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Abstract

This paper focuses on a general class of systems of nonlinear stochastic differential equations, inspired
by stochastic chemostat models. In the first part, the system is formulated as a hybrid switching diffusion.
A complete characterization of the asymptotic behavior of the system under consideration is provided. It
is shown that the long-term properties of the system can be classified by using a real-valued parameter
A.If A < 0, the bacteria will die out, which means that the process does not operate. If A > 0, the system
has an invariant probability measure and the transition probability of the solution process converges to
that of the invariant measure. The rate of convergence is also obtained. One of the distinct features of
this paper is that the critical case A = 0 is also considered. Moreover, numerical examples are given
to illustrate our results. In the second part of the paper, controlled diffusions with a long-run average
objective function are treated. The associated Hamilton—Jacobi-Bellman (HJB) equation is derived and
the existence of an optimal Markov control is established. The techniques and methods of analysis in
this paper can be applied to many other stochastic Kolmogorov systems.
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1. Introduction

We consider a class of systems of nonlinear stochastic differential equations. The motivation
stems from the pressing need of the treatment of chemostat models that are a laboratory
apparatus used for the continuous culture of microorganism, which is a technique introduced
by Novick and Szilard in [29]. This technique plays an important role in microbiology,
biotechnology, and population biology, and is perhaps the best laboratory idealization of nature
for population studies [36]. Chemostats are also used as microcosms in ecology [2,30] and
evolutionary biology [8,19], as well as in wastewater treatment based on chemostat models
[5,11,14,20,38], which has led to numerous research inventions. Since 1950’s, much attention
has been devoted to modeling and analyzing chemostat problems; see [10,15,16,33] and
references therein.

The dynamics of the process can be modeled in the general form by a system of ordinary
differential equations

ds(t)  So— fo(S())
dr 0

dx()
7 —X®) <f2(5(t), X(®) — ks — 5

where S(z), X(¢) are the substrate concentration and the bacterial concentration, respectively;
So and f,(S) are the input concentration and the decay rate of the substrate, respectively; % is
the dilution rate (or equivalently, 6 is the mean residence time), k, is the death rate of X and
R is the recycle ratio; f(S, X) is the consumption rate and f,(S, X) is the growth rate of the
bacteria. The formulation in (1.1) is much more general than the existing models. The readers
can find works on the specialized forms of the models with specific forms of the functions
fo, f1, f> in [6,16,31,39,40] and references therein.

To better reflect the reality, effort has been devoted to stochastic systems to take into account
the effect of environmental perturbations [17,35]. A fundamental problem is the long-term
behavior of the system. However, the dynamic behaviors have not been fully understood to the
best our knowledge. The asymptotic features of the systems and important information such
as the wash-out time have not been fully understood to date. In contrast to the existing work,
we develop new approaches to carefully analyze the corresponding systems.

Considering the system in a fluctuating environment, we may assume that the dynamics are
perturbed by a white noise. Then, we have a stochastic counterpart of (1.1),

— X(0) f1(S(). X(1)),
14 R) (.0

So — folS
ds(t) = (%(m) — X(0) f1(S(0), X(t))) dt + o1 S(dW; (1),

1.2
1+ R 42
dX(1) =X(1) <fz(S(t), X(®) — ks — T) dt + o X()dWa(1),

where W(¢t) and W,(¢) are two independent real-valued Brownian motions. However, it has
been recognized that the formulation above is not able to capture some important features of
the underlying process. More often than not, in addition to the Brownian type perturbations,
there are also abrupt changes in the environment that cannot be described by continuous
perturbations. An effective way to model these discrete event perturbations is to use a Markov
chain with a finite state space; see [26—28] and references therein. Suppose that the coefficients
fo, f1, f2, kg and the intensities of the white noises depend on «(#), a random switching process
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having a finite state space. Then we have a more general system

So — So(S(0), a(1))

ds(r) = ( — X f1(S@), X(1), Ot(t))> dt + o1 (a(1))S()dWi(1),

0
dX(1) =X(0) (f2(S1), X(1), (1)) — ka(e(1))) dt + o2(@(®) X ()d Wa(0),

(1.3)
where %d(a(t)) = kg(a(?)) + HTR, a(t) is a Markov chain with state space M = {1, ..., mo}
and generator Q = (qx/)mgxmg> and a(z) is independent of the Brownian motions so that

Pla(t + A) = jla@) =i, a(s),s <t} =g;jA+o0(A)if i # j and (1.4)

Pla@t + A) = ila(t) =i, a(s),s <t} =14 g; A+ o(AQ).

The models to be considered in this paper belong to the class of stochastic Kolmogorov
systems, which is a class of dynamic systems used extensively in ecological, biological, and
environment modeling. Two long standing and fundamental questions concerning Kolmogorov
systems are: (i) Under what conditions do populations persist or go extinct? (ii) When
do interacting species coexist? The answers to these questions are essential for guiding
conservation efforts. Our current paper is one of them along this line. In the literature, much
effort has been devoted to such systems. A common approach is to use Lyapunov functions,
which gives only sufficient conditions that are nowhere near necessary, and are not sharp. In
addition, there is no systematic way of finding the Lyapunov functions. The analysis in this
work is based on a completely different approach (used in [3,13,32]), which requires treating
the systems by looking at the boundary. While sharp results for a very general class of stochastic
systems have been obtained in [3], some of their conditions are not always satisfied for our
model. The proofs for persistence and extinction therefore require some delicate treatment of
the behavior of the process near infinity. In the second part of the paper, we also consider
controlled systems to reach the goal of getting optimality under a long-run average performance
measure.

The rest of the paper is organized as follows. In Section 2, we prove the existence and
uniqueness of positive solutions to (1.3) and (1.4). Then a complete characterization of the
asymptotic behavior of the system under consideration is provided. We show that the long-
term properties of the system can be classified by using a real-valued parameter A. If A < O,
the bacteria will die out; if A > 0, the system has an invariant probability measure and the
transition probability of the solution process converges to the invariant measure. One of the
distinct contributions of this paper is that the critical case A = 0 is also considered. Some
numerical examples are given in Section 3. Section 4 is devoted to the study of the system
under ergodic control. Controlled diffusions with random switching can be considered, but the
notation will be more complex. To highlight the main ergodic control ideas, we decide to use a
simplified model without switching. We obtain the Hamilton—Jacobi-Bellman (HJB) equation
and prove the existence and uniqueness of the solution of the HIB equation corresponding to
the long-term time-average control problem. Establishing the existence and uniqueness of the
solution to the HJB equation is most difficult because the usual conditions for ergodic controlled
diffusions are not satisfied in our model. Inspired by the work [1], we use a vanishing discount
argument to examine the associated cost and value functions of the corresponding discounted
control problem and then to take a limit when the discount factor tends to 0. However, the
results in the aforementioned book cannot be applied or adopted directly because the conditions
in the reference are not satisfied in our setup. More details on this will be given in Section 4.
Finally, Section 5 issues some concluding remarks. Although our main motivation comes from
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chemostat models, the analysis and techniques used can be applied to many other nonlinear
ecological and biological systems.

2. Complete characterization of long-time behavior

This section is devoted to asymptotic properties of the switching diffusion models. We
show that the long-term properties of the system can be completely classified by using a real
parameter A. In particular, if A < 0, the bacteria will die out and we refer to such case as
the system being not permanent because it does not work in long term and the efficiency
goes to 0. If A > 0, the system has an invariant probability measure and the transition
probability of the solution process converges to the invariant measure. This is what we refer to
as permanence (with the terminology carried over from the study in biological and ecological
models). Moreover, we obtain the rate of convergence.

One of the highlights here is that we derive sufficient and necessary conditions for
permanence. First, the process under consideration is jointly a Markov—Feller process. By using
the Lyapunov exponent of X(¢), we then establish the existence of the invariant measure of
(S(#), a(t)). Furthermore, under suitable conditions, we obtain the exponential error bounds of
the difference of the transition function and that of the invariant measure in the total variation
norm.

Throughout this paper, we use the lowercase letters s, x, and i to denote the initial values
of S(1), X(¢), and «(t), respectively. Note the distinction of s and the input concentration of
the substrate Sy. To simplify the notation, let

kg = max{ka(D) 5 kg = min{ky (D)),
and

O = grel%{ok(i)} P O = I,Ig&{o’k(i)}, k=1,2.

We denote by R, = [0, 00), RS = (0, 00), Rﬁ = [0, 00) x [0, 00), and R%r"’ = (0, 00) x (0, 00).
The operator associated with the process (S(t), X(@), a(t)), solving (1.3) and (1.4), is given by

. TS G . . .
LV(@.0) = Vol ). 1) + SFD. DT @ i)Vopld. N+ Y a V(g ). (21)
JEM
where AT denotes the transpose of A, ¢ = (s, x), Vy(¢, i) and Vye(¢, i) are the gradient and
Hessian of V(-, i) with respect to ¢, f and g are the drift and diffusion coefficients of (1.3),
respectively. That is,

N S ¥ ~ T
fl@,i) = (%—Xﬁ(&x,i% X(fz(s,x,i)—kd(i)» )

2(¢, i) = diag(o1(i)s, 02(i)x) € R**?,

where diag(a, b) denotes the diagonal matrix with entries @ and b. Note that the particular
structure of g implies that 32’ = 2°. In what follows, we write V(¢,i) and V(s,x, i)
interchangeably, whichever is more convenient. We also assume the following conditions

throughout.
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Assumption 2.1. Suppose that

e Wi(t) and W;(¢) are independent real-valued standard Brownian motions that are inde-
pendent of the Markov chain «(z).

e Sy, 0, ky(i), 01(i), 0,(i) are positive constants for each i € M.

e fo(s,i), fi(s,x,i), and fo(s, x,i) are locally Lipschitz; fy(0,i) = f1(0,x,i) = 0
satisfying limy_, o0 fo(s, i) = 00; 0 < fols, x, i) < ko(fi(s, x, i) A fols, D)), fi(s,x,i) <
ko(1+s) for some «y > 1. Moreover, for each i € M, f>(s, x, i) is uniformly continuous
at x = 0 (that is, lim,_,o sup{| fa(s, x, 1) — fa(s, 0, )|} = 0).

o The Markov chain or its generator Q = (gij)myxm, 18 irreducible, that is for any i, j € M,
there exist i =g, iy,...,i, = j suchthatg;, ,; >O0fork=1,...,n.

