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Abstract—Super-resolution source localization is a fundamen-
tal problem in many sensing and imaging applications, where
the goal is to identify the location of point sources from its
convolution with a low-pass point spread function. Most super
resolution algorithms assume perfect knowledge or stringent
assumptions on the point spread function, and deliver highly in-
accurate localizations when the point spread function is unknown
or ill-calibrated. In this paper, we consider the problem of blind
super resolution, with the goal of making almost no assumptions
on the structures of the point spread function, by leveraging
the availability of multi-channel observations. Specifically, we
propose a novel algorithm based on atomic norm minimization, a
recent convex optimization framework for super resolution, and
demonstrate its success through extensive numerical experiments.
Moreover, the optimality condition of the proposed estimator is
studied.

I. INTRODUCTION
A. Super resolution and sensor calibration

In a variety of sensing and imaging applications, one assumes
that the observed signal can be decomposed as a stream of
point sources, or spikes, convolved with some known signal
template called the point spread function (PSF), which models
the physical operation of the measurement device. The super
resolution problem consists in inverting the blurring effect
caused by the PSF, and in recovering the location of the point
sources from this convolution.

One downside of this classical formulation of the super
resolution problem resides in the assumption that the observer
has a perfect prior knowledge of the PSF that distorts the
sources. This hypothesis often implies the measurement device
to be thoroughly calibrated before acquiring the signal of
interest, since a small error on the assumed PSF may result
in a mismatch, degrading considerably the performance of
the reconstruction and yielding spurious source estimates [1].
Furthermore, in practical applications, the actual PSF may be
time-varying and subject to drift within the time span of an
experiment. As a result, the observer may have to recalibrate
multiple times the sensing system during an acquisition to
preserve an accurate reconstruction, which is impractical and
often infeasible.

One possible way to mitigate this calibration issue is to
recover the desired signal and the PSF at the same time by
harnessing a sparsity prior on the number of sources. This
blind super resolution approach comes of course at a price of
a greater complexity, and additional assumptions have to be
made in order to overcome the ill-posedness of the problem.
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B. Our contributions

In this paper, we study the blind super resolution problem
from multi-channel observations. On each channel, or snapshot,
the observed signal is assumed to be produced by the convolu-
tion of different point source signals by the same unknown PSF.
Additionally, we assume that the support and the number of
point sources are unknown, and can vary across the snapshots.
Under a mild invertibility assumption of the PSF, we propose a
novel convex program to jointly estimate the input point source
signals and the inverse of the PSF. The proposed program is
based on the atomic norm minimization framework [2], [3], [4],
[5], a convex regularizer which provably promotes sparsity over
the continuous Fourier domain. We show exact reconstruction
of the signals and the PSF is related to the existence of a so-
called dual certificate. We further propose an extension of this
program to recover the sources from noisy measurements and
illustrate the performance of the proposed approaches through
extensive numerical experiments.

C. Related literature

The blind super resolution problem can be seen as the con-
tinuous counterpart to the blind deconvolution problem, which
aims to retrieve two discrete signals from their convolution.
With a single snapshot of observation, provable reconstruction
guarantees are established in [6] by the means of convex
programming under subspace priors on both signals. This result
was further extended in [7] by allowing one of the signals to
be sparse over a known basis. Recovery from multi-channel
observations was proposed in [8], [9] with a sparse support
assumption across the snapshots, and in [10] under a subspace
assumption on the PSF. More recently, non-convex optimization
based methods have been shown to achieve exact reconstruction
n [11], [12], [13] while requiring only a minimalist invertibility
assumption on the PSF when the snapshots are sparse in a
DFT basis. However, all the above approaches rely on the
implicit assumption that the input signals are sparse over a
finite dictionary of parameters, which inevitably results in a
basis mismatch when the point sources lie continuously in time
or space.

