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Abstract—We apply artificial noise to the fingerprint embed-
ding authentication framework to improve information-theoretic
authentication for the MISO channel. Instead of optimizing for
secrecy capacity, we examine the trade-off between message rate,
authentication, and key security. In this case, key security aims
to limit an adversary’s ability to obtain the key using a maximum
likelihood decoder.

I. INTRODUCTION

In the seminal work on the wire-tap channel [1],
information-theoretic secrecy is made possible by assuming
that the channel between two legitimate parties is less noisy
than the channel between the transmitter and an adversary.
The maximum achievable rate at which data can be sent while
maintaining secrecy is known as secrecy capacity. Secrecy in
this case is defined as limiting the mutual information between
the message and the adversary’s channel output to ε which
goes to 0 as the block-length n goes to infinity. Since a less
noisy channel is hard to guarantee in practical scenarios, much
work has been done to determine and characterize other ways
in which an advantage over an adversary can be utilized to
facilitate information-theoretic secrecy.

In traditional (non-secret) communications, it is well doc-
umented that transitioning from single-input, single-output
(SISO) to multiple-input, multiple-output (MIMO) systems
leads to a dramatic increase in capacity. Likewise, secrecy
capacity benefits from introducing multiple antennas at each
terminal. The first work in this area came in the form of a
practical achievable scheme that uses knowledge of the fading
coefficients of a multiple-input and single-output (MISO)
channel to create an advantage over the adversary. In that
work, artificial noise (AN) is added to the transmitted signal
that is designed such that it only affects the adversary and
not the legitimate receiver [2]. The work was then extended
to MIMO channels in [3] where it was shown that secrecy
capacity can be guaranteed even if the adversary does not
experience noise from the channel. A analytical approach to
AN and MISO/MIMO secrecy capacity can be found in [4]
and [5]. The use of artificial noise in the MISO case achieves
secrecy capacity, but is suboptimal in the MIMO case.
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Another approach to obtain non-zero secrecy capacity in
MISO communications is artificial fast fading (AFF) [6]. It
employs a precoding technique that is designed to prevent
adversaries from being able to perform accurate channel
estimation by inducing fast fading through randomized antenna
gains for each symbol. The gains are designed such that the
legitimate receiver experiences no fading and thus does not
require pilot symbols. This forces the adversary to resort to
blind channel estimation which does not perform well in fast
fading-like environments. Artificial fast fading and artificial
noise are compared in [7] where it is determined that AN
outperforms AFF in low SNR regimes in terms of secrecy
capacity. Since our work focuses on detecting a low power
signal with low SNR, only AN is considered due to its superior
performance and more manageable power allocation compared
to AFF.

In this paper, we explore the utilization of artificial noise in
the fingerprint embedding authentication framework [8] and
analyze its ability to enhance security. Security is measured
by our ability to limit the attack success probability of a
computationally unlimited adversary [9]. In an analysis of
authentication over noisy channels, it was indirectly shown
that authentication security performance is closely related
to the secrecy capacity of the channel [10]. Therefore, the
increase in secrecy capacity afforded by artificial noise should
increase authentication security performance. In [3], the goal
is to maximize secrecy capacity by finding the optimal power
allocation between the AN and the information bearing signal
assuming a peak power constraint. In this case, they found
the optimal power allocation using an exhaustive search over
a discretized space. In the fingerprint embedding framework,
however, maximizing the secrecy capacity is not necessarily
the goal since a slightly different trade-off is present.

The difference in trade-off arises from the fact that we do
not consider a secrecy constraint for the message. Instead,
the authenticating tag and its corresponding key are to be kept
secret, but since the legitimate receiver is tasked with detecting
the tag, rather than decoding it, there is no associated rate.
Therefore, secrecy capacity does not directly apply to our
performance metrics. Alternatively, the interactions between
message rate, authentication detection probability, and attack
success probability are considered. This trio of metrics do
not have an obvious objective function to maximize power
allocations over, so we will instead demonstrate how each
metric is affected by the system parameters with a focus on
first achieving the desired authentication performance and then
tuning the AN power allocation.



