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Abstract—Super-resolution source localization is a fundamen-
tal problem in many sensing and imaging applications, where
the goal is to identify the location of point sources from its
convolution with a low-pass point spread function. Most super
resolution algorithms assume perfect knowledge or stringent
assumptions on the point spread function, and deliver highly in-
accurate localizations when the point spread function is unknown
or ill-calibrated. In this paper, we consider the problem of blind
super resolution, with the goal of making almost no assumptions
on the structures of the point spread function, by leveraging
the availability of multi-channel observations. Specifically, we
propose a novel algorithm based on atomic norm minimization, a
recent convex optimization framework for super resolution, and
demonstrate its success through extensive numerical experiments.
Moreover, the optimality condition of the proposed estimator is
studied.

I. INTRODUCTION

A. Super resolution and sensor calibration

In a variety of sensing and imaging applications, one assumes

that the observed signal can be decomposed as a stream of

point sources, or spikes, convolved with some known signal

template called the point spread function (PSF), which models

the physical operation of the measurement device. The super

resolution problem consists in inverting the blurring effect

caused by the PSF, and in recovering the location of the point

sources from this convolution.

One downside of this classical formulation of the super

resolution problem resides in the assumption that the observer

has a perfect prior knowledge of the PSF that distorts the

sources. This hypothesis often implies the measurement device

to be thoroughly calibrated before acquiring the signal of

interest, since a small error on the assumed PSF may result

in a mismatch, degrading considerably the performance of

the reconstruction and yielding spurious source estimates [1].

Furthermore, in practical applications, the actual PSF may be

time-varying and subject to drift within the time span of an

experiment. As a result, the observer may have to recalibrate

multiple times the sensing system during an acquisition to

preserve an accurate reconstruction, which is impractical and

often infeasible.

One possible way to mitigate this calibration issue is to

recover the desired signal and the PSF at the same time by

harnessing a sparsity prior on the number of sources. This

blind super resolution approach comes of course at a price of

a greater complexity, and additional assumptions have to be

made in order to overcome the ill-posedness of the problem.
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B. Our contributions

In this paper, we study the blind super resolution problem

from multi-channel observations. On each channel, or snapshot,

the observed signal is assumed to be produced by the convolu-

tion of different point source signals by the same unknown PSF.

Additionally, we assume that the support and the number of

point sources are unknown, and can vary across the snapshots.

Under a mild invertibility assumption of the PSF, we propose a

novel convex program to jointly estimate the input point source

signals and the inverse of the PSF. The proposed program is

based on the atomic norm minimization framework [2], [3], [4],

[5], a convex regularizer which provably promotes sparsity over

the continuous Fourier domain. We show exact reconstruction

of the signals and the PSF is related to the existence of a so-

called dual certificate. We further propose an extension of this

program to recover the sources from noisy measurements and

illustrate the performance of the proposed approaches through

extensive numerical experiments.

C. Related literature

The blind super resolution problem can be seen as the con-

tinuous counterpart to the blind deconvolution problem, which

aims to retrieve two discrete signals from their convolution.

With a single snapshot of observation, provable reconstruction

guarantees are established in [6] by the means of convex

programming under subspace priors on both signals. This result

was further extended in [7] by allowing one of the signals to

be sparse over a known basis. Recovery from multi-channel

observations was proposed in [8], [9] with a sparse support

assumption across the snapshots, and in [10] under a subspace

assumption on the PSF. More recently, non-convex optimization

based methods have been shown to achieve exact reconstruction

in [11], [12], [13] while requiring only a minimalist invertibility

assumption on the PSF when the snapshots are sparse in a

DFT basis. However, all the above approaches rely on the

implicit assumption that the input signals are sparse over a

finite dictionary of parameters, which inevitably results in a

basis mismatch when the point sources lie continuously in time

or space.