In recent years, efforts have been made in deconvolving
signals over continuous dictionaries. Theoretical reconstruction
guarantees are given in [14] with a single snapshot under a
subspace assumption on the PSF by minimizing the atomic
norm. Alternatively, with multiple snapshots, non-convex
optimization algorithms are proposed in [15], [16] by assuming
and estimating a Toeplitz covariance matrix of the snapshots,
which require the point source signals to be statistically
independent and share the same support. Moreover, a large
number of snapshots is required for these algorithms to succeed.
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D. Notations and paper organization

Throughout this paper, we use boldface letters to rep-
resent matrices and vectors, e.g. a and A. We denote
by AT, A" the transpose and Hermitian transpose re-
spectively. For any two vectors p,xz € CV, we de-
note by (p, )y = Re (p"z) their real inner product and
by p® x = diag (p) = diag (z) p € CV their element-wise
product. The Frobenius norm of a matrix A is denoted as
||A|lr. The convolution between two continuous-time signals
g(t) and z(t) is denoted as (g x x)(¢). The sign of a non-zero
complex number z is defined as sign(z) = z/|z|.

The rest of this paper is organized as follows. In Section II,
we formulate the blind super resolution problem, and discuss
its associated ambiguities. In Section III, we introduce a novel
convex program to solve the blind super resolution problem in
the proposed setting. Exact reconstruction guarantees are shown
to be related to the existence of a so-called dual certificate.
In Section IV, we consider noisy observations and propose a
denoising algorithm to reconstruct the point sources. Numerical
experiments are presented in Section V, and a brief conclusion
is drawn in Section VI. Due to space limits, we leave the
proofs to the full version [17].

II. PROBLEM FORMULATION AND BACKGROUNDS

A. Observation model

Assume that the observer has access to L channels, or
snapshots. Given an unknown PSF ¢*(t), the time domain
signal y,(t) on the (th channel is modelled as

ye(t) = (9" *xp)(t), £=1,...,L, ()
where 27(t) is the unknown point source signal of the form
st

zp(t) =) aj8(t —774),

i=1

; 2

where its support 7, = {77,},-,, the associated complex

amplitudes {a?l}j‘i , and the cardinality s; are unknown.
Furthermore, without loss of generality, the sources are assumed
within the continuous time interval T = [0,1), i.e. 7,* C T.
On each channel, the observer is assumed to sample a vector
Yy, containing the first IV coefficients of the discrete time
Fourier transform (DTFT) of the time signal y,(¢) at the
integer locations {0,..., N —1}. The resulting observation
Ye,n corresponding to the nth sample of the /th channel writes

oo SZ
Yoo = (/ g*(t)ej%("l)tdt) Zagiefﬂﬂ(nfl)ﬁ,z
- i=1

Se

_x E * —j2r(n—1)7;,

= 0n a@,ie S I
i=1
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where g* = [g7,...,9%]" € C¥ is the DTFT of the PSF
g*(t). Gathering the resulting observations into a matrix Y =
[yh e ,yL] € CN*L Jeads to the observation model

Y = diag(g*) X", 4

where X* = [z}, -+, 2} ] € CN*F is a matrix whose /th
column is a sparse linear combination of sj harmonic atoms:

Se
xp =Y ap (), (=1...L (5)
=1

where v(t) € CV is the complex sinusoidal vector v(t) =
[1,e772mt ... ,e‘jQW(N_l)t]T for any t € T.

Under a mild assumption that none of the entries of g* is
equal to zero, there exists a unique vector h* € CV such that
h* ® g* =1, where 1 is the all-one vector. The vector h* is
referred as the inverse filter in the sequel. Multiplying both sides
of (4) by diag(h*) leads to the relation diag(h*)Y = X*.

