
IEEE SIGNAL PROCESSING LETTERS, VOL. 25, NO. 11, NOVEMBER 2018 1625

Improved Detection Performance for Passive Radars
Exploiting Known Communication Signal Form
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Abstract—In this letter, we address the problem of target detec-
tion in passive multiple-input multiple-output radar networks. A
generalized likelihood ratio test is derived, assuming prior knowl-
edge of the signal format used in the noncooperative transmit sta-
tions. The performance of the generalized likelihood ratio test in
the known signal format case is often significantly more favorable
when compared to the case that does not exploit this informa-
tion. Further, the performance improves with increasing number
of samples per symbol and for a sufficiently large number of sam-
ples per symbol, the performance closely approximates that of an
active radar with a known transmitted signal.

Index Terms—Code-division multiple access, digital video
broadcasting terrestrial standard, generalized likelihood ratio test,
passive radar.

I. INTRODUCTION

PASSIVE radar differs from conventional active radar in
that it relies on preexisting signals from noncooperative

transmitters instead of transmitting a known signal. Examples
of noncooperative transmitters include radio transmitters, TV
transmitters, cellular base stations, and other such high-power
transmitters. Such a system is cost efficient, covert, and suitable
for emergencies due to the lack of a transmitter. Consider a sce-
nario where the passive radar system utilizes the signals trans-
mitted from a cellular base station for target detection. Although
we do not control the base station, we usually have prior infor-
mation regarding the position of the transmitter along with the
signal format of the transmitted signal used in the base station.
The transmitted signal, however, still contains unknown infor-
mation bits, so the signal is not fully known. Prior publications
available in the literature derived explicit closed-form expres-
sions for the generalized likelihood ratio tests (GLRTs) for target
detection in passive multiple-input multiple-output radar (PMR)
networks [1]–[8]. However, they did not consider the possibility
of exploiting the available signal format information.

In [1]–[4], the discrete-time samples of the transmitted sig-
nal are assumed to be a deterministic unknown parameter. The
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transmitted signal along with other unknown parameters is esti-
mated in the GLRT procedure. In [5]–[9], GLRTs were derived
for target detection in scenarios where the unknown transmitted
signal is modeled as stochastic. A circular Gaussian random
process with zero mean and unit variance is used to model the
transmitted signal. In [10], the unknown transmitted signal was
modeled as an autoregressive process whose temporal correla-
tion is estimated using the expectation maximization algorithm
and is exploited for target detection.

In this letter, we study the problem of target detection in
PMR networks assuming prior knowledge of the signal for-
mat of the transmitted signal and assume it to be a determin-
istic unknown parameter. We consider scenarios in which the
transmitted signal uses either a linear digital modulation with a
known pulse shape or the orthogonal frequency division mul-
tiplexing (OFDM) modulation scheme. The linear modulation
scheme is used in technologies such as wide-band code divi-
sion multiple access [11] and digital video broadcasting-satellite
[12], whereas technologies such as digital video broadcasting-
terrestrial [13], WiMAX and long-term evaluation [14] incor-
porate the OFDM modulation scheme.

Under the stated assumptions, we derive explicit closed-form
expressions for a useful relaxed version of the GLRT for target
detection in PMR networks depending on whether the noise
variance is known or unknown. Numerical results show that the
derived GLRTs perform significantly better than GLRTs that do
not use the signal format information. Further, we observed the
performance improves with the number of samples per symbol,
and for a sufficiently large number of samples per symbol, the
performance closely approximates that of an active radar where
the transmitted signal is entirely known. Finally, the relaxation
causes little loss at reasonable signal-to-noise ratios.

Notations: We use bold upper case, bold lower case, and italic
lettering to, respectively, denote matrices, column vectors, and
scalars. Notations (.)T , (.)H , and ⊗ are the transpose, Her-
mitian, and Kronecker product, respectively. IN stands for a
N -dimensional identity matrix, 0N ×1 denotes a column vec-
tor of length N with all the elements equal to 0, ||.|| is the
Frobenius norm, CN (μN ,Σ) denotes a N -dimensional com-
plex multivariate Gaussian distribution with mean μN and co-
variance matrix Σ, C denotes the set of complex numbers, and
R+ denotes the set of positive real numbers.

