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Attack Detection in Sensor Network Target
Localization Systems With Quantized Data
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Abstract—We consider a sensor network focused on target lo-
calization, where sensors measure the signal strength emitted from
the target. Each measurement is quantized to one bit and sent to
the fusion center. A general attack is considered at some sensors
that attempts to cause the fusion center to produce an inaccurate
estimation of the target location. The attack is a combination of
man-in-the-middle, hacking, and spoofing attacks that can effec-
tively change both signals going into and coming out of the sensor
nodes in a realistic manner. We show that the essential effect of
attacks is to alter the naive estimate of the distance between the
target and each attacked sensor, which ignores the existence of
attacks, to a different extent, giving rise to a geometric inconsis-
tency among the attacked and unattacked sensors. With the help
of two secure sensors, a class of detectors are proposed to detect
the attacked sensors by scrutinizing the existence of the geometric
inconsistency. We show that the false alarm and miss probabilities
of the proposed detectors decrease exponentially as the number
of measurement samples increases, which implies that with suffi-
cient measurement samples, the proposed detectors can identify
the attacked and unattacked sensors with any required accuracy.
Numerical results show that compared to the cases where all sen-
sors are employed without detecting attacks or only the secure
sensors are employed, the localization performance can be signif-
icantly improved if we employ the secure sensors and the sensors
which are declared as unattacked by the proposed detector.

Index Terms—Target localization, attack detection, spoofing
attack, man-in-the-middle attack, malfunction, sensor network,
large deviations theory.
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I. INTRODUCTION

S ENSOR networks find wide applications ranging from in-
expensive commercial systems to complex military and

homeland defense surveillance systems and have seen ever
growing interest in recent years [1]. One important applica-
tion of sensor networks is to estimate the location of a target in a
region of interest (ROI) [2]–[4]. Recent technological advances
in digital wireless communications and digital electronics have
led to the dominance of digital transmission and processing
using quantized data in such systems. Hence, a great deal of
attention has focused on target localization in sensor networks
using quantized data, see [5]–[7] for instance.

Typically, large-scale sensor networks are comprised of low-
cost and spatially distributed sensor nodes with limited battery
capacity and low computing power, which makes the system
vulnerable to cyberattacks by adversaries. This has led to a
vast interest in studying the vulnerability of sensor networks in
various applications and from different perspectives, see [8]–
[15] and the references therein. Depending on the place where
the attack is launched, there are generally three categories of
attacks in sensor networks, namely spoofing attacks, hacking
attacks, and man-in-the-middle attacks (MiMA). To be specific,
the spoofing attack changes the phenomenon observed by the
attacked sensors and tampers with the observations coming into
the sensors. For example, data-injection attack is one type of
spoofing attack [10]. The hacking attack aims at hacking into
the sensors, modifying the hardware, and/or reprogramming the
devices, with the goal of disrupting the data processing in the
attacked sensors. Note that malfunctions of sensors can also be
considered as hacking attacks. The MiMA takes place between
the sensors and a fusion center (FC), which maliciously falsifies
the data transmitted from the attacked sensors to the FC, see
[7], [11], [12] for instance. The main goal of the adversaries
is to undermine the sensor network and render the FC to reach
an inaccurate estimate of the target location in terms of large
mean-square estimation error. A simple and intuitive method
to combat the attacks is to identify the attacked sensors so that
the FC can either discard data from these sensors, or make use
of attacked data to improve its estimate of the target location
via jointly estimating the target location and the attacks [11],
[12], [15].

A. Summary of Results and Main Contributions

In this paper, we consider a sensor network containing two
widely separated secure sensors which have a very high level of
security and thereby are guaranteed to be tamper-proof. The rest
of sensors are insecure, which are subject to arbitrary forms of
attacks. In practice, the two secure sensors can be well protected,
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built with powerful chips, and supplied with sufficient power,
thereby highly sophisticated encryption algorithms and security
procedures can be implemented.

This paper aims at developing a general detection approach
which does not rely on the form of the attacks or attack parame-
ters, to identify the attacked sensors in the sensor network with
provable detection performance guarantee. It is worth mention-
ing that the problem of attack detection in target localization
systems is difficult, since the statistical model of sensor data
depend on the target location and the attack strategy which are
both unknown to the FC. By exploring the impact of the attacks
on the statistical model of the sensor data, we reveal that the
essential effect of attacks is to alter the naive estimate of the
distance between the target and each attacked sensor, which ig-
nores the existence of attacks, to a different extent, giving rise to
a geometric inconsistency among the attacked and unattacked
sensors. Motivated by this fact, a class of detectors are proposed
to detect the attacked sensors via scrutinizing the existence of
the geometric inconsistency. To be specific, a naive maximum
likelihood estimator (NMLE), the MLE formulated under the
assumption of no attack, is first employed to estimate the dis-
tance between the target and each sensor. For each insecure
sensor, a circle is generated which is centered at the sensor
with radius equal to the NMLE of its distance to the target.
For each of the two secure sensors, a ring with some constant
width is generated. This ring is centered at the sensor and is
bisected by a circle with radius equal to the NMLE of the dis-
tance from the sensor to the target. If the circle of an insecure
sensor passes through the common area of the two rings, the
sensor is declared unattacked; otherwise, we declare that it is
under attack. A thorough performance analysis is carried out for
the proposed detectors, showing that the false alarm and miss
probabilities decrease exponentially as the number of data sam-
ples at each sensor grows, which implies that for a sufficiently
large number of samples, the proposed detectors can identify the
attacked sensors with an arbitrary level of accuracy. Moreover,
the numerical results demonstrate that compared to the cases
where all sensors are employed without detecting attacks or
only the secure sensors are employed, the performance of esti-
mating the target location can be significantly improved if we
employ the secure sensors and the sensors which are declared
as unattacked by the proposed detector.

B. Related Works

With the proliferation of sensor network applications, there is
an increasing concern about the security of sensor networks, see
[8], [9], [16]–[19] for instance. Most existing works on the secu-
rity in sensor network target localization systems only consider
analog measurements. However, for a typical sensor network
with limited resources, it is desirable that only quantized data
is transmitted from sensors to the FC [5]–[7]. Moreover, there
is a lack of theoretical performance analysis of attack detection
strategies.

Attack detection in the context of target localization with
quantized data has not been well investigated in the literature.
In [7], a specific attack model is considered and a practical
approach is proposed to detect attacks in target localization
systems. In particular, several secure sensors are employed to
provide a coarse estimate of the target location, and then the
expected behaviors of attacked and unattacked sensors are cal-
culated based on the coarse estimate and the attack model. This
method is based on heuristic and there is no detection perfor-

mance guarantee. In our proposed approach, the estimate of the
target location is not required, and moreover, the attack detec-
tion performance is rigorously investigated, which demonstrates
that any identification accuracy can be achieved if the number
of data samples is sufficiently large. In addition, the approach in
[7] requires the knowledge of the statistical model of the attack,
which is not required by our proposed approach.

The remainder of the paper is organized as follows. Section II
describes the system and adversary model. In Section III, a class
of detectors are proposed to identify the attacked sensors in
the sensor network. Section IV investigates the performance of
the proposed detectors. In Section V, several numerical results
are provided to corroborate our theoretical analysis. Finally,
Section VI provides our conclusions.

II. SYSTEM AND ADVERSARY MODELS

In this section, the system and general attack models are
introduced. We also demonstrate how the general attack model
relates to some popular forms of attacks in practice.

A. System Model

Consider a sensor network consisting of N sensors and a FC
to estimate the location of a target at θT = [xT , yT], where xT
and yT denote the coordinates of the target location on the two-
dimensional plane. For the j-th sensor, we use θj = [xj , yj ]
to denote its location. Besides the N sensors, there also exist
two secure sensors in the sensor network which are labeled as
the (N + 1)-th and (N + 2)-th sensors, respectively. These two
secure sensors are well protected and thereby are guaranteed to
be tamper proof, while the other N sensors are insecure, which
are subject to threat from adversaries. We assume that the signal
radiated from the target obeys an isotropic power attenuation
model, and each sensor observesK data samples. The k-th data
sample at the j-th sensor is described as

sjk = P0

(
D0

Dj

)γ

+ njk , j = 1, 2, ..., N + 2, (1)

where the distance Dj between the j-th sensor and the target is
defined by

Dj
Δ= ‖θj − θT‖ =

√
(xj − xT)2 + (yj − yT)2 , ∀j, (2)

the quantity P0 is the power measured at a reference distance
D0 , γ is the path-loss exponent which is a positive constant, and
njk denotes the additive noise sample with probability density
function (pdf) fj (njk ).