To start, we state following Theorem, which provides the preliminary results, namely, the
existence and uniqueness of the global solution, and the positivity of the solution. The proof
is postponed to the Appendix.

Theorem 2.1. For any (s, x,i) € Ri X M, there exists a unique global solution to the system
(1.3) and (1.4) with initial value (s, x, i). The three-component process {(S(t), X (t), a(t)), t >
0} is a Markov—Feller process. Moreover, we have Ps . i{S(t) > 0,t > 0} = 1 and Ps , ;{X(¢) =
0,t>0=1ifx=0 P, ;{X(#) >0,t>0}=1ifx >0.

To proceed, we examine the boundary by letting X(¢) = 0. Let §(t) be the solution to (1.3)
with X(¢) =0, i.e.,
So — fo(S(0). a(t))
0

Since the drift of (2.2) is negative when §(t) is sufficiently large, and is positive when §(t) is
sufficiently small, we can see

ds(t) = dt + o1 (a()SE)d W, (t). (2.2)

—~ 1
|:E(s+lnsj_1>i|(s,i)§—1ifs <fv\0rs>,;\,

for some 5§ > 0 being sufficiently small, where L is the operator associated with (2.2).
Thus, the hybrid diffusion (2.2) is positive recurrent due to its nondegeneracy (see, e.g.,
[37, Chapter 4]). Then there exists a unique invariant measure 7 of (2.2). Moreover,

Jim 1P 5.i) =7 O)llry = 0.(s.1) € (0, 00) x M, 23)

where [|-[|7v is the total Va,r\iation norm of a measure and P (t,s, i, -) s the transition probability
of (S(¢), a(t)). Since Py ; {S(t) > 0,7 > 0} =1, (2.3) hold/s\even when s = 0.
When X(¢) is small, S(¢#) can be approximated by S(#). Due to Itd6’s formula and the

—~ In X (¢
ergodicity of (S(¢), «(?)), when X(¢) is small, the long-term growth rate

is approximated
by the critical value

. = 03() .
A= Z /RO fo(s,0,0) — ka(@i) — )JT(dS,l). 2.4)
+

ieM 2

As a result, the sign of A determines whether or not X (#) converges to 0. A heuristic argument
for getting A can be found in [7]. The main results of this section is provided in the next
theorem to follow. First, we state an assumption. One of the conditions in Assumption 2.2 will
be used in the main theorem.

Please cite this article as: D.H. Nguyen, N.N. Nguyen and G. Yin, General nonlinear stochastic systems motivated by chemostat models: Complete
characterization of long-time behavior, optimal controls, and applications to wastewater treatment, Stochastic Processes and their Applications (2020),
https://doi.org/10.1016/j.spa.2020.01.010.




6 D.H. Nguyen, N.N. Nguyen and G. Yin / Stochastic Processes and their Applications xxx (xxxx) xxx

Assumption 2.2. Denoting by m, the invariant measure of «(f), assume that one of the
following conditions holds.

(1) For each i € M, fy(s, x,i) is non-decreasing in s and non-increasing in x for any
(s, x) € [0, 00) x (0, 00);

2
. o~ oF(D) .
> <hm sup fas, 0, 1) — ka(D) = =2 )na(z) < 0; (2.5)
ieM §=00
3
. o~ . 03(0) .
Z <1£ni£ff2(s, 0,1) = ka(i) — = )na(t) > 0. (2.6)

ieM

Theorem 2.2. The following claims hold.

. In X(¢)
o If L < 0, we have lim,_, o

= A a.s. and the distribution of (S(t), Ol(t)) converges

weakly to the unique invariant probability measure w if either condition (1) or (2) of
Assumption 2.2 holds.
e If & = 0 and condition (1) of Assumption 2.2 holds then

1 T 1 T
lim —E, . ; [ S(tydt = Sp and lim —F, / X(t)dt =0 @7
T 7 Jo T—ooo T 777 Jy

T—o0

under additional conditions that for any i € M, Ll Oaff’i) and - QS’O’i) exist and are positive,

3 . s
w is bounded below by a positive constant.

continuous, and

e lf A > 0, then there exists an invariant probability measure [* on Ri’o x M
and lim;_, o | P(t,s,i,-) — u*()llry = 0. We assume further that condition (3) of
Assumption 2.2 holds, and liminf,_, % > 0,i € M for some q € (0, 1]. Then,

@) in case g < 1,
lim #~"\P(t, 5, x,i,-) — p* )7y =0,
11— 00

forany 1 < B <

1 (s, x,0) e Ry x RS x M;
—q
(ii) if ¢ = 1, there exists a ¥ > O such that
lim e” || P(t,5,x,i,) — w*Ollrv =0, (s, x, i) € Ry x RS x M, (2.8)
—>00

where P(t, s, x,i,-) is the transition probability of (S(t), X(1), oc(t)).

Remark 2.1. If A > O, it is easy to see that condition (1) of Assumption 2.2 implies
the condition (3) in Assumption 2.2. Moreover, most models in the literature consider the
case fo(s) = C;s while the coefficients xfi(s, x, i), xf>(s, x) are linear functional response
. . . . ciis .
(fi(s,x,i) = c¢;jx,j = 1,2), Holling type II response (f;(s,x,i) = W,] = 1,2),
C,"S2 . .
(mijl+aij15.;(mij2+“ijzs)’ Jj =12, and Beddlngton—

DeAngelis functional response (f;(s, x,i) = %,J‘ = 1,2) etc.; see e.g., [31,39,40]
ij ij ij
and the references therein. It is clear that these functions satisfy Assumption 2.1 and part (1)

of Assumption 2.2.

Holling type III response (f;(s, x,i) =
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Proof for the case . = 0. We argue by contradiction. Suppose (S(t), X(t),a(t)) has an
invariant probability measure u* on Ri’o x M. Then, it follows from the ergodicity that for

w*-almost every initial value (s, x, i),

1 T
lim — / h(S@), X(t), a(t))dt = / h(s', x',i"Yyw*(ds', dx', i), (2.9)
T—oo T 0
i'eM

for any measurable function 4 that is u*-integrable. Since the transition probability density is
continuous and positive, the invariant measure p* is unique and equivalent to 711 x 7, where m is
the Lebesgue measure on R2‘°. As aresult, if u*(A) =1, then P , ; ((S(t), X(t),a(t)) € A) =1
for every (s, x,i) € R x M,t > 0, which implies that (2.9) holds for any initial value
(s,x,i) € ]Ri_o x M. By the comparison theorem (see e.g., [12]), we have S(t) > S(t) with

probability 1 given that S(O) = S(0). Hence, it follows (1.3), (2.2) and positivity of S(t), S(t)
and additional assumption on fy(-, -) (non-decreasing in s) that

lim sup — E”,/ Jo(S@), a(t))dt < limsup — ]Es,/ fo(S(t) a()dt < Sy.  (2.10)

T—o0 T—o00
. 0fo(s, i) .
On the other hand, since is bounded below by a positive constant and f,(0, i) = 0,
there exists a g; > 0 such that
fO(;”) > 35, Vs> 0,i € M. @2.11)
Let 0 <p < §_2 and 0 < g, < %. By 1t6’s formula, we obtain that
o]
E, ;e S*P(T)
_ T 8o = fo(S), alt
—s'*7 E.,.,i/ (1 + )P (1) ( 0 fo(e( ). 20)
0
poi(alt
+ 2 1(2())5(>+ s<r>)

T —
<s'""P + / e#'(1+p)SP (1) (—0 - g—lS(t)> dt
0

8T 1 2 P
<s+P 4 & VT > 0, where g M <@)
I 0 0g,
As a consequence, we have
limsup E, . ; S'*7(T) < limsupE,, §1*7(T) < 3. (2.12)
T—00 T—o00 82
Moreover, we also obtain that
Es,x,,'(S(T) + X(T))IW is uniformly bounded in 7. (2.13)
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Using It6’s formula again, we have
ESYP(T)  s™7 (14 P)S
T T 0T

TN 1 -
E, / SP(0)dt — —LE,
A 0T

T
x f SP(t) fo(S(r), a(0))dr

0
4 PUEPyg f o2(a(t)SHP(t)dt,
o,
which together with (2.12) implies that
1 T ~
lim sup JEs l/ SP(0) fo(S@), au(t))dt < gy, for some g, < 0. (2.14)
T—o0 0

We have from (2.2) and (2.12) that

1 r S@), alt E, ;S(T) —
lim —Esif 2 fo(—() @) dt = lim E.S) —s =0.
“Jo 0 0 T—o00 T

