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SUMMARY

In screening applications involving low-prevalence diseases, pooling specimens (e.g., urine, blood, swabs,
etc.) through group testing can be far more cost effective than testing specimens individually. Estimation
is a common goal in such applications and typically involves modeling the probability of disease as a
function of available covariates. In recent years, several authors have developed regression methods to
accommodate the complex structure of group testing data but often under the assumption that covariate
effects are linear. Although linearity is a reasonable assumption in some applications, it can lead to
model misspecification and biased inference in others. To offer a more flexible framework, we propose
a Bayesian generalized additive regression approach to model the individual-level probability of disease
with potentially misclassified group testing data. Our approach can be used to analyze data arising from
any group testing protocol with the goal of estimating multiple unknown smooth functions of covariates,
standard linear effects for other covariates, and assay classification accuracy probabilities. We illustrate
the methods in this article using group testing data on chlamydia infection in Iowa.
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2 Y. LIU AND OTHERS

1. INTRODUCTION

When screening individuals for sexually transmitted diseases, group testing can provide substantial cost
savings when compared to testing specimens individually. The origin of group testing can be traced back
to Dorfman (1943), who proposed it to screen military inductees for syphilis during World War II. This
seminal work suggested that several individual blood specimens could be combined into a pool that would
then be tested. If the pool tested negatively, each contributing individual could be diagnosed as negative at
the expense of a single test. On the other hand, positive pools would be resolved by testing its individual
specimens one by one. Although simple and intuitive, Dorfman’s idea to pool individual specimens has had
a profound impact on current disease screening practices. Group testing is used in applications involving a
multitude of infectious diseases, including HIV (Westreich and others, 2008; Krajden and others, 2014),
chlamydia and gonorrhea (Lewis and others, 2012), influenza (Van and others, 2012), and the Zika virus
(Saa and others, 2018). The benefits of pooling have also been realized in other applications such as
environmental testing (Heffernan and others, 2014), genetic association studies (Shi and others, 2014),
and disease surveillance in animals (Dhand and others, 2010).

Group testing has become the focus of a great deal of statistical research over the last 75 years.
This research generally focuses on either the so-called “case identification” or “estimation” problems.
The former refers to the development, characterization, and optimization of group testing strategies for
classification purposes; see Kim and others (2007). The latter, which is the focus of this article, involves
using grouped data to estimate quantities characterizing a population of individuals. Many authors have
used group testing to estimate a population proportion; see Liu and others (2012) for a review. More
recently, research in this area has shifted towards estimating regression models which relate individual-
level covariates (e.g., age, race, presence of symptoms, etc.) to the testing responses observed from
assaying pooled specimens. Notable works in the development of group testing regression methods include
parametric approaches by Vansteelandt and others (2000), Huang and Tebbs (2009), and Chen and others
(2009) as well as the semiparametric and nonparametric approaches in Delaigle and Meister (2011),
Delaigle and others (2014), and Delaigle and Hall (2015). When viewed collectively, a limitation of these
and other contributions is that the corresponding models are estimated by using only the testing responses
on initially formed master pools; i.e., subsequent responses from retesting individuals in positive master
pools are not utilized. As a result, this generally leads to regression estimators which are less efficient than
their would-be individual testing (IT) counterparts.

A smaller collection of methods has attempted regression estimation while incorporating master pool
and retesting responses from group testing protocols. Xie (2001) and Zhang and others (2013) accom-
plished this for specific protocols (e.g., Dorfman testing [DT], higher-stage hierarchical testing, array
testing [AT], etc.) using parametric inference via the expectation—maximization algorithm, while Wang
and others (2014) developed single-index regression methods to incorporate additional retesting responses.
Most recently, McMahan and others (2017) proposed a Bayesian approach for regression analysis of group
testing data within a generalized linear model (GLM) framework. The strengths of this approach were
3-fold. First, this approach can incorporate retesting data from any case identification protocol in group
testing; second, it can estimate assay accuracy probabilities along with the regression coefficients; and
third, it can incorporate historical information about disease prevalence and assay performance.

In this article, we propose a Bayesian generalized additive modeling framework to estimate the prob-
ability of disease with group testing data. That is, the proposed approach utilizes a linear predictor which
depends on unknown smooth functions of some covariates and linear combinations of others. This frame-
work allows for a more flexible data analysis when compared to existing group testing regression methods
which mandate linear covariate effects and therefore may simultaneously assuage concerns regarding
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model misspecification. Gaussian process (GP) (Rasmussen and Williams, 2006) and predictive pro-
cess (GPP) (Banerjee and others, 2008) priors are employed to estimate the unknown functions, and
our resulting modeling approach retains all of the strengths of McMahan and others (2017). To facil-
itate posterior estimation and inference, a computationally efficient sampling algorithm is constructed
by introducing carefully structured latent random variables. We demonstrate that the resulting estimates
are as accurate and as efficient as those that would have been obtained from analyzing individual-level
testing responses within the same framework. This “get more for less” phenomenon makes group testing
a cost-effective tool for disease screening in resource limited environments while producing equally good
or better population-level estimates in the process.

The remainder of this article is organized as follows. In Section 2, we state modeling assumptions and
present the proposed regression approach, complete with data augmentation steps and posterior sampling
details, which can be used for any group testing protocol. In Section 3, we use simulation to assess the
performance of our methods under a variety of settings for group testing protocols commonly used in
practice. In Section 4, we analyze group testing data recently collected in lowa as part of the state’s
surveillance program for chlamydia infection, illustrating the limitations of existing regression methods
which assume linear covariate effects. In Section 5, we summarize our work and describe future areas of
research.