It is clear that the set of solutions (h, X)) to the equation

(6)

forms a non-trivial vector space, yielding infinitely many
solutions to (6). Leveraging a sparsity hypothesis on the ground
truth point source signals x(t), the blind super resolution
problem amounts to recoverin% a non-trivial solution of (6),
and where the columns {x,},_, of the matrix X have a
decomposition (5) involving the smallest possible total number
of atoms v(-). Equivalently, this can be reformulated as the
optimization problem

Z Sy S.t

diag(h)Y = X

diag (h)Y = X, h # 0,

Se
x = apiv(r), )
i=1
which is not computationally feasible due to the combinatorial
aspects underlying cardinality minimization of the decomposi-
tion of @, over {v(t)},cr-

B. Ambiguities, recoverability, and canonical representer

A fundamental question associated to the inverse problem (7)
is the identifiability of the solution. We distinguish two types
of ambiguities for the blind super resolution problem:

1) Scaling ambiguities: If (h, X)) is a solution of (6) then
(Bh,BX) is also a solution with same sparsity for any
scalar 8 € C\{0}.

2) Modulation ambiguities: If (h, X) is a solution of (6)
then (v(7) ® h,diag(v(7))X) is also a solution with
same sparsity for any 7 € T.

The above ambiguities are referred to as “trivial ambiguities”,
and the set of pairs (h/,X’) related to (h,X) through
the two above transforms is called the trivial ambiguity
class of (h,X). The existence of such ambiguities implies
the existence of infinitely many solutions to (7). Therefore,
one needs to interpret the notion of exact recovery in a
broader sense of “exact recovery up to a trivial ambiguity”.
Nevertheless, the next lemma ensures that trivial ambiguities
can essentially be resolved by imposing an affine constraint
on the reconstructed filter.
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Lemma 1. Let ¢ € CV be such that c"1 # 0. Denote by
(h, X)) a pair of solution to (6). If the modulus |U(t)| of the
trigonometric polynomial

N
_ § Enhne.ﬂﬂ'(nfl)t7

n=1

teT (8)
reaches its maximal value at a unique point to € T, then there
exists a unique pair (h, X) in the trivial ambiguity class of
(h, X) verifying cth = c"1 and ‘CH (a(t) @h)‘ < }cHh‘
for all t € T\{0}.

The pair (E,f ) verifying the properties of Lemma 1 is
called the canonical representer of the trivial ambiguity class
f (h,X). In the sequel, we assume that, without loss of
generality, (h*, X*) verifies the hypothesis of Lemma 1 for
a given ¢ € C¥, and is the canonical representer of its own
ambiguity class. As a result, an estimator (h X ) of the ground
truth achieves exact recovery if and only if its canonical
representer is equal to (h*, X™*).

III. ATOMIC NORM MINIMIZATION APPROACH
A. The atomic norm

Atomic norm (or total variation norm) [4] based approaches
have been proposed to directly estimate the set of continuous
parameters of a signal, without relying on discretization. Given
the atomic set A = {v (¢) : t € T} C C", the atomic norm of
a vector € C", denoted by ||x|| 4, is defined by

EIE inf{Z|ai| D x= Zaﬂ; (Ti)} .

In geometrical terms, the atomic ball is the convex hull of the
set A, and the atomic norm can consequently be interpreted as
an extension of the £1-norm over the continuous dictionary A.
A fundamental property of the atomic norm is that if a vector
x* € CV can be decomposed as * = Y, ajv (1) where the
point source locations 7* = {7} are sufficiently separated,
then the atomic decomposition realizing the infimum of the
right hand side of (9) is exactly equal to this decomposition [3].
Moreover, the atomic norm decomposition can be computed by
solving a semidefinite program [3], yielding efficient numerical
methods to super resolve a point source signal when the PSF
of the problem is known, using off-the-shelf convex solvers.