1 oo
Tlgr;o ?Es’i/o fO(S(t),oz(t))dt = S. (2.15)
From (1.3), with standard arguments, we have
T
Bows [ XOASO. XO.al0)dt < ST +5. T 2 0.
0

Moreover, due to the uniform boundedness (2.13), the linear growth bound of f; and the almost
sure convergence (2.9), it follows from the dominated convergence theorem that

lim lESY”/T (So—fo(S(t), a(t) ) -y / M
T—oo T 0 ]

i'eM
x wrds',dx',i'"y =g (2.16)

From (1.3) and (2.13), we deduces that limy_, o %Esm fOT X(@®) f1(S(@), X(t), a(t))dt exists
(because the two others in (2.17) exist) and

T _
tim B [ S0 = PO« 0) i (s0), Xm,a(r))) dr
T—o0 . 0 o (2.17)
— lim vx,iS(T)_S _0’
T—o0 T

where, due to Fatou’s lemma,
1 T
lim —E, ., / X(0) f1(S(), X (1), a(0))di
oo T 0
_ ! ! /Ay * I /Ay
=g> E /l;icxf](s,x,l)u(ds,dx,l)>0.

i'eM
We have from (2.15) and (2.16) that

T—00

T
lim . / (Fo(5@). a)) — fo(S@). a(0)))di = 07, 5.x > 0.i € M. (2.18)
0
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Now, let H > 1 be a sufficiently large constant satisfying that 5—‘% < 97;;. Combining with
(2.14), we obtain

1 T
lim sup 7EM,,» /O Sosm ( fo(S(t) a(®) = fo(S@), a(r))) dt

T—o0
1 T SP(¢
<limsup —E, ¢ )fO(S(t) a(t))dt (2.19)
T—o0
<8 08
“HP T 2
A consequence of (2.18) and (2.19) is that
1 T 0g
liminf —E; , ; 150)<m; (fO(S(t) oz(t)) fO(S(t),a(t))) dt > —. (2.20)
T—oo T 0 2
Since % is continuous and positive, there exists a §§" < 00 such that

fo(s1, ) — fo(sa, i) < g8 (s1 —s2), YO <55 <51 < H,i € M.
Thus, (2.20) implies that

1 T 0%
liminf =K, , ; Lo (S@) — S@))dt > —. 2.21
i inf -2, /0 (Sit)<H} ( (1) — S(0)) 277 (2.21)

Similarly, there exists a g&' > 0 such that

f2(s1,0,0) — fa(s2,0,7) > g6 s —sy), forany 0 <s, <5, < H,i € M.
Hence, combining with f>(s, x, i) being non-increasing in x, we obtain

fa(s1,0,0) = falsz, x,0) =2 ¢/ (s1 —s2) Vx 20,0 <sy <51 < H,i € M. (222)
As a consequence of (2.21) and (2.22),

T—o0

1 T —~
lim ?Es,x,if (L2(8@), 0, a()) = fo(S@), X(1), «(1))) dt
0
1 T
> lim By fo S (LE0,0,a) = £(50), X(1), a(0))) dt

T—o0

T | r =
>g¢ th_l)gf 7Es,x,i/0 Ls=m (S() — S()) dr

—H -~
> 86 08 .
2g¥
Therefore, we obtain that

Z / <f2(s X, i') = ka(i) — J) wds’, dx', i)

i'eM
T 2
= lim %E / (fz(S(t), X (1), a(t)) — ka(a(1)) — 2 (Z(t))>d
- 1 o o} (a(t)) zlog 229
: X o _~ _ 22 _ 6
Srhfio TEY,X,,fO (fz(S(t), 0, (1)) — ka(a(1)) 5 )dt 277
—H A~ —H A~
< — 86_'18 _ _86_9Hg'
285 285
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By (1.3), 1t6’s formula, the ergodicity, and (2.23), we have
In X(T)

lim
T—o0

1 T
:Th—>n;o? (X(O)-i—/o Gz(a(l))dwz(t))

T 2
+ lim % / (fz(S(f), X(0). (1)) - Ralat)) — M) d
0

T—o0 2
—H A~
-_ 86 U8

< —— < 0 as.
2g¥

As a result,
HDs,)c,i { lim X(T) = 0} =1,
T—o0

which contradicts the assumption that the process has an invariant probability measure on Rff X
M. Moreover, m x §* is the unique invariant measure of (S(t), a(t), X(t)) on R, x M xR,,
where 6* is the Dirac measure with mass at 0. Consider the empirical measure

o 1!
i) = - / Py 1 i{(S(s), X(5), a(s)) € -}ds.
0

In view of (2.13), the family {IYts’x’i(-), t > 0} is tight for each (s, x, i) € Ri x M. Tt is well-
known (see e.g., [13] and [32]) that any weak limit of I*'(-) as t — oo is an invariant
probability measure of (S(t),a(t), X(t)). Since m x §* is the unique invariant probability
measure and we have the boundedness of E; . ; (S(t) + X (t)) "7 0 (2.13), we can easily obtain
2.7. O

Proof for the case . > 0. Proof of the convergence in total variation of transition probability
to an invariant measure is straightforward. Applying [3, Theorem 4.4], with W(s, x,i) =s+x

and V(s,x,i) = In )ﬁ we obtain the persistence of X(7) and the existence of an invariant

probability measure of (S(¢), X(¢), «(t)) on Ri‘(’ x M. Because of the nondegeneracy of
the diffusion, which implies irreducibility and strong Feller property of the skeleton process
{(S(nty), X(nty)), a(nty), n € Z,} for any f, > 0, we can obtain the convergence in total
variation of transition probability of the process (S(z), X(7), @(¢)) to its invariant probability
measure on R%r’c’ x M; see [23, Theorem 6.1] or [41].

Now, we consider the rate of convergence where conditions in [3, Theorem 4.12 or
Proposition 4.13] are not easy to verify for our model. We assume that condition (3) of
Assumption 2.2 holds. In view of (2.6), there exists an H > 0 such that

2 .
> (imi{fz(s, 0, iy} — (i) — 20
ieM s=H 2
Therefore, by the uniform continuity at x = 0 of f,(s, x, i), there exists an &; > 0 such that
2 .
4= hima(i) > 0, where h; = inf {fols, x, )} — kali) — 10 (2.25)
Py (s.x)e[H,00)x[0,¢] 2

) Ta(i) > 0. (2.24)

Since ), M(4X—E)na(i) = 0, an application of the Fredholm alternative implies the existence
of y; > 0 with i € M such that

Z qijVj :4}:—71\,, Vi e M.
JEM
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Let p; be sufficiently small satisfying
,01)/,-(—4X +E-) < ’)t(l — P1Vi), ,01022(1') < 4% and pyi < 1,Vie M,

and define V3(s, x,1) = (1 — p1y;)x~°1. By directed calculations, we obtain that

LV3(s, x,1) =p1 V3(s, x, 1) (—fz(s, x,i) +%d(i) + /01;- 1(rzz(i))

+ 01(—4% 4 h)Va(s, x, i) + plyi(—4% + hp)x " (2.26)
< =201 V3(s, x, i) + p2yi(—4K + hy)x !
< — piAVs(s,x,i)Vie M,s > H,x <e.

<

kgi)+od() _ kat57
X X

Since [E%] (s,x,i) < , it is easily verified that
B X' (1) < %071 >0, (s, x, i) € R® x M. (2.27)
On the other hand, by (2.4), we obtain that there is a 7} > 1 satisfying

1A Ty

—In(1 — p1ys) < 1 ,VieM, (2.28)
such that
1 r ~ 2 A ~
7E5,o,,~/ (fz(S(t), 0, a(1)) — kaa(t)) — w> dt > 37,1' EM,T>T,s<H.
0

(2.29)
2 oa2
Let n, € Z4 and n, > Lato) + 1. Inspired by the use of the log-Laplace transform in [3,4],
we can follow the proof of [13, Proposition 4.1] to obtain the existence of some p, € (0, p;)
and ¢; € (0, &) satisfying

At

B X 2() <e T x " forieM,tell,nTils<H,x < eé. (2.30)
With such p;, we have from (2.30) and (2.28) that

[}

E,.: Vi (S), X(0), a(t))

_ M _mpu 2 . _n
SEs i XM <e T xP=e TV (s, x, 01— pry) 7

, i (2.31)
a L2 At a 2
<" TV (s, x e’ T < e TV (s, x,0). Vi € M.t € [Ty, n, Ty,
xs < H,x < &.
Since p, < p;, we can apply Itd’s formula to obtain from (2.26) that
” ) R
£V3p1 (s,x,i) < —pZAV3p] (s,x,)Vie M,s > H, x <eé&. (2.32)

P2 P2
Estimates (2.31) and (2.32) allow us to estimate Ey . ; V5™ (S(1), X (1), a(1)) through V;"' (s, x, i)
when x is sufficiently small and s > 0. Using (2.31), (2.32), and (2.27), we can follow the
proof of [13, Theorem 4.1] to show the existence of g, € (0, 1) and K, > 0 such that

]

” 123
Es iV (ST, X(n ), a(niTh)) < ¢* V3" (s, x, 1) + K. (2.33)
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Moreover, if liminf,_, o foig’i) > 0,i € M for some g € (0, 1], we have
S L1 ~ ~ o~
[LGeas + 0015, .1 = 200~ CTOD T <7~ Bt + 00, (2.34)

for some ¢, ¢3 > 0.
Having (2.33) and (2.34), we can apply [18, Theorem 3.6] and [9, Proposition 22] with
slight modifications of their proofs to show that
T (H) N ”
Eexi D (k4 1P < cp(H) (Vf‘ (s, x, 1) + Kos + x + 1) : (2.35)
k=1
where 1 < 8 < ﬁ, ’7':Z is a compact set in [0, 00) x (0, 00), C,g(ﬁ) is some positive constant,
and

*(H) = inflk € Z.. : (Skn, T1), X(kn,T))) € H}.