We assume that P0 , D0 , γ, {fj (·)}N+2
j=1 , and {θj}N+2

j=1 are
known to the FC. Moreover, we assume {njk} are independent,
and for each j, {njk}Kk=1 is an identically distributed sequence.
In addition, we assume that the target stays in a specified ROI
A where no sensor exists. By defining

DL
Δ= min

j=1,2,...,N+2
inf

θ ∈A
‖θj − θ‖ > 0, (3)

and DU
Δ= max

j=1,2,...,N+2
sup
θ ∈A
‖θj − θ‖ <∞, (4)

we know that for any j ∈ {1, 2, ..., N + 2},
Dj ∈ [DL ,DU] . (5)

Regarding the secure sensors and the ROI A, we make the
following assumption.
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Assumption 1: The secure sensors are widely separated so
that

DS � ‖θN+1 − θN+2‖ > DU −DL + 2Υ1 (6)

for some positive constant Υ1 . In addition, the ROI A is con-
tained in one of the two half spaces produced by dividing the
whole space by the line passing through the two secure sensors.
By the triangle inequality of sides, we assume

inf
θT ∈A

{DN+1 +DN+2} > DS + 2Υ2 (7)

for some positive constant Υ2 .
Due to the low-rate communication constraint between the

sensors and the FC, each sensor j quantizes its sample sjk to
one bit and then transmits the bit to the FC. For simplicity, we as-
sume that the sensors employ the following threshold quantizers
{Qj}N+2

j=1

ujk = Qj (sjk ) � 1 {sjk ∈ (τj ,∞)} , ∀j and ∀k, (8)

where 1{·} is the indicator function, τj is the threshold employed
at the j-th sensor and we assume that the thresholds {τj}N+2

j=1
are known to the FC.

Using (1) and (8), define

pj (θT) � Pr (ujk = 0 |θT ) = Fj

(
τj − P0

(
D0

Dj

)γ)
, (9)

where Fj (x) Δ=
∫ x
−∞ fj (t) dt. By employing (5) and (9), we

can define

ρ
(L)
j � inf

θ∈A
pj (θ) = Fj

(
τj − P0

(
D0

DL

)γ)
, (10)

ρ
(U)
j � sup

θ∈A
pj (θ) = Fj

(
τj − P0

(
D0

DU

)γ)
, (11)

and hence,

pj (θT) ∈
[
ρ

(L)
j , ρ

(U)
j

]
, j = 1, 2, ..., N + 2. (12)

We assume that fj (x) is continuous, and F−1
j (x) exists and

is differentiable over the open interval (0, 1) for each j. Noticing

that
∂F −1

j (x)
∂x = [fj (F−1

j (x))]−1 , the differentiability of F−1
j (x)

implies 0 < fj (x) <∞ over {x|Fj (x) ∈ (0, 1)}, and therefore,
Fj (x) is strictly increasing over {x|Fj (x) ∈ (0, 1)}.

It is clear that if there exists some θ ∈ A such that

τj − P0

(
D0

‖θj − θ‖
)γ

/∈ supp (fj ) � {x|fj (x) �= 0} , (13)

then Fj (τj − P0( D0
‖θj −θ‖ )

γ ) = 0 or 1, and hence, the quantized
data from the j-th sensor is useless in the sense of improving
the performance of estimating θ. To this end, we assume that
the quantizers are well designed, and thereby τj , DL and DU
satisfy

inf {supp (fj )} < τj − P0

(
D0

DL

)γ

< τj − P0

(
D0

DU

)γ

< sup {supp (fj )} ,
(14)

Fig. 1. Unattacked and attacked sensor models.

which yields ∀j,

0 < Fj

(
τj − P0

(
D0

DL

)γ)

< Fj

(
τj − P0

(
D0

DU

)γ)
< Fj (τj ) ≤ 1, (15)

since Fj (·) is strictly increasing, from (10) and (11), we know

0 < ρ
(L)
j < ρ

(U)
j < Fj (τj ) ≤ 1. (16)

B. Adversary Model

We consider a general attack model which brings about a
change in the statistical model of ujk . Let U and V denote the
set of unattacked and attacked sensors, respectively.

In general, if j ∈ V , three types of possible attacks can affect
the j-th sensor, which are illustrated in Fig. 1 (b). First, the
adversaries can tamper with the observations {sjk}Kk=1 . Such
attacks are called spoofing attacks, which can be represented
by a mapping gj (·). The second type of attack which we call
hacking, aims at modifying the sensor hardware and/or soft-
ware, and thereby modifying the quantizerQj (·) to Q̃j (·) in the
attacked sensors as shown in Fig. 1 (b). The last type of possible
attack occurs between the sensors and the FC, which is referred
to as man-in-the-middle attacks (MiMA). The MiMA can be
described by a mapping hj (·) that modifies the quantized data
before it arrives at the FC. Therefore, the post attack quantized
data can be generally expressed as1

ũjk = hj

(
Q̃j (gj (sjk ))

)
. (17)

With regard to the alphabet set of ũjk , we make the following
assumption.

Assumption 2: We assume that if j ∈ V , then the alphabet
set of ũjk is still {0, 1}. Otherwise, the detection of attacks is
trivial.

Define

p̃j (θT) � Pr (ũjk = 0 |θT ) = pj (θT) + Ψj , j = 1, 2, ..., N,
(18)

where the quantity Ψj represents the impact of the attacks on
the statistical model of the data. Clearly, if Ψj = 0, then we
can ignore the corresponding attack, since it is ineffective from

1We use the notation ũj k to denote the quantized data received at the FC
when attacks are considered, no matter whether the j-th sensor is attacked or
not. If j ∈ U , then ũj k = ujk .
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the perspective of the FC. Hence, without loss of generality, if
j ∈ V , then we assume Ψj �= 0, while if j ∈ U , then ũjk = ujk
and Ψj = 0.

To illustrate (18) in a concrete way, we take the MiMA as an
example. Under a class of MiMAs [7], [11], [12], the quantized
data ujk is flipped with probabilityψj,i if ujk = i for i ∈ {0, 1},
i.e., if the j-th sensor is attacked,

{
Pr (ũjk = 1 |ujk = 0) = ψj,0 ,

Pr (ũjk = 0 |ujk = 1) = ψj,1 ,
(19)

where ψj,i ∈ [0, 1]. Using (19), we have

p̃j (θT) = (1− ψj,0 − ψj,1) pj (θT) + ψj,1 , (20)

and Ψj = ψj,1 − (ψj,0 + ψj,1) pj (θT). (21)

Besides the man-in-the-middle attacks, the spoofing attacks
can also be shown to agree with (18) [8], [9], [15].

From a practical point of view, the following assumptions on
the attacks are made throughout this paper.

Assumption 3:
1) For each j, Ψj is constant over time.
2) Subtle Attacks: By the strong law of large numbers, we

know that as K →∞, 1
K

∑K
k=1 (1− ũjk )→ p̃j (θT) al-

most surely. Thus, if p̃j (θT) /∈ [ρ(L)
j , ρ

(U)
j ], then with

sufficient observations, the attack against the j-th sen-
sor can be detected at the FC by checking whether
1
K

∑K
k=1 (1− ũjk ) is in the range [ρ(L)

j , ρ
(U)
j ]. For this

reason, in order to reduce the possibility of being detected,
the adversaries should ensure

p̃j (θT) ∈
[
ρ

(L)
j , ρ

(U)
j

]
, j ∈ V. (22)

3) Significant Attacks: In order to bring about sufficient im-
pact on the statistical characterization of the bits from the
attacked sensors, every adversary is required to guarantee
a minimum distortion, i.e.,

|Ψj | > κ, j ∈ V, (23)

for some positive constant κ. Otherwise, the attacks can
be ignored.

It is worth mentioning that Assumption 3 1) does not require
that the attacks illustrated in (17) are time-invariant, and it only
implies that the impact of the attacks on the statistical model of
the data is stationary, which is widely assumed in the literature
on attacks in sensor networks, see [7], [10], [11] and reference
therein for instance. If Assumption 3 1) is not satisfied, then the
statistical model of the data from the attacked sensor is time-
variant. Thus, with sufficient observations, the attacked sensors
can be easily detected by just checking whether the empirical
probability mass function of the data in different sufficiently
long time periods is constant or not. To this end, the adversaries
should ensure Assumption 3 1) to reduce the possibility of being
detected.

Our problem is to design an efficient strategy for the FC to
identify the attacked sensors, based on the binary observations it
receives from all sensors, and to provide a performance analysis
on the proposed attack detection strategy.

Fig. 2. Geometric inconsistency among the j-th, (N + 1)-th and (N + 2)-th
sensors when j ∈ V .

III. ATTACK DETECTORS BASED ON NAIVE MAXIMUM

LIKELIHOOD ESTIMATOR

In this section, we first show that by employing a naive max-
imum likelihood estimator (NMLE), a geometric inconsistency
among each attacked sensor and other unattacked sensors can
be utilized to distinguish between the attacked and unattacked
ones. Then, a class of detectors which are based on the NMLE
are proposed to detect the attacks in the sensor network.