II. SIGNAL MODEL AND PROBLEM STATEMENT

We adopt the accepted model for PMR networks presented
in [1]. We assume Nt transmit stations, Nr receive stations, and
orthogonal (or separable) signals sent from each transmit sta-
tion. The observations received directly from the transmitters are
called reference channel signals, whereas those received from
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the possible reflection from the target are called surveillance
channel signals. The reference and surveillance channel signals
are separated using beamforming. After isolating the signals,
each channel contains a certain amount of noise/clutter in ad-
dition to a scaled, delayed, and Doppler-shifted version of the
transmitted signal. As in [1], we assume delay-Doppler com-
pensation accounts for the time delay and frequency shifts on
the originally transmitted signal since we are testing for a target
with a known position and Doppler. As in [1], we assume the
noise/clutter has been whitened.

Let sij
s ∈ CN ×1 and sij

r ∈ CN ×1 denote the surveillance and
reference channel signals, respectively, between the ith trans-
mit station and jth receive station. The PMR detection problem
involves discriminating between the presence or absence of a
target within a hypothesized Cartesian position-velocity cell
under test [1]. The problem can be formulated as a binary hy-
pothesis test between the target-absent hypothesis (H0), and the
target-present hypothesis (H1) as

H0 : sij
s = nij

s

sij
r = μij

r ui + nij
r

H1 : sij
s = μij

s ui + nij
s

sij
r = μij

r ui + nij
r (1)

for i = 1, 2, . . . , Nt and j = 1, 2, . . . , Nr . In (1), μij
s and μij

r
are the unknown complex surveillance and reference channel
coefficients, respectively, that include any gain due to beam-
forming and the noise vectors nij

r and nij
s are circular Gaussian

noise, distributed as CN (0N ×1 , σ
2IN ) with σ2 denoting the

noise variance. Further, ui ∈ CN ×1 contains samples of the un-
known transmitted signal from the ith transmit station. In this
letter, we only consider scenarios in which the transmitted signal
vector ui can be expressed as

ui = Gibi . (2)

In (2), Gi is a known matrix of appropriate size and bi is a
column vector of appropriate size containing unknown complex
symbols from a digital modulation scheme.

A number of communication signals including linear digital
modulations and OFDM signals can be expressed in the form
shown in (2).1 For example, consider an OFDM signal. The
complex baseband structure of an OFDM signal can be repre-
sented as [13]

ui(t + nTsym) =
Ns −1∑

l=0

ej2π l
T u

(t−Tg)bi
nl (3)

for 0 ≤ t < Tsym. In (3), i denotes the index of the transmit sta-
tion, n denotes the OFDM symbol number, Ns is the number of
subcarriers used in the OFDM signal, bi

nl is a complex valued
modulation symbol, Tu is the duration of the useful part of the
OFDM symbol (excluding the guard interval), Tg is the guard
interval duration, and Tsym = (Tu + Tg ) is the total OFDM sym-
bol duration. Let Ts be the sampling rate equal to Tsym/(NsP ),
where P is the number of samples per complex symbol. Collect-
ing N = LNsP samples from L consecutive OFDM symbols

1See [15] for examples of OFDM and linear digital modulation schemes that
can be expressed in the form shown in (2).

indexed by 0, 1, . . . , (L − 1), the transmitted signal samples can
be expressed as

ui = (IL ⊗ H)bi (4)

where ui =[(ui
0)

T , (ui
1)

T , . . . , (ui
L−1)

T ]T with ui
k =[ui

(kTsym), ui(Ts + kTsym), . . . , ui((NsP − 1)Ts + kTsym)]T for
k = 0, 1, . . . , L − 1, and bi = [(bi

0)
T , (bi

1)
T , . . . , (bi

L−1)
T ]T

with bi
k = [bi

k0 , b
i
k1 , . . . , b

i
k(Ns −1) ]

T for k = 0, 1, . . . , L − 1.
In (4), H is a NsP × Ns matrix whose mlth element is

given by hml = e
j 2 π l (m T s −T g )

T u for m = 0, 1, . . . , NsP − 1 and
l = 0, 1, . . . , Ns − 1. In this letter, we derive a relaxed GLRT
for target detection in PMR networks that uses the available
information regarding the signal format of the transmitted
signal.

