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LONG-TERM ANALYSIS OF A STOCHASTIC SIRS MODEL WITH
GENERAL INCIDENCE RATES*
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Abstract. This paper investigates a stochastic SIRS epidemic model with an incidence rate
that is sufficiently general and that covers many incidence rate models considered to date in the
literature. We classify the extinction and permanence by introducing A, a real-valued threshold. We
show that if A < 0, then the disease will eventually disappear (i.e., the disease-free state is globally
asymptotically stable); if the threshold value A > 0, the epidemic becomes strongly stochastically
permanent. This result substantially generalizes and improves the related results in the literature.
Moreover, the mathematical development in this paper is interesting in its own right. The essential
difficulties lie in that the dynamics of the susceptible class depend explicitly on the removed class
resulting in a three-dimensional system rather than a two-dimensional system. Consequently, the
methodologies developed in the literature are not applicable here. One of the main ingredients in the
analyses is this: Though it is not possible to compare solutions in the interior and on the boundary
for all t € [0, c0), approximation in a long but finite interval [0, T'] can be carried out. Then, using the
ergodicity of the solution on the boundary and exploiting the mutual interplay between the distance
of solutions in the interior and solutions on the boundary and the exponential decay or growth
(depending on the sign of the Lyapunov exponent), one can classify the behavior of the system. The
convergence to the invariant measure is established under the total variation norm together with
the corresponding rate of convergence. To demonstrate, some numerical examples are provided to
illustrate our results.

Key words. SIRS model, extinction, permanence, stationary distribution, ergodicity
AMS subject classifications. 34C60, 34F05, 60H10, 92D25, 92D30

DOI. 10.1137/19M1246973

1. Introduction. The mathematical theory of infectious diseases has witnessed
substantial progress in recent years. Starting from the work of Kermack and McK-
endrick [28, 29], a vast literature on mathematical epidemiology has been developed.
We refer the reader to the excellent books [3, 27, 34], among others, for further read-
ing.

Building on the so-called compartmental models, one of the key ideas in Kermack
and McKendrick’s work is this: Age of infection affects the transmission and removal
rates. Because of the seminal importance to the field of theoretical epidemiology, the
set of their papers (originally published in the 1920s and the 1930s) was republished
in the Bulletin of Mathematical Biology in 1991. Their theory is in fact the source of
the classical SIR and SIRS epidemic models as well as their variants. These models
subdivide a homogeneous host population into three epidemiologically distinct types
of individuals (compartments), the susceptible class (S), the infective class (T), and the
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recovered or removed class (R). The epidemic dynamics of some infectious diseases
with permanent immunity such as smallpox, measles, and chickenpox are usually
modeled by the well-known SIR model:

dS(t) = (b—puSt)I(t) — f15(1)) dt,
(1.1) dI(t) = (uS@E)I(t) — (B1 + B2 + B3)1(t)) dt,
dR(t) = (B21(t) — B1R(t))dt,

where b is the birth rate, p is the transmission coefficient, 5; and P3 are the per
capita death rates of healthy individuals and the additional per capita death rate due
to disease, respectively, and B2 denotes the recover rate. In this model, R(t) does not
affect the dynamics of S(t), indicating that the recovered individuals are immune to
the diseases. However, for some other diseases, for example, syphilis and influenza,
the recovered individuals can become susceptible again. Thus the dynamics of the
diseased population should be described by SIRS models. The classical SIRS (see, for
example, [15, Chapter 6] and [32] among others) is a system of differential equations

S(t) = (b—pSHI(t) — ALS(t) +yR(E)) dt,

d
(1.2) dI(t) = (uS)I(t) — (Br + B2 + B3)1(t)) dt,
dR(t) = (B21(t) — (B1 +7)R(t))dt,

where + is the rate of loss of immunity.

The so-called (bilinear) incidence rate uS(t)I(t) describes the number of new
cases per unit time in (1.2). However, it was noted in [24] that there are a number
of biological mechanisms that may result in nonlinearities in the transmission rates
and several theoretical studies have explored the implications of nonlinear structure
in transmission rate for host-parasite interactions (see [24] and references therein).
In addition, [10] introduced an SIR epidemic model with a saturated incidence rate
motivated by a study of the cholera epidemic spread in Bari, Italy, 1973. The satura-
tion of incidence rate is explained by “psychological” effects: for a very large number
of infected individuals the incidence rate might be sublinear because in the presence
of a very large number of infected individuals, the population may tend to reduce
the number of contacts per unit time. Some other nonlinear forms of incidence rates
such as f(s,1) = sﬁ—;lh (Holling-type) or f(s,i) = m (Beddington-DeAngelis
type) were also considered (see, e.g., [2, 5, 21, 22, 25, 30, 35, 37, 40]. In this paper, we
work with a more general incidence rate where F(s, 1) is a locally Lipschitz continuous
function in both variables. Thus, our model includes many incidence rates considered
to date in the literature. Furthermore, we suppose that the model is perturbed by
white noise to accommodate the well-recognized effect of environmental fluctuations
due to the random environment. To be specific, we consider the following model:

(1.3)
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where (W7, Wa, W3) are three correlated Brownian motions with the positive definite
covariance matrix (a;;)sxs satisfying (W;, W;), = a;;t for 4,5 =1,2,3.
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The choice of linear diffusion terms is to keep the model sufficiently simple so that
we can focus on elaborating and illustrating the new ideas and methods. Combined
with [6, 20], the methods introduced in this paper can be applied to a more general
model with nonlinear diffusion parts under some additional mild conditions. Despite
being seemingly oversimplified as commented on in [1], in which several alternative
models were proposed together with an interesting simulation study, linear functions
of Gaussian white noise models have been used extensively by biologists for projecting
future population sizes and estimating extinction risks in [12, 18, 31] and exploring
what stochastic mechanisms facilitate or inhibit the persistence of populations, coex-
istence of interacting species or genotypes, or maintenance of ecosystem services; see,
e.g., [17, 38] and the references therein.

Letting ¢; = (1, co = 81+ B2+ B3, c3 = B1 4+, and ¢4 = B2, we can then rewrite
(1.3) as

(1.4)

To help the reader, we put the parameters of the models in the following table.

Parameters in Models (1.3) and (1.4)

b birth rate

051 per capita death rate of healthy individual

B per capita recover rate

03 additional per capita death rate due to disease

¥ per capita rate of loss of immunity

I transmission coefficient

c1 =/

C2 =p1+ B2+ B3

c3 =p1+7

(o = B2

o1 intensity of the fluctuation of S(¢) due to random environment
o9 intensity of the fluctuation of I(¢) due to random environment
o3 intensity of the fluctuation of R(t) due to random environment

Working with epidemic models, one of the main goals is to find the basic re-
production number Ry to classify the long-term behavior of the system. In general,
it is shown in many deterministic models that if Ry < 1, then the disease becomes
extinct while if Ry > 1, the disease persists. Similar results hold for some stochastic
SIR models (see, e.g., [13, 14]) and some stochastic SIRS models in which the total
population is forced to be bounded (see [19, 23]). In contrast, although stochastic
SIRS models with linear diffusion terms have been considered in many papers (see
[8, 9, 41, 42] and the references therein), the basic reproduction number Ry was either
undiscovered or extra conditions were needed to obtain criteria for persistence and
extinction of the diseases (besides comparing Ry with 1).