A. Naive Maximum Likelihood Estimator and Geometric
Inconsistency

For any j, from (9) and by employing the existence of
F−1
j (x), we can obtain

Dj = D0P
1
γ

0

[
τj − F−1

j (pj (θT))
]− 1

γ . (24)

Then the NMLE, which is the MLE ignoring the existence of
attacks, of Dj is given by

D̂
(K )
j = D0P

1
γ

0

[
τj − F−1

j

(
ξ

(K )
j

)]− 1
γ

,

(25)

where ξ
(K )
j � 1

K

K∑
k=1

(1− ũjk ) . (26)

Furthermore, define

D̃j � D0P
1
γ

0

[
τj − F−1

j (p̃j (θT))
]− 1

γ . (27)

It is seen from (27) that D̃j is a monotonic function of p̃j (θT),
and since from (23), we know p̃j (θT) �= pj (θT), we have D̃j �=
Dj . What’s more, by the strong law of large numbers, we know

D̂
(K )
j →

{
Dj , if j ∈ U
D̃j , if j ∈ V almost surely, as K →∞. (28)

This implies that, from the perspective of the NMLE, if j ∈ V ,
the essential effect of the attack is a falsification of the distance
Dj between the target and the j-th sensor to some different
D̃j . This gives rise to a geometric inconsistency between the
j-th sensor and the two secure sensors, which is illustrated in
Fig. 2. Specifically, if j ∈ U , as illustrated in Fig. 2, the three
circles centered at the j-th, (N + 1)-th and (N + 2)-th sensors
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Fig. 3. Geometric illustration of C(θ0 , R) and B(θ0 , R).

Fig. 4. Geometric illustration ofR(θ0 , R, δ).

and with radii Dj , DN+1 and DN+2 , respectively, intersect at
the point θT ; while if j ∈ V , then the three circles centered at
the j-th, (N + 1)-th and (N + 2)-th sensors and with radii D̃j ,
DN+1 and DN+2 do not intersect at θT as illustrated in Fig. 2.

Motivated by this fact, consider three circles centered at the
j-th, (N + 1)-th and (N + 2)-th sensors and with radii D̂(K )

j ,

D̂
(K )
N+1 and D̂(K )

N+2 , respectively. If j ∈ V , then from (28), we
know that with sufficiently large K and Assumption 3, it is
impossible for these three circles to intersect at a common point.
This observation forms the basis of the proposed attack detection
strategy.

B. Attack Detection Strategy

In order to mathematically formulate the attack detector, we
first define three geometric shapes. According to Assumption 1,
the ROI A is contained in one of the two half spaces produced
by dividing the whole space by the line passing through the
two secure sensors. We use S to represent this half space. Let
C(θ0 , R) denote the intersection of S and the circle centered at
θ0 and with radius R, i.e.,

C(θ0 , R) � {θ ∈ S |‖θ − θ0‖ = R} , (29)

which is illustrated by the red curve in Fig. 3. Let R(θ0 , R, δ)
denote the intersection of S and the ring centered at θ0 , with
radius R and width δ, i.e.,

R(θ0 , R, δ) � {θ ∈ S |R− δ ≤ ‖θ − θ0‖ ≤ R+ δ } . (30)

The region enclosed by the blue boundary in Fig. 4 depicts an
example of R(θ0 , R, δ). Let B(θ0 , R) denote the intersection
of S and the ball centered at θ0 and with radius R, i.e.,

B(θ0 , R) � {θ ∈ S |‖θ − θ0‖ ≤ R} . (31)

which is the blue region in Fig. 3.
It is worth mentioning that even though j ∈ U , due to the esti-

mation error with finite K, the three circles centered at the j-th,
(N + 1)-th and (N + 2)-th sensors and with radii D̂(K )

j , D̂(K )
N+1

and D̂(K )
N+2 , respectively, typically will not intersect at a common

point. Thus, for finite K, checking the geometric inconsistency

Fig. 5. Geometric illustration of the proposed detectors.

among C(θj , D̂(K )
j ), C(θN+1 , D̂

(K )
N+1) and C(θN+2 , D̂

(K )
N+2)

cannot reliably tell whether the j-th sensor is unattacked or not.
To overcome this, we replace C(θN+1 , D̂

(K )
N+1) and C(θN+2 ,

D̂
(K )
N+2) with R(θN+1 , D̂

(K )
N+1 , δ) and R(θN+2 , D̂

(K )
N+2 , δ) for

some δ, respectively, and scrutinize whether C(θj , D̂(K )
j ) pass

through the common area ofR(θN+1 , D̂
(K )
N+1 , δ) andR(θN+2 ,

D̂
(K )
N+2 , δ) instead.
To be specific, for the j-th sensor, j = 1, 2, ..., N , we consider

the following hypothesis testing problem
{H0 : j ∈ U
H1 : j ∈ V (32)

and a class of detectors


j (δ) =⎧⎪⎨
⎪⎩

0, if C
(
θj , D̂

(K )
j

)
∩
[
∩2
i=1R

(
θN+i , D̂

(K )
N+i , δ

)]
�= ∅,

1, if C
(
θj , D̂

(K )
j

)
∩
[
∩2
i=1R

(
θN+i , D̂

(K )
N+i , δ

)]
= ∅,

(33)

for some constant δ, where D̂(K )
j is defined in (25).

The geometric illustration of the proposed detector in (33)
is depicted in Fig. 5, where the region enclosed by the
red curves is the common area of R(θN+1 , D̂

(K )
N+1 , δ) and

R(θN+2 , D̂
(K )
N+2 , δ) which plays an important role in the at-

tack detection process. It is worth noticing that the center of this
common area is determined by two random variables D̂(K )

N+1

and D̂(K )
N+2 , and thereby is randomly located. To this end, this

common area may not cover the true target location θT . In ad-
dition, the size of the common area of R(θN+1 , D̂

(K )
N+1 , δ) and

R(θN+2 , D̂
(K )
N+2 , δ) depends on the parameter δ which impacts

the false alarm and miss probabilities of the proposed detector.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED DETECTOR

In this section, the detection performance of the proposed de-
tector in (33) is investigated. We will show that the false alarm
and miss probabilities of the proposed detector decay exponen-
tially fast as the number of data samples at each sensor increases.
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To start with, we provide the following lemma regarding
the lower and upper bounds on the common area of R(θN+1 ,
DN+1 , δ) andR(θN+2 ,DN+2 , δ).

Lemma 1: If

δ < Υ � min{Υ1 ,Υ2}, (34)

then

sup
θ∈ 2∩

i= 1
R(θN + i ,DN + i ,δ)

‖θ − θT‖ < Φ(δ) (35)

with Φ(δ) � (2DU + Υ)
1
2

[
2DU + Υ
DS

(
Υ
DS

+ 1
)

+ 2
] 1

2 √
δ.

(36)
This implies

B(θT , δ) ⊆
2∩
i=1
R (θN+i , DN+i , δ) ⊆ B (θT ,Φ(δ)) . (37)

Proof: Refer to Appendix A. �
As demonstrated by Lemma 1, the common area ofR(θN+1 ,

DN+1 , δ) andR(θN+2 ,DN+2 , δ) can be bounded by two balls
from below and above. Moreover, the radii of these two balls are
both increasing functions of the given δ. It will be shown later
that by employing the two balls to approximate the irregular area
∩2
i=1R(θN+i , DN+i , δ) from below and above, the detection

performance analysis of the proposed detector in (33) can be
considerably facilitated.

A. Upper Bound on False Alarm Probability

From (33), the false alarm and miss probabilities of the pro-
posed detector are given by P0 (
j (δ)=1) and P1(
j (δ)=0),
respectively, where Pi denotes the probability measure under
hypothesisHi .

Let Ei denote the event

Ei Δ=
{∣∣∣D̂(K )

N+i −DN+i

∣∣∣ < 1
2
δ

}
, i = 1, 2, (38)

and EC
i denotes the complement of the event Ei , where δ satisfies

(34). The false alarm probability of the detector in (33) can be
expressed as

P0 (
j (δ) = 1)

= P0

(
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(
θN+i , D̂

(K )
N+i , δ

)]
= ∅

)

= P0

({
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(
θN+i , D̂

(K )
N+i , δ

)]
= ∅

}

∩ (E1 ∩ E2)
)

+ P0

({
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(
θN+i , D̂

(K )
N+i , δ

)]
= ∅

}

∩ (EC
1 ∪ EC

2
))

. (39)

Note that Ei implies that

R
(

θN+i , DN+i ,
1
2
δ

)
⊆ R

(
θN+i , D̂

(K )
N+i , δ

)
, (40)

Fig. 6. Geometric illustration of (45).

and hence, from (39), we can obtain

P0 (
j (δ) = 1)

≤ P0

({
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(

θN+i , DN+i ,
1
2
δ

)]
= ∅

}

∩ (E1 ∩ E2)
)

+ P0

({
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(
θN+i , D̂

(K )
N+i , δ

)]
= ∅

}

∩ (EC
1 ∪ EC

2
))

≤ P0

(
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(

θN+i , DN+i ,
1
2
δ

)]
= ∅

)

+ P0
(EC

1 ∪ EC
2
)

(41)