2. METHODOLOGY
2.1. Preliminaries

Suppose group testing is used to test N individuals for a binary characteristic, such as disease status.
In this article, our goal is to develop a regression framework which can be implemented for any group
testlng protocol. Let Y denote the true disease status of the ith individual, for i = 1,...,N, that is,
Y; = 1 if the ith individual is truly positive and Y< = 0 otherwise. Let x; = (x;1,...,x;;)" denote a
vector of covariates observed for the ith individual. We assume that individuals’ true disease statuses are
conditionally independent given the covariates and that the relationship between Y; and x; is given by the
generalized additive model

q1 q2
H ' pr(Y = 11x)} = Bo+ D &iGen) + Y Brkigy1» @.1)

=1 I=1

where H (-) isaknown binary link function, 8;,/ = 0, 1, ..., ¢», are regression coefficients, g;(-),/ = 1, ..., g1,
are unknown smooth functions, and ¢; + ¢, = g. We assume throughout that A (-) is the probit link, with
generalizations to other link functions being straightforward after expressing H (-) as a Gaussian scale
mixture; see, e.g., Albert and Chib (1993) and Polson and others (2013). Note that if the unknown functions
g(+) are assumed to be linear, then the regression model in (2.1) would reduce to the GLM in McMahan
and others (2017). Therefore, a primary focus of this work is to develop methods which can reliably
estimate and draw inference on g;(-) at any value in its support, which is denoted by &, for/ =1, ..., g;.
To accomplish this within a Bayesian paradigm, both GP and GPP prior models are considered to obliquely
represent g;(x), for x € A;. These models are described in Section 2.3.

If the true disease statuses Y; were observed, then the model in (2.1) could be estimated by using the
methods in Choudhuri and others (2007). However, in most group testing scenarios, the Y;’s are never
actually observed. This is true because individuals are pooled and also because most diagnostic assays
do not have perfect sensitivity and specificity. Therefore, the process of deconvolving the observed group
testing data back on to the individual level is error-laden and, depending on which retesting protocol is
used, may involve numerous testing outcomes on the same individual tested in different pools. This unique
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4 Y. LIU AND OTHERS

aspect is what makes the development of regression methodologies a nontrivial problem, especially those
that can flexibly accommodate data arising from any group testing protocol.

To preserve this generality, as in McMahan and others (2017),let P;,j = 1, ...,J, denote the set of indices
corresponding to those individuals assigned to the jth pool. Note that if IT was used, then/ = N and each P;
isasingleton;i.e., a “pool” of size one. Otherwise, our only requirementisthat U;P; = {1, ..., N}, allowing
the methodology hereln to be used for any group testing protocol in Kim and othe; s (2007) or elsewhere Let
Z = 1 ifthe jth pool is truly positive; i.e., Z =1 (Zlep Y,- > 0), where /(-) is the usual indicator function.

In the presence of imperfect testing, the Z s, like the Y s, are never observed. Instead, the observed testing
response for ; is an error-contaminated version of Z , which we denote by Z;; that is, Z; = 1 if the jth pool
tests posmvely, Z; = 0 otherwise. Note that Z; |Zj,Se ,S ~ Bernoulli{S, jZ + (1 - S ‘/)(1 7 )}, where

Se, = pr(Z; = 1|Z =1 and S, = pr(Z; = 0|Z =0) denote the sensitivity and specificity, respectively,
of the assay that tests the individual(s) in P;.

2.2. Data augmentation

Aggregate the N true individual disease statuses as Y = (?],..., I~/N)/ and the N covariate vectors as
X=(xxp --- XN) Define g; = g/(xy), fori =1,...,Nand/ = 1,...,q;,and let Z = (Z,,...,Z)),

SE:(Sela" )/ (pl:"'aSpJ)/’gl:(gll""sgNl),forl:15"'3q15andG:(gl g2 e gq1)~
The observed data llkehhood can be expressed as

J
Z; 77 L =Zi 17
m(Z[S..S,. 8.G.X) = > []‘[{SJ(I—SEQI TYHA = 8,078, 7Y

Ye(o.yV Lj=1
N ~ ~
< [TH@m) 1 - H(n,—)}”'}, (2.2)
i=1
where n; = Y11, gy +x),B and B = (Bo, Bi, - - -, By,)' is a vector of regression coefficients corresponding
to the covariates in X, = (1,%;4,41,-..,Xy), fori = 1,...,N. The set {0, 1} denotes the collection of

all 2V possible realizations of Y. Note that in writing (2.2), we assume the observed testing responses in
Z are conditionally independent given the true disease statuses in Y and that the conditional distribution
Z|S~{ does not depend on the covariates in X. Simulation studies in McMahan and others (2017) reveal
that mild to even moderate violations of these assumptions do not compromise estimation within a GLM
setting.