III. TARGET DETECTION IN PMR NETWORKS

Define si
s =[(si1

s )T , . . . , (siNr
s )T ]T , si

r = [(si1
r )T , . . . ,

(siNr
r )T ]T and si = [(si

s)
T , (si

r )
T ]T for i = 1, 2, . . . , Nt . Sim-

ilarly, define μi
s = [μi1

s , . . . , μiNr
s ]T and μi

r = [μi1
r , . . . , μiNr

r ]T

for i = 1, 2, . . . , Nt . Let s =
[
(s1)T , . . . , (sNt )T

]T
, μs =

[(μ1
s )

T , . . . , (μNt
s )T ]T , and μr = [(μ1

r )
T , . . . , (μNt

r )T ]T .
Finally, let u = [(u1)T , . . . , (uNt )T ]T with ui from (2).

The received signals sij
r and sij

s are parameterized by μij
r ,

μij
s , and bi . Since these parameters are unknown to the PMR

system, we employ the GLRT for the hypotheses testing prob-
lem given in (1). In GLRTs, we replace the unknown deter-
ministic quantities with the corresponding maximum likelihood
estimates (MLE). However, obtaining the MLE of the constel-
lation symbols bi

k might not be tractable as we would have to
search across all possible sequences of bi . Hence, we introduce
a relaxation, called the relaxed GLRT, where we allow bi

k to be
any complex number, i.e., bi

k ∈ C as opposed to an actual modu-
lation symbol from the defined finite set. Under this assumption,
let bi ∈ CBi ×1 and b =

[
(b1)T , . . . , (bNt )T

]T ∈ CB×1 with

B =
∑Nt

i=1 Bi .

A. Relaxed GLRT for PMR Networks When the Signal Format
Information is Employed and σ2 is Known

The conditional probability density function (pdf) of s under
H1 is given by p1(s|μs ,μr , b) =

∏Nt

i=1 pi
1(s

i |μi
s ,μ

i
r , b

i),
where pi

1(s
i |μi

s ,μ
i
r , b

i) ∝ exp{−1
σ 2

∑Nr

j=1(||sij
s − μij

s Gibi ||2
+ ||sij

r − μij
r Gibi ||2)}. Similarly, the conditional pdf of s

under H0 is given by p0(s|μr , b) =
∏Nt

i=1 pi
0(s

i |μi
r , b

i),
where pi

0(s
i |μi

r , b
i) ∝ exp{−1

σ 2

∑Nr

j=1 ||sij
r − μij

r Gibi ||2}. Let
l1(μs ,μr , b|s) = log p1(s|μs ,μr , b) and l0(μr , b|s) =
log p0(s|μr , b) denote the log-likelihood functions under
the hypotheses H1 and H0 . The relaxed GLRT can now be
written as

max
{µs ,µr ,b}∈CN r N t ×CN r N t ×CB

l1(μs ,μr , b|s)

− max
{µr,b}∈CN r N t ×CB

l0(μr , b|s)
H1

≷
H0

κksf (5)

where κksf denotes a threshold corresponding to a desired value
of false alarm probability. It is shown in Appendix that the
GLRT-based target detector in (5), termed the PMR Relaxed
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GLRT with Known signal format and known noise variance
(PMR-RGLRT-K), is given by

ξksf =
1
σ2

Nt∑

i=1

[
λ1

(
(Gi)H φi

1(φ
i
1)

H Gi , (Gi)H Gi
)

− λ1
(
(Gi)H φi

r (φ
i
r )

H Gi , (Gi)H Gi
) ] H1

≷
H0

κksf (6)

where λ1(A,B) denotes the largest generalized eigen-
value of the generalized eigenvalue problem Aw = λBw
and φi

1 = [φi
s ,φ

i
r ] with φi

s =
[
si1

s , si2
s , . . . , siNr

s

]
and φi

r =[
si1

r , si2
r , . . . , siNr

r

]
.

When σ2 is unknown, following similar steps as in Appendix,
the GLRT-based target detector, termed the PMR Relaxed GLRT
with Unknown noise variance and Known signal format (PMR-
RGLRT-UK), is given by
∑Nt

i=1 Ei
sr − λ1

(
(Gi)H φi

r (φ
i
r )

H Gi , (Gi)H Gi
)

∑Nt

i=1 Ei
sr − λ1

(
(Gi)H φi

1(φ
i
1)H Gi , (Gi)H Gi

)
H1

≷
H0

κuk (7)

where κuk denotes a threshold corresponding to a desired value
of false alarm probability and Ei

sr = ||si
s ||2 + ||si

r ||2 . See [15]
for full derivation in this scenario. The target detection al-
gorithms for both the considered scenarios are presented in
Algorithm 1.