≤ P0

(
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(

θN+i , DN+i ,
1
2
δ

)]
= ∅

)

+ P0
(EC

1
)

+ P0
(EC

2
)
, (42)

where (41) is due to the fact that P0(E ∩ F) ≤ P0(E) for any
two events E and F . Moreover, from Lemma 1, we know

B
(

θT ,
1
2
δ

)
⊆ 2∩

i=1
R
(

θN+i , DN+i ,
1
2
δ

)
, (43)

which yields

P0 (
j (δ) = 1) ≤ P0

(
C
(
θj , D̂

(K )
j

)
∩ B

(
θT ,

1
2
δ

)
= ∅

)

+ P0
(EC

1
)

+ P0
(EC

2
)
. (44)

In addition, as illustrated in Fig. 6, if j ∈ U , we know θT ∈
C(θj ,Dj ) which yields that under hypothesisH0 ,

{
C
(
θj , D̂

(K )
j

)
∩ B

(
θT ,

1
2
δ

)
= ∅

}

⇔
{∣∣∣D̂(K )

j −Dj

∣∣∣ ≥ 1
2
δ

}
, (45)

and therefore, by employing (38), (44) and (45), we reach the
following theorem.
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Theorem 1: If δ satisfies (34), the false alarm probability of
the proposed detector in (33) can be bounded from above as per

P0 (
j (δ) = 1)

≤ P0

(∣∣∣D̂(K )
j −Dj

∣∣∣ ≥ 1
2
δ

)
+ P0

(EC
1
)

+ P0
(EC

2
)

= P0

(∣∣∣D̂(K )
j −Dj

∣∣∣ ≥ 1
2
δ

)

+
2∑
i=1

P0

(∣∣∣D̂(K )
N+i −DN+i

∣∣∣ ≥ 1
2
δ

)
. (46)

B. Upper Bound on Miss Probability

On the other hand, considering that δ satisfies (34), the miss
probability of the detector in (33) can be bounded from above
as per

P1 (
j (δ) = 0)

= P1

(
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(
θN+i , D̂

(K )
N+i , δ

)]
�= ∅

)

= P1

({
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(
θN+i , D̂

(K )
N+i , δ

)]
�= ∅

}

∩ (E1 ∩ E2)
)

+ P1

({
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(
θN+i , D̂

(K )
N+i , δ

)]
�= ∅

}

∩ (EC
1 ∪ EC

2
))

≤ P1

({
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(

θN+i , DN+i ,
3
2
δ

)]
�= ∅

}

∩ (E1 ∩ E2)
)

+ P1
(EC

1 ∪ EC
2
)

(47)

≤ P1

(
C
(
θj , D̂

(K )
j

)
∩
[

2∩
i=1
R
(

θN+i , DN+i ,
3
2
δ

)]
�= ∅

)

+ P1
(EC

1
)

+ P1
(EC

2
)

≤ P1

(
C
(
θj , D̂

(K )
j

)
∩ B

(
θT ,Φ

(
3
2
δ

))
�= ∅

)

+ P1
(EC

1
)

+ P1
(EC

2
)
, (48)

where (47) is due to the fact that if E1 and E2 occur, then

R
(
θN+i , D̂

(K )
N+i , δ

)
⊆ R

(
θN+i , DN+i ,

3
2
δ

)
, i = 1, 2,

(49)
and (48) is because ∩2

i=1R
(
θN+i , DN+i ,

3
2 δ
) ⊆ B(θT ,Φ

(3
2 δ)) according to Lemma 1.
Since the first term in (48) is hard to deal with, we employ an

upper bound on it which is provided in the following lemma.

Lemma 2: Define

λj �
κD0P

1
γ

0

[
τj − F−1

j

(
ρ

(L)
j

)]− γ + 1
γ

γ sup
x∈
[
F −1
j (ρ( L )

j ),F −1
j (ρ(U )

j )
] fj (x)

, (50)

and denote

λ = min
j=1,2,...,N

{λj} . (51)

If

0 < δ < min

{{
(2DU + Υ)

1
2

[
6DU + 3Υ

2DS

(
Υ
DS

+ 1
)

+ 3
] 1

2

+
1
2
Υ

1
2

}−2

λ2 ,Υ

}
, (52)

then

P1

(
C
(
θj , D̂

(K )
j

)
∩ B

(
θT ,Φ

(
3
2
δ

))
�= ∅

)

≤ P1

(∣∣∣D̂(K )
j − D̃j

∣∣∣ ≥ 1
2
δ

)
, (53)

where D̃j is defined in (27).
Proof: Refer to Appendix B. �
It is worth mentioning that since fj (x) is continu-

ous and positive over {x|Fj (x) ∈ (0, 1)}, the denominator
sup

x∈[F −1
j (ρ( L )

j ),F −1
j (ρ(U )

j )]fj (x) in (50) is positive and bounded.

Moreover, according to (10), we know that τj > F−1
j (ρ(L)

j ),
since F−1

j is strictly increasing. Therefore, 0 < λj <∞, and
hence, 0 < λ <∞.

By employing (38), (48) and Lemma 2, we reach the following
theorem.

Theorem 2: if δ satisfies (52), then an upper bound on the
miss probability of the detector in (33) can be expressed as

P1 (
j (δ) = 0)

≤ P1

(∣∣∣D̂(K )
j − D̃j

∣∣∣ ≥ 1
2
δ

)
+ P1

(EC
1
)

+ P1
(EC

2
)

= P1

(∣∣∣D̂(K )
j − D̃j

∣∣∣ ≥ 1
2
δ

)

+
2∑
i=1

P1

(∣∣∣D̂(K )
N+i −DN+i

∣∣∣ ≥ 1
2
δ

)
. (54)

C. Exponential Decay of False Alarm and Miss Probabilities

It is seen from (46) and (54) that the upper bounds on the false
alarm and miss probabilities have some similarities. To be spe-
cific, since the (N + 1)-th and (N + 2)-th sensors are secure,
P0(|D̂(K )

N+i −DN+i | ≥ 1
2 δ) = P1(|D̂(K )

N+i −DN+i | ≥ 1
2 δ) for

i = 1, 2. Thus, the second term in (46) is the same as the sec-
ond term in (54). Moreover, as K →∞, D̂(K )

j → Dj almost

surely under hypothesis H0 , while D̂(K )
j → D̃j almost surely

under hypothesis H1 , one can expect that the first term in (46)
and the first term in (54) behave in a very similar way as K
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increases, except for the change in D̂(K )
j due to the attack. In

the following theorem, by employing (46) and (54), we show
that the false alarm and miss probabilities of the detector in (33)
decay at least exponentially with respect to K.

Theorem 3: If (52) holds, then the false alarm and miss prob-
abilities are upper bounded by

P0 (
j (δ) = 1) ≤ 12e−η
( 0 )
j (δ)K , (55)

P1 (
j (δ) = 0) ≤ 12e−η
( 1 )
j (δ)K , (56)

for some positive constants η(0)
j (δ) and η(1)

j (δ).
Proof: Before proceeding, we define a sequence of events

Fj,K as

Fj,K �
{
ξ

(K )
j ∈

[
ε

(L)
j , ε

(U)
j

]}
, (57)

where ξ(K )
j is defined in (26). The constants ε(L)

j and ε(U)
j in

(57) are defined as

ε
(L)
j

Δ= σ
(L)
j ρ

(L)
j , ε

(U)
j

Δ= σ
(U)
j ρ

(U)
j +

(
1− σ(U)

j

)
Fj (τj ) (58)

for some numbers σ(L)
j , σ

(U)
j ∈ (0, 1), where Fj (τj )

Δ=
∫ τj
−∞ fj

(t) dt, and ρ(L)
j and ρ(U)

j are defined in (10) and (11), respec-
tively. From (16) and (58), we know that

0 < ε
(L)
j < ρ

(L)
j < ρ

(U)
j < ε

(U)
j < Fj (τj ) ≤ 1. (59)

Let’s first consider the upper bound on the false alarm prob-
ability as illustrated in (46). For any j ∈ {1, 2, ..., N + 2},

P0

(∣∣∣D̂(K )
j −Dj

∣∣∣ ≥ 1
2
δ

)

= P0

({∣∣∣D̂(K )
j −Dj

∣∣∣ ≥ 1
2
δ

}
∩ Fj,K

)

+ P0

({∣∣∣D̂(K )
j −Dj

∣∣∣ ≥ 1
2
δ

}
∩ FC

j,K

)

≤ P0

({∣∣∣D̂(K )
j −Dj

∣∣∣ ≥ 1
2
δ

}
∩ Fj,K

)
+ P0

(FC
j,K

)
.