Evaluating (2.2) is computationally infeasible when N is large; thus, developing a posterior sampling
algorithm that requires such an evaluation is generally not possible. We propose a two-stage data augmen-
tation procedure to facilitate the development of such an algorithm. The first stage introduces individuals’
true disease statuses Y; as latent random variables and the second exploits the fact that H(-) is the probit
link. After the first stage, the joint conditional distribution of Z and Y can be expressed as

J
~ Z; 77 o 1-Z 15
(2, Y8, S, 8.G.X) = [ [(S/ (1 = S.) " 4)5{(1 = 8,)78,, 7}~

J=1
N ~ ~

x [TH@)™ 1 = H@y ", (2.3)
i=1

Following Albert and Chib (1993), the second stage introduces mutually independent normal random
variables U; ~ N'(y;, 1), fori = 1,...,N, such that U; > 0 if Y- =land U; < 0if Y~ = 0. This data
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augmentation step yields

J
7(2,Y,UIS..S,. B.G.X) oc [ [157 (1 — 5,)' Y3{(1 = 5,)%4S,, 7)1 %

J=1

N
< [[eW =@ =1,U0> 0+ 1Y, =0,U; <0)), (24

i=1

where ¢ (-) denotes the standard normal probability density function and U = (Uy, ..., Uy)'.

2.3. Modeling the unknown functions

Our regression methods allow for GP and GPP prior models to represent the unknown functions
gi() in (2.1). Let {xj,... ,x,*q,} denote the K; unique values among {xy;,...,xy} and define g =
@), & (x}g[ D)), for I =1,...,q,. Under the GP model, the g;’s are mutually independent nor-
mal random vectors with mean 0 and covariance matrix C; = ;"' R}, where 7 is a precision parameter
and the (k, k")th element of R;" is p; (x};, x},,; 0;), where p; = p;(-, -; -) is a correlation function and 6; con-

sists of smoothness and decay parameters. To relate g = (gy;, ..., gw)’ to its subvector g7, let M; = (m,((lk),)

be an N x K; matrix, where m,((lk), = lifxy = x},, and m](([k), = 0if xy # x,, so that g; = M,g;. The linear

predictor n; under the GP model can be written as
q1
n = Zm;zg}k + X8,
=1

where my; is the ith row of M. Pairing this with (2.4), the full conditional distribution of g; is normal with
mean f; and covariance matrix X;; see Section 2.4 for exact expressions. Note that drawing samples from
this distribution requires one to calculate the determinant and inverse of X7, which could be a very large
(K; x K;) dense matrix. Furthermore, the computational burden in working with X7 is only exacerbated
when these calculations are needed within each step of an Markov chain Monte Carlo algorithm; i.e., if
0, is to be sampled along with the other model parameters.

To reduce this complexity, a GPP prior can be used instead. This approach specifies a “parent”
process based on strategically chosen knots and then interpolates this process to_the points of inter-
est. Let {Xy;,... ,)7,?[ ;} denote the selected knots within the support &), where K; << Kj, and let

g = (@), ...,&(k,)) . Foreach I = 1,...,q, the GP model yields g |7, 6; " N(0,C), where
C = r,_lR, and the (k, k")th element of R, is p; (X, X3 0,). It follows that g, and g are jointly multivariate

normal, that is,
% 1 <ii, fi7>>
N 1.0 ~ N[0, — (50 ) 2.5
(g,) o ( u \R/ R @3

where R is defined above and ﬁ;* isa I?, x K; matrix whose (k, k')th element is p; (X, x},,; ;). The GPP
model exploits the relationship in (2.5) by replacing g; in the GP model with its conditional expectation
given g, which is T,g;, where T, = R,*/ Rfl. Therefore, the linear predictor ; under the GPP model can
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6 Y. L1U AND OTHERS

be represented as

a1
0 = Z m; T/g + x},B.

I=1

When compared to a GP prior model, the computational burden associated with GPP is potentially much
less because posterior sampling involves matrices of dimension K; x K.

The functions g;(-), I = 1,...,q, are identifiable up to a constant and therefore side conditions are
needed for estimation. A common restriction requires g;(-) to integrate to 0 over A}, / = 1,..., ¢, which

can be enforced in finite samples by requiring Zf’: L& (x}y) = 0 for GP and Zf’: , &) = 0 for GPP;
see Friedman and others (2001). Under either the GP or GPP priors, one can exploit the relationship in
(2.5) to interpolate a functional estimate of g;(x) for any x € A}, with the usual cautions in place regarding
extrapolation.

2.4. Posterior sampling

We describe posterior sampling for 8 and the unknown functions g;(-), / = 1,...,q;, when the assay
accuracy probabilities in S, and S, are known; Section 2.5 generalizes this by allowing S, and S, to be
unknown. In what follows, G = (g, g --- g,,) and g equals M,g; or M,;T,g;, depending on whether a
GP or GPP prior is used, respectively.

Let (B) denote a prior distribution for 8. From (2.4), the full conditional distribution 7 (8|U, G) satis-
fies(B|U, G) oc exp{—(U—>_7", g —XoB) (U—->_11, & —X;8)/2}m(B), where X, = (X2 X2, - -+ Xy2)’
is the design matrix associated with the linear covariate effects. Thus, it is natural to specify a A (a, ') prior
for B, where the mean and covariance matrix hyperparameters can be chosen diffusely or informatively
to incorporate historical data. This specification leads to

q1
BIU,G ~ N ((X;X2 + r‘)—l{r‘a + X} (U - Zg,) } X5X, + r‘)—1>.
I=1

Furthermore, it follows from (2.4) that the full conditional distribution of U, is truncated normal, where
the truncation depends on the ith latent disease status; i.e.,

