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Abstract—Low-rank matrix estimation plays a central role
in many applications across science and engineering. Recently,
nonconvex formulations based on matrix factorization are prov-
ably solved by simple gradient descent algorithms with strong
computational and statistical guarantees. However, when the low-
rank matrices are asymmetric, existing approaches rely on adding
a regularization term to balance the two matrix factors which in
practice can be removed safely without hurting the performance
when initialized via the spectral method. In this paper, we justify
this theoretically for the matrix sensing problem, which aims
to recover a low-rank matrix from a small number of linear
measurements. As long as the measurement ensemble satisfies
the restricted isometry property, gradient descent converges
linearly without the need of explicitly promoting balancedness
of the factors; in fact, the factors stay balanced automatically
throughout the execution of the algorithm. Our analysis is based
on analyzing the evolution of a new distance metric that directly
accounts for the ambiguity due to invertible transforms, and
might be of independent interest.

Index Terms—asymmetric low-rank matrix sensing, nonconvex
optimization, gradient descent

I. INTRODUCTION

Low-rank matrix estimation plays a central role in many

applications [1], [2], [3]. Broadly speaking, we are interested

in estimating a low-rank matrix M\ = X\Y
>
\ ∈ R

n1×n2 by

solving a rank-constrained optimization problem:

min
M∈Rn1×n2

L(M) subject to rank(M) ≤ r, (1)

where the rank r � n := min{n1, n2} is much smaller

than the dimensions of the matrix. To reduce computational

complexity, a common approach, popularized by the work of

Burer and Monteiro [4], is to factorize M = XY > where

X ∈ R
n1×r and Y ∈ R

n2×r, and rewrite the above problem

into an unconstrained nonconvex optimization problem:

min
X,Y

f(X,Y ) = L(XY >). (2)

Despite nonconvexity, one might be tempted to estimate the

low-rank factors (X,Y ) via gradient descent, which proceeds

as
[

Xt+1

Yt+1

]

=

[

Xt

Yt

]

− ηt

[

∇Xf(Xt,Yt)
∇Y f(Xt,Yt)

]

, (3)
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where ηt is the step size and (X0,Y0) is some proper

initialization.

Significant progress has been made recently in understanding

the performance of gradient descent for nonconvex matrix

factorization. Somewhat surprisingly, most of the existing guar-

antees are not directly applicable to the vanilla gradient descent

rule (3). One challenge is associated with the identifiability

of the factors, since they are indistinguishable as long as

their product is the same – and if the norms of the factors

become highly imbalanced, gradient descent might diverge

easily. Consequently, it becomes a routine procedure to insert

a regularizer that balances the two factors [5], [6], [7]:

g(X,Y ) = λ‖X>X − Y >Y ‖2F (4)

where λ > 0 is some regularization parameter, and apply

gradient descent to the regularized loss function instead:

min
X,Y

freg(X,Y ) := f(X,Y ) + g(X,Y ). (5)

For a variety of important problems such as low-rank matrix

sensing and matrix completion, it has been established that gra-

dient descent over the regularized loss function, when properly

initialized, achieves compelling statistical and computational

guarantees.

A. Why balancing is needed in prior work?

To handle such asymmetric factorization, it is common

to stack the two factors into one augmented factor W\ =
[

X\

Y\

]

∈ R
(n1+n2)r and then seek to estimate W\ directly, by

rewriting the loss function with respect to the lifted low-rank

matrix: W\W
>
\ =

[

X\X
>
\ X\Y

>
\

Y\X
>
\ Y\Y

>
\

]

∈ R
(n1+n2)×(n1+n2).

It is obvious that the loss function originally with respect to

the asymmetric matrix X\Y
>
\ only constrains the off-diagonal

blocks of W\W
>
\ and not the diagonal ones; correspondingly,

the loss function is not (restricted) strongly convex with respect

to the augmented factor, unless we appropriately regularize

the diagonal blocks, which gives rise to the adoption of the

regularization term in (4).