(60)

Note that under hypothesisH0 , if ξ(K )
j ∈ [ε(L)

j , ε
(U)
j ], then by

employing (24), (25) and (59), we can obtain

∣∣∣D̂(K )
j −Dj

∣∣∣
= D0P

1
γ

0

∣∣∣∣
[
τj − F−1

j

(
ξ

(K )
j

)]−1
γ − [τj − F−1

j (pj (θT))
]− 1

γ

∣∣∣∣

≤ D0P
1
γ

0 sup
x∈

[
ε

( L )
j ,ε

(U )
j

]

∣∣∣∣∣∣
∂
[
τj − F−1

j (x)
]− 1

γ

∂x

∣∣∣∣∣∣
∣∣∣ξ(K )
j − pj (θT)

∣∣∣
(61)

=
D0P

1
γ

0

γ
sup

x∈
[
ε

( L )
j ,ε

(U )
j

]

∣∣∣∣∣∣
[
τj − F−1

j (x)
]− γ + 1

γ

fj
(
F−1
j (x)

)
∣∣∣∣∣∣
∣∣∣ξ(K )
j − pj (θT)

∣∣∣

≤
D0P

1
γ

0

[
τj − F−1

j

(
ε

(U)
j

)]− γ + 1
γ

γ inf
x∈
[
F −1
j

(
ε

( L )
j

)
,F −1

j

(
ε

(U )
j

)] fj (x)

︸ ︷︷ ︸
Ξj

∣∣∣ξ(K )
j − pj (θT)

∣∣∣ , (62)

where (61) is due to the fact that pj (θT) ∈ [ε(L)
j , ε

(U)
j ] and

ξ
(K )
j ∈ [ε(L)

j , ε
(U)
j ]. Since fj (x) is continuous and 0 < fj (x) <

∞ over {x|Fj (x) ∈ (0, 1)}, we know

inf
x∈
[
F −1
j

(
ε

( L )
j

)
,F −1

j

(
ε

(U )
j

)] fj (x)

= min
x∈
[
F −1
j

(
ε

( L )
j

)
,F −1

j

(
ε

(U )
j

)] fj (x) ∈ (0,∞), (63)

and moreover, from (59), we know

τj − F−1
j

(
ε

(U)
j

)
> 0, (64)

since ε(U)
j < Fj (τj ). Therefore, it is clear that Ξj ∈ (0,∞).

By employing (62), we can obtain

P0

({∣∣∣D(K )
j −Dj

∣∣∣ ≥ 1
2
δ

}
∩ Fj,K

)

≤ P0

({
Ξj

∣∣∣ξ(K )
j − pj (θT)

∣∣∣ ≥ 1
2
δ

}
∩ Fj,K

)

≤ P0

(
ξ

(K )
j − pj (θT) ≥ δ

2Ξj

)

+ P0

(
ξ

(K )
j − pj (θT) ≤ − δ

2Ξj

)

= P0

⎛
⎜⎝

K∑
k=1

(1− ũjk − pj (θT))︸ ︷︷ ︸
Xj k

≥ δ

2Ξj
K

⎞
⎟⎠

+ P0

⎛
⎜⎝

K∑
k=1

(ũjk + pj (θT)− 1)︸ ︷︷ ︸
Yj k

≥ δ

2Ξj
K

⎞
⎟⎠ . (65)

It is easy to see that under hypothesis H0 , {Xjk}Kk=1 is a se-
quence of independent and identically distributed random vari-
ables with distribution

qXj

Δ= P0 (Xjk = 1− pj (θT)) = pj (θT) (66)

q̄Xj

Δ= P0 (Xjk = −pj (θT)) = 1− pj (θT) . (67)

Since

δ

2Ξj
K > E0 {Xjk} = [1− pj (θT)] qXj

− pj (θT) q̄Xj
= 0,

(68)
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by employing the large deviations theory [20], we can obtain

P0

(
K∑
k=1

(1− ũjk − pj (θT)) ≥ δ

2Ξj
K

)
≤ e−ηj , 1 (δ)K , (69)

where the rate function ηj,1 (δ) is defined as

ηj,1 (δ) Δ= − lim
K→∞

1
K

ln P0

(
K∑
k=1

Xjk ≥ δ

2Ξj
K

)

=
δ

2Ξj
μ∗ − lnφXj

(μ∗) , (70)

and φXj
(μ) Δ= E0

{
eμXj k

}
= pj (θT) eμ(1−pj (θT)) + (1− pj (θT)) e−μpj (θT) .

(71)

Moreover, the quantity μ∗ in (70) is the solution of the equation

d

dμ
φXj

(μ) =
δ

2Ξj
φXj

(μ) . (72)

By employing (70)–(72), the rate function ηj,1 (δ) can be ob-
tained as

ηj,1 (δ) = η∗j,1 (δ)

�
(
δ

2Ξj
+ pj (θT)

)
ln

(
δ

2Ξj
+ pj (θT)

)
(1− pj (θT))

pj (θT)
(
1− δ

2Ξj
− pj (θT)

)

− ln
1− pj (θT)

1− δ
2Ξj
− pj (θT)

, (73)

provided that

δ

2Ξj
≤ 1− pj (θT). (74)

It is seen from (66) and (67) that

K∑
k=1

(1− ũjk − pj (θT)) ≤ (1− pj (θT))K, (75)

which implies that for the case where δ
2Ξj

> 1− pj (θT),

P0

(
K∑
k=1

(1− ũjk − pj (θT)) ≥ δ

2Ξj
K

)
= 0. (76)

Therefore, the rate function ηj,1 (δ) can be written as2

ηj,1 (δ) = η∗j,1 (δ) 1

{
δ

2Ξj
≤ 1− pj (θT)

}

+∞1

{
δ

2Ξj
> 1− pj (θT)

}
, (77)

where η∗j,1 (δ) is defined in (73).

2Regarding the second term of the right-hand side of (77), we define
∞ · 0 = 0.

Similarly, noting that under hypothesisH0 , {Yjk}Kk=1 is a se-
quence of independent and identically distributed random vari-
ables with distribution

qXj

Δ= P0 (Yjk = pj (θT)− 1) = pj (θT) (78)

q̄Xj

Δ= P0 (Yjk = pj (θT)) = 1− pj (θT) , (79)

we can obtain

P0

(
K∑
k=1

(ũjk + pj (θT)− 1) ≥ δ

2Ξj
K

)
≤ e−ηj , 2 (δ)K , (80)

where the rate function ηj,2 (δ) is given by

ηj,2 (δ) = η∗j,2 (δ) 1

{
δ

2Ξj
≤ pj (θT)

}

+∞1

{
δ

2Ξj
> pj (θT)

}
(81)

where η∗j,2 (δ) is defined as

η∗j,2 (δ)

Δ= −
(
pj (θT)− δ

2Ξj

)
ln

pj (θT)
(
1 + δ

2Ξj
− pj (θT)

)
(
pj (θT)− δ

2Ξj

)
(1− pj (θT))

+ ln
1 + δ

2Ξj
− pj (θT)

1− pj (θT)
. (82)

As a result, from (65), (69) and (80), we can obtain

P0

({∣∣∣D(K )
j −Dj

∣∣∣ ≥ 1
2
δ

}
∩ Fj,K

)

≤ e−ηj , 1 (δ)K + e−ηj , 2 (δ)K , (83)

where ηj,1 (δ) and ηj,2 (δ) are defined in (77) and (81), respec-
tively.

Now, we consider the second term in (60). From (12) and
(59), we know

0 < ε
(L)
j < pj (θT) < ε

(U)
j < 1, (84)

and hence, by employing similar arguments, we can obtain

P0
(FC

j,K

)

= P0

(
ξ

(K )
j /∈

[
ε

(L)
j , ε

(U)
j

])

= P0

(
ξ

(K )
j > ε

(U)
j

)
+ P0

(
ξ

(K )
j < ε

(L)
j

)

≤ P0

(
ξ

(K )
j ≥ ε(U)

j

)
+ P0

(
ξ

(K )
j ≤ ε(L)

j

)

= P0

(
K∑
k=1

1− ũjk − pj (θT) ≥
(
ε

(U)
j − pj (θT)

)
K

)

+ P0

(
K∑
k=1

ũjk + pj (θT)− 1 ≥
(
pj (θT)− ε(L)

j

)
K

)

≤ e
−η

ε
(U )
j

K

+ e
−η

ε
( L )
j

K

, (85)



ZHANG et al.: ATTACK DETECTION IN SENSOR NETWORK TARGET LOCALIZATION SYSTEMS WITH QUANTIZED DATA 2079

where the rate functions can be expressed as

η
ε

(U )
j

= ε
(U)
j ln

ε
(U)
j (1− pj (θT))

pj (θT)
(
1− ε(U)

j

) − ln
1− pj (θT)

1− ε(U)
j

, (86)

η
ε

( L )
j

= ln
1− ε(L)

j

1− pj (θT)
− ε(L)

j ln
pj (θT)

(
1− ε(L)

j

)

ε
(L)
j (1− pj (θT))

. (87)

It is worth noticing that η
ε

( L )
j

and η
ε

(U )
j

do not depend on δ.