€))

B. Self-calibration via atomic norm minimization

We aim for a convex alternative to the intractable estima-
tor (7). Recalling that the vector = = h* © y, is assumed
to admit a sparse decomposition (5) for all /=1,..., L, one
can relax the cardinality constraint in the cost function of (7)
by the atomic norm |lx|| , = ||h © y|| 4. More precisely, we
consider the semidefinite program:

L

h=argmin Y[Ry, st HMh=c"1, (10
heCcN T
where the vector ¢ € C is an input parameter of the

algorithm, and is chosen so that ¢"1 # 0 and [|c[|, = 1

to avoid the trivial solution h = 0. In view of L/e\m1/n\a 1, the
affine constraint cth = "1 also ensures that (h, X) is the
canonical representer of its ambiguity class, where the estimate
X is directly inferred from the solution h of (10) through

X = dlag(h)Y
A more important task in the blind super resolution context is
to estimate the point sources of the signals z}(¢), ¢ =1,..., L.

Those can be inferred from the solution of the dual Lagrange
program associated with (10), which writes

L
ﬁ_ argmax yg,pz
argmax )
s.t. ||pg||A <1, ¢=1,...,L
L
I-cc)) grop=0, (D)
=1

where ||p[|’y £ sup;cr|(v(t),p)| denotes the dual atomic
norm of the vector p € CV. As illustrated in Fig. 1, the
locations of the point sources can be estimated via the
dual polynomial approach. Taking the fth column Ppe of the
matrix P and constructmg the trigonometric polynomial
Po(t) & N prned? (=Dt the point sources of the (th
snapshot can be located at where |Py(t)| reaches the peak
value 1, ie. Tp = 4t €T: \Pg( )] =1¢. Once the support
is identified, the associated amplitudes can be subsequently
estimated via solving a linear system of equations.

C. Dual certifiability and exact reconstruction

The success of atomic norm minimization methods is known
to be closely related to the existence of a function belonging to
the feasible set of the Lagrange dual program (11) and verifying
extremal interpolation properties [2]. Such a function is often
referred as a dual certificate. The next proposition establishes
the dual certificate conditions to guarantee the tightness of the
proposed convex program (10).

Proposition 1 (Dual certificate). Suppose that (h*, X*) veri-
fies the hypothesis of Lemma 1 for a given ¢ € CN. If there

exists a matrix P € CN*L verifying
L
(I-cc") gop =0, (12)
=1

and for which the L associated complex trigonometric polyno-

mials {Py, ..., P} defined by
VteT, P(t sz ei2r(n—=1)t (13)
satisfy the two conditions
{Pg (Tai) = sign (azi) , 1=1,...,s7, (14)
[P <1, VEETS

then the solution (h, )
is unique and verlﬁes ( )

of (10) with the input parameter c
(h*, X).
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Figure 1. Left: the received signals y,(t), with the unknown point source signals =} (t), and the unknown point spread function g*(¢), for £ = 1,2, 3 from
top to bottom. The locations of the point sources are marked. Right: recovery via the convex program (10). Plotted are the modulus of the dual polynomials

Py(t), whose peaks perfectly identify the support of = (t).

IV. EXTENSION TO THE NOISY CASE

In practice, the measurements are often exacerbated by noise.
We assume an additive noise model of the form

diag(h*)Y = X* + W, (15)

where W € CM*I is a noise matrix which enters after
equalizing by the inverse filter h*. In this case, the ground
truth (h*, X™*) or any of its trivial ambiguities can no longer
be exactly recovered from the noisy measurements Y, and one
seeks instead for sparse signals that approximately explain the
measurements.

In view of [18], we propose to minimize a mixed penalty
composed of the atomic norm of the signals {:cg}le and the
Frobenius norm distance to the observations. The denoising
estimator (h), X)) can be formulated as the output of the
convex optimization program

L
~ = N
(. X) = axgmin ; [[diag(R)Y — X[} + 2 L
) (=1

s.t.ch = "1, (16)

Here, the regularization parameter A > 0 draws a trade-off
between the size of the atomic norm of the point source
signals and the fidelity of the estimates to the observations. In
line spectrum estimation, choosing A > ||w]|”; produces near-
optimal denoising rate [18]. Analogously, we suggest setting
A greater than the maximum of the dual atomic norm of the
column of the matrix W = [wy,...,wg], Le.