Since the drift term of S(7) is positive when S(7) = 0, a standard argument shows that the
compact set H of [0, 0c0) x (0, 00) is petite (see e.g., [7]). Using this fact and (2.35), we derive
from [34, Theorem 2.1] that

Jim (k + DN Pkn, Ty, s, x, 0, ) — w*Ollry = 0.
An application of some standard arguments (see e.g., [7]) then shows that

1
lim P71 P(t,s,x,i,) — w*Cllry =0, forany 1 < < ——.
t—00 1 — q
If ¢ = 1, we obtain from (2.33) and (2.34) that

n
Esxi [‘/301 (S T1), X(n ), a(n T1)) + koS(nTy) + X(n*T1)1|

o} -
<q" (Vfl (s,x,0) + Kos +x) + K.,

for some g* € (0, 1) and I?* > 0. Then [34, Theorem 2.1] implies that
klim M| Pkn, Ty, s, x,i,) — W' C)|lrv = 0, for some 7 > 0.
—00

Then, we can obtain the exponential rate of convergence. [

Proof for the case A < 0. If condition (1) of Assumption 2.2 holds, the proof can be carried
out using comparison arguments by comparing S(¢) and §(t). The details are omitted here
since they are similar to [7, Theorem 2.1]. [In [7], we obtain that limsup,_, . w < A,
then simple arguments using the fact that any weak limit of random occupation measures is an
invariant probability measure (see e.g., [13]), and we can obtain the convergence rate (Lyapunov
exponent) lim;_, MEA =]

Now, we assume that condition (2) of Assumption 2.2 holds. Analogous to the proof in the
case A > 0, we have

P4 P4

B, Vs? (S0 To), X(0* T), a(n*T)) < GV (s, x, i) + Kusi € M, s > 0, x < g3,

where Vs(s, x, i) = (1 — p3y;)x?3 for suitable constants ps3, p4, n*, Tr, g* € (0, 1), I?* &3. Then
we can mimic the proofs of [13, Theorems 5.1 & 5.2] to obtain the desired result. [J
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Remark 2.2. Before proceeding further, let us make the following remarks.

e The techniques of handling the critical case can be applied to such stochastic models in
epidemiology as SIR, SEIR, SEIS models, and predator—prey models, when the system
exhibits certain monotone properties so that the contradiction arguments in the proof for
the case A = 0 can be applied.

e Constructing Lyapunov function for switching diffusions is practically more difficult
than that for diffusions. In non-critical cases, we showed how to construct the pair
of Lyapunov functions (V, H) satisfying [3, Proposition 4.13] for systems involving
Markovian switching if the construction is possible but not obvious (in our model, the
requirement is (2) or (3) of Assumption 2.2 together with lim,_, % > 0,qg < 1
being satisfied). We also showed that when it is practically impossible to find V, H)
satisfying [3, Proposition 4.13], we can obtain a sub-geometric convergence rate under
certain conditions. Our techniques combined with the main approaches in [3] can work
for some stochastic Kolmogorov systems under relaxed conditions.

3. Numerical examples

This section is devoted to some numerical examples. Consider an example of system (1.3)
as follows, which is often used in wastewater treatment (see e.g., [25,33])

o So—=8@)  kn(a@)S(1)X(7)
dﬂﬂ_( RS )m+mﬂmnmgmwmx
1
dXO):XU)(hAaZ?Tig?SO)—kAaG»—~;g£>dt+oﬂaUDX0MW@U)

3.1)

The following table provides parameter values for conventional activated sludge system using
a completely mixed flow reactor extracted from [24, p. 351].

Parameter Typical range  Units

ky,: the growth constant of the bacteria 2-10 mg of cells x day

K: the half-saturation constant 25-100 mg of cells x day/L
the growth rate of the bacteria . .

Y = the r;gte of substrate consumption 0.4-0.8 Dimensionless

kg: the death rate 0.025-0.075 1/day

0: the hydraulic residence time 3-5 day

Example 3.1. Consider equation (3.1) with «(r) € M = {1, 2} and parameters Sy = 15,
kn(1) =9, k,(2) =6,06 =5, R=0,Y(1) = 0.8, Y(2) = 0.6, ky(1) = 0.06, k;(2) = 0.08,
Ks = 60, o1(1) = 0.1, 02(1) = 0.2, 61(2) = 1, 02(2) = 0.1, g1 = 0.2, and ¢2; = 0.8. Using
the strong law of large numbers,

- .
i — im l/ (km(ot(t))Y((jt\(t))S(t) _ kd(a(u))> '
T T Jp Ks+ S(t)

We can approximate A through the occupation measure in a long period of time [0, T']. In this
example, A =~ 0.915 > 0. Thus, the process (S(¢), X(¢)) has an invariant probability measure on
R?°. Fig. 1 displays a sample path of S(¢), X(). The empirical approximation for the density
function is shown in Figs. 2 and 3.
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Sample path of S(t)

Sample path of X{t)
12 T T T T T

20 T T T

T T T T T

1) 5 10 15 20 25 30 35 40 45 50

Fig. 1. Sample paths of S(¢) (in blue on the left) and X(¢) (in blue on the right) and «(¢) (in red) in Example 3.1.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

p(S, X, 1) P(S,X,2)

0.012

0.008
0.006
0.004

0.002

Fig. 2. Densities p(s, x, 1) = u*(ds, dx, 1) (on the left) and p(s, x, 2) = pu*(ds, dx, 2) (on the right) of the invariant
probability measure p* in Example 3.1. Different colors represent different sizes of the density.

p(S,X,2)
P(S, X, 1)

‘ - 7
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i
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i,
dtill
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L
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& 7 By T
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I % (Y
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Fig. 3. Graphs of densities p(s, x, 1) (on the left) and p(s, x, 2) (on the right) of the invariant probability measure
w* in Example 3.1.
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Sample path of S(t) Sample path of X(t)

T 1.4

=
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=0}
X

04r 4

02 q

1] ) 10 15 20 25 30 35 40 45 50 1] ) 10 15 20 25 30 35 40 45 50
t 1

Fig. 4. Trajectories of S(¢) (on the left) and X(¢) (on the right) in Example 3.2.

Sample path of Sit) Sample path of Ift)

st

L L . 1 0 . . L . L L L 1 L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

t t

Fig. 5. Sample paths of S(z) (on the left) and X(¢) (on the right) in Example 3.3.

Example 3.2. Consider (3.1) without switching and parameters

So=12,k, =8,06=1,p=0,Y =0.6,k; =0.06, Kg = 60,0, =0.2,0, =0.2.
Direct computation shows that A &~ —0.28 < 0. Thus, X(#) will tend to 0 as t — oo, which is
illustrated in Fig. 4.
Example 3.3. Consider (3.1) without switching and parameters

So=12,k, =8,0=5,p=0,Y =0.6,k; =0.06, Kg = 60,0, =0.2,0, =0.2.
We have A ~ (0.5. Sample paths are given in Fig. 5, and the density of the empirical measure,

which approximate the invariant density, is shown in Fig. 6.

Example 3.4. The limit ES* = lim, o E,,;S() is regarded as the expected effluent
concentration. We are interested in investigating the limit ES* and A as functions of the
hydraulic residence time 6. It can be seen that the expected effluent concentration is decreasing
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Fig. 6. The left figure is the 3D graph of the density of the invariant probability measure in Example 3.3. The
right one depicts the density using scaled colors.

in 6. By Theorem 2.2 and (2.18), we have for A > 0 that

So if 1 <0
ES" = ,l_if&E”"'S(t) = E / su(ds,dx, j) < Sy if A > 0.
- RZ.O
JEM Y T+

Note that when A < 0, the expected effluent concentration levels off at Sy and then becomes
smaller than Sy after 6y: the value of 6 at which A = 0. The numerical approximation (see
Figs. 7 and 8) for the expected effluent concentration justifies the claim. Some fluctuations are
due to the errors of approximation of the random processes. The behavior of ES* as a function
of 6 is very similar to the deterministic counterpart in [25].

When one designs the treatment, a crucial design parameter is the so-called wash-out time.
If the residence time 6 is less than a critical value, denoted by 6y, then the sewage flow is too
fast for bacteria to grow, existing cells are flushed out faster than they can multiply. As a result,
the bacteria become extinct. Figs. 7 and 8 show that A is an increasing function of 6. By our
theoretical results, to find the wash-out time 6y, we need to solve the equation A(9) = 0. For
the system without switching (1.2), the value A can be obtained in a closed form by solving
the Fokker—Planck equation. Then we can solve the equation A(f) = 0 by a standard numerical
scheme. In Fig. 8, we can see that 6y &~ 1.4. When random switching are involved, the value of
A in (2.4) cannot be solved in a closed form. However, because of the exponential convergence
rate, one can also perform a numerical approximation to find 6. In Fig. 7, 6y = 0.8.