As a result, from (60), (83) and (85), we know that for any
j ∈ {1, 2, ..., N + 2}, P0(|D̂(K )

j −Dj | ≥ 1
2 δ) can be bounded

from above as per

P0

(∣∣∣D̂(K )
j −Dj

∣∣∣ ≥ 1
2
δ

)

≤ e−ηj , 1 (δ)K + e−ηj , 2 (δ)K + e
−η

ε
( L )
j

K

+ e
−η

ε
(U )
j

K

, (88)

which yields an upper bound on the false alarm probability of
the detector in (33)

P0 (
j (δ) = 1)

≤
∑

i=j,N+1,N+2

e−ηi , 1 (δ)K + e−ηi , 2 (δ)K + e
−η

ε
(U)
i

K
+ e

−η
ε

(L)
i

K

≤ 12e−η
( 0 )
j (δ)K , (89)

where η(0)
j (δ) is defined as

η
(0)
j (δ) Δ= min

i=j,N+1,N+2

{
ηi,1 (δ) , ηi,2 (δ) , η

ε
( L )
i

, η
ε

(U )
i

}
. (90)

Next, we consider the upper bound on the miss detection
probability as given in (54).

By employing (18) and following the steps for obtaining (77),
(81), (86), (87) and (88), we can obtain

P1

(∣∣∣D(K )
j − D̃j

∣∣∣ ≥ 1
2
δ

)

≤ e−η̃ j , 1 (δ)K + e−η̃ j , 2 (δ)K + e
−η̃

ε
( L )
j

K

+ e
−η̃

ε
(U )
j

K

(91)

where η̃j,1(δ), η̃j,2(δ), η̃ε( L )
j

and η̃
ε

(U )
j

can be expressed as

η̃j,1 (δ) = η̃∗j,1 (δ) 1

{
δ

2Ξj
≤ 1− p̃j (θT)

}

+∞1

{
δ

2Ξj
> 1− p̃j (θT)

}
, (92)

η̃j,2 (δ) = η̃∗j,2 (δ) 1

{
δ

2Ξj
≤ p̃j (θT)

}

+∞1

{
δ

2Ξj
> p̃j (θT)

}
, (93)

η̃
ε

( L)
j

= ln
1− ε(L)

j

1− p̃j (θT)
− ε(L)

j ln
p̃j (θT)

(
1− ε(L)

j

)

ε
(L)
j (1− p̃j (θT))

. (94)

η̃
ε

(U )
j

= ε
(U)
j ln

ε
(U)
j (1− p̃j (θT))

p̃j (θT)
(
1− ε(U)

j

) − ln
1− p̃j (θT)

1− ε(U)
j

, (95)

and η̃∗j,1 (δ) and η̃∗j,2 (δ) are defined as

η̃∗j,1(δ) �
(
δ

2Ξj
+ p̃j (θT)

)
ln

(
δ

2Ξj
+ p̃j (θT)

)
(1− p̃j (θT))

p̃j (θT)
(
1− δ

2Ξj
− p̃j (θT)

)

− ln
1− p̃j (θT)

1− δ
2Ξj
− p̃j (θT)

, (96)

η̃∗j,2(δ)
Δ= −

(
p̃j (θT)− δ

2Ξj

)
ln

p̃j (θT)
(
1 + δ

2Ξj
− p̃j (θT)

)
(
p̃j (θT)− δ

2Ξj

)
(1− p̃j (θT))

+ ln
1 + δ

2Ξj
− p̃j (θT)

1− p̃j (θT)
. (97)

Moreover, noticing that

P1

(∣∣∣D̂(K )
N+i −DN+i

∣∣∣ ≥ 1
2
δ

)

= P0

(∣∣∣D̂(K )
N+i −DN+i

∣∣∣ ≥ 1
2
δ

)
, i = 1, 2, (98)

by employing (54), (88) and (91), we can obtain

P1 (
j (δ) = 0)

≤ e−η̃ j , 1 (δ)K + e−η̃ j , 2 (δ)K + e
−η̃

ε
( L )
j

K

+ e
−η̃

ε
(U )
j

K

+
N+2∑
i=N+1

e−ηi , 1 (δ)K + e−ηi , 2 (δ)K + e
−η

ε
(U )
i

K
+ e

−η
ε

( L )
i

K

≤ 12e−η
( 1 )
j (δ)K , (99)

where the quantity η(1)
j (δ) is defined as

η
(1)
j (δ) Δ= min

i=N+1,N+2

{
η̃j,1 (δ) , η̃j,2 (δ) , η̃

ε
( L )
j

, η̃
ε

(U )
j

,

ηi,1 (δ) , ηi,2 (δ) , η
ε

( L )
i
, η

ε
(U )
i

}
. (100)

�
As demonstrated by Theorem 3, the false alarm and miss

probabilities of the proposed detector in (33) are guaranteed
to decay exponentially as K increases. The decay rates are
illustrated in (90) and (100) which depend on the choice of δ.
In general, a smaller δ leads to a larger false alarm probability
and a smaller miss probability. Hence, the trade-off between the
false alarm and miss probabilities can be sought via altering the
value of δ.

Using Theorem 3, the average detector error probability Pe
can be bounded from above as per

Pe =
1
N

∑
j∈U

P0 (
j = 1) +
1
N

∑
j∈V

P1 (
j = 0)

≤ 12
N

∑
j∈U

e−η
( 0 )
j (δ)K +

12
N

∑
j∈V

e−η
( 1 )
j (δ)K

≤ Cee
−ηe (δ)K , (101)
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where the positive constants Ce and ηe(δ) are defined as

Ce = 12 and ηe (δ) Δ= min
j=1,2,...,N

{
η

(0)
j (δ) , η(1)

j (δ)
}
. (102)

This observation is summarized in the following corollary.
Corollary 1: If (52) holds, then the average detector error

probability decreases at least exponentially as K increases.
It is worth pointing out that the sufficient condition on δ in

Theorem 3 and Corollary 1 are generally not necessary, which
is observed in all the numerical experiments that we carried out.
In addition, the proposed detector in (33) can be generalized to
the cases where arbitrary quantizers are employed at the sen-
sors. The generalization only requires respective replacements
of D̂(K )

j , D̂(K )
N+1 and D̂(K )

N+2 in (33) by the corresponding NM-
LEs ofDj ,DN+1 andDN+2 based on the quantizers employed,
respectively.

It is also worth mentioning that the detection performance of
the proposed approach may be able to be further improved by
incorporating the other insecure sensors’ data into the decision
rule. However, since the states (attacked or unattacked) of the
sensors are unknown, if the other insecure sensors’ data is incor-
porated into the decision rule, then the computation of the test
statistic may require an exhaustive search through all possible
combinations of the states of the incorporated sensors, which
is on the order of 2N . In contrast, for checking the states of all
the insecure sensors, the complexity of the proposed detection
approach in (33) is on the order of N which is more amenable
to implementation. In light of this, the proposed approach can
be considered scalable with respect to the sensor network size.

V. SIMULATION RESULTS

In this section, we first introduce how to implement the pro-
posed attack detector in practice, and then we test the perfor-
mance of the proposed attack detector to corroborate the theo-
retical results in previous sections.

A. Implementation of the Attack Detector

By employing (25), D̂(K )
j , D̂(K )

N+1 and D̂(K)
N+2 can be com-

puted, and thereby the analytical expression of C(θj , D̂(K )
j ) can

be obtained. Note that every point θ in the common area of
R(θN+1 , D̂

(K )
N+1 , δ) and R(θN+2 , D̂

(K )
N+2 , δ) satisfies the con-

dition {−δ ≤ ‖θ − θN+1‖ − D̂(K )
N+1 ≤ δ,

−δ ≤ ‖θ − θN+2‖ − D̂(K )
N+2 ≤ δ.

(103)

Therefore, to implement the attack detector in (33), we only need
to check whether any point on the circle C(θj , D̂(K )

j ) satisfies
the condition in (103) or not.

One brute force way to do this is to discretize C(θj , D̂(K )
j ) to

finitely many points which are evenly spaced along the circle,
and then we check the condition in (103) for these points. In par-
ticular, we can discretize C(θj , D̂(K )

j ) to M points {θ(m )
C }Mm=1

in the way that

θ
(m )
C =

[
xj + D̂

(K )
j cos

(
2π
M

(m− 1)
)
,

yj + D̂
(K )
j sin

(
2π
M

(m− 1)
)]

, (104)

Fig. 7. Average false alarm probabilities for different δ.

Algorithm 1: Implementation of attack detector.

1: Input: {uik}Kk=1 for i = N+ 1, N+ 2, {ũjk}Kk=1 , and δ;
2: Output: 
j (δ);
3: Compute D̂(K )

j , D̂(K )
N+1 and D̂(K )

N+2 by employing (25);

4: Discretize C(θj , D̂(K )
j ) to {θ(m )

C }Mm=1 by employing
(104);

5: m← 1 and 
j (δ)← 1;
6: while m ≤M and 
j (δ) = 1 do
7: if θ

(m )
C ∈ S and (103) holds then

8: 
j (δ)← 0;
9: end if

10: m← m+ 1;
11: end while

where xj and yj are the coordinates of the j-th sensor. We
summarize this implementation in Algorithm 1. Intuitively, we
expect that this approach may not work well for small M .