Az max . a7
Moreover, if the entries of the matrix W are further assumed be
independent and drawn according to a complex normal distribu-
tion CA(0,0?) then (17) reduces to A > Co\/NLlog(NL)
for some large enough constant C' > 0, whose effectiveness is
empirically validated in Section V.

Similar to the noiseless estimator (10), the locations and
amplitudes of the point sources of the input signal 27 (¢) can be
estimated by leveraging the dual optimal solution P, to (16).

V. NUMERICAL EXPERIMENTS

We evaluate the capabilities of the proposed convex op-
timization approach through numerical experiments. In the
following experiments, we choose ¢ = LNI as an input
to algorithms (10) and (16). For each trial, the point source
signals and the inverse filter are all drawn at random according
to the following construction. For a given sparsity level
0 < 4 < 1, the support set 7, of each snapshot is built
by picking s; = L%J points uniformly at random in T,
while ensuring the sources are separated by at least 4/N. The
amplitudes of the sources are picked independently according
to a complex normal distribution CA(0,1). The ground truth
inverse filter h* is chosen as the canonical representer of
an intermediate filter h = 1 4 rn, where r > 0 is the
perturbation size and 7 € CV is drawn uniformly within
the ball B = {z € CV : ||z|| < 1}. The estimators (10)
and (16) are computed on MATLAB using CVX with the
MOSEK solver. The performance is evaluated via the relative
mean squared error |h* — h||3/ ||h*H§ of reconstructing the
inverse filter.

In the absence of noise, Fig. 2 presents the success rate
of (10) for different signal lengths N and numbers of snapshots
L, using a fixed perturbation size » = 0.8. Here, a trial is
deemed successful when the relative mean squared error is
smaller than 10~8. As highlighted by the experiments, the
number of snapshots L required for exact recovery increases
with the sparsity level but do not vary significantly with the
signal length IV above a certain value. Moreover, exact recovery
is achieved from very few snapshots even in when the sparsity
level is high at v = 0.6. We next examined the performance of
algorithm (16) under additive white Gaussian noise, where the
signal-to-noise ratio (SNR) is set as SNR = HX*||%/||W||%
Fig. 3 presents the success rate as well as the relative mean
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Figure 2. The success rate of algorithm (10) in the noiseless setting for
recovering the ground truth for different values of the pair (N, L) at two

different sparsity levels. Results are averaged over 50 trials per configuration.
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Figure 3. Performance of algorithm (16) under additive white Gaussian noise
with 20dB SNR for two different sparsity levels. Top row: success rate of
the algorithm for recovering the ground truth for different values of the pair
(N, L). Bottom row: relative mean squared error. Results are averaged over
50 trials per configuration.

squared error, where a trial is deemed success when the relative

mean squared error is below 5 - 1072 with SNR at 20dB.

Interestingly, the number of snapshots L increases with the
signal length N to maintain a given accuracy.

Finally, the influence of the ground truth filter h* on the
reconstruction is examined in Fig. 4 by varying the perturbation
size » when the SNR is set as 20dB. A smaller value of r
results in a better conditioned PSF, making the problem easier
to solve. Therefore, the reconstruction accuracy degrades as r
increases.

VI. CONCLUSIONS

This work proposes a novel framework based on atomic
norm minimization for blind super resolution from multiple
channels. Algorithms are proposed to reconstruct the point
sources from both noiseless and noisy observations. Contrary
to previous approaches, the presented approach requires only
a minimalists invertibility assumption of the PSF. We leave
to the future work a complete theoretical analysis of the
algorithm, and in particular an explicit construction of the dual
certificate specified in Proposition 1, as well as an analysis of
the denoising rate of the algorithm in (16).

Relative mean squared error

Figure 4. The relative mean squared error of the estimate, given as the solution
to the algorithm (16), with respect to the perturbation size » when the SNR
is 20dB for different sparsity levels. Results are averaged over 100 trials per
configuration.
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