4. Controlled stochastic chemostat models

To better help us reaching our goal of dynamically regulating and optimizing the per-
formance of chemostat models, we introduce a control process in this section and consider
controlled stochastic chemostat models. Note that for notational simplicity, we consider only
the controlled dynamic systems without switching in this section. Switching can be added,
but the notation would be much more complex. One needs to deal with a system of dynamic
programming equations (partial differential equations) in lieu of a single equation. It seems to
be more instructive to treat relatively simpler models to present the main ideas and leaving out
the notational details.
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Fig. 7. A and the expected effluent concentration as a function of 6 with other parameters as in Example 3.1.
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Fig. 8. A and the expected effluent concentration as a function of 6 with other parameters as in Example 3.3.

Suppose that we can add a certain amount of bacteria u(¢) (the control) to the system at any
time 7, which enables us to better adjust the system performance so as to minimize the amount
of substrate over a long-time horizon. In this section, we focus on the case fy(s, i) = s. Then
we have a controlled differential equation as follows

So — S(t)

dsS(t) =( 7

— X(0) /1(S(), X(t))) dt + o, S(t)d Wi (1),

1+ R @D
dX() = (u(t) + X(2) (fz(S(t), X)) —ka — T)) dt + 02 X()dW,(2).

We assume the control u(¢) taking value in a compact interval [0, M] for some M > 0. Our
objective is to minimize

T
lim sup lE?A / S(t)dt,
T—o0 T " 0

over the class of admissible controls u(#), where u(¢) is F;-adapted. That is, we aim to minimize
the amount of substrate over the infinite horizon. The cost criterion is in the sense of an average
cost per unit time (or long-run average cost).
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Before proceeding further, let us describe how we plan to carry out the analysis. In getting
the desired optimal control, we need to obtain the Hamilton—Jacobi—-Bellman (HJB) equation.
We use a “vanishing discount argument”, which utilizes some ideas from the book [I].
Nevertheless, in the book, the HIB equation is derived under either “near-monotone” or “stable”
conditions. Unfortunately, our model satisfies neither of these conditions. As a result, some
new approaches are needed to obtain the HJB equation. The intuitive idea is to look at
two different domains. In each of the domains, one of the “near-monotone” condition or the
“stable” condition is satisfied. Nevertheless, the complication is that we also need to analyze
the dynamics of the system, to investigate how the solution moves from one domain to the
other, and to examine how the movement affects the objective function.

To proceed, we provide a road map of our approach. First, we recall some notation. Then
the analysis is carried out using relaxed control setup and appropriate occupation measures.
Theorem 4.2 presents the main result. To prove it, we need a number of technical results to
take care of the situation as mentioned in the last paragraph regarding the two regions satisfying
the “near-monotone” condition or “stable” conditions separately and the dynamic movements
between these regions. These technical details are presented in a number of lemmas.

To continue, we recall some concepts and notation introduced in [1,21]. Let M(co) denote
the family of measures {m(-)} on the Borel subsets of [0, co) x [0, M] satisfying m([O, ] x
[0, M]) = ¢ for all + > 0. By the weak convergence m,(-) — m(-) in M(co), we mean
lim, o [ f(s, 0)m,(ds x da) = [ f(s,a)m(ds x da) for any continuous function f(-) :
[0, 00) x [0, M] — R with compact support. A random measure m(-) with values in M(00) is
said to be an admissible relaxed control for (4.1) if fOM fot f(s,uym(ds x du) is independent
of {W;(t +s)— W;i(t),s > 0,i = 1, 2} for each bounded and continuous function f(-). Under
a relaxed control m(-), the controlled diffusion (4.1) becomes

NOE <w — X0 f1(S), X(t))) d + o1 S()dW, (1),

dX(1) = (7, + X(0) (H(S@), X)) = ka)) dt + 2 X()dWs(0),

4.2)

where m; = fOM um,(du) and the “derivative” m, is defined as the measure-valued function
of (w, t) such that for any smooth and bounded function f, we have f f f(s,uym(ds x du) =
f ds f f(s,u)yms(du). The operator associated with the controlled diffusion process (4.2), in
which #-dependence is hidden, is given by

Lr(s, x) = 3¢(;; al [SO =it x)} + a¢’§x’ ) [, + xfas. x) — K]
1 82¢(s, X) 82¢>(s, X)
3 (612 R e x2> '

Definition 4.1. We have the following definitions and notations.

e Let P(M(c0)) be the space of probability measures on M(co). A relaxed control m(-)
for (4.2) is said to be Markov if there exists a measurable function v : Ri — P(M(oc0))
such that m, = v(S(¢), X(¢)), t > 0. Under a relaxed Markov control m, = v(S(¢), X(1)),
the solution process (S(¢), X(#)) to (4.2) is a Markov process with generator

L'(s. x) =w [% —xfis, x)} + W [v(s. x) + xfals. x) — xkq]

1 2aqu(s,x) ’ 282q§(s,)c) )
+§<01—8s2 s +02—8x2 x“].
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e A Markov control v is a relaxed control satisfying that v(z) is a Dirac measure on [0, M]
for each z € R2.

e Denote the set of Markov controls and relaxed Markov controls by Il an Ilgy,,
respectively. With a relaxed Markov control, (S(z), X(¢)) is a Markov process that has
the strong Feller property in Ri’"; see [1, Theorem 2.2.12].

e Since the diffusion is nondegenerate in Ri‘), if the process (S(z), X(¢)) has an invariant
probability measure in Ri’", the invariant measure is unique, denoted by n,. In this case,
the control v is said to be stable. Denote by IIsgry the set of stable relaxed Markov
controls.

e Let P(X) be the space of probability measures on a metric space /X'. For any stable
relaxed Markov control v, define

mo(dz x du) = [v()(du)] x 1,(du) € PRY® x [0, M]),
and
G = {m, : v is a stable relaxed Markov control } C P(Ri’" x [0, M]).

We need the following lemma whose proof is analogous to [7, Lemma 2.3].

Lemma 4.1. There exist a sufficiently small p > 0 and positive constants K,, K,, and K3

such that
L" (2kos + x) < Ky — K2(2k0s + x), (4.3)
L™ (2k0s + )P < K| — K2(2k08 + )P — Ky(2kos 4+ x)Pxfi(s, x), (4.4)
and
L"2uos 4 x)* < K3(1 + 2k05 + x)*, 4.5)

for any admissible relax control m(-). Consequently, it holds for any admissible relaxed control
m(-) that

K
B (2608(t) + X(t))Hp < Qups +x)!tPe K2 4 ?2 fors >0,x >0, (4.6)

|

T
EY, / (2108(1) + X(1))" X (1) fi(S@), X(1)dt < 2uos +x)' TP + K/ T, 4.7)
0
and

Eg’fx(bcoS(t) + X(z‘))4 < (4 2kps + x)4eK3’ fors >0,x>0,t>0. 4.8)

As a result, we have

K
, Qios 4+ x) T Pny(ds, dx) < ?2 and
o : (4.9)
K>
, 2kos + x)Px fi(s, x)ny(ds, dx) < e for all v e Ilgy.
»O 1
1
Define the following sets

R

Ki+1

Ho = {(s, x) € Ri‘" 1 2608 +x < + 2K = K4} , (4.10)

2
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and
= {(s,x) € Ri’o 1 2k0s +x < K4 and s > 80} C Ho,

where &y is a positive constant to be determined in the proof of Lemma 4.2. For a closed
set K € Ri_"’, define t = inf{r > 0 : (S(¢), X(¢)) € K}. Since L*(2kgs + x) < —1 for
(s,x) ¢ Ho,u € [0, M], we have

E{ 13, < 2k0s + x for any admissible relaxed control m(t). 4.11)

We have the following lemmas whose proofs are given in the Appendix.

Lemma 4.2. There is a constant C1 > 0 depending only on H and Hy such that

E{ ;3 < Cy for (s, x) € Ho, v € IIry.
Moreover,

E{ . tx < 2ks +x + Cy, (s, x) € R2°, v € gy (4.12)
With the constant control v. = M, we have

E¥, 13, < 2kos +x + Cy, (s, x) € R}®, (4.13)

where H., is a compact subset of Ho, and C, is a positive constant depending on Hy and H..

Lemma 4.3. For any L > 0 and ¢ > 0, there exists a § > 0 such that

1
Py {X(t3) = 6} = 5 forany s < Ly, v € Ilgy. 4.14)

With these lemmas, let

Py = / sy(ds x dx x du) and p* = inf {p,}.
RY™x[0,M] vellspy

Since (4.13) implies the existence of an invariant probability measure for (S(¢), X(¢)) under
control v., we claim that Ilggy # . Moreover, for any admissible relaxed control m(t), we
have that

S e [ (B - xonisoxo)a

In view of (4.6), we have

E" S(T)— S(©0)
T "
(4.15)

) w1 T (So—S@) o
lim E, fo (OT — X f1(SQ), X(t))) di = liminf

which leads to

S _ i
/2 ( 0 3 > x/fl(s’,x/)) nu(ds’,dx") =0 for any v € IIsgy. (4.16)
RY®
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As a result,

1 T
p* < lim IE;"‘X—/ S(t)dt =/ sy (ds’, dx")
T—o0 T 0 Ri‘o

4.17
=0 | — _/20x/fl(s/»x/)nuc(dsl’dx/) @1
R}

<So.

To proceed, we derive a lemma, which allows us to find an optimal control in IIggy,.