B. Simulation Setup

Consider a sensor network consisting of two groups of sen-
sors withN = 500. The two secure sensors are located at θ501 =
[−103 , 0] and θ502 = [103 , 0], respectively. The rest of sensors
are all located along the x-axis, and are partitioned into two
groups. The first group of sensors {1, 2, ..., 250, 501} are evenly
spaced along x-axis between [−103 , 0] and [−0.9× 103 , 0],
while the second group of sensors {251, 252, ..., 500, 502} are
evenly spaced along x-axis between [0.9× 103 , 0] and [103 , 0].
The ROIA is a disc centered at [0, 105] and with radius equal to
7500. The target is located at θT = [0, 105]. In the simulation,
P0 = 1, D0 = 105 , and γ = 2. When employing Algorithm 1
to implement the attack detector, M is chosen to be 5× 105 .
In addition, the threshold τj = 1 for all j, and njk follows a
Gaussian distribution with zero mean and unit variance.

C. Attack Detection Performance

We assume that 250 sensors {1, 2, ..., 250} are under the
MiMA as described in (19) with ψj,0 = 0 and ψj,1 = 0.06 for
j = 1, 2, ..., 250. The average false alarm probability and the
average miss probability over 2500 Monte Carlo runs versus the
number K of data samples are depicted on a log scale in Fig. 7
and Fig. 8 for four detectors with δ = 2100, 2300, 2500, 2700,



ZHANG et al.: ATTACK DETECTION IN SENSOR NETWORK TARGET LOCALIZATION SYSTEMS WITH QUANTIZED DATA 2081

Fig. 8. Average miss probabilities for different δ.

Fig. 9. Attack detection performance of the proposed detector under different
attacks.

respectively. It is seen from Fig. 7 and Fig. 8 that for each de-
tector, the average false alarm probability and the average miss
probability decrease exponentially as K grows which agrees
with the theoretical results in the previous section. Moreover,
as illustrated in Fig. 7, the larger the value of δ, the smaller the
average false alarm probability. On the other hand, it is seen
from Fig. 8 that the larger the value of δ, the larger the average
miss probability. Thus, the trade-off between the false alarm and
miss probabilities can be sought via adjusting the value of δ.

Now, we consider the attack detection performance of the pro-
posed detector under different attacks. In Fig. 9, δ = 2500, the
number of Monte Carlo runs is 2000, and the different attacks
are all MiMA and for j = 1, 2, ..., 250, [ψj,0 , ψj,1 ] = [0, 0.05],
[0, 0.06], [0, 0.07] and [0, 0.08], respectively. As expected from
the intuition that the attack which brings about a larger impact
on the statistical model of the data should be easier to be de-
tected, Fig. 9 demonstrates that the larger the value of ψj,1 ,
the smaller the average detector error probability. It is worth
mentioning that under different attacks, the false alarm proba-
bilities achieved by the detector should be the same. Therefore,

Fig. 10. MSE performance of estimating xT .

for different attacks, the difference in the average detector er-
ror probabilities is mainly determined by the difference in the
average miss probabilities.

D. Localization Performance Improvement after Detecting
Attacks

In this subsection, we consider the performance improvement
in estimating the location of the target with the help of the
proposed attack detectors in (33). In particular, we consider
the maximum likelihood estimator (MLE) of θT which can be
expressed as

(x̂T , ŷT) = θ̂T
Δ= arg max

θT

∑
j∈W

{ K∑
k=1

(1− ũjk ) ln pj (θT)

+
K∑
k=1

ũjk ln [1− pj (θT)]
}
, (105)

where pj (θT) is defined in (9) andW denotes the set of sensors
whose data are employed for estimating θT .

We assume that 250 sensors {1, 2, ..., 250} are under the
MiMA as described in (19) with ψj,0 = 0 and ψj,1 = 0.08 for
j = 1, 2, ..., 250. Given the page limits, we just present the nu-
merical results on the performance of estimating xT . The per-
formance of estimating yT is similar. Fig. 10 illustrates the mean
square error (MSE) performance of the estimator in (105) on a
log scale for three cases where all sensors are employed, i.e.,
W = {1, 2, ..., 502}, only two secure sensors are employed, i.e.,
W = {501, 502}, andW consists of the two secure sensors and
the sensors which are declared as unattacked by the proposed
detector in (33) with δ = 2500, respectively. In addition, the
biases of the estimators in estimating xT are depicted in Fig. 11.
It is seen from Fig. 11 that the bias for the case where all sensors
are employed is very large, since the attacked data are employed
by the estimator which mismatch the model specified in (105).
In contrast, the biases for the other two cases are very close to 0
which agree with the asymptotic property of the MLE. Fig. 10
shows that the MSE performance for the case where all sensors
are employed is very large due to the large bias. Furthermore, the
MSE performance for the case where the two secure sensors and
the sensors which are declared as unattacked are employed is
smaller than that for the case where only the two secure sensors
are employed, which are depicted by the blue and red curves,
respectively. This is because, as illustrated by Fig. 9, the error
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Fig. 11. Bias in estimating xT .

probability of the proposed detector is almost zero for the range
ofK considered in Fig. 10, and therefore, more unattacked sen-
sors are employed in the blue curve. Thus, it is no wonder that
the blue curve outperforms the red one in Fig. 10.

VI. CONCLUSIONS

This work has investigated the attack detection in sensor net-
work target localization systems with quantized data. By explor-
ing the impact of the attacks on the statistical model of the sensor
data, we have revealed that from the perspective of the NMLE,
the essential effect of attacks is a falsification of the estimated
distance between the target and each attacked sensor, and hence,
gives rise to a geometric inconsistency among the attacked and
unattacked sensors. Motivated by this fact, a class of detectors
are proposed to detect the attacks in the sensor network via scru-
tinizing the existence of the geometric inconsistency. A rigorous
detection performance analysis for the proposed detectors has
been carried out, showing that the false alarm and miss probabil-
ities decay exponentially as the number of data samples at each
sensor grows, which implies that for a sufficiently large number
of samples, the proposed detectors can identify the attacked sen-
sors with any required level of accuracy. It is worth mentioning
that the detection performance of the proposed approach may
be able to be further improved by incorporating other sensors’s
data into the decision rule, which will be considered in future
work.

APPENDIX A
PROOF OF LEMMA 1

Consider RN+1 and RN+2 which satisfy

|Ri −Di | ≤ δ < Υ, for i = N + 1, N + 2, (106)

and denote

θ′T � C(θN+1 , RN+1) ∩ C(θN+2 , RN+2). (107)

From (7) and (106), we know that

RN+1 +RN+2 ≥ DN+1 +DN+2 − 2δ

> inf
θT ∈A

{DN+1 +DN+2} − 2Υ2 = DS ,

(108)

Fig. 12. Geometric illustration.

and moreover, by employing (6) and (106), we can obtain

|RN+1 −RN+2 | < |DN+1 −DN+2 |+ 2δ < DU −DL + 2Υ

≤ DU −DL + 2Υ1 < DS . (109)

Thus, RN+1 , RN+2 and DS can be the sides of a triangle, and
hence, θ′T exists and cannot be on the line passing through θN+1
and θN+2 , which implies that the angle β � ∠θ′TθN+1θN+2
in Fig. 12 satisfies β ∈ (0, π).

Let α denote the angle ∠θTθN+1θN+2 as illustrated in
Fig. 12. By the law of cosines, we can obtain

d(RN+1 , RN+2) � ‖θ′T − θT‖

=
√
R2
N+1 +D2

N+1 − 2RN+1DN+1 cos(β − α). (110)

According to Assumption 1, we know

DS > |DN+1 −DN+2 | and DN+1 +DN+2 > DS , (111)

which yields α ∈ (0, π), and hence,

β − α ∈ (−π, π). (112)

From (110), we know that for any givenRN+1 ,d(RN+1 , RN+2)
is maximized when cos(β − α) is minimized. Since α is fixed
andβ − α ∈ (−π, π), cos(β − α) is minimized whenβ is either
maximized or minimized, which implies that d(RN+1 , RN+2)
is maximized when β is either maximized or minimized.

Furthermore, by the law of cosines, we can obtain

cos(β) =
R2
N+1 +D2

S −R2
N+2

2RN+1DS
. (113)

Since β ∈ (0, π) and cos(β) is decreasing over β ∈ (0, π), for
any given RN+1 , β is maximized if RN+2 is maximized, while
β is minimized if RN+2 is minimized. Therefore, for any given
RN+1 , d(RN+1 , RN+2) is maximized only when RN+2 =
DN+2 + δ orRN+2 = DN+2 − δ, since |RN+2 −DN+2 | ≤ δ.

Similarly, for any given RN+2 , d(RN+1 , RN+2) is maxi-
mized only when RN+1 = DN+1 + δ or RN+1 = DN+1 − δ.