In recent years, efforts have been made in deconvolving

signals over continuous dictionaries. Theoretical reconstruction

guarantees are given in [14] with a single snapshot under a

subspace assumption on the PSF by minimizing the atomic

norm. Alternatively, with multiple snapshots, non-convex

optimization algorithms are proposed in [15], [16] by assuming

and estimating a Toeplitz covariance matrix of the snapshots,

which require the point source signals to be statistically

independent and share the same support. Moreover, a large

number of snapshots is required for these algorithms to succeed.
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D. Notations and paper organization

Throughout this paper, we use boldface letters to rep-

resent matrices and vectors, e.g. a and A. We denote

by A>, AH the transpose and Hermitian transpose re-

spectively. For any two vectors p,x ∈ C
N , we de-

note by 〈p,x〉
R
, Re

(
pHx

)
their real inner product and

by p� x , diag (p)x = diag (x)p ∈ C
N their element-wise

product. The Frobenius norm of a matrix A is denoted as

‖A‖F. The convolution between two continuous-time signals

g(t) and x(t) is denoted as (g ∗ x)(t). The sign of a non-zero

complex number z is defined as sign(z) = z/|z|.
The rest of this paper is organized as follows. In Section II,

we formulate the blind super resolution problem, and discuss

its associated ambiguities. In Section III, we introduce a novel

convex program to solve the blind super resolution problem in

the proposed setting. Exact reconstruction guarantees are shown

to be related to the existence of a so-called dual certificate.

In Section IV, we consider noisy observations and propose a

denoising algorithm to reconstruct the point sources. Numerical

experiments are presented in Section V, and a brief conclusion

is drawn in Section VI. Due to space limits, we leave the

proofs to the full version [17].

II. PROBLEM FORMULATION AND BACKGROUNDS

A. Observation model

Assume that the observer has access to L channels, or

snapshots. Given an unknown PSF g?(t), the time domain

signal y`(t) on the `th channel is modelled as

y`(t) = (g? ∗ x?
` )(t), ` = 1, . . . , L, (1)

where x?
` (t) is the unknown point source signal of the form

x?
` (t) =

s?∑̀

i=1

a?`,iδ(t− τ?`,i), ` = 1, . . . , L, (2)

where its support T ?
` = {τ?`,i}

s?`
`=1, the associated complex

amplitudes {a?`,i}
s?`
`=1 and the cardinality s?` are unknown.

Furthermore, without loss of generality, the sources are assumed

within the continuous time interval T = [0, 1), i.e. T ?
` ⊂ T.

On each channel, the observer is assumed to sample a vector

y` containing the first N coefficients of the discrete time

Fourier transform (DTFT) of the time signal y`(t) at the

integer locations {0, . . . , N − 1}. The resulting observation

y`,n corresponding to the nth sample of the `th channel writes

y`,n =

(∫ ∞

−∞
g?(t)e−j2π(n−1)tdt

)


s?∑̀

i=1

a?`,ie
−j2π(n−1)τ?

`,i




= g?n




s?∑̀

i=1

a?`,ie
−j2π(n−1)τ?

`,i


 , (3)

where g? = [g?1 , . . . , g
?
N ]> ∈ C

N is the DTFT of the PSF

g?(t). Gathering the resulting observations into a matrix Y =[
y1, · · · ,yL

]
∈ C

N×L leads to the observation model

Y = diag(g?)X?, (4)

where X? =
[
x?
1, · · · ,x

?
L

]
∈ C

N×L is a matrix whose `th
column is a sparse linear combination of s?` harmonic atoms:

x?
` =

s?∑̀

i=1

a?`,iv(τ
?
`,i), ` = 1 . . . , L, (5)

where v(t) ∈ C
N is the complex sinusoidal vector v(t) ,[

1, e−j2πt, · · · , e−j2π(N−1)t
]>

for any t ∈ T.

Under a mild assumption that none of the entries of g? is

equal to zero, there exists a unique vector h? ∈ C
N such that

h? � g? = 1, where 1 is the all-one vector. The vector h? is

referred as the inverse filter in the sequel. Multiplying both sides

of (4) by diag(h?) leads to the relation diag(h?)Y = X?.
It is clear that the set of solutions (h,X) to the equation

diag(h)Y = X (6)

forms a non-trivial vector space, yielding infinitely many

solutions to (6). Leveraging a sparsity hypothesis on the ground

truth point source signals x?
` (t), the blind super resolution

problem amounts to recovering a non-trivial solution of (6),

and where the columns {x`}
L
`=1 of the matrix X have a

decomposition (5) involving the smallest possible total number

of atoms v(·). Equivalently, this can be reformulated as the

optimization problem

min
h,X

L∑

`=1

s` s.t. diag (h)Y = X, h 6= 0,

x` =

s∑̀

i=1

a`,iv(τ`,i), (7)

which is not computationally feasible due to the combinatorial

aspects underlying cardinality minimization of the decomposi-

tion of x` over {v(t)}t∈T
.