Lemma 4.4. For any admissible relaxed control m, define an empirical measure (7' as a
'P(IRi_‘O x [0, M1)-valued process satisfying that

1 T M
/ fder = Ei?fx—/ </ f(S:, X;, u)m,(du)) dt.
R%°x[0,M] 0 0

Then, with probability 1, every limit point of 7' as T — 00 can be decomposed as
T=580+1-08)¢", (4.18)
where ¢’ € G and " € P((0, 00) x {0} x [0, M]) satisfying

f s¢"(ds, dx, du) = S.
(0,00)x {0} x[0,M]

As a result, for any admissible relaxed control m,

T
lim inflEg”x/ S@)dt > p*. (4.19)
T—-oo T ’ 0

Lemma 4.4 enables us to find an optimal control that is a Markov relaxed control. To find the
Markov control, we need to establish the HJB equation associated to the control problem (4.2).
Let Ci4 ), be the class of functions V : Ri‘" — R such that V(s, x) < cy(1+s +x)1+p/, (s,x) e
Ri’" for some constants ¢y > 0 and p’ € (0, p). The rest of this section aims to prove a theorem
on the existence and uniqueness of solutions to the HIB equation.

Theorem 4.2. There is a unique pair (V, p), where V € c2(Ri’°)mcH,, and p € R satisfying
the equation

u;n[oi,II}/I] {E V(S, X) + S} -

Moreover, we have p = p* and v* € Ilgy is an optimal control if and only if it is a measurable
selector from the minimizer

min {E“V(s, x)+ s} .
uel0,M]

In fact, we can choose

if aV(s, x) .
0x

M otherwise.

v¥(s, x) = 0,

In [1], the HIB equation is obtained under either of the following two assumptions: (a) the
cost function satisfies the so-called near-monotone condition, or (b) any relax Markov control
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is stable and the set {n,, v € IIgy} is tight. However, neither of these conditions are satisfied
for our system. Thus the results in [1] are not directly applicable.

To prove the existence and uniqueness of solutions to the HIB equation, we use an idea that
might be called a vanishing discount argument. That is, we examine the cost and value functions
of the corresponding discounted control problem and look at the limit when the discount factor
tends to 0. We also need to estimate the value function in different parts of R%° to obtain desired
properties of the value functions, which is key to prove Theorem 4.2. That is the most difficult
task of this section.

Let V, (s, x) be the optimal y-discounted cost, that is

V, (s, x) = inf {]E:_"x / e V'S(t) : m runs over the set of relaxed controls } ,
0

2,0
(s,x) e R

Then it follows from [1, Theorem 3.5.6 & Remark 3.5.8] that V, (s, x) € C2(R°) U C»(R:®)
satisfies

g})uj}“ {LV, (s, x) + s} = vV, (s, x). (4.20)

and the optimal Markov control v, is a selector of min,cpo, a1 {L’” Vy (s, x) + s}. The following
lemma is from [1, Lemma 3.7.8].

Lemma 4.5. Fix (s,, x,) € ]Ri’o. For any sequence y, | 0, there exists a subsequence, which

is still denoted by {y,}, and a function V € C (Ri’o) and a constant p such that as n — oo,

we have
ViV (85, X4) — p and Vyn(s, x) =V, (s, x) =V, (54, x5) = V(s,x) 4.21)
uniformly on each compact subset of Ri’o. Moreover, we have

i EuV ) = < *7 b Rz’c‘
ug[]ol,lz}/z]{ (s, x)+s}=p <p* (s,x) €eRY

We aim to show that a limit function V in Lemma 4.5 belongs to the family C;,.

Proposition 4.1. Let V be any limit in (4.21). Then

sup |V(s, x)| < oo.
(s,x)eH

Proof. Denoted by v, the optimal Markov control of the y-discounted control problem. Let
£y = SO;'O ,and p = p* + &, = Sy —4¢* and C| be as in Lemma 4.2. By (4.6), there exists a

C, > 0 depending only on #, such that
By (2k0S(t) + X (1)) < Cy, for any (s, x) € Ho, v € gy, t > 0. (4.22)

By It6’s formula, we have that

v rth - E;}yx v
EY, [S( + k) — S()] = / [w CEY X0 A(SO). xw)} dy.

Letting h — 0, we obtain

d So — B S(t
—E;VXS(I) :(’T’()

o —EZL X0 1 (SO), X(1)). (4.23)
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Consider the differential equation

— & —Z
0

It is easy to show that z(z) converges to Sy — &, uniformly for each initial value belonging to

dz(r) = 0 dr. 4.24)

any bounded set. Thus, there is a 7" > W%fﬂ“ such that
.
/0 z(t)dt > (So — 2¢&,)T*, for any z(0) > 0. (4.25)
In view of (4.21), we can choose y, sufficiently small such that
(1—e ), < e, (4.26)
and
Y Vy(ss, xi) < p, for y < ys. (4.27)

We divide H into two subsets (one of which can be empty):
W = {(s, xX) € M EX X () fi(S(), X(1) < ‘;—*, for all ¢ € [0, T*]} and
HY =H\H].

Step 1: Consider (s, x) € 7—[’1’. It follows from (4.23), (4.25), and a comparison argument of
differential inequalities that

T*
E;},Vx/ S(t)dt > (So — 26T, (s, x) € H]. (4.28)
0
Then, we derive from (4.22) and (4.26) that
T*
Ey% (1 — e "HS()dt < e, T*, (s,x) e H], ¥ < s. (4.29)
0

As a result of (4.28) and (4.29)
T*
E?Vx/ eV S(t)dt > (So — 3e)T*, for (s,x) e H',y < yu. (4.30)
0
In view of (4.27), we have that

. P
0< f V,(s,x) < — < oo fo < Vs,
= of y(s,x) < v < ry < Ve

which combined with the strong Markov property of (S(¢), X(¢)) under a Markov control,
implies
TT*
vy H —yt vy —er* T* T*
V, (s, x) =B, e S(t)dt + EY, [e W, (S(‘L’H ). X(], ))]
0
TT*
SEY [ 7 e s+ inf Vi (s, x) | E e 7
— WLig,x o sxeH y, S, X (431)
T*

v I’H D v *
zES,Vx/ e V' S(t)dt +( iI)I;fH V, (s, x) — sEsf’x(l — e—mﬂ )
0 S,X

for (s, x) € R%°,
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where ‘L'H =inf{t > T* : (S(t), X(¢)) € H}. By the Markov property of (S(¢), X(¢)), (4.22),
and (4.12), we have

1 * * *
—E (1 — e 7 ) <EVtl < T* + Bi(el — T%)
14
* v v
=T" + Es Egze) xro T
<T*+C, +Cs.
This together with (4.30) and (4.31) implies
Vy(s, ) Z inf V(5,0 + (S0 = 36T = BT+ C1 4 C)

> 1nf Vy (s, x) + e.T* — p(Ci + C) (since p = Sy — 4e,)

(s,x)eH
o(C C 1
> inf V,(s,x)+ 1(since T* > M),
(s,x)eH Ex

which leads to

V, (s, x) = ir)lfHVy(s,X) +1,(5,x) €H],y < s
5,X)€

As a result,
inf V y(s,x) = inf v y(s,x) for y < y.. (4.32)
(s,x)eH (s, x)€H2

Step 2: Consider (s, x) € ’H;’ . In view of (4.8), there is a C3 > 0 depending only on H and
T* such that

Ey (S*(1) + X*(1)) < C3, for any t € [0, T*], (s, x) € H, v € IIgy. (4.33)

For (s, x) € 7—[;’, there is a t;, , € [0, T*] such that Eg&X(I‘Y.x)fl(S(ts.x), X(t5.x)) > %* Since
Si(s, x) < ko(s + 1),

(B X (100 f1(S(tr). X ()] < KB X300 DBV (S () + 1P,
which together with (4.33) implies

B X2 (ty0) = B
for some g, € (0, %) depending on ¢, and C3. Then

v

K% [1[X2(r F* x? (s x)] + E [1 XZ(tJ’X)Z%}Xz(ts,x)] > By

which leads to
v &
B [1{x2(z 028X (t”)] z o

By Holder’s inequality and (4.33), we have
(E"y [l{xz(z 02 X (s, )]) <Py { X2 (ty0) = } (B X*(t5.0)]
<GP, {Xz(ts,x) > 3} :
Thus,

o~ /\2
v & 8
Py’ {Xz(tx,x) > 3*} > = TN =:4gq, for (s,x) € HJ,
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which implies that
Py {n < T*} > 4g, for (s,x) € H}, (4.34)
where
. 2 /8\*
n = inf tzO:X(t)z; .