In our recent work [13], we provided sharp conditions for a stochastic SIR model,
which essentially almost completely classified the persistence and extinction (of the
three classes). One of the main ingredients is the use of Lyapunov exponents. Never-
theless, the approach in [13] is not directly applicable here. The main difficulty stems
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from the fact that we have to work with a three-dimensional system of the SIRS
models rather than a two-dimensional system of the SIR models in [13] and that the
comparison arguments do not work well for SIRS models because the dynamics of
S(t) depend explicitly on R(t); see, for example, the first equation of (1.3). Recently,
based on the ideas of Lyapunov exponents and occupation measures, some beautiful
results on stochastic persistence and extinction were obtained in [6]. Unfortunately,
the results there are not applicable to our model because some conditions for “H-
persistent (strong version)” in [6, Theorem 4.12 or Proposition 4.13] are not satisfied
for our Lyapunov function.

It becomes clear that to analyze SIRS models requires new techniques and del-
icate treatment to overcome the difficulties. In this paper, we rely on the idea that
although we cannot compare solutions in the interior and on the boundary in the
whole interval ¢ € [0, 00), we can carry out approximation in a long but finite interval
[0,T]. Then, using the ergodicity of the solution on the boundary and exploiting
the mutual interplay between the distance of solutions in the interior and solutions
on the boundary and the exponential decay or growth (depending on the sign of the
Lyapunov exponent), we can classify the behavior of the system.

The rest of the paper is organized as follows. Section 2 presents the main results
of the paper. Section 3 provides a discussion on how the noise affects the reproduc-
tion number. In addition, some numerical examples are also provided. The detailed
proofs of the main results for extinction and persistence are given in sections 4 and
5, respectively. Finally, an appendix containing the proof of Theorem 2.1 is placed at
the end of the paper.

2. Main results. Throughout the paper, we denote R3 = {(s,i,r) : s > 0,i >
0,7 > 0}, Ri’o = {(s,i,7) : s > 0,4 > 0,7 > 0}, and Ri’* = {(s,i,7) : s > 0,0 >
0,7 > 0}, respectively. Let W;(t),7 = 1,2,3 be Brownian motions defined on a
complete probability space (2, F,P). In addition, we assume the following standing
assumption throughout the paper.

Assumption 2.1. Assume that on [0,00)?, the function F(s,4) is bounded below
by ¢g > 0 and that the function i +— ﬁ is continuous at ¢ = 0 uniformly in

s €]0,00). Assume further that oo

Remark 2.1. This assumption is satisfied by many incidence rates introduced in
the literature such as Holling type (with A < 1), Beddington-DeAngelis type, and
some nonmonotone incidence rates in [8, 11] as well as the saturated incidence rate
in [10, 22] when o = g(1) satisfying g(x) > 0, g(0) = 0 with continuous derivative

is nondecreasing in s.

g'(x) satisfying ¢’(0) > 0 (for instance, g(i) = lfnﬁw with ¢ > 1,p > 0, my,ms > 0).
In fact, the case g(i) = 11”;;,, with ¢ < 1 as well as the Holling type with A < 1 can

be treated but it would require methods that are substantially different from those
introduced in this paper.

We start with a theorem about the well-posedness of the model.

THEOREM 2.1. The following assertions hold.
(i) For any initial value (s,i,7) € R, there exists a global solution (S(-),I(-), R(-))
to (1.3) (or (1.4)) such that

Py {(S®),1(t),R(t)) € R3 vt >0} = 1.
Moreover,

(2.1) Pyo {I(t)=0VYt>0}=1
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and
(2.2) Py, {(S(t),I(t),R(t) €RY°Vt >0} =1 for any (s,i,7) € R}".

(ii) The following moment bound of the solution holds. Namely, for p > 0 suffi-
ciently small, there exists an M, > 0 such that

I+p (A+s+it+r)tr
- e(l“l’p)%

(2.3)  Esur (S() +1(t) + R(2))

+M, Vt>0.

Moreover, for any H,e,T > 0, there exists an Mg .7 > 0 such that
(2.4)

Psir { sup {S(t)+I(t)+ R(t)} < MH@T} >1—¢ V(s,i,7) € [O,H}?’.
t€[0,T]

To proceed, consider the dynamics of the population without disease by setting
I(t) = 0 and R(t) = 0 in the equation for S(¢) and denote such a function by S(t).
Then

(2.5) dS(t) = (b - clg(t)) dt + o1 S() AW (t).

This equation has an ergodic invariant measure, denoted by u (see [13]). Since u° is
2
an inverse Gamma distribution with parameters o := 2010# >1and 8 := 3—2, the
1 1

function x +— 2P is p’-integrable whenever 0 < p < a. This, together with the fact
that F(s,) is bounded below by ¢g, implies that

s
(2.6) / pl(ds) < .
(0,00) F(5,0)
Similar to the intuitive explanation in [13, Remark 2.1], when the density of the
disease I(t) is small, the long-term growth rate of I(¢) is determined by

S

2. = —u° —co — 0. 2.
(2.7) A /(o,oo) F(s,O)u (ds) — cg — 0.5a9005

The main results of the paper classifying the extinction and permanence of the disease
are stated in the following theorems. Their proofs as well as the proof of Theorem 2.1
are arranged in sections 4, 5 and the appendix, respectively.

. 3,0
THEOREM 2.2. Suppose X < 0. For any (s,i,r) € R},

In I(t 1 t )
nl(t) =A< O’tlim %() = max{—c3 — 0.5a330§,)\} < 0} =1.
— 00

— 00

(2.8) Py {tlim

THEOREM 2.3. Suppose A > 0. There ezists a unique invariant probability mea-
sure ™ such that for any n € N,

(2.9) lim "||P(t, (s,4,7),") —7*()| =0 V(s,i,r) € RY",
t—o0
where || - || is the total variation norm. The support of ©* is Ri_’o. Moreover, for any

initial value (s,4,7) € Ri* and a 7 -integrable function f we have
(2.10)

1 /T
PS,M{ Tlim ?/0 F(S@),I(t), R(t))dt = f(s/,i’,r’)w*(ds',di',dr’)} =1.

