello-Wallach conjecture for SL(3,Z)\SL(3,R)/SO(3,R);
instead, we only rule out non-decaying Whittaker functions. Part 3) of Lemma 4.13
shows that when the terms in the Fourier expansion (1.4) are bounded for any fixed
g, then assumption d) holds – in fact, with 1

8 replaced by any arbitrary positive
constant. The actual value of 1

8 in part d) is not optimal and was chosen to sim-
plify the proof. Assumptions such as d) on the growth of Fourier coefficients do
not appear in SL(2) theory, nor in the situations considered by [8,10,11], because
the relevant unipotent radicals there are abelian.

Proof Consider the first line of (1.4), keeping in mind the characterization of
[P k,0,`F ](g) from Section 3 in terms of linear combinations of special functions.
The assertion (1.5) is unchanged if g is replaced by some left N(Z)-translate, so

write g in its Iwasawa factorization as g = n(g)a(g)k(g), where n(g) =
(

1 x z
0 1 y
0 0 1

)
with |x| ≤ 1/2, a(g) = ay1,y2 with y1, y2 ≥

√
3
2 , and k(g) ∈ K = SO(3,R).

The term [P 0,0,0F ](g) is in the linear span of {a(g)wλ+ρ|w ∈ Ω} and hence has
moderate growth. Since (3.14) is assumed to hold for all k 6= 0, the estimate in
part 2) of Lemma 4.13, formula (4.15), and the asymptotic (3.5) together imply
the estimate

|[P k,0,0F ](g)| = |[P k,0,0F ](ay1,y2)| �ε eε|k| |k y1 y2|p e−2π|k|y1 , (4.20)

for any ε > 0, where p > 0 depends only on λ. By taking ε = 1/2, it follows∑
k 6=0 |[P

k,0,0F ](g)| has moderate growth for y1, y2 ≥
√
3
2 .

Next we consider the second sum in (1.4), starting with terms corresponding
to ` > 0 and k = 0,

∞∑
`=1

∑
γ∈Γ (2)

∞ \Γ (2)

[P 0,0,`F ]
((
γ 0
0 1

)
g
)
. (4.21)

Using (2.12), (3.11), (3.16), and part 2) of Lemma 4.13, we see that it is sufficient
to show the moderate growth of

∞∑
`=1

∑
γ∈Γ (2)

∞ \Γ (2)

eε|`|Wα2

degen,λ

(
a1,`

(
γ 0
0 1

)
g
)

=

∞∑
`=1

∑
γ∈Γ (2)

∞ \Γ (2)

eε|`|( y1
δ(γ,x+iy1)2

)1+λ1

(|`|y2δ(γ, x+ iy1))−1−λ1/2
K(λ2−λ3)/2(2π|`|y2δ(γ, x+ iy1)) (4.22)

for some choice of ε > 0. Inserting the upper bound from (3.5) and noting that the
values of |`δ(γ, x+ iy1)| which occur are precisely the norms of nonzero vectors in
the lattice spanned by 1 and x+ iy1, this moderate growth is then immediate.

The remaining terms are those in the `-sum in (1.4) having k 6= 0; we will

show that their contribution has moderate growth for y1, y2 ≥
√
3
2 . Using (2.12)
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and part 2) of Lemma 4.1 results in the bound

|[P k,0,`F ](ak,`
(
γ 0
0 1

)
g)| = |c(k, `)Wλ

(
ak,`

(
γ 0
0 1

)
g
)
|

=

∣∣∣∣c(k, `)Wλ

(
a |k|y1
δ(γ,x+iy1)2

,|`|y2δ(γ,x+iy1)

)∣∣∣∣
�ε,N |c(k, `)| | δ(γ,x+iy1)k`y1y2

|N exp

(
−π
(

|k|y1
δ(γ, x+ iy1)2

+ |`|y2δ(γ, x+ iy1)