To understand a bit better why this regularization term (4)

may help analysis, consider a toy example of factorizing a rank-

one matrix x\y
>
\ , where f(x,y) and g(x,y) respectively are

f(x,y) = 1
2‖xy

>−x\y
>
\ ‖

2
F and g(x,y) = 1

8 (‖x‖
2
2−‖y‖22)

2.
Figure 1 illustrates the landscape of the unregularized loss

function f(x, y) and the regularized loss function freg(x, y),
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(a) unregularized loss f (b) regularized loss freg

Fig. 1. The geometry for the scalar case f(x, y) = (xy− 1)2 and g(x, y) =
(x2−y2)/8. The regularized loss function is locally strongly convex while the
unregularized one is nonconvex; in particular, the Hessian of the unregularized
loss function is rank deficient on the ambiguity set xy = 1 (colored in red).

respectively, when the arguments are scalar-valued, i.e. n1 =
n2 = 1. One can clearly appreciate the value of the regularizer:

freg(x, y) becomes strongly convex in the local neighborhood

around the global optimum (1, 1). In contrast, the Hessian of

the unregularized loss function freg(x, y) remains rank deficient

along the ambiguity set whenever xy = 1, making the analysis

less tractable.

B. This paper: balancing-free procedure?

This goal of this paper is to understand the effectiveness

of vanilla gradient descent (3) when initialized with balanced

factors via the spectral method. Indeed, Figure 2 plots the

normalized error ‖XtY
>
t −M\‖F/‖M\‖F for low-rank matrix

completion with respect to the iteration count, using either a

regularized loss function or an unregularized loss function when

initialized by the spectral method. The two iterates converge

in almost exactly the same trajectory, suggesting that gradient

descent over the unregularized loss function converges almost

in the same manner as its regularized counterpart, and perhaps

is more natural to use in practice since it eliminates the tuning

of regularization parameters.
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Fig. 2. The normalized reconstruction error ‖XtY
>
t −M\‖F/‖M\‖F with

respect to the iteration count, for completing a rank-10 1000× 1000 matrix
where each entry is observed i.i.d. with probability p = 0.15. The balancing
regularizer is g(X,Y ) = 1

64
‖X>

X − Y
>
Y ‖2

F
as suggested in [8].

This paper justifies formally that even without explicit

balancing in non-square matrix factorization, gradient descent

converges linearly to the global optimum, as long as the

initialization is balanced for low-rank matrix sensing, where

the goal is to recover a low-rank matrix from a small number

of linear measurements. As will be detailed later, our analysis

is simple and built on a novel distance metric that directly

accounts for the ambiguity due to invertible transformations –

in contrast, the ambiguity set reduces to orthonormal transforms

when the balancing regularization is present. Our main message

is this: as long as the factors are balanced at the initialization,

they will stay approximately balanced throughout the trajectory

of gradient descent, and therefore no additional regularization

is necessary.

C. Notations and organization of this paper

We use boldface lowercase (resp. uppercase) letters to

represent vectors (resp. matrices). We denote by ‖x‖2 the

`2 norm of a vector x, and X>, X−1, ‖X‖ and ‖X‖F the

transpose, the inverse, the spectral norm and the Frobenius

norm of a matrix X , respectively. Furthermore, we denote

X−> = (X−1)> = (X>)−1 for an invertible matrix X . The

kth largest singular value of a matrix X is denoted by σk(X).
The inner product between two matrices X and Y is defined

as 〈X,Y 〉 = Tr
(

Y >X
)

, where Tr (·) is the trace. Denote

Or×r as the set of r × r orthonormal matrices. In addition,

we use c and C with different subscripts to represent positive

numerical constants, whose values may change from line to

line.

II. MAIN RESULTS

Let the object of interest M\ ∈ R
n1×n2 be a rank-r matrix

with the Singular Value Decomposition (SVD) given as

M\ = U\Σ\V
>
\ ,

where U\ ∈ R
n1×r, V\ ∈ R

n2×r and Σ\ ∈ R
r×r. Without

loss of generality, we denote the ground truth factors as

X\ = U\Σ
1/2
\ and Y\ = V\Σ

1/2
\ . (6)

Let σmax := σ1(M\) and σmin := σr(M\) be the largest and

smallest nonzero singular value of M\. The condition number

of M\ is defined as κ := σmax/σmin.

Since the factors are identifiable up to invertible transforms

since (X\P )(Y\P
−>)> = X\Y

>
\ for any invertible matrix

P ∈ R
r×r, we measure the distance between two pairs of

factors Z = (X,Y ) and Z\ = (X\,Y\) as:

dist (Z,Z\) = min
P∈Rr×r,invertible

√

‖XP −X\‖
2
F + ‖Y P−> − Y\‖

2
F.

(7)

A. Low-rank matrix sensing

Suppose we are given a set of m measurements as follows

yi = 〈Ai,M\〉 = 〈Ai,X\Y
>
\ 〉, i = 1, · · · ,m, (8)

where Ai ∈ R
n1×n2 is the ith sensing matrix, i = 1, · · · ,m.