3,0
]R-F
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Concerning these results, Theorem 2.1 establishes the existence and uniqueness
of positive solutions of (1.3) or (1.4) with nonnegative initial data. Also presented are
moment boundedness and probability boundedness. The probability boundedness is
essentially a tightness result, which indicates that no probability is lost. Theorem 2.2
shows the condition for the eventually disappearance of the disease and finds the
Lyapunov exponents (exponential convergence rate) associated with I(¢) and R(t).
Theorem 2.3 demonstrates the convergence to the invariance measure and a law of
large number type result. Furthermore, it derives the convergence rate under the total
variation norm. It shows that the rate of convergence is in fact polynomial of any
degree but short of an exponential function. It indicates that the disease will persist
and the probability distribution of the classes can be approximated by an invariant
probability. The convergence rate suggests a good approximation can be archived
after a modest period of time.

The two theorems leave the critical case A = 0 untreated. The contradiction
argument in [36] is not applicable because some comparison techniques do not work.
[4] suggests the process (S(t), I(¢), R(t)) in Ri’o is null recurrent, that is, there exists
a sigma-finite invariant measure on R3°. However, [4] is applicable only to the case
when the invariant probability measure on the boundary is a Dirac measure. It would
be interesting if the results in [4] can be generalized to the case when the boundary
has a more general invariant probability measure.

3. Discussion and numerical examples. Before proceeding to the proofs of
the results, this section provides some discussions and numerical demonstration.

3.1. Discussion. We first give some comments on the impact of randomness to
the basic reproduction number Ry of the stochastic system (1.4) which is defined by
the ratio of the birth rate to the death rate of the diseased class I(t) when its density
is small and so

Cco + 0.5@220’% - Cco + 0.50,220'%

f(o,oo) Fe0) 10 (ds) A
Ro =

Let us also consider the deterministic counterpart to (1.4):

ds(t) = <b - M —e1S(t) + 'yR(t)) dt,

(3.1) oWl cﬂ(t)) dt,

Denote by Rd the basic reproduction number of (3.1) and also let Ay be the growth
rate of I(t) at rare density. Because in the disease-free state S(t) converges to s* := %,
it is easy to show that

Rd = = = and \g = f(s*) —co = —2—~ — ¢o,
@ uF(L0) F(L,0)

where f(s) = VOOR
In the disease-free state, the solution to the stochastic system S°(¢) in (2.5) has
a stationary distribution p°. Let S be a random variable with distribution p°. Then
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we have o
E 08 = / sul(ds) = s*,
0

which does not depend on o7. As a result, if f(s) is a linear function, one can see that
the basic reproduction number Ry of the stochastic system (1.4) does not depend on
01. However, the fluctuating effect of o1 does have impacts on the dynamics of the
disease if the incidence rate is nonlinear. This can be explained because the noise
makes S fluctuates around s*, that is, S can move between the disease-favored region
and the disease-unfavored region. Thus, depending on the nature of the nonlinear
function f, this fluctuation can facilitate or obstruct the development of the disease.

Remark 3.1. We consider the following cases.

d 2

(i) If f(s) is a linear function, then A = A\ — 0.5a9203 and % = M_Of# > 1.
If o9 = 0, then A = \y, RS = Ry.

(i) If f(s) is a nonlinear concave function on (0, 0c), then Ay > A and R > Ry.
As a result, if the deterministic system (3.1) tends to a disease free state, so
does the stochastic counterpart (1.4).

(iii) If f(s) is nonlinear and convex, then there are sets of parameters such that
Mg < 0 < X or equivalently RS < 1 < Ry. In fact, if 09 = 0,0 # 0, then we
always have that Ry > Rg or equivalently A > \g4.

To further elaborate on the above remark, we argue as follows. Since we always
have that E, 08 = [ su’(ds) = s*, and pu° is absolutely continuous with respect to
the Lebesgue measure on (0, 00), it follows from Jensen’s inequality that

= f(s*) if f is linear,
E,0f(S){ > f(s*) if f is nonlinear convex,

< f(s*) if f is nonlinear concave.

Since
A=E, 0f(S)—c2— 0.5&2205, Ad = f(s%) — ¢,

we can easily derive claims (i) and (ii). For claim (iii), if 0.5a2003 < E,0 f(S) — f(s*),
we get that A > A\g4.

Now we wish to examine how A (or equivalently Ry) depends on the parameters.
It is obvious that A decreases as cp and o3 increase. Applying a comparison argument,
we can easily show that A increases (decreases reps.) as b (f; reps.) increases. The
main focus is on the dependence of A on ¢f. For population models perturbed by
white noise, it is well-known that the noise has a detrimental effect on the growth
rate of the species (see, e.g., [12, 17, 18]). This can be explained by the fact that the
fluctuation of the environments makes species more difficult to adapt. Mathematically,

in a stochastic logistic differential equation
dX = X(a—bX)dt + o XdW (t),

the growth rate at rare density is a — 0.502, which decreases as ¢ increases. Moreover

) )

a—0.50>
b

given that a — 0.502 > 0, the average population is , which is also a decreasing
function of ¢2. In our epidemic model, o, does not change the average disease-free
population. But simulations of the density function of u° suggest that o also has a
detrimental effect on the disease-free population (we call it the Type 1 effect) in the

sense that as o2 increases, the disease-free population 59 is much more likely to stay at
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2 4 6 8 10 12 14 16 18 20

FiG. 1. The density of the stationary distribution p° with b = 10,¢1 = 1 in four cases: of =

1,...,4. The average of the free-disease population is s* = 10.

Fic. 2. Graph of A as a function of Jf when b=10,c1 = 1,c2 + 02 = 50. We have four graphs

for different incidence rates where f(s) = ﬁ = k“—_ﬁs with k =5,...,8.

a lower level than the average s* (see Figure 1). There is another effect to the growth
rate A of the disease at rare density that comes through the resonance of the fluctuation
intensity o7 with the nonlinearity of the incidence rate (we call it the Type 2 effect).

If f is concave, the combination of concavity of f and the fluctuation of §0(t)
through o7 makes the disease harder to develop (as in Remake 3.1). Consequently,
both Type 1 and Type 2 effects have detrimental impacts on the development of the
disease. It is therefore not surprising that the simulations indicate A is a decreasing
function in o%; see Figure 2.

In contrast, if f is convex, the fluctuation of S°(t) because of 2 resonates with
the convexity of f in favor of the disease to develop. In this case, the development of
the disease is subject to two different effects from o2, one (Type 2) is beneficial, and
the other (Type 1) is unfavorable. Figure 3 suggests that \ as a function of o first
increases and then decreases. It shows that with small fluctuations, the Type 1 effect
is not strong compared to the Type 2 effect (the resonance of the fluctuation with
the convexity of f). However, as o2 is large enough, the Type 1 effect gets stronger
and diminishes the Type 2 effect, but it cannot outweigh the Type 2 effect because
we show in Remark 3.1 that A attains its maximum at o1 = 0.