))
�ε,N |c(k, `)| exp

(
−1

4

|k|y1
δ(γ, x+ iy1)2

− 1
4 |`|y2δ(γ, x+ iy1)

)
, y1, y2 ≥

√
3
2 ,

(4.23)

where N > 0 is sufficiently large (depending only on λ); here we have used

| δ(γ,x+iy1)k`y1y2
| ≤ 8

33/2 |`y2δ(γ, x + iy1)| and −1
4 > −π2 . Recall that k is summed over

nonzero integers, ` is summed over positive integers, and γ is summed over the

cosets for Γ
(2)
∞ \Γ (2). The subexponential estimate in part 1) of Lemma 4.13 guar-

antees that the k, ` sum for γ = ( 1 0
0 1 ),

∑
k 6=0,`>0 |c(k, `)| exp(−1

4 |k|y1 −
1
4 |`|y2), is

bounded for y1, y2 ≥
√
3
2 .

At this point assumption d) is crucially needed. To simplify notation, index
the coset representatives γ = γc,d by their bottom row [c d], and write δc,d(z) =
δ(γc,d, z) = |cz+d|, where z = x+ iy1. Taking absolute values in (1.4) and applying
assumption d) to (4.23), we see that the moderate growth condition (1.5) is implied
by that for the sum

S =
∑
k,`> 0

∑
γc,d ∈Γ (2)

∞ \Γ
(2)

γc,d 6∈Γ (2)
∞

e
1
8
max(k,`)1/3 min(k,`)2/3e−(ky1δc,d(z)

−2+`y2δc,d(z))/4 ,

(4.24)
where we have used the fact c(k, `) = c(−k, `) (see the discussion following (3.12)).
Break up the sum S as S1 + S2 + S3, where S1 is the sum restricted to 0 < ` ≤
k ≤ 27y32δc,d(z)

3, S2 is the sum restricted to 0 < ` ≤ k > 27y32δc,d(z)
3, and S3 is

the sum restricted to ` > k > 0.
Let us first consider

S1 =
∑

γc,d ∈Γ (2)
∞ \Γ

(2)

γc,d 6∈Γ (2)
∞

∑
0<k≤ 27y3

2δc,d(z)
3

0<`≤ k

e
1
8k

1/3`2/3−1
4ky1δc,d(z)

−2−1
4 `y2δc,d(z).

(4.25)
The argument of the exponential is maximized in ` > 0 at ` = k

(3y2δc,d(z))3
≤

1, hence it decreases for ` ≥ 1 and the summand is bounded by exp(1
8k

1/3 −
1
4ky1δc,d(z)

−2 − 1
4y2δc,d(z)). This last expression is maximized in k > 0 at k =

δc,d(z)
3

(6y1)3/2
, so

S1 ≤
∑

γc,d ∈Γ (2)
∞ \Γ

(2)

γc,d 6∈Γ (2)
∞

(3 y2 δc,d(z))
6 exp

(
− 1

72 (18y2 −
√

6
y1

)δc,d(z)
)

≤ (3 y2)6
∑

(c,d)∈ Z2
6=(0,0)

|c(x+ iy1) + d|6 e−|c(x+iy1)+d|/12
(4.26)
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for y1, y2 ≥
√
3
2 ; thus S1 has moderate growth in this range.

Next, the exponent in

S2 =
∑
k> 0

∑
γc,d ∈Γ (2)

∞ \Γ
(2)

γc,d 6∈Γ (2)
∞

δc,d(z)<
k1/3

3y2

∑
0<`≤ k

exp
(

1
8k

1/3`2/3 − 1
4ky1δc,d(z)

−2 − 1
4 `y2δc,d(z)

)

(4.27)
is again maximized for ` > 0 at ` = k

(3y2δc,d(z))3
, where takes the value − k

216y2
2δc,d(z)