IV. SIMULATION RESULTS

In this section, we compare the performance of the proposed
GLRT-based target detectors to other GLRT-based detectors
available in the literature via numerical simulations. We con-
sider the active (known signal) multiple-input multiple-output
radar GLRT proposed in [16] and the PMR GLRT without using
the signal format information (PMR-GLRT) proposed in [1].

A. Simulation Scenario

For a fair comparison, we follow the simulation setup of [1].
We consider a PMR network with Nt = 2 transmit stations and
Nr = 3 receive stations. Following [1], we fix ||ui ||2 = N . The
transmitted signal samples ui are generated according to the
chosen signal format in (2) across all transmit stations. As in [1],
the reference channel coefficients μi

r are randomly drawn from a
CN (0Nr

, INr
) distribution on each trial under H0 and H1 , and

then scaled to achieve a desired direct-path signal-to-noise ratio
(DNRi

avg) according to DNRi
avg = ||µi

r ||2
Nr σ 2 on each trial, where

μi
r = [μi1

r , . . . , μiNr
r ]T and |μij

r |2/σ2 is the DNR of the ijth

Fig. 1. Pd curves as a function of SNRavg when the transmitted signal is an
OFDM signal with Ns = 16 subcarriers and DNRavg = −10 dB for different
values of samples per symbol P . (a) P = 4. (b) P = 64.

reference channel. Surveillance channel coefficients are simi-
larly drawn from a CN (0Nr

, INr
) distribution and scaled to

achieve a desired surveillance signal-to-noise ratio (SNRi
avg)

according to SNRi
avg = ||µi

s ||2
Nr σ 2 on each trial, where μi

r =
[μi1

r , . . . , μiNr
r ]T and |μij

s |2/σ2 is the SNR of the ijth surveil-
lance channel. For simplicity, we assume that SNRi

avg = SNRavg
for all i, i.e., the average surveillance channel target-path SNR
across receivers is the same for each transmit channel. Similarly,
we assume DNRi

avg = DNRavg and Gi(.) = G(.) for all i.
In our simulations, we consider the case where the transmitted

signal follows the OFDM modulation scheme. The signal is
generated according to (3). The guard interval duration Tg is set
to 0 μs and BPSK symbols are modulated on each subcarrier
of the OFDM symbol.2 We use 1 OFDM symbol for target
detection in all the considered cases. The BPSK symbols used in
the generation of the transmitted signal are randomly generated
for each Monte Carlo simulation run. For the considered target
detectors, the detection threshold that achieves a probability of
false alarm (Pf ) of 10−3 is determined empirically using 105

trials underH0 , and the probability of detection (Pd ) is estimated
using 104 trials under H1 .

B. Numerical Results

1) Dependence on SNRavg, DNRavg, and P : Fig. 1 shows
the Pd curves as a function of SNRavg for DNRavg = −10 dB
and for different values of samples per symbol, P . The number
of subcarriers in the OFDM symbol is fixed to 16 (total of

2In this letter, we consider the target detection model presented in [1]. In this
model, all the channels are flat fading channels, so there is no multipath in the
considered scenario. Hence, there would no need of a guard interval as there is
no intersymbol interference. So we set Tg to 0 for ease of simulation.
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Fig. 2. Pd curves as a function of SNRavg when the transmitted signal is an
OFDM signal with Ns = 16 subcarriers and DNRavg = −10 dB for samples
per symbol P = 16.

16P samples). As we can see from the numerical results, the
proposed target detectors significantly outperform the GLRT-
based target detectors that do not use the available signal format
information. The detection performance of relaxed GLRT-based
target detectors improves significantly with increasing P when
compared to PMR-GLRT.3 This performance gain is primarily
due to the lower number of parameters that need to be estimated
for the GLRT in the known signal format case. For a sufficiently
large value of P , we can also see that the performance of the
proposed target detectors is close to that of an active radar, which
has complete knowledge of the transmitted signal. Finally, we
observe no significant loss in the detection performance from
not knowing noise variance in the proposed target detectors for
all the considered cases.