3.2. Numerical simulations. In this section, we provide further numerical ex-
perimental results with different sets of parameters. One of the main efforts is to
visualize the persistence and extinction of the disease. Euler’s numerical algorithm is
run with 10% iterations and step size At = 1074, To visualize the behavior, we plot
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80

— =
75 s k=

s =7

— k=g

70
65
60

55
50
45

35

F1G. 3. Graph of A as a function of 0% when b =10,c1 = 1,c2 + o2 = 50. We have four graphs

for different incidence rates where f(s) = ﬁo) = min{s(1 + s), (2k + 1)s — k?} with k =5,...,8.

Sample path of I{t) Sample path of Rit)

R()

F1G. 4. Sample paths of I(t) and R(t) with parameters b = 6;y = 1,81 = 1.5,82 = 1.6,83 =
1,01 =1,00 =2,03 =1, and F(s,i) =1. A=—1.1.

Phase portait of (S(t), I(t)), R(t))

(S(t), Iit), R(t)

and R(
A =25.

F1G. 5. Sample paths of I(t)
1,00 =1,03 =2, and F(s,i) = 1.

t) with parametersb=6;y=1,61 =1,82=1,83 = 1,01 =
the corresponding curves. Figure 4 delineates the extinction of the disease when A is
negative. The asymptotic behavior is delineated by the decaying graphs. In contrast,
Figure 5 shows the persistence of the disease when A is positive. In fact, we draw a
three-dimensional surface similar to the two-dimensional “phase portrait.”

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/01/20 to 73.58.24.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A GENERAL-INCIDENCE-RATE STOCHASTIC SIRS MODEL 823

4. Extinction: The case A < 0. Focusing on the case of A < 0, this section
analyzes the extinction. We first consider the perturbed equation of (2.5)

(4.1) 450 (t) = (b b — c1§0(t)) dt + 08 (H)dW, (¢).

Similar to (2.5), (4.1) has an ergodic invariant measure, denoted by p?, which is an
inverse Gamma distribution. Similar to the observation in (2.6), we have

s 0
w’(ds) < oo.
/(O,oo) F(S,O)

LEMMA 4.1. We have

S 0 ) — S 0 B
/(O,oo) F‘(S70)'u (d ) /(O,oo) F(S’O)u (d )

Proof. The density of x? on (0, 00) is

lim
6—0

By 5 2 =~ 2(b+~0
Bo silfo‘e*ﬁTs, s>0, with a:= 1—|—i21 and [y := (b+19)
o

(4.2) go(s) := ) 1 7

Note that 5.9 N EO = 3—2 as 6 | 0 and hence gg(s) — go(s) pointwise as 6 | 0.
1
Moreover, straightforward computations reveal that for all 6 € [0, 1], we have

go(s) < g(s) := B taghos

- I(e)

It is easy to see that fooo sg(s)ds < oo. On the other hand, by Assumption 2.1, we
have ﬁ < i Thus, an application of the dominated convergence theorem yields

s s
lim / 1l (ds) — / p°(ds
6—0 (0,00) F(S,O) ( ) (0,00) F(S,O) ( )
< lim sgo(s) _ s90(s) | o _ ¢
6—0 (0,00) F’(S7 O) F(S, 0)
This completes the proof. 0

LEMMA 4.2. For any € > 0 and H > 0, there exists a §9 > 0 such that for all
(s,i,7) € [0, H] x [0, 0] x [0,d0], we have

(4.3) P,;. {tlggo I(t) = lim R(t) = 0} >1-¢,
1 [ b+~
(4.4) Psir {limsup/ S(u)du < ‘1‘71} >1—¢,
t—oo b Jg C1

where 01 > 0 satisfies

s 01 (gs) _ s 0(4s
/(O,oo) F(870)M (d ) /(O,oc) F(870)'u (d )

and \ = min{—\, c3 + 0.5a3303%}.

(4.5)
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Proof. By the ergodicity of gfl (t), with probability 1,

5‘91 (u) s
4.6 li d = %1(d
( ) tiglo t/ F 591 u u /(0700) F(S,O)'u ( S)’

where the subscript s in S (-) indicates the initial value of S%1(.). Consequently, for
any € > 0, there exists a T = T(H,e) > 0 such that Py () > 1 — £, where

1 [t S0 5 X
0, = w:f/~7du§/ N(du)+ = Vt>Ty,
! { t Jo F(S%(u),0) (0,00) F<57O)H (du) 10

And the subscript in Py shows the initial value of S (u). Since S (u) < S (u),u >
0 almost surely for s < H and ﬁ is increasing, we have that P(€) > 1 — % for

s € [0, H]. Likewise, the strong law of large numbers for Brownian motions

Wi (t)

(4.7) lim

t—o00

=0, almost surely (a.s.) for k =1,2,3,

implies that P(23) > 1 — £, where

Q, = w:wgi V> T k=1,2,3%.
t 10

Furthermore, we can choose T' > 1 such that

exp{—0.5\T'}

(4.8) - - <
c3 + 0.50,3303 — 0.5\

Note that by the definition of X c3 + 0.5a3303 — 0. 5\ > 0.
By virtue of (2.4) in Theorem 2.1 and the fact that < &, there exists an

Fs0)
M = M(e, T, H) > 0 such that
Py, (Q3) > 1 — i V(s,i,r) € R3 with s +i+r < H,

where

(4.9) Q3 = {w : /0 F(g((z))’o)du <M — 0.1XT} .

Moreover, we can choose M sufficiently large so that

9
P(Qy) > T

1-—
(4.10)
WhereQ4—{ o Wi(t)] < M — 0.1NT V¢ € [0, 7] and k = 1,2 3}.

Let 69 > 0 be such that

L and Spe*M < .
cs3 + 0. 5@330'3 10kq

0.5 T+ 3M hy
(4.11) 606M<1+ exp {(cs +0.5ass0;)T + }> A
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Define

- )
(4.12) T:=inf{t>0:R(t) >0y or I(t) > .
10&0
Using the second equation of (1.3), we have

(4.13)  I(t) = I(0)exp {/0 F(Si()u)l(u))du — (c2 + 0.5a2203) t + JgWg(t)} .

Likewise, the third equation of (1.3) implies that

ﬁ <R(O) + /0 t ca®(u)l (U)dU> ,

@(t) = exp ((03 + O.5CL330§) t— O'gWg(t)) .
Thanks to Assumption 2.1,

(4.14) R(t) =

where

(4.15) F(z B - F(,: O)‘ < 0.1\ for any s >0, and 0 <i <

Thus, in view of (4.9), (4.10), (4.13), and (4.15), we have

IQO.

Z-e—(02+0.5a220'g)t—M

(4.16) by

< I(t)<ie*M < Tore YVt e [0,TAT],i<dp and w € Q3N Qy.
0

We next derive from (4.10) and (4.16) that

t t
/ D(u) I (u)du < z/ exp{(cs + 0.5a3303)u + 3M }du
0 0

< Z‘eXp {(63 + O.5a33¢7§)T + 3M}

(4.17)

c3 + 0.50,330'5

for all t € [0,T A 7] and w € Q3N 4. On the other hand

% < exp(ozWs(t)) < eM vt €[0,T),w € Q.