2 (54y1y
2
2−

1) ≤ − ky1
8δc,d(z)2

(since 27y1y
2
2 > 1 for y1, y2 ≥

√
3
2 ). As − ky1

8δc,d(z)2
< −9

8k
1/3y1y

2
2 for

δc,d(z) <
k1/3

3y2
,

S2 ≤
∑
k> 0

kN(x+ iy1,
k1/3

3y2
) exp(−9

8k
1/3y1y

2
2) , (4.28)

where N(z, T ) counts the number of (c, d) ∈ Z2
6=(0,0) for which δc,d(z)

2 = |(cx +

d)2 + c2y21 | < T 2. Since the quantity
(cx+d)2+c2y2

1

c2+d2 is bounded below for |x| ≤ 1/2

and y1 ≥
√
3
2 , N(z, T ) = O(T 2) and we conclude

S2 �
∑
k 6=0

k5/3

y22
exp(−27

64

√
3 k1/3) < ∞ (4.29)

for y1, y2 ≥
√
3
2 .

Finally,

S3 =
∑

γc,d ∈Γ (2)
∞ \Γ

(2)

γc,d 6∈Γ (2)
∞

∑
`> 0

∑
0<k< `

exp
(

1
8k

2/3`1/3 − 1
4ky1δc,d(z)

−2 − 1
4 `y2δc,d(z)

)

<
∑

γc,d ∈Γ (2)
∞ \Γ

(2)

γc,d 6∈Γ (2)
∞

∑
`> 0

∑
0<k< `

exp
(

1
8k

2/3`1/3 − 1
4 `y2δc,d(z)

)

<
∑

γc,d ∈Γ (2)
∞ \Γ

(2)

γc,d 6∈Γ (2)
∞

∑
` 6=0

` exp
(

1
8 `

2/3`1/3 − 1
4 `y2δc,d(z)

)
. (4.30)

This exponential’s argument is `
8 ((1− 3

2y2δc,d(z))−
1
2y2δc,d(z)) < −

`
16y2δc,d(z) for

y1, y2 ≥
√
3
2 (where we have used δc,d(z) ≥ |c|y1 ≥

√
3
2 for c 6= 0). Recalling that

`δc,d(z) is the norm of the nonzero lattice vector `c(x+ iy1) + `d, we conclude the

last expression in (4.30) is bounded for y1, y2 ≥
√
3
2 .

5 Proof of Theorem 1.6

Suppose to the contrary that for all fixed g ∈ SL(3,R) there is some constant
bound on the terms in (1.4), in particular that the terms in (1.8) are bounded
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when g is taken to be the identity matrix. We will show that (3.14), (3.16), and
(3.25) hold, i.e., all [P k,0,`F ](g) have moderate growth for (k, `) 6= (0, 0) as needs to
be shown. (Recall from Section 3 that [P 0,0,0F ](g) always has moderate growth.)

From (2.12) and the transformation properties in (3.2) we have∣∣∣[P k,0,`F ]
((
γ 0
0 1

)
g
)∣∣∣ =

∣∣∣[P k,0,`F ]
(
aδ(γ,i)−2,δ(γ,i)

)∣∣∣ , (5.1)

with δ (( γ11 γ12γ21 γ22 ) , i) = |γ21i + γ22| =
√
γ221 + γ222 growing to infinity as γ varies.

Using this and the contragredient symmetry gives a constant bound (for any fixed
(k, `) 6= (0, 0)) on [P k,0,`F ](at−2,t) and [P k,0,`F ](at,t−2) over an infinite sequence
of values of t → ∞, which Theorem 3.26 shows implies (3.25) when both k and `

are nonzero.
It remains only to show (3.16), since (3.14) is equivalent under the contra-

gredient symmetry (2.14) which interchanges the roles of k and `. Thus we con-
sider k = 0 but ` 6= 0, so that (3.15) exhibits [P 0,0,`F ](ay1,y2) as a linear com-
bination