UlY:,B,.G ~ TN{ni,1,0,00(Y; = 1) + TN {n;, 1, (—00,00}[(Y; = 0), i=1,...,N,

where TN {u,c?, (a, b)} denotes a truncated normal distribution with mean ., variance o2, and support
(a, b). It also follows from (2.3) that the full conditional distribution of the ith disease status

¥12.Y_..S..S,.G, 8 ~ Bemnoulli (p—1>
P+ Pio

~ ~ ~ ~ ~ Z _ 7.
where Y—i = (Yb" ',Yi—la Yi+ls' L) YN)/ap;‘kl =H(771) njEAi Sejj(l _Sej)l Zja

](Zi/epij Yl-/ >0) [(Zi/erpl_j Yl»/ =0)

Po =11 = H@)} (5570 =5 4) (1 =5,)58,) ,

JEA;

A, ={j:ieP},and P; = {i’ € P, : i # i'}. Derivation details for this conditional distribution under a
GLM are described in McMahan and others (2017).

020z Iudy |0 uo Jasn Ateiqr 18dood I o AQ 22G9€2S/E00BEXH/SONSIEISOIG/E60 L 0 |/10P/10BISqE-0|ILIE-80UBADE/SOSIEISOIq/LL0D dNO"0lWapEDE//:SARY WOl POPEOIUMOQ



Generalized additive regression for group testing data 7

We now turn our attention to updating the unknown functions. Under the GP model, the full con-
ditional distribution of g can be expressed as w(g/|U, B,1,0,,G;) o exp{—(U" — M,g;)' (U* —
M;g;)/2} exp{g}"/C;"_lg}"/z}, where U* = U — X, — ZI,# My g; and G is the matrix G with g
removed. Straightforward algebra yields gf|U, B, 7,,0,, G ~ N (u}, X)), where u; = T;M;(U-X,8—
> vy Mrgp)and ) = (MM, +C;~ ')~1. Under the GPP model, a similar argument shows the full condi-
tional distribution g;|U, B8, 1,0, G(_;, ~ N'(&;, i;), where it; = fJIT}M}(U —X,B8— Z,,#, M, T,g) and
> = (TMMT, +6,-1)*1 . Therefore, all that remains are the GP/GPP hyperparameters; i.e., the precision
parameter 7; and @;. Exploiting conditional conjugacy, independent gamma priors with shape a and rate b,
are used for 7;, which lead to full cond1t10nal dlstrlbutlons 7lgf, 0, ~ gamma(a;+K;/2, b;+ g/ R* lg, /2)
and 7|g,0, ~ gamma(a, + K; /2,b; + R, g; /2) under the GP and GPP models, respectlvely As for
0,, its full conditionals satisfy 7r(0,|g,,r,) o |Cr~1 2 expl{—g/' C:'gr/2)m () and 7 (8,|U, g, 71, X) o
|C,I7172 exp[—{(U—n)' (U= -0)+g 7'8/}/217(8)), respectively, wheren =Y 7', M;T,;g+X,B. Because
0, is implicitly a part of C; ,Cy, and T,, determining a conjugate prior for 8, is not straightforward under any
correlation function p;. We therefore use a random walk Metropolis—Hastings algorithm to draw samples
of 6,, as outlined in the supplementary material available at Biostatistics online.

2.5. Unknown assay accuracy probabilities

The results in Section 2.4 describe the steps necessary to estimate the model in (2.1) when the assay
accuracy probabilities in S, = (S, ...,S,;) and S, = (S,,,...,S,,)" are known. However, allowing S,
and S, to be unknown and estimating them simultaneously with 8 and g;(:),/ =1, ..., ¢, is also possible.
As in McMahan and others (2017), define M (m) = {j : the mth assay was used to test the jth pool}, for
m=1,...,M,sothat S, and S, can be expressed as S, = (Sc(1), - - ., Sean) and S, = (Spa), - - > Span)’s
i.e., this reparametrization requires one only to keep track of which assay was used to test which pool. For
example, if a group testing protocol uses a highly specific screening assay to test pooled specimens and
a confirmatory assay for individual specimens, then M = 2 and there are four probabilities to estimate.
In other applications, one might want S, and S, to depend on which type of specimen is tested (e.g.,
urine, swab, etc.) or even the pool sizes used; see Section 4.

Due to the form of (2.3), we specify independent beta priors S, ~ beta(age(m), e(m)) and Sp(m) ~

p(m)) form =1,..., M. The full conditional distributions are S, (., |Z, Y ~ beta(as( . s( )
and Sp(m)|Z Y ~ beta(as, . b;( ), Where ag ) = Beim) + 2 e mom ZZ, B3,y = Dseim) +~ZjeM<m)(l
Z)Z, a o = DSy T+ e —2Z)A = Z) and bS( )= bs,, + > emm Zi(1 — Z)). Pilot data
on assay performance, which are typically available in the product literature published by manufacturers,
can be used to construct informative prior distributions for S, and S,... However, for group testing
protocols which involve retesting individuals for case identification, we have observed these parameters
can be estimated correctly even when one injects little or no information into the prior distributions; see
Section 3.

