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Abstract—Low-rank matrix estimation plays a central role
in many applications across science and engineering. Recently,
nonconvex formulations based on matrix factorization are prov-
ably solved by simple gradient descent algorithms with strong
computational and statistical guarantees. However, when the low-
rank matrices are asymmetric, existing approaches rely on adding
a regularization term to balance the two matrix factors which in
practice can be removed safely without hurting the performance
when initialized via the spectral method. In this paper, we justify
this theoretically for the matrix sensing problem, which aims
to recover a low-rank matrix from a small number of linear
measurements. As long as the measurement ensemble satisfies
the restricted isometry property, gradient descent converges
linearly without the need of explicitly promoting balancedness
of the factors; in fact, the factors stay balanced automatically
throughout the execution of the algorithm. Our analysis is based
on analyzing the evolution of a new distance metric that directly
accounts for the ambiguity due to invertible transforms, and
might be of independent interest.

Index Terms—asymmetric low-rank matrix sensing, nonconvex
optimization, gradient descent

I. INTRODUCTION

Low-rank matrix estimation plays a central role in many
applications [1], [2], [3]. Broadly speaking, we are interested
in estimating a low-rank matrix My = X hYuT € R™Mx"2 py
solving a rank-constrained optimization problem:

L(M) rank(M) < r, (1)

min

subject to
MeRnP1Xn2

where the rank r < n := min{nj,n2} is much smaller
than the dimensions of the matrix. To reduce computational
complexity, a common approach, popularized by the work of
Burer and Monteiro [4], is to factorize M = XY T where
X e R™*" and Y € R™*", and rewrite the above problem
into an unconstrained nonconvex optimization problem:

min f(X,Y) = L(XY). ()

Despite nonconvexity, one might be tempted to estimate the
low-rank factors (X,Y") via gradient descent, which proceeds
as

3

Xt+1} _ [Xt] B {vxﬂXt,Yt)}
Y] Y| Vv (XL Y]
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where 1n; is the step size and (Xo,Y,) is some proper
initialization.

Significant progress has been made recently in understanding
the performance of gradient descent for nonconvex matrix
factorization. Somewhat surprisingly, most of the existing guar-
antees are not directly applicable to the vanilla gradient descent
rule (3). One challenge is associated with the identifiability
of the factors, since they are indistinguishable as long as
their product is the same — and if the norms of the factors
become highly imbalanced, gradient descent might diverge
easily. Consequently, it becomes a routine procedure to insert
a regularizer that balances the two factors [5], [6], [7]:

IXY)=MNXTX-Y'Y|} 4

where A > 0 is some regularization parameter, and apply
gradient descent to the regularized loss function instead:

i freg(X,Y) = f(X,Y) +9(X, Y). Q)
For a variety of important problems such as low-rank matrix
sensing and matrix completion, it has been established that gra-
dient descent over the regularized loss function, when properly
initialized, achieves compelling statistical and computational
guarantees.

A. Why balancing is needed in prior work?

To handle such asymmetric factorization, it is common

to stack the two factors into one augmented factor Wy =

);,h € R(™+72)” and then seek to estimate W, directly, by

g
rewriting the loss function with respect to the lifted low-rank

T T

matrix: WﬂWhT _ ‘;ihhggr if‘-;}}/}r € R(mitn2)x(nitnz2)
It is obvious that the loss %unction originally with respect to
the asymmetric matrix X| hYuT only constrains the off-diagonal
blocks of W, WhT and not the diagonal ones; correspondingly,
the loss function is not (restricted) strongly convex with respect
to the augmented factor, unless we appropriately regularize
the diagonal blocks, which gives rise to the adoption of the
regularization term in (4).