∑
w∈Ω c(0, `;w)Mα2

degen,wλ(ay1,`y2) of the degenerate Whittaker functions

Mα2

degen,wλ defined in (3.8). Now, (3.5) and (3.8) show

Mα2

degen,λ(at−2,`t) ∼ (2π)−1|`|(1+λ1)/2t−3(1+λ1)/2e2π|`|t (5.2)

for t large. Since we have assumed (1.3), the λi are distinct; in order to cancel the
exponential growth, the boundedness of (5.1) forces c(0, `; (23)w) = −c(0, `;w) for
all w ∈ Ω, a condition equivalent to (3.16). �

6 Proof of Theorem 1.9

As in Section 5, we must again show (3.14), (3.16), and (3.25) for (k, `) 6= (0, 0).
In fact we need only prove the latter two assertions, i.e., the cases with ` 6= 0,
since the contragredient symmetry (2.14) interchanges the roles of k and ` without
affecting the assumptions and conclusions of Theorem 1.9. The bound (1.10) on F

is inherited by the Fourier coefficients Pm,nF and Pm,0,nF through the unipotent
integrations (2.2) and (2.9):∣∣∣[Pm,nF ]

( a1 0 0
0 a2 0
0 0 a3

)∣∣∣ , ∣∣∣[Pm,0,nF ]
( a1 0 0

0 a2 0
0 0 a3

)∣∣∣
≤ C exp(K a1

a2
+K a2

a3
) , a1 ≥

√
3
2 a2 ≥ 3

4a3 and x ∈ R , (6.1)

where C and K depend only on F . In particular, this estimate is uniform in m and
n.5 It follows by comparison of the inequality on Pm,0,nF with the growth rates
in (3.18) and Theorem 3.19, that (3.25) holds for all but finitely many pairs (k, `).
Likewise, (3.5), (3.8), and (3.15) show that (3.16) holds for all but finitely many
`.

5 Of course the pointwise estimate [Pm,nF ](g)→ 0 as m2 +n2 →∞ holds by the Riemann-
Lebesgue Lemma. We shall not require this fact, but remark that the tension between this
decay and the growth of Whittaker functions appears to be a fundamental reason behind the
truth of the Miatello-Wallach conjecture.
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We now come to the key estimate of the argument. If ` and γ =
(
a b
c d

)
∈ SL(2,Z)

are related to m and n as in (2.5), then

[P 0,`F ]
((

a b 0
c d 0
0 0 1

)(
t 0 0
0 t 0
0 0 t−2

))
= [Pm,nF ]

(
t 0 0
0 t 0
0 0 t−2

)
� eKt

3

, t > 1 , (6.2)

with an implied constant which is independent of `, c, and d. The two matrices
in the argument of P 0,`F commute with each other, and so invoking (2.8), (2.12),
and the SO(3,R) invariance of P 0,`F results in the estimate

[P 0,`F ]

((
(c2+d2)−1/2 θγ(c

2+d2)1/2 0

0 (c2+d2)1/2 0
0 0 1

)(
t 0 0
0 t 0
0 0 t−2

))
=

∑
k∈ Z

[P k,0,`F ]

((
(c2+d2)−1/2 θγ(c

2+d2)1/2 0

0 (c2+d2)1/2 0
0 0 1

)(
t 0 0
0 t 0
0 0 t−2

))
� eKt

3

, t > 1 (6.3)

where θγ = ac+bd
c2+d2 (coming from γ’s Iwasawa decomposition – cf. (2.12)).6 Roughly

speaking, the c2 + d2 factors serve the amplify the growth rate of the left-hand
side and cause it to violate (6.3), in a manner which we will make precise.

Fix ` 6= 0 and (c, d) 6= (0, 0). Let S` = {k 6= 0|(3.25) does not hold for (k, `)}. It is
a consequence of (3.12) that c(k, `,m) = c(−k, `,m), and that k ∈ S` ⇐⇒ −k ∈ S`.
The argument of P k,0,`F in (6.3) has Iwasawa A-component a(c2+d2)−1,t3

√
c2+d2 .