As a result, if 7,7 € [0,0p), then we have from (4.14) that

0.5 T +3M
Rt)<eM [r+ Z_C4exp {(CS - a3303)2 - }
c3 + 0.50,330'3

(4.18) < oM (50 1 5o, P {(c3 + 0.5a3303)T + 3M }
0 0™ c3 + 0.5(1330’%
0
<= Vte[0,T A7) and w € Q5 N Q.

=~

Thus, it follows from (
[0,60) % [0, o), we have

.16) and (4.18) that for any initial value (s,4,7) € [0, H] X

(4.19) F>Tifwe QN
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Now, we show that for any initial value (s,,7) € [0, H] x [0, dp) X [0, dp), we have

4
(4.20) T = oo for almost every w € ﬂ Q.
k=1

We have from the comparison principle that S(u) < S (u), u € [0,7] with probability
1. Then we can compute using (4.15)

I(t) =iexp { t S(u)j_(u»du — (02 + 0.5agga§>t + 02W2(t)}

du + 0.1\t — (CQ + 0.5(12203)15 + Ung(t)}

t/ ﬁ;ﬁl(ds)mg}t - (c2 + 0.5a220§)t + 0.1Xt}
(0,00) )

(4.21) < iexp {/O mdwo.z}t — (c2 + 0.5a22o§)t + 02W2(t)}
{)\t + 0.4Xt} (due to (4.5))
< iexp{f().fiXt}, t € [T,7),(s,i,7) €[0,H] x [0,5) x [0,d)

for almost every w € N{_, Q.
Using (4.14), we can write for t > T that

1 T 1 ¢

When w € Q9, we have
(4.23)

exp { (03 + 0.5a330§ — O.lX) t} < ®(t) <exp { (03 + 0.5a330§ + 0.1X) t} vt >1T.

(4.22)  R(t) =

By virtue of (4.21) and (4.23), for (s,4,7) € [0,H] x [0,d0) x [0,dp), we have the
following estimate: For almost every w € Nj_,Q and ¢ € [T, 7),

¢ ¢ ~
/ D (u)(u)du < 2/ exp {(03 + 0.5a330% — 0.5/\)u}du
T T
exp { (03 + 0.5a330§ — O.BX)t}

<1

cs + 0.5a3303 — 0.5\
which together with the first inequality of (4.23) leads to

1 /t
— D (u)l(u)du
s | 2w
., expq (c3 +0.5agz03 — O.GX)t
(4.24) < iexp {— (cs + 0.5a3303 — O.b\)t} { = }
c3 + 0.5&330’% — 0.5\
exp{—0.5At}

¢34 0.5a3302 — 0.5X
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where the last inequality follows from (4.8). Let n be any integer greater than T
Applying (4.17), (4.23), and (4.24) to (4.22), we have for any initial value (s,i,7) €
[0, H] x [0,d0) % [0,80) and for almost every w € N{_,Q and t € [T,n A T),

(4.25)

R(t) < o~ (est05ama3-0.13)1 (r tiest

(c3+0.5a3362)T+3M e—0-5At
iC4

c3 + 0.5@330’% c3 + O.5a330'§ — 05X

e(c3+0.5a3303)T+3M
<d |1 6
=70 te c3 + O.5(l330’§ + %0cs
01 6y
<=4 = =6,
p T =0

where the last line follows from (4.11). This and (4.21) imply that 7 > n for almost
every w € Ni_, Q. Since n € N is arbitrary, we obtain (4.20).

With (4.20) at our hands, we can let ¢ — oo in (4.21) and the first inequality of
(4.25) to see that

(4.26) tlgrolo I(t) = tliglo R(t)=0
for any initial value (s,i,r) € [0, H] x [0,00) X [0,00) and almost every w € NF_, .
Note that P{N}_,Q} > 1 — ¢ and thus (4.3) follows.

Moreover, it follows from (4.20) and the comparison principle that S(u) < S% (u)
for all u € [0,00) and w € N{_,Qk. Consequently we have

(4.27)
1! 1 [t~ b+ 0 i
limsup — [ S(u)du < lim = [ S% (u)du = —> for almost every w € ﬂ Q.
t—o0 0 t=oo b o @ k=1
This gives (4.4) and hence completes the proof of the lemma. d

ProPOSITION 4.1. For any e > 0 and H > 0, there exists a § > 0 such that

(4.28)
In I(t In R(t
Psir{lim nI(t) — A <0, lim In R(t) = max{—c; — 0.5a3303, \} <0} >1—¢
" t—00 t t—00 t

for (s,i,r) € [0,H] x (0,9) x [0, H].

Proof. Having Lemma 4.2, the proof of this proposition is based on considering
the tightness and weak-limits of the family of randomized occupation measures defined
as

~ 1 [t

() := ;/0 L 10, Ru)eydu, > 0.
Note that the tightness of a family of probability measures means the relative com-
pactness in the space of probability measures equipped with the topology of weak
convergence; see, e.g. [7]. It is proven in [16, Theorem 4.2] or [20, 39] that with prob-
ability 1, any weak-limit of II! as t — oo is an invariant probability measure of the
process (S(t),1(t),R(t)) on R3. In view of Lemma 4.2, the collection of measures
(T (5 w), t > 0,w € NE_ Qu} is tight in R and any weak limit of TI*(-) as t — oo
must have support on [0,00) x {0} x {0}. Clearly, u° x §* x 6 is the unique invariant
probability measure on [0, 00) x {0} x {0} for the process (S(t), I(t), R(t)), where 8" is
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the Dirac measure with mass at 0. As a result, IT*(-) converges weakly to u0 x 8* x &*
for almost every w € ﬂilek as t tends to co. By the weak convergence, we have

im E tiS(u) U = i 9(ds
(4.29) A 7 /0 FiStu), [(w) " /(Om) Feoh @)

for almost every w € NMi{_, Q. Note that although % may be unbounded, by
Assumption 2.1, we have 7= < . Also recall that S(u) < S (u) for all u > 0

and w € N{_, Q. Thus, the limit (4.29) is valid due to the weak convergence and the
uniform integrability

1/t ~ 1 [t~ ~ =
lim sup / (S() *du < Tim = [ (5% (u))*Pdu = / S0 (ds) < oo
0

t—o0 t=oo t Jo (0,00)

for p € (0, @), which follows (4.2) and the ergodicity of S (t). By (4.13), we obtain

InI(t) InI(0) 1 [ S(u) 9 Wa(t)
T 3 + ; /0 F(S(u),[(u))du — ((22 —|—0.5a2202) + 09 ;
and hence
(4.30) lim InI(t) =A
t—o00 t

for almost every w € N{_, Q. In view of (4.30) and the limit

(4.31) hmlnfa)