To understand a bit better why this regularization term (4)
may help analysis, consider a toy example of factorizing a rank-
one matrix mhyh-'— , where f(x,vy) and g(x,y) respectively are
fx,y) = 5y "~y ||f and g(z,y) = g(llz]3-]ylI3)*.
Figure 1 illustrates the landscape of the unregularized loss
function f(z,y) and the regularized loss function fiee(z,y),
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(a) unregularized loss f

(b) regularized loss frcg

Fig. 1. The geometry for the scalar case f(z,y) = (zy —1)? and g(z,y) =
(2 —y?)/8. The regularized loss function is locally strongly convex while the
unregularized one is nonconvex; in particular, the Hessian of the unregularized
loss function is rank deficient on the ambiguity set xy = 1 (colored in red).

respectively, when the arguments are scalar-valued, i.e. n; =
ng = 1. One can clearly appreciate the value of the regularizer:
freg(2,y) becomes strongly convex in the local neighborhood
around the global optimum (1, 1). In contrast, the Hessian of
the unregularized loss function fyeg (2, y) remains rank deficient
along the ambiguity set whenever xy = 1, making the analysis
less tractable.

B. This paper: balancing-free procedure?

This goal of this paper is to understand the effectiveness
of vanilla gradient descent (3) when initialized with balanced
factors via the spectral method. Indeed, Figure 2 plots the
normalized error || X;Y;" —Mj||r /|| My||r for low-rank matrix
completion with respect to the iteration count, using either a
regularized loss function or an unregularized loss function when
initialized by the spectral method. The two iterates converge
in almost exactly the same trajectory, suggesting that gradient
descent over the unregularized loss function converges almost
in the same manner as its regularized counterpart, and perhaps
is more natural to use in practice since it eliminates the tuning
of regularization parameters.
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Fig. 2. The normalized reconstruction error || X+Y," — My || /|| My||r with
respect to the iteration count, for completing a rank-10 1000 x 1000 matrix
where each entry is observed i.i.d. with probability p = 0.15. The balancing

regularizer is g(X,Y) = éHXTX —YTY|% as suggested in [8].

This paper justifies formally that even without explicit
balancing in non-square matrix factorization, gradient descent
converges linearly to the global optimum, as long as the
initialization is balanced for low-rank matrix sensing, where
the goal is to recover a low-rank matrix from a small number
of linear measurements. As will be detailed later, our analysis
is simple and built on a novel distance metric that directly
accounts for the ambiguity due to invertible transformations —
in contrast, the ambiguity set reduces to orthonormal transforms
when the balancing regularization is present. Our main message
is this: as long as the factors are balanced at the initialization,
they will stay approximately balanced throughout the trajectory
of gradient descent, and therefore no additional regularization
is necessary.

C. Notations and organization of this paper

We use boldface lowercase (resp. uppercase) letters to
represent vectors (resp. matrices). We denote by ||x|, the
{5 norm of a vector z, and X ', X1, || X and || X||;; the
transpose, the inverse, the spectral norm and the Frobenius
norm of a matrix X, respectively. Furthermore, we denote
X~ T =(X"1T =(XT)~! for an invertible matrix X. The
kth largest singular value of a matrix X is denoted by o (X).
The inner product between two matrices X and Y is defined
as (X,Y) = Tr (Y " X), where Tr(:) is the trace. Denote
O"*" as the set of r x r orthonormal matrices. In addition,
we use ¢ and C' with different subscripts to represent positive
numerical constants, whose values may change from line to
line.

II. MAIN RESULTS

Let the object of interest My € R™*"2 be a rank-r matrix
with the Singular Value Decomposition (SVD) given as

M, =Ux.V,',

where Uy, € R™*", V € R™*” and X, € R"™™". Without
loss of generality, we denote the ground truth factors as

and Y = Wx,/%

(©)

Let Omax := 01(My) and opin = 0,(M}) be the largest and
smallest nonzero singular value of M. The condition number
of My is defined as £ := omax/Omin-

Since the factors are identifiable up to invertible transforms
since (X, P)(Y,P~")T = XthT for any invertible matrix
P € R"™", we measure the distance between two pairs of
factors Z = (X,Y) and Z; = (X},Y}) as:

X, =U,s,"”

dist (Z, Z,)

= min
PcR"™X 7 invertible

(N

A. Low-rank matrix sensing

Suppose we are given a set of m measurements as follows
yi = (A;, M) = (A;, XY, ), 8)

where A; € R™*"2 js the ith sensing matrix, i = 1,---,m.
For convenience, we define A : Rt *"2 — R™ as an affine

i=1,---,m,
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Algorithm 1 Gradient Descent with Spectral Initialization
(unregularized Procrustes Flow)

Input: Measurements y = {y;};~,, and sensing matrices
Parameters: Step size 17;, rank r, and number of iterations 7.
Initialization: Initialize X, = UXY? and Y, = VY2,
where UXV' " is the rank-r SVD of the surrogate matrix
K=2L15" A

Gradient loop: For t =0:1: 7T — 1, do

X1 = Xy — LQ : Z ((Ai,XthU - y7) Ath] 5
1Yol [i=
(10a)
K-Fl = K - i 2 Z AL7 Xt yl) A;I—Xt
[Xol™  |i=
(10b)

Output: X and Y.

transformation from R™*"2 to R™, such that A (M) =
{(A;, M)}" . Consequently, one can write y = A (My).
The adjoint operator A* is defined as A*(y) = >\, y; A;.

To recover the low-rank matrix, a natural choice is to
minimize the squared loss function

F(X,Y): ny AXY T2 ©)

Algorithm 1 describes the gradient descent algorithm initial-
ized by the spectral method for minimizing (9). Compared to
the Procrustes Flow (PF) algorithm [5], which minimizes the
regularized loss function in (5), the new algorithm does not
include the balancing regularizer g(X,Y).

B. Theoretical Guarantees

To understand the performance of Algorithm 1, we adopt a
standard assumption on the sensing operator A, the so-called
Restricted Isometry Property (RIP).

Definition 1 (RIP): The mapping operation A is said to
satisfy the rank-r RIP with constant §,., if

(1—6,) [|M|p < [ADM)]5 < (1+6,) [|M];

holds for all matrices M € R™ *"2 of rank at most r.

It is well-known that many measurement ensembles satisfy
the RIP property [9]. For example, if the entries of A;’s are
composed of i.i.d. Gaussian entries A (0,1/m), then the RIP
is satisfied as long as m is on the order of (n; + ng)r/62.

Under the RIP, we have the following theoretical guarantee
for the local convergence of Algorithm 1.

Theorem 1: Suppose A satisfies the RIP with d5, < ¢ for
some sufficiently small constant c. Let Zy = (Xq, Yo) be an
initialization which satisfies

. 1
ml?xr HZOR - Zh”F S Comgmin (Xh) ) (11)

ReO

for some small enough constant cy. There exist some c¢; such
that at as long as 7y = 1 < ¢y, the iterates of GD satisfy

dist (Z1, Z3) < (1 - T) dist (Zo, Zs) -

Theorem 1 says that if the initialization Z, lands in a
basin of attraction given by (11), then Algorithm 1 converges
linearly with a constant step size. To reach e-accuracy, i.e.
dist (Z;, Zy) < e, it takes an order of xlog(1/e€) iterations,
which is order-wise equivalent to the regularized PF algorithm
in [5]. Comparing to [5], which requires dg, < ¢, Theorem 1
only requires a weaker assumption o, < c. However, the basin
of attraction allowed by Theorem 1 is smaller than that in [5],
which is mingecorxr | ZoR — Zy||p < co0min (Xy).

We still need to find a good initialization that satisfies (11).
In general, one could initialize with the balanced factors of the
output after running multiple iterations of projected gradient
descent (over the low-rank matrix), i.e.