For convenience, we define A : Rn1×n2 → R
m as an affine
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Algorithm 1 Gradient Descent with Spectral Initialization

(unregularized Procrustes Flow)

Input: Measurements y = {yi}
m
i=1, and sensing matrices

{Ai}
m
i=1.

Parameters: Step size ηt, rank r, and number of iterations T .

Initialization: Initialize X0 = UΣ
1/2 and Y0 = V Σ

1/2,

where UΣV > is the rank-r SVD of the surrogate matrix

K = 1
m

∑m
i=1 yiAi.

Gradient loop: For t = 0 : 1 : T − 1, do

Xt+1 = Xt −
ηt

‖Y0‖
2 ·

[

m
∑

i=1

(

〈Ai,XtY
>
t 〉 − yi

)

AiYt

]

;

(10a)

Yt+1 = Yt −
ηt

‖X0‖
2 ·

[

m
∑

i=1

(

〈Ai,XtY
>
t 〉 − yi

)

A>
i Xt

]

.

(10b)

Output: XT and YT .

transformation from R
n1×n2 to R

m, such that A (M) =
{〈Ai,M〉}mi=1. Consequently, one can write y = A (M\).
The adjoint operator A∗ is defined as A∗(y) =

∑m
i=1 yiAi.

To recover the low-rank matrix, a natural choice is to

minimize the squared loss function

f (X,Y ) :=
1

2

∥

∥y −A(XY >)
∥

∥

2

2
. (9)

Algorithm 1 describes the gradient descent algorithm initial-

ized by the spectral method for minimizing (9). Compared to

the Procrustes Flow (PF) algorithm [5], which minimizes the

regularized loss function in (5), the new algorithm does not

include the balancing regularizer g(X,Y ).

B. Theoretical Guarantees

To understand the performance of Algorithm 1, we adopt a

standard assumption on the sensing operator A, the so-called

Restricted Isometry Property (RIP).

Definition 1 (RIP): The mapping operation A is said to

satisfy the rank-r RIP with constant δr, if

(1− δr) ‖M‖2F ≤ ‖A(M)‖22 ≤ (1 + δr) ‖M‖2F

holds for all matrices M ∈ R
n1×n2 of rank at most r.

It is well-known that many measurement ensembles satisfy

the RIP property [9]. For example, if the entries of Ai’s are

composed of i.i.d. Gaussian entries N (0, 1/m), then the RIP

is satisfied as long as m is on the order of (n1 + n2)r/δ
2
r .

Under the RIP, we have the following theoretical guarantee

for the local convergence of Algorithm 1.

Theorem 1: Suppose A satisfies the RIP with δ2r ≤ c for

some sufficiently small constant c. Let Z0 = (X0,Y0) be an

initialization which satisfies

min
R∈Or×r

‖Z0R−Z\‖F ≤ c0
1

κ3/2
σmin (X\) , (11)

for some small enough constant c0. There exist some c1 such

that at as long as ηt = η ≤ c1, the iterates of GD satisfy

dist (Zt,Z\) ≤
(

1−
η

20κ

)t

dist (Z0,Z\) .

Theorem 1 says that if the initialization Z0 lands in a

basin of attraction given by (11), then Algorithm 1 converges

linearly with a constant step size. To reach ε-accuracy, i.e.

dist (Zt,Z\) ≤ ε, it takes an order of κ log(1/ε) iterations,

which is order-wise equivalent to the regularized PF algorithm

in [5]. Comparing to [5], which requires δ6r ≤ c, Theorem 1

only requires a weaker assumption δ2r ≤ c. However, the basin

of attraction allowed by Theorem 1 is smaller than that in [5],

which is minR∈Or×r ‖Z0R−Z\‖F ≤ c0σmin (X\).
We still need to find a good initialization that satisfies (11).

In general, one could initialize with the balanced factors of the

output after running multiple iterations of projected gradient

descent (over the low-rank matrix), i.e.

Mτ+1 = Pr

(

Mτ −
1

m

m
∑

i=1

(〈Ai,Mτ 〉 − yi)Ai

)

,

where Pr is the projection to the best rank-r approximation.