2) Performance Comparison With Unrelaxed GLRT: In this
letter, we introduced a relaxation on the complex symbols bi to
make the search for the MLE tractable. We now compare the
performance of the relaxed GLRT to the exact unrelaxed GLRT
to study the performance loss caused by using the relaxation. The
exact GLRT that uses the signal format information is obtained
by searching across all possible sequences of bi and finding the
sequence that maximizes the likelihood. The PMR GLRT using
the signal format information (PMR-GLRT-K) is given by

max
{µs ,µr ,b}∈CN r N t ×CN r N t ×AB

l1(μs ,μr , b|s)

− max
{µr,b}∈CN r N t ×AB

l0(μr, b|s)
H1

≷
H0

κpmrk (8)

where κpmrk denotes a threshold corresponding to a desired false
alarm probability and A is the finite set of complex symbols from
which the complex symbols bi are taken.

For this comparison, the number of subcarriers in the OFDM
symbol fixed to 16 (total of 16P samples). The direct-path
signal-to-noise ratio, DNRavg, is fixed to −10 dB and detec-
tion threshold corresponds to a Pf of 10−3 . Since bi ∈ A16 , we
search across all 216 possible sequences to get the MLE of bi .
Fig. 2 shows us the performance loss of using the relaxation for
P = 16. We can see from the results that the performance loss
in the target detection due to the relaxation is relatively small.

3The target detection performance of PMR-GLRT improves with increasing
number of samples. However, it improves at a much slower rate when compared
to the proposed relaxed GLRT-based target detectors.

V. CONCLUSION

This letter presented a GLRT-based passive radar target detec-
tors that can use the available signal format information under
conditions where either the noise variance is known or unknown.
As demonstrated, adding additional known information about
the transmitted signal into the GLRT improves performance in
comparison to a GLRT where the information is not utilized,
and the signal is considered entirely unknown. Further, given
an adequate number of samples per symbol, the proposed target
detectors may be used to close the performance gap between the
passive and active radar.

APPENDIX

DERIVATION OF PMR-RGLRT-K WHEN THE SIGNAL FORMAT

INFORMATION IS EMPLOYED

Consider hypothesis H1 in (1). We have

l1(μs ,μr , b|s) =
Nt∑

i=1

li1(μ
i
s ,μ

i
r , b

i |si) (9)

where (ignoring the additive constants) we have li1(μ
i
s ,μ

i
r ,

bi |si) = −
∑ N r

j = 1

(
||si j

s −μi j
s Gi bi ||2 + ||si j

r −μi j
r Gi bi ||2

)

σ 2 . The MLE of
μij

s and μij
r obtained from setting the derivative of (9) with

respect to μij
s and μij

r to zero are given by

μ̂ij
s =

(Gibi)H sij
s

(Gibi)H Gibi
and μ̂ij

r =
(Gibi)H sij

r

(Gibi)H Gibi
. (10)

Substituting μ̂ij
s and μ̂ij

r in li1(μ
i
s ,μ

i
r , b

i |si) and simplifying,
we obtain

li1(μ̂
i
s , μ̂

i
r , b

i |si) =
−1
σ2

[
Ei

sr −
(Gibi)H φi

1(φ
i
1)

H Gibi

(Gibi)H Gibi

]
.

(11)

The value of bi that maximizes (11) is given by b̂
i
=

v1
(
(Gi)H φi

1(φ
i
1)

H Gi , (Gi)H Gi
)
, where v1(A,B) denotes

the generalized eigenvector corresponding to the maximum gen-

eralized eigenvalue. Substituting b̂
i

in (11) and simplifying (9),
we have

l1(μ̂s , μ̂r , b̂|s)

=
−∑Nt

i=1

(
Ei

sr − λ1
(
(Gi)H φi

1(φ
i
1)

H Gi , (Gi)H Gi
))

σ2 .

Following a similar procedure, it can be shown under H0 that

l0(μ̂r , b̂|s)

=
−∑Nt

i=1

(
Ei

sr − λ1
(
(Gi)H φi

r (φ
i
r )

H Gi , (Gi)H Gi
))

σ2 .

Using l1(μ̂s , μ̂r , b̂|s) and l0(μ̂r , b̂|s), the PMR-RGLRT-K is
given by

ξksf =
1
σ2

Nt∑

i=1

[
λ1

(
(Gi)H φi

1(φ
i
1)

H Gi , (Gi)H Gi
)

− λ1
(
(Gi)H φi

r (φ
i
r )

H Gi , (Gi)H Gi
) ] H1

≷
H0

κksf .

(12)
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