=c3+ 0.5@330’% a.s.,
t—o0

we can write

1 ¢
0] /0 O (u)I(u)du

t
= exp{—(c3 + 0.5a3303)t + 01(t)} / exp{(\ + c3 + 0.5a3303 )u + 0z (u) }du,
0

lo1 () [+]02(¥)]
t

where lim;_, o = 0 for almost every w € ﬂi:IQk. Then, we can easily

show that

1.1
(4.32) lim —1In 0] -/0 ®(u)I(u)du = max{\, —(c3 + 0.5a3303)}

t—oo t
for almost every w € Ni_, Q. In light of (4.14), (4.31), and (4.32), we have

In R(t
lim In R(H) = max{\, —(c3 + 0.5a3303)}
t—o0 t

for almost every w € N{_, Q. Recall that Py, .(Ni_, Q%) > 1 — ¢ for all (s,i,7) €
[0, H] x [0,d0) x [0,dp). The proof is therefore complete. O

Proof of Theorem 2.2. The process (S(t),I(t), R(t)) is transient in Ri’o by virtue
of Proposition 4.1. Thus, the process has no invariant probability measure in Ri_’o.
It is easy to show that ¥ x 8 x 8" is the unique invariant probability measure on
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the boundary and therefore the only invariant probability measure in Ri. Let H be
sufficiently large that °((0, H)) > 1—e. Thanks to (2.3), the process (S(t), I(t), R(t))
is tight. Consequently the occupation measure

M) = [ P (S T) R(w) € - du

is tight in R%.. Since any weak limit of I | ; as t — co must be an invariant probability

ER X

measure of (S(t),I(t), R(t)), we have that II{  , converges weakly to u® x §* x 6" as

8,7,

t — co. As a result, for any & > 0, there exists a T > 0 such that
7, ((0,H) x (0,8) x (0,8) > 1 -«
or equivalently

1 T
= [ P50 100. R O) € 0.1) % (0.6) % 0.0}t > 1.
Thus,

Po, {7 <T}>1—c¢,

where 7 = inf{t > 0 : (S(¢),I(¢),R(t)) € (0,H) x (0,0) x (0,6)}. Using the strong
Markov property and Proposition 4.1, we have that
InI(t In R(t
Py, { lim HT() — A <0, lim %U = max{—c3 — 0.503, \} < o} >1-¢

t—o0 t—

for any (s,i,7) € Ri* Since € > 0 is arbitrary, (2.8) follows. This completes the
proof of Theorem 2.2. 0

5. Persistence: The case A > 0. The proof in this section is a generalization
of [13, subsection 2.2]. Throughout this section, we denote [Inz]_ = max{0, —Inz}.

_ LEmMA 5.1. Forany A € F and positive integer n, there exists a positive constant
K,, such that

(5.1)

E ([nI(6)]"*14) < [Ini]"F'P(A) + K, /P(A)(t + 1)[Ind]" + K, (" +1)/P(A),

where I1(0) = 1. As a result, for any H >0

i)™ + K, (t + 1)[Ini]” + K, (" +1)

(52) Py, {[InI(t)- > H}< e

Proof. We have

71n1(t) = 7111](0) — /O F‘(Sif)%du+ (02 + 0.5(1220’%)t — O'QWQ(t)

< —111[(0) + (CQ + 0.50,220'%)t + |0'2W2(t)|.

Therefore,
[InI(t)]- < [InI(0)]_ + (co + 0.5a2002)t + |ooWa(t)].
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Raising both sides to power n + 1 and then using the inequalities (a + b)"T! <

a"t + K,a"b + K,b"*! for some K,, > 0 and (a + b)"+! < 27+l (gntl 4 pntl) for
nonnegative a and b, we have
1)) < i)™t + K, ((c2 4 0.5a2003)t + |o2Wa(¢)]) [Ind]™
+ Ky ((e2 4 0.5a2203)t + |oaWa (8)]) "
< [Ind]" " + K, ((c2 + 0.5a2003)t + |02 Wa(t)]) [Ind]™
+ 2K, (09 4 0.5a2203)t) " 4 20 K [0 Wa (8)

given that I(0) = i. By the Holder inequality, we obtain for ¢ > 0 that

E|Wa(t)|[1a < /EW2(H)P(A) < VIP(A) < (t + 1)y/P(4)

and

E|[W2 ()14 < \/EWZ"2(t) enVITTIP(A) < ¢, (1" 4 1)/ P(A),

where ¢, is some positive constant. Multiplying both sides of (5.3) by 14 and then
taking expectatlon on both sides and using the two above estimates as well as the fact
that P(A) < y/P(A), we obtain (5.1) for some positive constant K,. Letting A = Q
and applylng the Markov inequality to (5.1) yields (5.2). 0

LEMMA 5.2. For any ¢ > 0, there exist a 0 € (0,1) and a T* > 1 such that

*

T
(5.4) Psir {lni—l—g)\ SO/\lnI(T*)} >1—c¢

for all (s,i,7) € [0,00) x (0,d] x [0, 00).
Proof. Let 6 > 0 and 5%(t) be the solution to

(5.5) dSO(t) = {b - (fo + cl>§9(t)} dt + 015°(t)dB(t).

Similar to Lemma 4.1, (5.5) has an ergodic invariant measure, denoted by v on
(0, 00), satisfying

lim
6—0

/(o,oo) (F(z,())ye(ds) - F(j’o)u”(ds)> | =0.

There is therefore a 6y € (0,1) satisfying

o (Fey @9~ ")

Let 0 < 03 < 6y < 1 such that |ﬁ

A
(5.6) < 5.0 € 00,00

ooyl < 2 when i < 65, which can be

found because of the continuity of at 4 = 0 uniformly in s. Consider §§2 (t) of

F(b %)
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(5.5), in which the initial condition s > 0. We have from (5.6) and the ergodicity of
S92 (t) that

I §92(u)du u A

P, hmf/Aiz/ Vedsz/ O(du) — =

{tg)oo tJo .F(SO2 (U),O) (0,00) F(S,O) ( ) (0,00) F(U,, O)Iu ( ) 12
=1Vs e [0,00).

»

Consequently it follows that there exists a T* > 1 such that

€
3’

t Qo
where Q5 := 1/ MZ/ “ uo(du)fé Vi>T" 5.
t Jo F(S%(u),0) (0,00) F'(u,0) 6

Because of the uniqueness of solutions, for any s € [0,00), we have 5% (u) > §32 (u)
for any u > 0 with a probability 1. Thus,

Po(2s) > 1 —
(5.7)

(5.8) Py(Qs) > 1— % s € [0, 00).

On the other hand, the strong law of large numbers for Brownian motion

]P’{ lim Wi(t) = 0} =1

t—o0

implies that there exists a 7" > 1 such that

(5.9) P(Qg) > 1 — o:Wal) A } .