By part 2) of Lemma 4.1 and part 1) of Lemma 4.13,

c(k, `)Wλ(ak(c2+d2)−1,`t3
√
c2+d2) = Oε(e

ε|k|−π|k|/(c2+d2)−πt3) (6.4)

for any ε > 0 (since |`|
√
c2 + d2 ≥ 1). Thus the sum over k /∈ S`∪{0} in (6.3) tends

to 0 rapidly as t → ∞, and its estimate remains valid when the sum is restricted
to the (finitely many) k ∈ S` ∪ {0}. In terms of (3.15) and (3.24),

∑
k∈S`
k> 0

[
3∑

m=1

c(k, `,m)
(
e2πikθγ + e2πi(−k)θγ

)
φ
(m)
λ

(
a k
c2+d2

,`t3
√
c2+d2

)]

+
∑
w∈Ω

c(0, `;w)Mα2

degen,wλ(a(c2+d2)−1,`t3
√
c2+d2) � eKt

3

, t > 1 ; (6.5)

the reason the m-sum only includes terms for m = 1, 2, 3 is that Theorem 3.19

implies the decay of φ
(m)
λ

(
a k
c2+d2

,`t3
√
c2+d2

)
, m = 4, 5, 6, as t → ∞ and so they

may be omitted. Theorem 3.19 gives the following large t > 0 asymptotics for the

remaining φ
(m)
λ :

φ
(1)
λ

(
a k
c2+d2

,`t3
√
c2+d2

)
∼ exp(2πt3|`|

√
c2 + d2 + 2πt 3|`|1/3|k|2/3

2
√
c2+d2

)

φ
(2)
λ

(
a k
c2+d2

,`t3
√
c2+d2

)
∼ exp(2πt3|`|

√
c2 + d2 + 2πt 3(−1+i

√
3)|`|1/3|k|2/3

4
√
c2+d2

)

φ
(3)
λ

(
a k
c2+d2

,`t3
√
c2+d2

)
∼ exp(2πt3|`|

√
c2 + d2 + 2πt 3(−1−i

√
3)|`|1/3|k|2/3

4
√
c2+d2

).

(6.6)

6 This is readily deduced from
(

1 θγ
0 1

)(
(c2+d2)−1 0

0 c2+d2

)(
1 0
θg 1

)
= γγt =

(
a2+b2 ac+bd

ac+bd c2+d2

)
.
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In particular, for fixed choices of k, `, c, and d these expressions are linearly inde-
pendent as functions of t > 0.

Each summand for fixed k and m in the first line of (6.5) has growth as t →
∞ given by a constant multiple of the appropriate asymptotic in (6.6) – this
is because it is impossible for e2πikθγ + e2πi(−k)θγ = 2 cos(2πkθγ) to vanish for(
a b
c d

)
∈ SL(2,Z).7 The large t asymptotics of Mα2

degen,λ(a(c2+d2)−1,`t3
√
c2+d2) are

determined by (3.5) and (3.8) as a constant (depending on c, d, and `) times

t3(1+λ1)/2e2πt
3|`|
√
c2+d2 . Because of assumption (1.3), the λi are distinct and the

last line of (6.5) is asymptotic as t→∞ to e2πt
3|`|
√
c2+d2 times a linear combination

t3/2(1+λi), i ∈ {1, 2, 3}.
We now specialize (c, d) to have

√
c2 + d2 > K/`, so that each individual term in

the finite sum (6.5) violates the O(eKt
3

) bound on the righthand side for large t and
hence some cancellation must occur. However, cancellation is impossible because
of the distinct asymptotics of each summand in (6.5) (particularly because of the
factor of |k|2/3t in the exponentials in (6.6), and the absence of such a factor in
the contributions from the second line of (6.5)). We conclude that the left-hand
side of (6.5) is identically zero, in particular that (3.16) holds for all ` 6= 0 and
that c(k, `,m) = 0 for all k, ` 6= 0 and m = 1, 2, 3. Applying the same analysis using
the contragredient symmetry (2.14) shows c(k, `,m) = 0 for m = 4, 5 as well, i.e.,
(3.25) is true for all k, ` 6= 0, as was to be shown. �

7 Hecke operators

A theorem of Averbuch [1] asserts that Hecke eigenforms must have moderate
growth (this is because the values of Hecke eigenforms at various points satisfy
recursion relations that lead to a polynomial growth estimate). There is neverthe-
less a Hecke action on automorphic functions of exponential growth, which involves
increasing the growth rate. Let us first describe this for SL(2,Z) and the Hecke
operators

[Hnf ](z) =
∑
ad=n

b (mod d)

f(az+bd ) (7.1)

(Hn coincides with the usual Hecke operator Tn up to scaling). Although Hn
of course preserves SL(2,Z)-invariance, it also preserves the weaker condition of
periodicity in Re z. Thus

Hn : e−2πimz 7→
∑
d|n

e−2πimnz/d2
d∑

b=1

e−2πimb/d =
∑
d|m,n

d e−2πimnz/d2 . (7.2)

7 Suppose to the contrary that θγ = ac+bd
c2+d2

∈ ± 1
4

+ Z; it is clear c cannot be 0, for then

d = ±1. By adding integral multiplies of (c, d) to (a, b) (which does not change the coset

representative of
(
a b
c d

)
∈ Γ

(2)
∞ \Γ (2)), we may assume ac+bd

c2+d2
= a

c
− d

c(c2+d2)
= ± 1

4
, or

equivalently that 4d = (c2 + d2)(4a ∓ c). However, c2 + d2 > 4|d| if |d| > 4, in which case it
certainly cannot divide 4|d|. Neither can c2 + 9 divide 12 (when |d| = 3), nor c2 + 4 divide 8
(when |d| = 2), since c must be odd when d is even. Is it trivial to see there are no solutions
when |d| ≤ 1 and c 6= 0.
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From a consideration of the case of n coprime to m (where d must equal 1), one
sees the special case of Averbuch’s theorem that Hecke operators do not preserve
the space of periodic functions satisfying a fixed exponential growth bound.

This leads to some natural questions, in which O =
∑∞
n=1 cnHn is taken to be

a formal infinite linear combination of Hecke operators:

1. Can one find coefficients {cn|n ≥ 1} such that Oj = ej , where j is the classical
j-function and the sum implicit on the left-hand side converges absolutely?

2. Given a holomorphic weight zero modular function f for SL(2,Z) such as ej ,
can one arrange that Of equals some power of j (in particular, could it equal
j itself)? Could the sum defining Of converge absolutely?

3. In general, given an eigenfunction f of the full ring of invariant differential
operators on SL(n,Z)\SL(n,R)/SO(n,R), can one apply some convergent, in-
finite linear combination of Hecke operators O to obtain a function Of that is
bounded by some fixed exponential?

The importance of this last question is that it would allow us to relax (1.10) in
Theorem 1.9; it would also link the notion of weak Maass form (which assumes an
exponential bound) to arbitrary eigenfunctions (without presumed bounds). Let us
thus formally calculate the action of O on an infinite polar part P =

∑
m>0 emq

−m,

where q = e2πiz. In order for the sum defining P to converge, we must have that
em decays to zero faster than any decaying exponential in m. Then

OP =
∑

m,n>0

cnemHnq
−m =

∑
m,n>0

cnem
∑
d|m,n

d q−mn/d
2

=
∑
k>0

fkq
−k , where fk =

∑
m,n>0
d|m,n
mn=kd2

cnemd . (7.3)

Note that the last expression is symmetric under the interchange cn ↔ en. For
example, consider the simplest case where P = P1 = q−1, which has em = δm=1)
and hence fk = ck. In particular, only the trivial Hecke operator T1 stabilizes P1,
and O is completely determined by its action on P1.
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