The complete posterior sampling algorithm to estimate g and g;(-),/ = 1,...,q, as well as the assay
accuracy probabilities in S, and S, is given in the supplementary material available at Biostatistics online.

beta(ag oy

3. SIMULATION EVIDENCE

We consider two population-level models, both of which are of the form

H pr(Y; = 11x)} = Bo + &1 (i) + 22(6) + Bixis + Boxias
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i=1,...,N, where H(-) is the probit link, 8 = (Bo, B1,82) = (—1.8,0.5,0.5), x;1,xn ~ U(-3,3),
x5 ~ N(0,1), and x;4 ~ Bernoulli(0.5). In the first model (M1), the functions

g1(x1) = 0.7exp[{—1(x; > 0)1.2* — I(x; < 0)1.27%}x7/6.25] — 0.468

(x; + 1.5)% (x, — 1.5)?
=0.6 - 0.4 ————1—0.279
8:(x2) exp { 0.72 } +Osexp { 128 .
while in the second model (M2),
0.2si 0.2)/2.5} 4+ 0.4 4 1+1.5
21(x) = sinfrr (o +0.2)/2.5) + ~ 0351 and g(ny) = XA H 1) o406
exp[{—x; — (x; — 0.3)2I(x; > 0.3)}/6] 6 + 6 exp(1 + 1.5x;)

These functions were chosen to cover a broad range of nonlinear patterns, and the additive constants
(e.g., —0.468) were chosen to ensure the functions integrate to 0 over X; = (—3,3), / = 1,2. Other
parameter settings were selected to keep the population prevalence around 9%, which is consistent with
our application in Section 4. The covariates x;1,x;; ~ U(—3, 3) were each rounded to the second decimal
place so that we can compare the GP and GPP approaches. Doing this constrains the dimension of X to
be at most 601 x 601, making GP computationally feasible. When estimating g (-) and g>(-) under a GPP
prior, we used 100 equally spaced knots within (—3, 3)~; ie., K; =100, for/ =1, 2.

We generated N = 5000 individual true statuses Y; from each regression model (M1 and M2) and
randomly assigned these individuals to 1000 master pools, each of size five. As in McMahan and others
(2017), we simulate the testing responses Z from three group testing protocols: master pool testing (MPT),
DT, and two-dimensional AT. Briefly, MPT is for estimation only as positive pools are not resolved further.
DT and AT are both two-stage protocols. Positive master pools in DT are resolved in the second stage by
testing each individual, while AT arranges master pools in overlapping rows and columns in the first stage
and uses IT in the second (Kim and others, 2007; McMahan and others, 2012). To incorporate the effect
of imperfect testing, master pool responses in MPT, DT, and AT were simulated using S, = 0.95 and
S,y = 0.98, and individual retests for DT and AT were simulated using S, = 0.98 and S,) = 0.99.
This entire process was repeated B = 500 times for each group testing protocol (MPT, DT, and AT) and
regression model (M1 and M2).

The following prior distributions were used. For the precision parameters in the covariance functions
(for GP and GPP), we used t; ~ gamma(a; = 2,b, = 1), for / = 1,2, and the regression parameters
Bo, B1, and B, were each assigned vague N (0, 1000) priors. When assay accuracies were assumed to be
unknown, we assigned uniform priors; i.e., Sem, Speny ~ beta(l, 1). Finally, for the GP and GPP priors,
we used the flexible Matérn correlation function

(x,x;0)) = 2 <Ix—X'|>VK <|x_x,|> (3.6)
PRSIV =Tm (e "\Te ) '

where 0, = (v,¢)’, ] = 1,2, and «,(-) is the modified Bessel function of the third kind of order v. In
this submodel, v controls the smoothness of the GP sample path and ¢ controls the decay rate. Following
Banerjee and others (2008), we took v = 2 to obtain a desired degree of differentiability and assigned
¢ ~ U(0.075,0.750). When v = 2, the distance at which the correlation drops to 0.05 is approximately
6¢; thus, our prior for ¢ provides a range from 0.45 to 4.5 for this distance. The posterior sampling
algorithm in the supplementary material available at Biostatistics online contains additional details on
initial values. We used this algorithm to draw 5000 samples (after a burn-in of 2000 samples) and retained
every 5Sth iterate. Trace plots were used to monitor convergence and consistently demonstrated excellent
mixing.
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Table 1. Simulation results for models M1 and M2 under GP and GPP priors when assay accuracy
probabilities are known. Average bias of 500 posterior mean estimates (Bias), sample standard deviation
of 500 posterior mean estimates (SSD), average of 500 estimates of the posterior standard deviation (ESE),
and empirical coverage probability (CP95) of nominal 95% equal-tail credible intervals. Note that close
agreement between SSD and ESE is preferred. The number of individuals is N = 5000. For DT and AT,
the percentage reduction in the average number of tests (when compared to IT) is shown in parentheses.
The average time (in minutes) to estimate the model is also shown.