On the other hand, we have from It6’s formula that

So — S(t)
0

So v
<s+ ?OEJX(n AT*) (4.35)

nAT*
B S A T¥) =S+]E§,yx/7 [ — X(0) /1(S(), X(t))} dt
0

Defining
), =inf{t > n AT* : (S(1), X (1)) € H},
we have
Esht)y =B A T*) + B (tf, — (0 A T™))

* vy vy
=T* +Esx [ES(qAT*),X(;;AT*)fH]

(4.36)
ST* + B 2608 A T) + X(n A TH) + G2
<T* +2koH; + 1+ C.
It follows from (4.34), (4.35), and Markov’s inequality that
vy * Hl — Yy
Pixin <T* and S(n) < o > 2q, for (s,x) e H,. 4.37)
q
By Lemma 4.3, there exists a §, > 0 depending only on %‘ and ¢, such that
v 1 H z,
P (X(t3) = 8.} > =, fors < b, 22 > 2y € (0, 1). (4.38)

2 2g 2

We can choose §, < x, and define Hz = {(s, x) € H : x > 6,}. Then H3 is a compact subset
of Ri’". We have from the strong Markov property of (S(¢), X(¢)) under Markov control v,
and from (4.37) and (4.38) that

vy n N
Pyl {(S(T'H)v X(ty)) € H3} n<T* and 5(77)5%1 }1{(S(r;7_L),X(r;7_L))EH3}i|

|
Y

>E
=FE 1 Bl xon Lixeozs.)
n<T* and S('l)ngl} S(m), X(n) HI=0x (439)
1

vy [

5,X

vy [

5,X
vy

>_

= [l{nsT* and S(p= 5k }}

>q.
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With A = {(8(t})), X(t}))) € H3} and A° = 2\ A, we have the estimate

n

_ v ™ »
V., (s, x) =IES,VX/O e V' S(t)dt + Egy [e_”’g% v, (S(‘L';ZL), X(I;ZL))] — V), (84, X4)

>Ey, lAe’y’”Zt inf  V,(s",x") + Ey lAce’”it inf V,(s",x")
(s',x")eH3 (s’ ,x"eH

- Vy(s*, Xy)
=IE§VX [IA < inf  V,(s",x") — V, (s, x*)>:|

(s',x")eH3

+ Ky, 1Ac< inf V,(s, x)—V(s*,x*)>:|

(s’ x"eH

— B, [ 1401 - eiV’H) inf Vy(s/,x/):|
(s, x")eH3

— BV |14e(1 — ") inf Vy(s’,x/)]
(s’ ,x"eH

Since Vy(s, x) = Vy(s,x) = V, (54, xx) = V(s,x) as y — 0 uniformly in each compact set,
there exists an H, > 0 such that |V, (s, x)| < H, for (s, x) € H3 when y is sufficiently small.
We also have 0 < inf(y yyens Vi (5", X)) < V(s xy) < g when y is sufficiently small. This
together with (4.36), (4.39), and inf( e V (s, x) < 0 yields that

= v . v l—e 7™
V,(s.x) > — HaP(A) + inf V,(s', X )PV(A9) — BET , [—}
(', x"eH o V4

> —HZIF’ (A)+ 1nf v (s’ x)]P’ (A€ )—pIE”rH

>—H,—p(T"+ 2/(017{l +14+C)+ ( ianVy(s’, X Py (AS),
s’ x")e

>~ Hy— 5 (T* +2c0H + 1+ C) + _inf Vs, x)1 — ).
(s’ x"eH

for any (s, x) € 7—[’2/,
which combined with (4.32) leads to
inf V,(s,x)>—H, —p(T* +2k0H; + 1+ C3) +( ir)lf_HVy(s,x)(l -7,
S,X)€E

(s,x)eH

or

1
oJnf V,(s,x)=— = (H2 + 0 (T* +2k0H + 1+ C,)) = —Hs. (4.40)
s, x)eH
Let v. = M be the constant control. Similar to the proof of Lemma 4.2, we can show that
Hy = sup E¥ 1y, < 0.
(s,x)eH ’
‘We have

vV, v, 1 Ve TH}
Ef S(tas) <5+ ]E ©THy — E S(t),
0

0 0

which implies

TH;3
B / S(t) < 0s + SoE Ty < 0Ky + SoHa, (s, %) € H. (4.41)
0
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By [1, Eq. (3.7.47)],

‘«xx>sE&xL/n“S@M:+xasay9,xungﬁ
0

(4.42)
<OK4+ SoHy + sup V(S/, )C,).
(s',.x")eH3
From (4.40) and (4.42), we obtain that
sup |V(s,x)] <oo. O
(s,x)eH
Proof of Theorem 4.2. For any (s, x) € Rff’, we have
VA vy e —yt vy —yT T
V, (s, x) =K, e VSt + By [e77HV, (S(tw), X (1)) ] — V, (55, x5)
0
. = vy, P _
> inf V(s x) — B D1 - e
= (rohen (5 x) B y( e (4.43)
> inf V(s x))— Ey
(s’ ,x"eH
> — (H3; 4+ 2xps + x + C;) due to (4.40) and (4.12).
As a result,
Vs, x) > —(Hs 4+ 2kps +x + C; + 1).
Similar to (4.41) and (4.42), we have
™
V(s, x) <E{, [/ S@)dr + V(S(t3), X(TH)):|
0
< sup |V(s',x)| + 05 + SoE{ to (4.44)
s/, x"yeH
< sup |V(s', x|+ s + So(Rkos + x + C).
(s’ x"eH

In view of (4.43) and (4.44), we have V (s, x) € Ci4p. Then, we can use arguments similar
to [1, Theorem 3.7.11 and Theorem 3.7.12] and Lemma 4.4 to obtain the desired result. [

5. Concluding remarks

To validate and to improve model (1.2), verification using real data is needed. To verify the
model, the parameters of the system need to be estimated first. A statistical estimator can be
constructed. To estimate the parameters using real data, we observe the solutions of (1.2) in
discrete epoch, and carry out the estimation accordingly. That is, view the observation (the real
data) as solution of (1.2), then use the explicit Euler method to discretize the diffusion process
(1.2), and utilize for example, the maximum likelihood method to estimate the parameter. An
alternative approach is to use the generalized method of moments.

The simplified model (1.2) may not be sufficient to perceive the complicated process of
wastewater treatment. Considering more complex models renders better understanding but also
poses more challenges.

In Section 4, we worked with controlled diffusions without switching for notational sim-
plicity. The proofs carry over if one considers the controlled switching diffusion counterpart of
(4.1). We have proved the existence and uniqueness of solutions to the HIB equation for (4.1).
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For the controlled switching diffusions, we need to deal with a system of HIB equations. While
the optimal Markov control can be obtained theoretically using the system of HJB equations,
it is quite difficult to find a closed-form solution explicitly. Constructing a numerical scheme
is a viable alternative.
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Appendix A. Proofs of Theorem 2.1

Proof of Theorem 2.1. Since the coefficients of (1.3) are locally Lipschitz continuous in
(s,x,i) € Ri x M, the system given by (1.3) and (1.4) has a unique continuous solution up to
explosion time t,, where 7, = inf{r > 0 : S(¢) v X(¢) = oo}, with the convention inf@# = oco.
The solution is also a strong Markov process; see [22,41]. If we define

5 = inf{t >0:St) Vv X(1) > k},

then 7, = limy_, o 7x. Consider f/\l(s, X, i) = kos + x then, by the generalized It6 formula, we
have
S()K() K

LVi(s, x,i) = 5 gfo(s, i) — ka(i)x 4 x(fals, x, i) — ko fi(s, X, ©))

Sox
< 0K0
0
Hence,

~ —~ Soxot
EoviVi(S(m A1), X(i A1), a(me AD)) < Vils, x, i) + 09”0 ,

which implies that
Pooift <) < P (S A, X(@ A0, a(m n0) 2 k]

- Vils, x, i) + Sog"t
- k
Therefore, we have P, ;{t, < t} = 0 or P, ;{t. > t} = 1 Vt > 0. As a consequence,
P; ..i{t. = 0o} = 1. Hence, the system given by (1.3) and (1.4) has a unique global continuous
solution.
Now, we move to the part of positivity of solutions. First, suppose that s, x > 0. For any
n € Z,, we define the following truncated functions

fén)(s’ )= fols An,i); fl(")(s, x,i)= fils An,x An,i);

S0, x,0) = fals An,x An, i),

— 0as k — oo.
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and let (S(")(t), X(")(t)) be the solution of Eqgs. (1.3) and (1.4) with fy, f1, f> replaced by

U F P respectively. Denote

n™ =inf{t > 0: S”(t) A X" (1) < 0},

1
" = inf{t > 0: SD1) A XP(1) < E}'
Then 7™ = limg_ o0 r;,i"). Consider

Vs, x, i) =5 —c” — " In— ; el —1—Inx),
1
where
1 ok
czz—andcgn)z il

Ko f(n>(s x l)
maXjem SUPgg =

Let

(n) .

o Jo Gs,0)

¢, = maxsup ———.
ieM -0

() S,X,0
Since fl(")(s, x, 1) is global Lipschitz and f, ")(0 x,1) = 0, it is readily seen that sup,_, ~——— A ( )

f(g")(x i)

< oo. Similarly, we also obtain sup,.,
By the generalized It6 formula, we have

(”) (n) . (n)
v S ? n .
LOTO (s, x, i) =<] ) ( o Jo (5,0) — xf s, x, l)> Vol
s

< 00, so the above constants are well-deﬁned.

0 0 2
2 .
1) . o3 (i
+ (Cz—;)( (s, x, l)—xkd(l)) 222()
(n) (n) (n)~ ~
IR L et ,

+ x(c2 i x. ) = £, 0, D) + x

- So + c(ln)c;") ok C(I")glz + 207 .

f— 6 .

where the operator £™ is defined as £ with fy, fi, and f> replaced by f 28 (") , and f, 08
respectively. Applying 1t6’s formula again, we have

(n) p(n) .
c S, X, 1 .
(M _ czkd(z))
s

= K™ fors, x > 0,

E i V3" (SP " A0, XV Ab), at” A1)
()

~ M N
=V3"(s, %, ) + By v / LV (8™ @), X (u), aw))du
0
5{7\2(")(& x,i)+ K™t
Since the definition of V( " we observe that if 77(") < t, then

V(")(S(")(n(”) At), X(")(n(") At), a(n(”) A1) = (cﬁ”) In kci") — c§")) A (c2Ink — 7).
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Hence, we obtain that
Vi (s, x, i)+ K™t
(ci") In kc(ln) — CY')) A (c2lnk = ¢,)

IPJs,)c,i {r]]({n)

<t} < — Qask — oo.