1 m
MT+1 =P (M‘r - E z; (<A17M‘r> - yz) Az) )
i=
where P, is the projection to the best rank-r approximation.
The spectral initialization specified in Algorithm 1 can be
regarded as the output at the first iteration, initialized at zero
M, = 0. Based on [10], [5], the iterates satisfy

| M, h||F

omin(X})
for some constant co. Thus, to achieve the required initial-
ization condition, if we use the spectral method specified in
Algorithm 1, which corresponds to setting 7 = 1 in (12), we
need

Z.R—Z,|. < c2(264)"
i | i < e2(284,)

12)

5 < 1 Omin
4r > 02/{3/2 ||Mh||F

Alternatively, if we allow multiple iterations of (12) as
suggested by [5], we can still set d4, < J. for a sufficiently
small constant J., by running at least

M,
T > ¢ log <n3/2”)/log (6;1) = colog (kr)/log (6,)

Omin

iterations of projected gradient descent for initialization, which
matches the requirement in [5].

III. RELATED WORK

Low-rank matrix estimation has been extensively studied
in recent years [2], [3], due to its broad applicability in
collaborative filtering, imaging science, and machine learning,
to name a few. Convex relaxation approaches based on nuclear
norm minimization are among the first set of algorithms with
provable near-optimal statistical guarantees [1], [11], [12], [13],
[14], [15], [16], [17], [18], however, their computational costs
are often prohibitive in practice.

To cope with the computational challenges, a popular
approach in practice is to invoke low-rank matrix factorization
popularized by Burer and Monteiro [4] and then apply first-
order methods such as gradient descent directly over the
factors to recover the underlying low-rank structure. This
approach is demonstrated to possess near-optimal statistical
and computational guarantees in a variety of low-rank matrix
recovery problems, including but not limited to [5], [19], [20],
[21], [22], [23], [24], [25], [26]. The readers are referred to
the recent overview [27] for additional references.
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To the best of our knowledge, the balancing regularization
term (4) was first introduced in [5] to deal with non-square
matrix factorization, and has become a standard approach to
deal with asymmetric low-rank matrix estimation [6], [7], [8],
[28], [29], [30]. A major benefit of adding the regularization
term is to reduce the ambiguity set from invertible transforms
to orthonormal transforms, so that the distance defined in (7)
is minimized over P € O"*". For the special rank-one matrix
recovery problem, there are some evidence in the prior literature
that a balancing regularization is not needed, for example, Ma
et. al. [23] established that vanilla gradient descent works
for blind deconvolution at a near-optimal sample complexity
with spectral initialization. In [31], the trajectory of gradient
descent is studied for asymmetric matrix factorization with an
infinitesimal and diminishing step size; in contrast, we consider
the case when the step size is constant for low-rank matrix
estimation with incomplete observations.

Finally, we remark that a similar regularization term (4) is
also adopted when analyzing the optimization landscape of low-
rank matrix estimation, e.g. [32], [33], [34], [35]. Without such
a regularization term, the landscape of matrix factorization no
longer possesses the intriguing property “all saddle points are
strict saddle” and therefore one cannot invoke theory such as
[36] to argue the global convergence of gradient descent using
an unregularized loss function. Our work partially bridges this
gap and suggests the benign behavior of gradient descent even
in the absence of local strong convexity.

IV. PROOF SKETCH OF THEOREM 1

In this section, we provide a proof sketch of Theorem 1. We
first discuss some basic properties of aligning two low-rank
factors via invertible transforms, then prove a similar result for
a warm-up case of low-rank matrix factorization, of which our
problem of interest can be regarded as a perturbed version.

A. Alignment via invertible transforms

For Z=[XT,Y"]" and Z;, = [XhT,YhT]T, we define the
optimal alignment matrix Q as’

Q i= argmin /| XP - X[} + [YP~" - .
PeRrxr

Furthermore, we call Z and Z are aligned if the corresponding
optimal alignment matrix @ = I. Throughout the paper, we
assume the optimal alignment matrix between the tth iterate
Z,=[X,",Y,"]|" and Z, is denoted as Q. Below we provide
some basic understandings of this alignment operation.