Thus, for any given RN+1 and RN+2 satisfying (106), the
maximal d(RN+1 , RN+2) can only be achieved when RN+1 ∈
{DN+1 − δ,DN+1 + δ} and RN+2 ∈ {DN+2 − δ,DN+2 +
δ}. To this end, in order to prove ∩2

i=1 R (θN+i , DN+i , δ) ⊆
B(θT ,Φ(δ)), we only need to consider

RN+1 ∈ {DN+1 − δ,DN+1 + δ}, (114)

RN+2 ∈ {DN+2 − δ,DN+2 + δ}, (115)

and show θ′T ∈ B(θT ,Φ(δ)).
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Without loss of generality, we assume that θN+1 = 0,
θN+2 = (DS , 0), and θT is in the half space above the line pass-
ing through θN+1 and θN+2 . Since θT � C(θN+1 ,DN+1) ∩
C(θN+2 ,DN+2), we can obtain

{
x2

T + y2
T = D2

N+1 ,

(xT −DS)2 + y2
T = D2

N+2 ,
(116)

which yields

⎧⎪⎨
⎪⎩
xT =

D 2
N + 1−D 2

N + 2 +D 2
S

2DS
,

yT =

√
D2
N+1 −

(
D 2

N + 1−D 2
N + 2 +D 2

S
2DS

)2
.

(117)

Similarly, with regard to θ′T = (x′T , y
′
T) = C(θN+1 , RN+1)

∩ C(θN+2 , RN+2), we also can obtain

⎧⎪⎨
⎪⎩
x′T =

R2
N + 1−R2

N + 2 +D 2
S

2DS
,

y′T =

√
R2
N+1 −

(
R2
N + 1−R2

N + 2 +D 2
S

2DS

)2
.

(118)

By employing (117) and (118), d(RN+1 , RN+2)2 can be ex-
pressed as

d(RN+1 , RN+2)
2

=
(
R2
N+1 −R2

N+2 +D2
S

2DS
− D2

N+1 −D2
N+2 +D2

S

2DS

)2

︸ ︷︷ ︸
dx

+dy ,

(119)

where dy is defined as

dy �
[√

R2
N+1 −

(
R2
N+1 −R2

N+2 +D2
S

2DS

)2

−
√
D2
N+1 −

(
D2
N+1 −D2

N+2 +D2
S

2DS

)2]2

. (120)

From (114) and (115), dx can be bounded from above as per

dx =
(
R2
N+1 −D2

N+1 +D2
N+2 −R2

N+2

2DS

)2

=

[
(RN+1 −DN+1) (RN+1 +DN+1)

2DS

+
(DN+2 −RN+2) (DN+2 +RN+2)

2DS

]2

≤ 1
D2

S
δ2(DN+1 +DN+2 + δ)2

≤ 1
D2

S
(2DU + δ)2δ2 . (121)

Moreover, by using the fact that
√|x| −√|y| ≤√|x− y| for

any x and y, dy can be bounded from above as per

dy ≤
∣∣∣∣∣R2

N+1 −
(
R2
N+1 −R2

N+2 +D2
S

2DS

)2

−D2
N+1 +

(
D2
N+1 −D2

N+2 +D2
S

2DS

)2
∣∣∣∣∣

≤ |(RN+1 −DN+1) (RN+1 +DN+1)|

+

∣∣∣∣∣
R2
N+1 −R2

N+2 −D2
N+1 +D2

N+2

2DS

× R2
N+1 −R2

N+2 +D2
N+1 −D2

N+2 + 2D2
S

2DS

∣∣∣∣∣. (122)

By employing (114), (115) and (122), we can obtain

dy ≤ δ (2DN+1 + δ) +

∣∣R2
N+1 −D2

N+1

∣∣+∣∣R2
N+2 −D2

N+2

∣∣
4D2

S

× (∣∣R2
N+1 −D2

N+2

∣∣+ ∣∣R2
N+2 −D2

N+1

∣∣+ 2D2
S
)

≤ δ (2DN+1 + δ) +
δ (2DN+1 + δ) + δ (2DN+2 + δ)

4D2
S

×
[
|(RN+1 −DN+2) (RN+1 +DN+2)|

+ |(RN+2 −DN+1) (RN+2 +DN+1)|+ 2D2
S

]

≤ δ (2DN+1 + δ) +
δ (DN+1 +DN+2 + δ)

D2
S

× [(|DN+1 −DN+2 |+ δ) (DN+1 +DN+2 + δ) +D2
S
]

(123)

≤ δ (2DN+1 + δ) + δ (2DU + δ)

×
[
(DU −DL + δ) (DN+1 +DN+2 + δ)

D2
S

+ 1
]

≤ δ (2DU + δ) + δ (2DU + δ)
(

2DU + δ

DS
+ 1

)
(124)

≤ (2DU + δ)
(

2DU + δ

DS
+ 2

)
δ, (125)

where (123) is from (106), and (124) is due to DN+1 ≤ DU
and Assumption 1 that DS > DU −DL + 2Υ > DU −DL +
δ, since δ < Υ.

From (119), (121) and (125), we can obtain

d(RN+1 , RN+2)
2

≤ 1
D2
S

(2DU + δ)2δ2 + (2DU + δ)
(

2DU + δ

DS
+ 2

)
δ
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≤ (2DU + δ)
[
2DU + δ

DS

(
δ

DS
+ 1

)
+ 2

]
δ

< (2DU + Υ)
[
2DU + Υ
DS

(
Υ
DS

+ 1
)

+ 2
]
δ, (126)

which implies

d(RN+1 , RN+2)

< (2DU + Υ)
1
2

[
2DU + Υ
DS

(
Υ
DS

+ 1
)

+ 2
] 1

2 √
δ, (127)

and therefore,

θ′T ∈ B(θT ,Φ(δ)). (128)

Moreover, note that B(θT , δ) ⊂ R(θN+1 ,DN+1 , δ) and B
(θT , δ) ⊂ R(θN+2 ,DN+2 , δ), and hence B(θT , δ) ⊆ ∩2

i=1R
(θN+i , DN+i , δ). This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

By employing (36) and (52), we can obtain

Φ
(

3
2
δ

)
+

1
2
δ

= (2DU + Υ)
1
2

[
2DU + Υ
DS

(
Υ
DS

+ 1
)

+ 2
] 1

2
√

3
2
δ +

1
2
δ

<

{
(2DU + Υ)

1
2

[
6DU + 3Υ

2DS

(
Υ
DS

+ 1
)

+ 3
] 1

2

+
1
2
Υ

1
2

}√
δ

< λ, (129)

and hence, Φ(3
2 δ) < λ.

Furthermore, from (27), (50) and (51), we can obtain that
∣∣∣D̃j −Dj

∣∣∣
= D0P

1
γ

0

∣∣∣[τj − F−1
j (p̃j (θT))

]− 1
γ − [τj − F−1

j (pj (θT))
]− 1

γ

∣∣∣

≥ D0P
1
γ

0 inf
x∈
[
ρ

( L )
j ,ρ

(U )
j

]

∣∣∣∣∣∣
∂
[
τj − F−1

j (x)
]− 1

γ

∂x

∣∣∣∣∣∣
× |p̃j (θT)− pj (θT)| (130)

=
D0P

1
γ

0

γ
inf

x∈
[
ρ

( L )
j ,ρ

(U )
j

]

∣∣∣∣∣∣
[
τj − F−1

j (x)
]− γ + 1

γ

fj
(
F−1
j (x)

)
∣∣∣∣∣∣

× |p̃j (θT)− pj (θT)|

≥
κD0P

1
γ

0

[
τj − F−1

j

(
ρ

(L)
j

)]− γ + 1
γ

γ sup
x∈
[
F −1
j (ρ( L )

j ),F −1
j (ρ(U )

j )
] fj (x)

(131)

> λ, (132)

Fig. 13. Geometric illustration of (135).

where (130) is due to (12) and (22), and (131) is from (23).
Thus, we know

C
(
θj , D̃j

)
∩ B

(
θT ,Φ

(
3
2
δ

))
= ∅, (133)

since θT ∈ C (θj ,Dj ) and Φ(3
2 δ) < λ.

As illustrated in Fig. 13, if

C
(
θj , D̂

(K )
j

)
∩ B

(
θT ,Φ

(
3
2
δ

))
�= ∅, (134)

then ∣∣∣D̂(K )
j − D̃j

∣∣∣ ≥
∣∣∣D̃j −Dj

∣∣∣− Φ
(

3
2
δ

)
, (135)

which implies∣∣∣D̂(K )
j − D̃j

∣∣∣ ≥ λ− Φ
(

3
2
δ

)
>

1
2
δ, (136)

by employing (129) and (132). Therefore,

P1

(
C
(
θj , D̂

(K )
j

)
∩ B

(
θT ,Φ

(
3
2
δ

))
�= ∅

)

≤ P1

(∣∣∣D̂(K )
j − D̃j

∣∣∣ ≥ 1
2
δ

)
, (137)

which completes the proof.
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