The spectral initialization specified in Algorithm 1 can be

regarded as the output at the first iteration, initialized at zero

M0 = 0. Based on [10], [5], the iterates satisfy

min
R∈Or×r

‖ZτR−Z\‖F ≤ c2(2δ4r)
τ ‖M\‖F
σmin(X\)

(12)

for some constant c2. Thus, to achieve the required initial-

ization condition, if we use the spectral method specified in

Algorithm 1, which corresponds to setting τ = 1 in (12), we

need

δ4r ≤ c2
1

κ3/2
·

σmin

‖M\‖F
.

Alternatively, if we allow multiple iterations of (12) as

suggested by [5], we can still set δ4r ≤ δc for a sufficiently

small constant δc, by running at least

τ ≥ c1 log

(

κ3/2 ‖M\‖F
σmin

)

/log
(

δ−1
c

)

= c2 log (κr)/log
(

δ−1
c

)

iterations of projected gradient descent for initialization, which

matches the requirement in [5].

III. RELATED WORK

Low-rank matrix estimation has been extensively studied

in recent years [2], [3], due to its broad applicability in

collaborative filtering, imaging science, and machine learning,

to name a few. Convex relaxation approaches based on nuclear

norm minimization are among the first set of algorithms with

provable near-optimal statistical guarantees [1], [11], [12], [13],

[14], [15], [16], [17], [18], however, their computational costs

are often prohibitive in practice.

To cope with the computational challenges, a popular

approach in practice is to invoke low-rank matrix factorization

popularized by Burer and Monteiro [4] and then apply first-

order methods such as gradient descent directly over the

factors to recover the underlying low-rank structure. This

approach is demonstrated to possess near-optimal statistical

and computational guarantees in a variety of low-rank matrix

recovery problems, including but not limited to [5], [19], [20],

[21], [22], [23], [24], [25], [26]. The readers are referred to

the recent overview [27] for additional references.
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To the best of our knowledge, the balancing regularization

term (4) was first introduced in [5] to deal with non-square

matrix factorization, and has become a standard approach to

deal with asymmetric low-rank matrix estimation [6], [7], [8],

[28], [29], [30]. A major benefit of adding the regularization

term is to reduce the ambiguity set from invertible transforms

to orthonormal transforms, so that the distance defined in (7)

is minimized over P ∈ Or×r. For the special rank-one matrix

recovery problem, there are some evidence in the prior literature

that a balancing regularization is not needed, for example, Ma

et. al. [23] established that vanilla gradient descent works

for blind deconvolution at a near-optimal sample complexity

with spectral initialization. In [31], the trajectory of gradient

descent is studied for asymmetric matrix factorization with an

infinitesimal and diminishing step size; in contrast, we consider

the case when the step size is constant for low-rank matrix

estimation with incomplete observations.

Finally, we remark that a similar regularization term (4) is

also adopted when analyzing the optimization landscape of low-

rank matrix estimation, e.g. [32], [33], [34], [35]. Without such

a regularization term, the landscape of matrix factorization no

longer possesses the intriguing property “all saddle points are

strict saddle” and therefore one cannot invoke theory such as

[36] to argue the global convergence of gradient descent using

an unregularized loss function. Our work partially bridges this

gap and suggests the benign behavior of gradient descent even

in the absence of local strong convexity.

IV. PROOF SKETCH OF THEOREM 1

In this section, we provide a proof sketch of Theorem 1. We

first discuss some basic properties of aligning two low-rank

factors via invertible transforms, then prove a similar result for

a warm-up case of low-rank matrix factorization, of which our

problem of interest can be regarded as a perturbed version.

A. Alignment via invertible transforms

For Z = [X>,Y >]> and Z\ = [X>
\ ,Y >

\ ]>, we define the

optimal alignment matrix Q as1

Q := argmin
P∈Rr×r

√

‖XP −X\‖
2
F + ‖Y P−> − Y\‖

2
F.

Furthermore, we call Z and Z\ are aligned if the corresponding

optimal alignment matrix Q = I . Throughout the paper, we

assume the optimal alignment matrix between the tth iterate

Zt = [X>
t ,Y >

t ]> and Z\ is denoted as Qt. Below we provide

some basic understandings of this alignment operation.