Lemma I: Given two matrices Z and Zj, and their optimal
alignment matrix @, we have

X'(X-X)=(Y-1)'Y,

where X = XQ and Y = Y Q™" are the matrices after the
alignment.

It is guaranteed with high probability that the minimum is attained for Z;.

Lemma 2: Let @@ be the optimal alignment matrix be-
tween Z and Z;. Suppose there exists a matrix P with
1/2 < omin(P) < omax(P) < 3/2 such that

1
max {|XP — Xg|lp, [YP™' - Yi|[,} <6< 2 min (X3).
(13)
Then one has

100
IP-Ql <[IP-Qlp <

Omin (X3)

Both lemmas provide basic understandings on the solution of
solving the alignment problem with invertible transformations,
which can be regarded as a generalization of the classical or-
thogonal Procrustes problem which only considers orthonormal
transforms. Clearly, this generalized problem is much more
challenging and our work provides some first understandings
into it, to the best of our knowledge. These lemmas provide
the basis for the subsequent analyses.

B. A warm-up: low-rank matrix factorization
We consider the following minimization problem
1 2
fur (X,Y) = 3 | XYY" — ML, (14)

where X € R™*" and Y € R™*". The gradient descent
updates with an initialization (X, Yy) can be written as

X=X, — 0’7 Vx fur (X1, Y7)
=X, - 1 (X.Y," — M,)Y;;
Umax
; (15)
Y=Y - Vy fur (X1, Y?)
=Y - (XY, - M) X,

We have the following theorem regarding the performance of
(15), which parallels with Theorem 1.
Theorem 2: Let Z; be an initialization which satisfies

. 1
plum 1ZoR - Zi|, < €0 573 Omin (Xy),

for some small enough constant cy. There exists some ¢; such
at as long as 1 < ¢y, the iterates of GD satisfy

t
dist (2, Z;) < (1 - 20%) dist (Zo, Z) -

C. Analysis for matrix sensing

We now extend the technique used in the proof of Theorem 2
to the matrix sensing case by leveraging the RIP. Suppose that
the initialization Zj satisfies (11). By a similar argument as
in [5], it is sufficient to consider the following update rule:

X1 =X — 077 [A*A(XthT - Mu)] Y:;
oy x,
Y=Y — - [A*AX,Y," — My)] X,

Compared with (15), the update rule for matrix sensing differs
by the operation of .4*.4 when forming the gradient. Therefore,
we expect the GD has similar behaviors as earlier as long as
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A behaves as a near isometry on low-rank matrices. This can

be supplied by the following consequence of the RIP.
Lemma 3: Suppose A satisfies 2r-RIP with constant do;..

Then, for all matrices M7 and M5 of rank at most », we have

[(A(M1), A(My)) — (M, My)| < bar [| M || || Ma||g -

V. CONCLUSIONS

This paper establishes the local linear convergence of gradi-
ent descent for rectangular low-rank matrix sensing without
explicit regularization of factor balancedness under the standard
RIP assumption, as long as a balanced initialization is provided
in the basin of attraction, which can be found by the spectral
method. Different from previous work, we analyzed a new error
metric that takes into account the ambiguity due to invertible
transforms, and showed that it contracts linearly even without
local restricted strong convexity. We believe our technique can
be used for other low-rank matrix estimation problems. To
conclude, we outline a few exciting future research directions.

e Low-rank matrix completion. We believe it is possible to
extend our analysis to study rectangular matrix completion
without regularization, by combining the leave-one-out
technique in [23], [30] to carefully bound the incoherence
of the iterates for both factors even without explicit
balancing.

Improving dependence on k and r. The current paper does
not try to optimize the dependence with respect to x and r
in terms of sample complexity and the size of the basin of
attraction, which are slightly worse than their regularized
counterparts. A finer analysis will likely lead to better
dependencies, which we leave to the future work.
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