Model Parameter Individual MPT DT AT
B = 0.50 Bias (CP95) 0.01 (0.94) 0.01 (0.95) 0.01 (0.93) 0.01 (0.93)
' SSD (ESE) 0.03 (0.03) 0.07 (0.07) 0.03 (0.03) 0.03 (0.03)
M1/GP £y = 0.50 Bias (CP95) 0.01 (0.94) 0.02 (0.93) 0.01 (0.95) 0.01 (0.93)
S SSD (ESE) 0.06 (0.06) 0.14 (0.13) 0.06 (0.06) 0.06 (0.06)
Time (in minutes) 284 2901 284 286
B = 0.50 Bias (CP95) 0.01 (0.94) 0.02 (0.93) 0.01 (0.94) 0.01 (0.93)
! ) SSD (ESE) 0.03 (0.03) 0.07 (0.07) 0.03 (0.03) 0.03 (0.03)
M1/GPP fy = 0.50 Bias (CP95) 0.01 (0.94) 0.02 (0.94) 0.01 (0.95) 0.01 (0.93)
S SSD (ESE) 0.06 (0.06) 0.14 (0.13) 0.06 (0.06) 0.06 (0.06)
Time (in minutes) 53 46 47 47
Average number of tests (M1) 5000 1000 2892 (57.8%) 2936 (58.7%)
1 = 0.50 Bias (CP95) 0.01 (0.94) 0.01 (0.95) 0.01 (0.95) 0.01 (0.95)
' SSD (ESE) 0.03 (0.03) 0.06 (0.07) 0.03 (0.03) 0.03 (0.03)
M2/GP fy = 0.50 Bias (CP95) 0.01 (0.95) 0.02 (0.93) 0.01 (0.93) 0.01 (0.95)
S SSD (ESE) 0.06 (0.06) 0.14 (0.13) 0.06 (0.06) 0.06 (0.06)
Time (in minutes) 290 310 315 277
B = 0.50 Bias (CP95) 0.01 (0.95) 0.01 (0.95) 0.01 (0.95) 0.01 (0.95)
! ' SSD (ESE) 0.03 (0.03) 0.06 (0.07) 0.03 (0.03) 0.03 (0.03)
M2/GPP fy = 0.50 Bias (CP95) 0.01 (0.95) 0.01 (0.92) 0.01 (0.94) 0.01 (0.94)
2= SSD (ESE) 0.06 (0.06) 0.14 (0.13) 0.06 (0.06) 0.06 (0.06)
Time (in minutes) 56 49 49 48
Average number of tests (M2) 5000 1000 2926 (58.5%) 2956 (59.1%)

Table 1 summarizes the results of estimating 8, and 8, in both models (M1 and M2) when assay
accuracy probabilities S,y and S,y, m = 1,2, are known. In addition to the three group testing protocols
(MPT, DT, and AT), we included the corresponding IT results for comparison. The values of “Bias” and
“SSD” in Table 1 are the empirical bias and standard deviation of the B = 500 posterior mean estimates,
and “ESE” is an averaged estimated posterior standard deviation. For all group testing protocols, the bias
in the estimates of B; and 8, is close to zero, SSD and ESE are in close agreement, and the empirical
coverage probabilities of 95% equal-tail credible intervals are at the nominal level. This is true regardless
of whether a GP or GPP prior model is used, although performing this simulation took about 5—7 times
longer using GP. Finally, we note the estimates of §; and 8, from MPT are about 2—3 times more variable
than those from IT. This is not unexpected because MPT does not resolve positive pools which leads to a
loss in information. However, the same estimates under DT and AT possess the same level of precision as
the corresponding estimates from IT, despite DT and AT requiring slightly less than 60% the total number
of tests on average.
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Table 2. Simulation results for models M1 and M2 under GP and GPP priors when assay accuracy
probabilities are unknown. Average bias of 500 posterior mean estimates (Bias), sample standard deviation
of 500 posterior mean estimates (SSD), average of 500 estimates of the posterior standard deviation (ESE),
and empirical coverage probability (CP95) of nominal 95% equal-tail credible intervals. Note that close
agreement between SSD and ESE is preferred. The number of individuals is N = 5000.

Model B =050 B =050 S.q) =095 S,1 =098 S, =098 S, =099
pp Bias (CP9S) 0.02(0.92) 0.02(0.93) —0.05(0.94) —0.01(0.99) 0.00 (0.98)  0.00 (0.94)
M1/GP SSD (ESE)  0.03 (0.04) 0.07 (0.06) 0.04 (0.06)  0.01(0.02) 0.01 (0.01)  0.01 (0.01)
A Bias (CP9S) 0.01(0.94) 0.01(0.95) 0.00(0.92) ~ 0.00(0.96) 0.00(0.94)  0.00(0.96)
SSD (ESE)  0.03 (0.03) 0.06 (0.06) 0.01(0.01)  0.01(0.01) 0.01(0.01) 0.01 (0.01)
pp Bias (CP935) 0.02(0.91) 0.02(0.93) —0.05(0.94) —0.01 (0.99) 0.00 (0.98) ~ 0.00 (0.94)
MU/GPP SSD (ESE)  0.04 (0.04) 0.07 (0.06) 0.04 (0.06)  0.01(0.02) 0.01(0.01)  0.01 (0.01)
A Bias (CP9S) 0.01(0.95) 0.01(0.93) 0.00(0.93)  0.00(0.97) 0.00(0.95)  0.00(0.97)
SSD (ESE)  0.03 (0.03) 0.06 (0.06) 0.01(0.01)  0.01(0.01) 0.01(0.01) 0.01 (0.01)
pp Bias (CP9S) 0.02(0.92) 0.02(095) —0.05(0.92) —0.01(0.98) 0.00(0.98) 0.0 (0.96)
M/GP SSD (ESE)  0.04 (0.04) 0.06 (0.06) 0.04 (0.05)  0.01(0.02) 0.01 (0.01)  0.00 (0.01)
A Bias (CP935) 0.01(0.95) 0.01(0.96) 0.00(0.95)  0.00(0.96)  0.00(0.94) —0.01 (0.95)
SSD (ESE)  0.03 (0.03) 0.06 (0.06) 0.01(0.01)  0.01(0.01) 0.01(0.01) 0.01 (0.01)
pp Bias (CP9S) 0.02(0.92) 0.02(095) —0.05(0.93) —0.01(0.98) 0.00(0.98) 0.0 (0.97)
SSD (ESE)  0.04 (0.04) 0.06 (0.06) 0.04 (0.05)  0.01(0.02) 0.01 (0.01)  0.00 (0.01)