B. Ambiguities, recoverability, and canonical representer

A fundamental question associated to the inverse problem (7)

is the identifiability of the solution. We distinguish two types

of ambiguities for the blind super resolution problem:

1) Scaling ambiguities: If (h,X) is a solution of (6) then

(βh, βX) is also a solution with same sparsity for any

scalar β ∈ C\{0}.

2) Modulation ambiguities: If (h,X) is a solution of (6)

then (v(τ)� h, diag(v(τ))X) is also a solution with

same sparsity for any τ ∈ T.

The above ambiguities are referred to as “trivial ambiguities”,

and the set of pairs (h′,X ′) related to (h,X) through

the two above transforms is called the trivial ambiguity

class of (h,X). The existence of such ambiguities implies

the existence of infinitely many solutions to (7). Therefore,

one needs to interpret the notion of exact recovery in a

broader sense of “exact recovery up to a trivial ambiguity”.

Nevertheless, the next lemma ensures that trivial ambiguities

can essentially be resolved by imposing an affine constraint

on the reconstructed filter.
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Lemma 1. Let c ∈ C
N be such that cH1 6= 0. Denote by

(h,X) a pair of solution to (6). If the modulus |U(t)| of the

trigonometric polynomial

U(t) =

N∑

n=1

cnhne
j2π(n−1)t, t ∈ T (8)

reaches its maximal value at a unique point t0 ∈ T, then there

exists a unique pair (h̃, X̃) in the trivial ambiguity class of

(h,X) verifying cHh̃ = cH1 and

∣∣∣cH
(
a(t)� h̃

)∣∣∣ <
∣∣∣cHh̃

∣∣∣
for all t ∈ T\{0}.

The pair (h̃, X̃) verifying the properties of Lemma 1 is

called the canonical representer of the trivial ambiguity class

of (h,X). In the sequel, we assume that, without loss of

generality, (h?,X?) verifies the hypothesis of Lemma 1 for

a given c ∈ C
N , and is the canonical representer of its own

ambiguity class. As a result, an estimator (ĥ, X̂) of the ground

truth achieves exact recovery if and only if its canonical

representer is equal to (h?,X?).

III. ATOMIC NORM MINIMIZATION APPROACH

A. The atomic norm

Atomic norm (or total variation norm) [4] based approaches

have been proposed to directly estimate the set of continuous

parameters of a signal, without relying on discretization. Given

the atomic set A = {v (t) : t ∈ T} ⊂ C
n, the atomic norm of

a vector x ∈ C
n, denoted by ‖x‖A, is defined by

‖x‖A , inf

{∑

i

|ai| : x =
∑

i

aiv (τi)

}
. (9)

In geometrical terms, the atomic ball is the convex hull of the

set A, and the atomic norm can consequently be interpreted as

an extension of the `1-norm over the continuous dictionary A.

A fundamental property of the atomic norm is that if a vector

x? ∈ C
N can be decomposed as x? =

∑
i a

?
i v (τ?i ) where the

point source locations T ? = {τ?i } are sufficiently separated,

then the atomic decomposition realizing the infimum of the

right hand side of (9) is exactly equal to this decomposition [3].

Moreover, the atomic norm decomposition can be computed by

solving a semidefinite program [3], yielding efficient numerical

methods to super resolve a point source signal when the PSF

of the problem is known, using off-the-shelf convex solvers.

B. Self-calibration via atomic norm minimization

We aim for a convex alternative to the intractable estima-

tor (7). Recalling that the vector x?
` = h? � y` is assumed

to admit a sparse decomposition (5) for all ` = 1, . . . , L, one

can relax the cardinality constraint in the cost function of (7)

by the atomic norm ‖x`‖A = ‖h� y`‖A. More precisely, we

consider the semidefinite program:

ĥ = argmin
h∈CN

L∑

`=1

‖h� y`‖A, s.t. cHh = cH1, (10)

where the vector c ∈ C
N is an input parameter of the

algorithm, and is chosen so that cH1 6= 0 and ‖c‖2 = 1

to avoid the trivial solution h = 0. In view of Lemma 1, the

affine constraint cHh = cH1 also ensures that (ĥ, X̂) is the

canonical representer of its ambiguity class, where the estimate

X̂ is directly inferred from the solution ĥ of (10) through

X̂ = diag(ĥ)Y .