Lemma 1: Given two matrices Z and Z\, and their optimal

alignment matrix Q, we have

X̃>(X̃ −X\) = (Ỹ − Y\)
>Ỹ ,

where X̃ = XQ and Ỹ = Y Q−> are the matrices after the

alignment.

1It is guaranteed with high probability that the minimum is attained for Zt.

Lemma 2: Let Q be the optimal alignment matrix be-

tween Z and Z\. Suppose there exists a matrix P with

1/2 ≤ σmin(P ) ≤ σmax(P ) ≤ 3/2 such that

max
{

‖XP −X\‖F ,
∥

∥Y P−> − Y\

∥

∥

F

}

≤ δ ≤
1

4
σmin (X\) .

(13)

Then one has

‖P −Q‖ ≤ ‖P −Q‖F ≤
10δ

σmin (X\)
.

Both lemmas provide basic understandings on the solution of

solving the alignment problem with invertible transformations,

which can be regarded as a generalization of the classical or-

thogonal Procrustes problem which only considers orthonormal

transforms. Clearly, this generalized problem is much more

challenging and our work provides some first understandings

into it, to the best of our knowledge. These lemmas provide

the basis for the subsequent analyses.

B. A warm-up: low-rank matrix factorization

We consider the following minimization problem

fMF (X,Y ) =
1

2

∥

∥XY > −M\

∥

∥

2

F
, (14)

where X ∈ R
n1×r and Y ∈ R

n2×r. The gradient descent

updates with an initialization (X0,Y0) can be written as

Xt+1 = Xt −
η

σmax
∇XfMF (Xt,Yt)

= Xt −
η

σmax
(XtY

>
t −M\)Yt;

Yt+1 = Yt −
η

σmax
∇Y fMF (Xt,Yt)

= Yt −
η

σmax
(XtY

>
t −M\)

>Xt.

(15)

We have the following theorem regarding the performance of

(15), which parallels with Theorem 1.

Theorem 2: Let Z0 be an initialization which satisfies

min
R∈Or×r

‖Z0R−Z\‖F ≤ c0
1

κ3/2
σmin (X\) ,

for some small enough constant c0. There exists some c1 such

at as long as η ≤ c1, the iterates of GD satisfy

dist (Zt,Z\) ≤
(

1−
η

20κ

)t

dist (Z0,Z\) .

C. Analysis for matrix sensing

We now extend the technique used in the proof of Theorem 2

to the matrix sensing case by leveraging the RIP. Suppose that

the initialization Z0 satisfies (11). By a similar argument as

in [5], it is sufficient to consider the following update rule:

Xt+1 = Xt −
η

σmax

[

A∗A(XtY
>
t −M\)

]

Yt;

Yt+1 = Yt −
η

σmax

[

A∗A(XtY
>
t −M\)

]>
Xt.

(16)

Compared with (15), the update rule for matrix sensing differs

by the operation of A∗A when forming the gradient. Therefore,

we expect the GD has similar behaviors as earlier as long as
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A behaves as a near isometry on low-rank matrices. This can

be supplied by the following consequence of the RIP.

Lemma 3: Suppose A satisfies 2r-RIP with constant δ2r.

Then, for all matrices M1 and M2 of rank at most r, we have

|〈A(M1),A(M2)〉 − 〈M1,M2〉| ≤ δ2r ‖M1‖F ‖M2‖F .

V. CONCLUSIONS

This paper establishes the local linear convergence of gradi-

ent descent for rectangular low-rank matrix sensing without

explicit regularization of factor balancedness under the standard

RIP assumption, as long as a balanced initialization is provided

in the basin of attraction, which can be found by the spectral

method. Different from previous work, we analyzed a new error

metric that takes into account the ambiguity due to invertible

transforms, and showed that it contracts linearly even without

local restricted strong convexity. We believe our technique can

be used for other low-rank matrix estimation problems. To

conclude, we outline a few exciting future research directions.

• Low-rank matrix completion. We believe it is possible to

extend our analysis to study rectangular matrix completion

without regularization, by combining the leave-one-out

technique in [23], [30] to carefully bound the incoherence

of the iterates for both factors even without explicit

balancing.

• Improving dependence on κ and r. The current paper does

not try to optimize the dependence with respect to κ and r
in terms of sample complexity and the size of the basin of

attraction, which are slightly worse than their regularized

counterparts. A finer analysis will likely lead to better

dependencies, which we leave to the future work.
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