€
—, where Qg :=<¢ ——- > —— >Tr
5> Where {g { . 2 ~5 Vit >

Without loss of generality, we may assume that the T in (5.7) and (5.9) are the same.
Define the stopping time

(5.10) C=1inf{t >0:I(t) > 62}.
Since % < Z—(Z) if I(t) < 0, we have from the comparison theorem that

Pyir {S(t) > 5% (t) Vit < g} =1,

which, together with the fact that |ﬁ - ﬁoﬂ < ﬁ when ¢ < 05 and ﬁ is
nondecreasing in s, implies

S(t) A 5% (t) A B
> —>—24W§<}_1.

B1L) Posr {F<S<t>,f<t>>
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From (5.9), (5.8), (5.10), and (5.11), we can show for any (s,i,r) € [0,00) %
(0,00) x [0,00) that

0>1Infy > In(I(T"))

=In2 T % u— (¢ a2\ T* + o .
- Jr/0 F(S(u),[(u))d (c2 + 0.5a2205)T™ + o Wo(T™)
(u)

™ i
S (u AT
>1Ini ,\761 —
(512) = n%+/0 PG )0 2 — (2 +0.5a2203)T" + 02 W2 (T™)
5 AT AT* AT
>1Ini+T* O(ds) — o — , yr
> Ini+ /(000) Fis O)u (ds) 5 51 (c2 4+ 0.5a220%) 51

3\
>1Ini+ ZT*’ for almost every w € Qs N Qg N{¢ >T"}.

In view of (5.2), there exists a § = d(e, 02) € (0,1) sufficiently small such that

3NT™
Psir {lnl(t) >Ind+ 1 } > 1—27 for (s,i,7) € [0,00) X [f2,00) X [0,00),t < T*.

Furthermore, we can choose ¢ such that Ind + % < 0. This and the strong Markov
property of (S(t),I(t), R(t)) implies that

(5.13) Py, {g < T, and InI(T*) > Ind + 3A4T } > (1 - %) P, {¢ <T*}

for all (s,i,7) € [0,00) x (0,00) x [0,00) In view of (5.12) and (5.13) we have for
(s,i,7) € [0,00) x (0,0] x [0,00) that

{ <mr(r)}

(95 NN {C> T*}) n (1 _ %) P {C<T*}>1—c
This and the inequality Ind + % < 0 yield the desire result. ]

PROPOSITION 5.1. There exists a constant T* > 1 such that for any n € Z, we
have

*

T 3,%
i)™ + Ly, (s,4,7) € RY7,

Egip[In I(T*)]" T < [Ing]™ ™ —

where L, > 0 is a constant.

Proof. Let n € N and I/(\'n be the constants as in the proof of Lemma 5.1. We can
choose € > 0 such that

3nA
8

By Lemma 5.2, there exist 7* > 1, and § € (0,1) such that

(5.14) T —e) - 2K, e > %.
(5.15) Peir(Q)>1—¢ VY(s,i,r) €[0,00) x (0,6] x [0, 00),

where

B

Q= {lni+ ST OAlnI(T*)}.
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For (s,,7) € [0,00) x (0,68] x [0,00) and w € Q,

InI(T%)]- < — ( ; 3A4T*> = [lnd]_ — ‘”f*.

Raising both sides to power n+1 and using the inequality for positive a, b: (a—b)"*! <

n .
antl — §a"b + K,,b™*! for some ¢ > 0, we have

SnAT* . (3AT*)"H
[lnz],—i—KnW

(5.16) [In 7(T*)]"" < i)™t —

for (s,i,7) € [0,00) x (0,8] x [0,00) and w € Q. On the other hand, it follows from
Lemma 5.1 that
(5.17)

E (InI(6)]"*15.) < [Ind" ' PQ°) + K, \/P(Q¢) (t+ 1) [Ind]™ + K, (" + 1)/ P(Q°).
In view of (5.16) and (5.17), for (s,4,r) € [0,00) x (0, 4] x [0, ),
E[ln I(T*)]" ™ = E (In I(T*)]" " 15) + E (In I(T*)]" 14,

< i + (f? P@) @ +1) - 20 M?n) "

(518) R . 3)\T* n+1

4n+1

*

AT ~
< [Ing]™** — =] + Ly,

where we used (5.14) to derive the last inequality, and L; := K,(T*"*' + 1) +

% (BAT*)n+1
Ky =~

If ¢ > 9, we have from Lemma 5.1 that
(5.19)
E ([In I(T*)]”“)
<[] 4 Ko (T* + 1)[Ind]” + K, ((T*)"+ + 1)

*

AZ > i)™ + B, (75" + 1)

AT ~
< [Ing]™*t — T[haz‘]’i + (Kn(T* +1) +
AT
< [Ing]™*t — 1 22 nd]® + Lo,
where Ly 1= ([?n(T* +1)+ %)[ln o)™ 4+ I?n((T*)”'*'1 + 1). By combining (5.18) and
(5.19), the proof is complete. |

 LEMMA 5.3. For any 0 < h < H < oo, T'> 1, and ¢ > 0, there exists a 5=

§(H,h,T,e) >0 such that

(5.20) A

Py i o {min{S(T),I(T),R(T)} > 6} > 1—¢ for all (s,i,7) € [0, H] x [h, H] x [0, H].
Proof. Recall from the proof of Lemma 4.2 that there exists an M > 0 such that

P () >1—¢ for all (s,i,7) € [0, H]?, where

~ Ti) .
e {te[o,Tsll,llf—Lz,s |Uka(t)|v/0 F(S(u),l(u))d < M} )
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Similar to (4.16) we have
(5.21) je~ (ca+0-5a2203 )t <I(t) < ie*M for t € [0,7] and w € Q.

By the variation of constant method (see [33, Chapter 3]), we can write

S(t) = U(t) (5(0) + /0 ot VR(u))‘Il_l(u)du) :

where

I(u)

U(t) = exp {—/0 Wdu — (¢1 4+ 0.5a1107)t+01 W (t)} .

In view of (5.21) and the inequality —ﬁ > —é, for any w € Q and (s,i,r) €

[0, H]?, we have
(5.22)

S(T) > exp {—T (H"’zM — +o.5augf> - M} <S(0) +b / ' exp(—M)ds>
C 0

HGQM .
> bTexpl —T +c1 + 0.5ana% —2M » .
c

0

Recall that

1 Cy

m (R(O) o /Ot @(u)[(u)du) > m /Ot & (u)l(u)du,

where ®(t) = exp((cs + 0.5a3302)t — o3 Wa(t)). When (s,i,7) € [0, H]? and w € Q, we
have

(5.23) R(t) =

exp{—M} < ®(t) < exp ((c3 +0.5a302) t + 1\7) tel0,1],

which in combination with (5.21) and (5.23) yields
(5.24)
— T 7 —
R(T) > exp{—(c3 + 0.5a3303)T — M} / e Miexp{—(cz + 0.5a9202)u — M }du
0

2 iMg 37

for some positive constant m., 77 depending on T' and M. Combining (5.21), (5.22),
and (5.24) we can easily find § satisfying (5.20). |