A more important task in the blind super resolution context is

to estimate the point sources of the signals x?
` (t), ` = 1, . . . , L.

Those can be inferred from the solution of the dual Lagrange

program associated with (10), which writes

P̂ = argmax
P∈CN×L

L∑

`=1

〈y`,p`〉R

s.t. ‖p`‖
∗
A ≤ 1, ` = 1, . . . , L

(
I − ccH

) L∑

`=1

y` � p` = 0, (11)

where ‖p‖∗A , supt∈T |〈v(t),p〉| denotes the dual atomic

norm of the vector p ∈ C
N . As illustrated in Fig. 1, the

locations of the point sources can be estimated via the

dual polynomial approach. Taking the `th column p̂` of the

matrix P̂ , and constructing the trigonometric polynomial

P̂`(t) ,
∑N

n=1 p̂`,ne
j2π(n−1)t, the point sources of the `th

snapshot can be located at where |P̂`(t)| reaches the peak

value 1, i.e. T̂` =
{
t ∈ T : |P̂`(t)| = 1

}
. Once the support

is identified, the associated amplitudes can be subsequently

estimated via solving a linear system of equations.

C. Dual certifiability and exact reconstruction

The success of atomic norm minimization methods is known

to be closely related to the existence of a function belonging to

the feasible set of the Lagrange dual program (11) and verifying

extremal interpolation properties [2]. Such a function is often

referred as a dual certificate. The next proposition establishes

the dual certificate conditions to guarantee the tightness of the

proposed convex program (10).

Proposition 1 (Dual certificate). Suppose that (h?,X?) veri-

fies the hypothesis of Lemma 1 for a given c ∈ C
N . If there

exists a matrix P ∈ C
N×L verifying

(
I − ccH

) L∑

`=1

y` � p` = 0, (12)

and for which the L associated complex trigonometric polyno-

mials {P1, . . . , PL} defined by

∀t ∈ T, P` (t) =
N∑

n=1

p`,ne
j2π(n−1)t (13)

satisfy the two conditions
{
P`

(
τ?`,i

)
= sign

(
a?`,i

)
, i = 1, . . . , s?` ,

|P (t)| < 1, ∀t /∈ T ?
` ,

(14)

then the solution (ĥ, X̂) of (10) with the input parameter c

is unique and verifies (ĥ, X̂) = (h?,X?).
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Figure 1. Left: the received signals y`(t), with the unknown point source signals x?

`
(t), and the unknown point spread function g?(t), for ` = 1, 2, 3 from

top to bottom. The locations of the point sources are marked. Right: recovery via the convex program (10). Plotted are the modulus of the dual polynomials

P̂`(t), whose peaks perfectly identify the support of x?

`
(t).

IV. EXTENSION TO THE NOISY CASE

In practice, the measurements are often exacerbated by noise.

We assume an additive noise model of the form

diag(h?)Y = X? +W , (15)

where W ∈ C
N×L is a noise matrix which enters after

equalizing by the inverse filter h?. In this case, the ground

truth (h?,X?) or any of its trivial ambiguities can no longer

be exactly recovered from the noisy measurements Y , and one

seeks instead for sparse signals that approximately explain the

measurements.

In view of [18], we propose to minimize a mixed penalty

composed of the atomic norm of the signals {x`}
L
`=1 and the

Frobenius norm distance to the observations. The denoising

estimator (ĥλ, X̂λ) can be formulated as the output of the

convex optimization program

(ĥλ, X̂λ) = argmin
h,X

1

2
‖diag(h)Y −X‖2F + λ

L∑

`=1

‖x`‖A

s.t. cHh = cH1. (16)

Here, the regularization parameter λ > 0 draws a trade-off

between the size of the atomic norm of the point source

signals and the fidelity of the estimates to the observations. In

line spectrum estimation, choosing λ ≥ ‖w‖?A produces near-

optimal denoising rate [18]. Analogously, we suggest setting

λ greater than the maximum of the dual atomic norm of the

column of the matrix W = [w1, . . . ,wL], i.e.