M2/GPP
A Bias (CP93S) 0.01(0.96) 0.01(0.95) 0.00(0.95)  0.00(0.96)  0.00(0.95) —0.01 (0.95)

SSD (ESE) 0.03 (0.03) 0.06 (0.06) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01)

Table 2 presents the same summaries as in Table 1 except that now the assay accuracy probabilities
Se1)> Sp(1y» Se2)» and Sy ) are treated as unknown and are estimated along with the regression parameters
B and B,. Therefore, only DT and AT are shown in Table 2 as only these protocols implement both MPT
and IT. In terms of estimation and inference, our findings for the regression parameters 8, and 8, in this
setting are analogous to those in Table 1. For the assay accuracy probabilities, which were modeled a priori
using uniform distributions, there is evidence the master pool sensitivity S, is slightly underestimated
for DT on average. However, this does not occur when AT is used, and inferences for the other accuracy
probabilities S,(1), Se(z), and Sy, are all on target.

The fundamental difference between the methods in this article and other group testing regression
approaches is our ability to estimate the unknown functions g;(-) in (2.1). Figure 1 shows the results
when estimating g,(-) in Model 1 in our simulation study, assuming assay accuracy probabilities are
known, by employing both GP and GPP priors. The same figure for g (-) in Model 1, the same figures for
Model 2 (assuming known accuracies), and the same figures for both Models 1 and 2 (assuming unknown
accuracies) are shown in the supplementary material available at Biostatistics online. In all figures, we
display the 0.025, 0.50, and 0.975 quantiles of the B = 500 estimated functions (posterior means) from our
simulation. With the exception of MPT, the median estimated functions are in nearly perfect agreement
with the true regression functions for both the GP and GPP prior models. Estimates calculated from DT
and AT exhibit less variability than those calculated from MPT and appear to be as efficient as those from
IT despite requiring far fewer tests.
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Fig. 1. Simulation results for IT, MPT, DT, and AT when assay accuracy probabilities are known. The solid curve in
each subfigure is the second function g, (x;) in model M1. Both GP (left) and GPP (right) prior models are used for
estimation. The following posterior mean quantiles are shown: 0.025 (dotted curve), 0.50 (dashed curve), and 0.975
(dotted curve).

4. TOWA CHLAMYDIA DATA ANALYSIS

We apply our regression methods to a data set provided by our colleagues at the State Hygienic Laboratory
(SHL) in Coralville, lowa. The SHL is the largest public health laboratory in Iowa, and each year the lab
tests between 20 and 30 thousand residents for chlamydia. The lab normally receives around 100 specimens
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each working day from clinics located throughout the state; these specimens (most of which are swab or
urine specimens) are shipped to the SHL where testing is performed using the Aptima Combo 2 Assay
(Hologic, San Diego). Because the SHL offers its services without charge to the patient or to the clinic
responsible for the specimen, testing costs for the lab are an omnipresent concern—especially because
federal funds for chlamydia screening have diminished in recent years. The current protocol at the SHL
is to use DT for all swab specimens collected from females, usually in master pools of size four, and to
use IT for all other specimens. Swab master pools which test positively are resolved immediately so that
final diagnoses can be provided to patients in a timely manner.

Like other public health labs, the primary reason the SHL uses group testing is to save money. In fact,
our colleagues have reported that pooling female swab specimens saves the lab approximately $600 000
per year when compared to what it would cost to test these specimens individually. However, because
chlamydia infection can be asymptomatic, surveillance is also critical to inform public health efforts in
Iowa towards reducing the prevalence—especially for those residents at the highest risk. The methodology
in this article can be used to analyze data exhibiting the complicated structure like those collected at the
Iowa SHL. For illustration, we focus on the diagnoses of N = 13 862 female subjects tested during 2014.
These diagnoses are derived from the test results on 2273 swab master pools of size four, 12 swab master
pools of size three, 1 swab master pool of size two, 416 individual swab specimens, and 4316 individual
urine specimens. Further testing was performed on individuals in the 2286 (= 2273 + 12 4 1) swab master
pools in accordance with Dorfman’s protocol when necessary.

After an extensive model-building process using all available risk factors collected on each individual,
we selected the following model to describe an individual’s chlamydia status:

H Ypr(Y = 11x)} = Bo + 21(x1) + Bixa + Boxs + Baxa + Baxs + Psxes 4.7)

where x; denotes age (in years), x, is a race indicator (= 1 if Caucasian; = 0 otherwise), x; = 1 if a new
sexual partner was reported within the last 90 days (0, otherwise), x4 = 1 if multiple sexual partners were
reported within the last 90 days (0, otherwise), x5 = 1 if there was contact with at least one partner who
reported an STD within the last 90 days (0, otherwise), and x4 = 1 if there were symptoms of infection
reported; e.g., painful urination/menstruation, etc. The unknown function g, (+) in (4.7) allows the marginal
effect of age on chlamydia status to be nonlinear. We continue to assume H (-) is the probit link.