LEMMA 5.4. Let T* be as in Proposition 5.1. Any set of the form [0, H] X [h, H] x
[0,H] for 0 < h < H < o0 is petite with respect to the Markov chain {(S(kT*),
I(kT*), R(kT*)), k € Z,}. That is, there exists a nontrivial measure v on R>* and
a nonnegative sequence {a,}>2 ; such that

Y an=1and Y anPs;i, {(S(nT*),I(nT*), R(nT")) € A} > v(A)

for any Borel set A C Ri_’* and (s,i,r) € [0, H] x [h, H] x [0, H].
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Proof. Since the diffusion process (S(t),I(t), R(t)) is nondegenerate in Ri’o, by
[20, Lemma 3.6], the Markov chain {(S(kT™), I(kT*), R(kT*)),k € Z.} is irreducible
and aperiodic and any compact set of Rio is petite. By (2.4) and Lemma 5.3, there

exist 8 > 0 and M > 0 such that
1
(5.25) P {(S(T),I(T*),R(T")) €K} > 3 (s,i,r) € [0,H] x [h, H] x [0, H],

where K = {(s,4,7) : SANiAT > 8,sViVr < ]\//.7} Since K is a compact set in Rio, it is
petite, that is, there exists a nontrivial positive measure v on Ri’* and a nonnegative
sequence (a,) with ;2 a, = 1 such that

(5.26) ZakIP’s”{ (KT*), I(kT*), R(T™)) € A} > v(A)

for any Borel set A C R and (s,i,7) € K.

In view of (5.25), (5.26), and the Markov property of {(S(kT™*), I(kT™*), R(kT™*)),
k € Z,}, we have for any (s,4,r) € [0, H] x [h, H] x [0, H] that
(5.27)

Z ap—1Ps ;i {(S(ET*),I1(ET*), R(kT")) € A} > (A) for any Borel set A C Ri’*,

which shows that [0, H] x [h, H] x [0, H] is also a petite set. d
Finally we are ready to prove Theorem 2.3.
_ Proof of Theorem 2.3. Let n € Z. By virtue of (2.3), there are hy € (0,1) and
L > 0 satisfying
Eeir(S(T™) + I(T") + R(T™))
(5.28) <(I—h)(s+i+r) +L
<(s+i+r)—hi(s+i+r)™T +L+1(s,i,r) € RS

Let V(s,4,7) = s + i+ 7+ [Ind]"", n > 1. In view of (5.28) and Proposition 5.1,
(5.29)
EV(S(T*), I(T*), R(T*)) < V(s,i,7) — 2ha(V (s,i,7)) 7T + L+ L+1Y(s,i,r) € R>*

for some L > 0, 0 < 2hs < hq, which depend on n but are independent of (s,4,r). Let
h be sufficiently small and H sufficiently large such that ho(V (s,i,7))7+1 > L+ L+1
for all (s,i,7) € RY*\ [0, H] x [h, H] x [0, H]. Putting

Hy = sup {Vis.isr) = 2ha(V(s,i,) @ + L+ L4+ 1} < oc,
(s,i,m)€[0,H]x[h,H]%[0,H]

we have from (5.29)
EsinV(S(T7), I(T"), R(T™))

< V(s,d,1) = ha(V(8,4,7)) 7T + HoLy(s i r)e(0.H] % [hH]x [0,H]}-
Applying (5.30) and Lemma 5.4 to [26, Theorem 3.6], we obtain that

(5.30)

n * . * . 3,%
(5.31) E™||P(kT™, (s,4,7),-) —7*|| = 0 as k — oo for any (s,4,7) € Ry
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for some invariant probability measure 7* of the Markov chain {S(kT™), I(kT™)),
R(kT*), k € Z4+}. Using the argument in the proof of [13, Theorem 2.2], we
can show that n* is also an invariant probability measure of the Markov process
{(S(t),I(t), R(t)),t > 0}. Since ||P(t,(s,i,7),-) — 7| is decreasing in ¢, we easily
deduce from (5.30) that t"||P(t, (s, 1, r%, ) —7*|| = 0 as t — co. Since the diffusion is
nondegenerate in R}°, supp (7*) = R>° and the strong law of large numbers (2.10)
is well-known. |

Appendix A. Proof of Theorem 2.1.

Proof of Theorem 2.1. The proof for the existence and uniqueness of global non-
negative solutions is standard, which is similar to [36, Theorem 2.1] or [42, Theo-
rem 3.1]. The properties (2.1) and (2.2) can also be proved in the same manner as in
[36, Lemma 2.1]. We now prove (2.3). Define V (s,i,7) = (14 s + i+ 7)P*! for some
p > 0 to be chosen later. Then

LV(s,i,r)=1+p)(1+s+i+r)P b+ —L1(1+s+i+7r)— B3i)

1
+ ZW(l +s+1i+ r)p_l(als,agi,ogr)Z(als,agi,agr)T
<(A+p(A+s+i+r)Pb+pr—Bi(1+s+i+r))
1
+ng@(l+s+i+7~)?
<A+p)A+s+i+r)? (b+61 - (ﬁl —Hzg) (1+s+i+r)>
<C-(1 +p)%V(s,i,r) Y (s,i,7) € Ri,

{ (015,020,087)5(015,02i,037) |
) (1+s+i+7)2

that ke f < 62—1, and C' is a sufficiently large positive number.
Let n = inf{t > 0: 1+ S(t) + I(¢t) + R(t) > k}. Then n, — oo a.s. as k — oo.
Applying Itd’s formula for V (s,i,7) = (1 + s +i + r)PT1, we have

where Ky = sup(y ;. } < o0, p > 0 is sufficiently small so

B81(+p)

Eoir e 5 V(S An), I(E A, B(EAD))]

tANLE 81 (14p
Vi) +Ba [ 5 (2 D s, 100, R
0

(A1) 81(1+p)

tANK
< V(s,i,r)—!—Es,i,r/ e 1 "Cdu
0

4C B1(+p),
-5 € 4 .
(1+p)B

Letting k£ — oo in (A.1) and applying Fatou’s lemma, we obtain

<V(si,r) +

Dlendt 4C B1(+p)
Esirle = V(SQE),I{),R(t <V(s,i,7) + ——r—e 1 t
[ (S(8), (), R(t)) (s,i,7) A+ )
As a result,
(1+s+i+r)t? 4C

Eqir(14S(t) + I(t) + R(t)P < : + :
i (t) +1(t) + R(1)) D 1 +p)5

This obviously implies (2.3).
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On the other hand, for any 7' > 0, (A.1) implies that

kp+1ps.i.r{nk S T} - ES,i,T |:V(S(77k)a I(nk)a R(nk))l{nk ST}:|

B1(+p)
4

<Esr {e V(S (k) I (i), R(m))l{nksT}}

4C ﬂl(ier)T

S V(S,i,r) + me

Then (2.4) follows. The proof of this theorem is complete. |
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