λ ≥ max
`=1,...,L

‖w`‖
∗
A. (17)

Moreover, if the entries of the matrix W are further assumed be

independent and drawn according to a complex normal distribu-

tion CN (0, σ2) then (17) reduces to λ ≥ Cσ
√

NL log(NL)
for some large enough constant C > 0, whose effectiveness is

empirically validated in Section V.

Similar to the noiseless estimator (10), the locations and

amplitudes of the point sources of the input signal x?
` (t) can be

estimated by leveraging the dual optimal solution P̂λ to (16).

V. NUMERICAL EXPERIMENTS

We evaluate the capabilities of the proposed convex op-

timization approach through numerical experiments. In the

following experiments, we choose c = 1√
N
1 as an input

to algorithms (10) and (16). For each trial, the point source

signals and the inverse filter are all drawn at random according

to the following construction. For a given sparsity level

0 ≤ γ ≤ 1, the support set T ?
` of each snapshot is built

by picking s?` = bγN
2 c points uniformly at random in T,

while ensuring the sources are separated by at least 4/N . The

amplitudes of the sources are picked independently according

to a complex normal distribution CN (0, 1). The ground truth

inverse filter h? is chosen as the canonical representer of

an intermediate filter h = 1 + rη, where r > 0 is the

perturbation size and η ∈ C
N is drawn uniformly within

the ball B∞ = {z ∈ C
N : ‖z‖∞ ≤ 1}. The estimators (10)

and (16) are computed on MATLAB using CVX with the

MOSEK solver. The performance is evaluated via the relative

mean squared error ‖h? − ĥ‖22/ ‖h
?‖22 of reconstructing the

inverse filter.

In the absence of noise, Fig. 2 presents the success rate

of (10) for different signal lengths N and numbers of snapshots

L, using a fixed perturbation size r = 0.8. Here, a trial is

deemed successful when the relative mean squared error is

smaller than 10−8. As highlighted by the experiments, the

number of snapshots L required for exact recovery increases

with the sparsity level but do not vary significantly with the

signal length N above a certain value. Moreover, exact recovery

is achieved from very few snapshots even in when the sparsity

level is high at γ = 0.6. We next examined the performance of

algorithm (16) under additive white Gaussian noise, where the

signal-to-noise ratio (SNR) is set as SNR = ‖X?‖2F/‖W ‖2F.

Fig. 3 presents the success rate as well as the relative mean
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Figure 2. The success rate of algorithm (10) in the noiseless setting for
recovering the ground truth for different values of the pair (N,L) at two
different sparsity levels. Results are averaged over 50 trials per configuration.
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Figure 3. Performance of algorithm (16) under additive white Gaussian noise
with 20dB SNR for two different sparsity levels. Top row: success rate of
the algorithm for recovering the ground truth for different values of the pair
(N,L). Bottom row: relative mean squared error. Results are averaged over
50 trials per configuration.

squared error, where a trial is deemed success when the relative

mean squared error is below 5 · 10−2 with SNR at 20dB.

Interestingly, the number of snapshots L increases with the

signal length N to maintain a given accuracy.

Finally, the influence of the ground truth filter h? on the

reconstruction is examined in Fig. 4 by varying the perturbation

size r when the SNR is set as 20dB. A smaller value of r
results in a better conditioned PSF, making the problem easier

to solve. Therefore, the reconstruction accuracy degrades as r
increases.

VI. CONCLUSIONS

This work proposes a novel framework based on atomic

norm minimization for blind super resolution from multiple

channels. Algorithms are proposed to reconstruct the point

sources from both noiseless and noisy observations. Contrary

to previous approaches, the presented approach requires only

a minimalists invertibility assumption of the PSF. We leave

to the future work a complete theoretical analysis of the

algorithm, and in particular an explicit construction of the dual

certificate specified in Proposition 1, as well as an analysis of

the denoising rate of the algorithm in (16).
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Figure 4. The relative mean squared error of the estimate, given as the solution
to the algorithm (16), with respect to the perturbation size r when the SNR
is 20dB for different sparsity levels. Results are averaged over 100 trials per
configuration.
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