Acknowledging differences in how the Aptima Combo 2 Assay may perform on swab and urine spec-
imens (Gaydos and others, 2003) and also allowing for differences between testing pools and testing
individuals, we posited three sensitivity and specificity parameter pairs: S,y and S,;) for swab specimens
tested in pools, S.;) and S, for swab specimens tested individually, and S,3) and Sy, for individual
urine specimens. In our analysis, these six parameters were assigned uniform priors. We also assigned
diffuse A/ (0, 1000) priors for the six regression parameters in (4.7) and adopted the Matérn correlation
function in (3.6) to estimate g, (-). Priors elicited for the precision parameter t; and 6, = (v,¢) were
identical to those in Section 3. Finally, in the data set provided to us, each individual’s age was measured
to the nearest hundredth of a year; this admits K; = 2743 unique values of x; making the GP approach
too computationally intense to implement. To circumvent this problem, we estimated (4.7) under a GP
prior using ages rounded to the nearest tenth of a year, which reduced the number of unique observations
to 430. To estimate the model using a GPP prior, we selected K; = 100 knots equally spaced between 5.6
and 70.0, the minimum and maximum ages of females tested in 2014, respectively.

The results of our analysis are shown in Table 3 and Figure 2. For comparison purposes, we also
included the corresponding results from estimating the same probit model as a GLM (McMahan and
others, 2017), that is, by assuming the effect of age is linear. Table 3 provides posterior mean estimates
and 95% highest posterior density credible intervals for the regression parameters in (4.7) and the six assay
accuracy probabilities described in the last paragraph. For these parameters, one will note the differences
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Fig.2. lowa chlamydia data. Estimated age effect (i.e., pointwise posterior mean) obtained by GP (solid curve) and
GPP (dashed curve) prior models. The GLM fit from McMahan and others (2017) is also shown (dotted line).

between the GP and GPP posterior means are small and using a generalized additive model produces
estimates which are similar to those when using a GLM. The amount of variability in these estimates is
also similar despite the fact that the GP/GPP approaches estimate g; (-) nonparametrically.

On the other hand, Figure 2 highlights the practical limitations of using group testing regression methods
which assume linear covariate effects. Although the effect of age on chlamydia status is approximately
linear over a subset of the ages, the age groups where the effect is highly nonlinear correspond to two
cohorts of epidemiological importance. First, the Centers for Disease Control and Prevention (CDC)
recommends regular chlamydia screening for all females in the United States aged 25 and younger. This
is a priority subpopulation for chlamydia prevention given the high burden of risk and the potential for
severe complications (e.g., infertility, ectopic pregnancy, etc.). Our analysis of the lowa data reveals a
peak risk of infection around 18 years of age, which is largely consistent with other states (CDC, 2019).
Second, a compelling finding from our analysis is the relative increase in chlamydia risk for females aged
50 and older. This observation was initially surprising; however, our public health colleagues at the CDC
have noted this group’s increase may be part of an emerging national trend involving older adults.

5. DiscussioN

In this article, we have proposed a generalized additive regression framework for potentially misclassified
group testing data, extending the methodology in McMahan and others (2017) to incorporate nonlinear
covariate effects. GP and GPP prior distributions can be used to estimate the unknown functions describing
these effects, and our careful use of data augmentation leads to a computationally efficient posterior
sampling algorithm. Simulation results consistently demonstrate that our approach can reliably estimate
the regression parameters and unknown functions even when assay classification accuracy probabilities
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are unknown. Our methods are applied to group testing data collected in lowa, where pooling is used to
reduce the cost of testing individuals for chlamydia infection.

As noted by an anonymous referee, it is important to emphasize the data we analyzed in Section 4
are not data from a random sample of all lowa females. In fact, the lead lab technician at the SHL has
described how specimens received each day are likely representative of the “highest-risk” residents in the
state. Of course, this observation does not intrinsically void the value of our regression methodology, but
it does limit our ability to make statements about females in lower-risk groups. One possible limitation of
our approach is the requirement that testing results are conditionally independent given the true disease
statuses; see Section 2.2. Such a requirement is needed whenever individuals appear in multiple pools, as
is the case with the Iowa data analysis. In the supplementary materials available at Biostatistics online,
we have performed an additional simulation study to assess the robustness of our methods to violations
of this assumption. Even though this study suggests estimation is largely unaffected by such a violation,
finding a way to relax this assumption could be a worthwhile topic for future research.

Finally, it should be possible to develop other group testing regression methods using the latent data
framework presented in this article. One possible extension could involve accounting for spatial or spa-
tiotemporal dependence when individuals are tested in pools. This could be accomplished by adopting
GP models for point process data (Banerjee and others, 2008) or conditional autoregressive models for
areal data (Banerjee and others, 2014). However, in either case, we would expect the computational diffi-
culty to far exceed that which is seen here. Another useful extension would be to develop joint modeling
methods which incorporate testing responses from multiplex assays; i.e., assays which provide responses
for multiple diseases at once. We have found that public health labs are increasingly relying on multiplex
assays to save resources (when compared to using separate assays for each disease) and that often these
assays are applied to pools of individual specimens.

6. SOFTWARE

Software in the form of R code, a simulated data set, and documentation are available on GitHub
(https://github.com/yanliu5/gam). The simulated data set has the same structure as the DT data set in
Section 4. The analysis of the simulated data set is shown in the supplementary material available at
Biostatistics online.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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