As a result, for any n € Z,, Ps,x,,-{né? = oo} = 1. That is,
]P’S,x,,-{S(”)(t), X" > 0:Vr > 0} =1 for any n € Z,
and hence
Poxi{S™(0), X" (@) >0:Vt >0,neZ,}=1.
Now, for any ¢ > 0 and
w € {t, = 00} N {S" (1), X"(t) > 0:Vt > 0,n € Z.},
there exists ng = ng(w, t) such that
SM(@) vV X(y)w) <ng V0 <y <=t

As a consequence, S(t)(w) = S0 (¢)(w) > 0 and X(¢)(w) = X"(t)(w) > 0. This, combined
with P , ;{r. = oo} = 1, implies that

}P’S,x,,-{S(t) >0:1> 0} = ]P’S,x,i{X(t) >0:1> 0} =1Vs,x >0. (A.1)
If s > 0,x =0, the result IP’S,X,,-{S(I) >0:1> 0} = 1 is similar proved by choosing ¢, = 0.
Moreover, it is obvious that Py, {X(1) =0:1 >0} = 1.

Consider the case when the initial value s = 0 and x > 0. Let ¢ > 0 be sufficiently small
such that

So — S, . S
% —EAG.E) = 3.

for any (5, %,1) € R? x M satisfying § + |¥ — x| < . Let
Ty =inf{t > 0: S()+ | X)) — x| > ¢}

(A2)

By the continuity of (S(7), X(#)), Po..i{T1 > 0} = 1. Using the variation of constants formula
(see [22, Chapter 3]), we can write S(¢) in the form

() = &) [/0 & (u) (SO —folSw.0@) e (SQu). X@w), a(u))) du:|

6
for t € [0, T}),
(A.3)

; ol(a(u))

where ®(t) = exp (— 0 > du + fot al(oz(u))sz(u)>. It follows from (A.2) that

So — fo(S(w), a(u))
0
This and (A.3) imply that

Po,i{S®) > 0,1 € (0, 7]} =1,
which combined with (A.1) and the strong Markov property of (S(z), X(¢), «(¢)) yields that
Po.i{S®) > 0,1 € (0,00)} = 1.

The theorem is therefore proved. [

— X)) fi (S(u), X(u), a(u)) > 0ifr € (0, 7(].
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Appendix B. Proof of lemmas in Section 4

Proof of Lemma 4.2. Since f1(0, x) = 0, we can choose §; > 0 such that s +0xf(s, x) < %

for s < 61, x < K4, where K, is defined in (4.10). Due to the uniform bound from (4.3) and
the stochastic continuity of S(f), (which can be seen to be uniform in v since the equation of
S(t) does not depend directly on v), there exist #; € (0, %) and §; € (0, §;) such that

PY (S(t) <81, X(1) < Ka+ 1,1 €[0,11]) = >, (5,x) € Ho, s < 1. (B.1)

AW

Let K5 be sufficiently large such that

P{o(t)v o7'(t) < Ks,t € [0, 1]} = =, (B.2)

Blw

2
where in this section, &(f) = exp <—071t+f0t UldWI(u)>. If &(1)v & '(t) < Ks and
S +0X@)f1(Sk), X(@)) < %0 for ¢ € [0, t;], we have

2
d S(u) — S 1S
S(t) = B(t) / 0 (M — X(u) f1(S(), X(u))) du> 2. (B.3)
0 0 20K
Let 8y = 22?(02 /\:S\l and H = {(s,x) : 2kps + x < Ky4,s > 6&}. Since the diffusion is
5

nondegenerate on Ri’o, it is well-known (see e.g., [1, Lemma 2.6.5]) that there exist #, > 0
and p; > 0 such that

Py {t% < o} > 2py, provided 8y < s < &1, K4 — 2«61 < x < Ky + 1.
Because of the definition of H,

P{ {tn <t} > 2p;, provided §p <s < d;,x < K4+ 1.
This together with (B.1), (B.2), (B.3), and the definition of &, implies

Py Amn < ti + 1} = p1, (s, x) € Ho. (B.4)

Define stopping times

Ty = inf{t > 1) + 1, 1 (S(). X(1)) € Ho).

o =inf{t > T + 0 + 1 (S, X(1)) € Ho).
In view of (4.3)

E!  (2608(t1 + 1) + X (11 + 1)) < (2kos + x) + Ki(11 + 1) < Ka + K1(11 + 1),
which together with (4.11) implies

E 7y < Ka+ Ki(t1 +12). (5, x) € Ho.
Then the strong Markov property implies that

EY, [r;'zj” — 7 — 1 F +1] < Ka+ Ki(t + 1), (s,%) € Hon = 1. (B.5)
0

Let
B, = [(S(t), (1)) € H for some t € [rq(r’z; ,g;; + 1)] k> 0.
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Let oD = rq(_;()) o® = t,({k()) ?(_]Z D _ 1,k > 2. Note that if By occurs, then T3 < r(k) +1. By
the strong Markov property of (S ), X (t))

{ﬂn+1 Bf) :E;x I:I{QLIBZ}E [B;'H |.7:I(n+1)]i|
=piE;, [l{m’l }]

=piPy ANMi=i Bl

By induction, we have

P {ﬂ”“Bk} < pi- I
which leads to

Py AL B} = 0.

As a result,
o0
ZP (B, Nzl Bf) =1, (B.6)
and
et ]
v (n)
. _
<1+) E, Za(l)l B8t (B.7)
o0
_ v 0
=1+ ZEM o Zl{Bmz;%B,g}
=1 L n=I[

00 —
=1+ Y B, [0 "1, B;;}] (due to (B.6)).

In view of (B.5) we have

v o v (0]
Es’x [0 1(“2;11315}] —Ex,x |:1{02=IIB,$}E |:U ‘]:T;{OCH

< Ko+ Kol + ) B, [Ty |
’ k=1%k
<Ks+Kiti +)pi' 1> 1
Therefore, it follows from (B.7) and (B.8) that

o0
0]
Bl 1 3B [0y |
=1

(B.8)

00
=< 1+Z(K4+K|(I] +t2))pll_l =C| < o0.
=1
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This and (4.11) imply (4.12). Under the constant control v = M, similar to that of S(¢), the
drift of X(¢) is positive when X(¢) is small. As a result, a similar argument can be deployed
to obtain (4.13). [

Proof of Lemma 4.3. We have

14+x 1 ~ o2x? o2
c (1 - x) —aky] - 22 %
(n . > D [+ xfo(s, x) — xky] TS

~ o}

fkd‘l-?.

Then by Dynkin’s formula and some standard calculations, we can show that

v 1+ X(tg) 1+x ~ o? v
E!, In X <In —+ kd+72 E!, T

<In

2
e ~
+ (kd + 072) sup ) Ty

s'<Ly
=L, < o0,

for s < L;. By Markov inequality, we have

1+ X
Pg,g {1n+—(T’H) <2L2} >

X(t) — =2

which implies (4.14). O

Proof of Lemma 4.4. By Lemma 4.1, the family {¢}, T > 0} is tight on P((0, co) x [0, 00) x
[0, M]) for any admissible relaxed control m. As a result, we can decompose any limit point
¢ € P((0, 00) x [0, 00) x [0, M]) as

T =580 4(1-8)¢",

where ¢’ € P(R° x [0, M]) and ¢"((0, 00) x {0} x [0, M]) = 1. Following the arguments
in [1, Lemma 3.4.6], we can show that ¢’ € G. Because of (4.15) and the uniform boundedness
(4.5) and (4.7), we have s + xfi(s, x) is ¢-integrable and

So— 5 —~
/ ( 0 xfils, x)) 2(ds’, dx', du) = 0. (B.9)
R2xpo,m) \ 0
Since ¢’ is in G, we have from (4.16) that
S _ /
/ < 0 s, x)) ¢'(ds’, dx', du) = 0. (B.10)
R2xpo,m \ 0

As a result,

So — s’ Sy — s’
/ 0_s§”(ds’,dx',du)=/ < 0~ 3 —xfl(s,x))
©,00)x{0)x[0.0] O R x[0,M] 6

x ¢"(ds',dx', du) =0,

or equivalently,

/ s't"(ds', dx', du) = Sp.
(0,00)% {0} x [0, M]
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To prove (4.19), note that we can find a sequence f, 1 oo satisfying
1 T 1 tn
liminf —ET, / St)dt = lim —ET, / S(t)dt
T-oo T 7 J n—oot, " Jy

and ¢;" converges weakly to a probability measure E, which can be decomposed as (4.18). By
the weak convergence, the uniform boundedness of E{', (2koS(r) + X (#))'*? in (4.6), and using
(4.17), we obtain

1 n
lim —E;”x/ S()dt =8/ s'¢'ds', dx', du) + (1 — §)
“Jo RZ x[0,M]

n—o00 tn
X / s'c"(ds’, dx’', du)
R2 x[0,M]

>8p" + So(1 = 8) = p*.
The proof is complete. [
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