II. MISO AUTHENTICATION WITH ARTIFICIAL NOISE

Authentication via physical layer fingerprinting is a frame-
work that combines the process of hash-based message au-
thentication codes (HMAC) [11] with physical layer security
concepts and analysis. The framework, detailed in [8], is
designed to utilize inherent noise in the wireless communi-
cation channel to protect an authentication tag created via
HMAC methods to attain some degree of information-theoretic
security. The effect of noise is strengthened by superimposing
the tag on the message waveform at low power so that the
tag SNR is kept low for an adversarial eavesdropper. This
section summarizes the authentication process, including the
adversary, in the MISO regime with the addition of artificial
noise. The performance of the legitimate receiver and the
adversary will also be detailed using an improved security
metric that measures an adversary’s ability to successfully
impersonate a legitimate transmitter, as presented in [9].

In our model, we assume a MISO regime in which the
legitimate transmitter, Alice, possesses NT antennas while the
legitimate receiver, Bob, and the adversary, Eve, both have
only NR = NE = 1 antenna. We extend the analysis to
NE , NR > 1 in future work. We also assume that Alice has
full knowledge of the channel state information (CSI) h to
Bob, but not the CSI g to Eve whereas Eve knows both h and
g. For each transmission, the channel matrices h and g are
both considered to be deterministic (1×NT ) complex vectors
and are constant throughout the block. To determine overall
performance over many blocks, we will later assume that the
channel matrices are composed of circularly symmetric i.i.d.
complex Gaussian vectors.

A. Legitimate Transmitter Procedure

Alice’s goal is to give Bob the ability to authenticate their
communications while Eve’s goal is to impersonate Alice by
causing Bob to accept her messages as if they were from Alice.
In order to facilitate authentication, before communication
begins, Alice and Bob select and share a κ-bit key k drawn
from a uniform distribution on K that is kept secret from Eve.
Then, to send an authentic message s to Bob, Alice generates
a tag t = f(s,k) using the HMAC protocol [11]. The tag
generating function f(·, ·) is assumed to be deterministic, but
where outputs were selected uniformly over the tag space T .
A hash function is typically used as a good approximation of
such a function. Both s and t are (1 × L) i.i.d. zero-mean
complex vectors with unit variance where symbols are in the
form of a desired modulation scheme, e.g. QPSK, QAM.

Next, Alice generates artificial noise that is designed to be
orthogonal to h, but not g, so that the noise is canceled out for
Bob but not for Eve. To do so, she determines the null space
matrix Z of h and then generates an ((NT−1)×L) i.i.d. zero-
mean complex Gaussian vector w with variance σ2

w. Thus, Zw
is also Gaussian distributed and orthogonal to h. Finally, Alice
performs optimal precoding h†/‖h‖ and prepares to send

x =
h†

‖h‖
(pss + ptt) + Zw , (1)

where the power allocations are selected such that E[x†x] ≤
P0 = p2s + p2t + σ2

AN, where σ2
AN = (NT − 1)σ2

w.

B. Legitimate Receiver Procedure
Since hZ = 0, Bob receives

y = hx + nb (2)

= h(
h†

‖h‖
(pss + ptt) + Zw) + nb (3)

= ‖h‖(pss + ptt) + nb , (4)

where nb is an L-length i.i.d. complex Gaussian noise vector
with zero mean and variance σ2

b .
Having received y, Bob first decodes the message s as ŝ

by treating the tag as noise due to its low power allocation.
Assuming the message is decoded without error (ŝ = s),
he then removes its contribution from y and normalizes the
channel by dividing by ‖h‖pt to obtain the tag estimate

t̂b = t +
1

‖h‖pt
nb . (5)

Since Bob has access to the shared key k, he can generate what
he expects the correct tag to be by using the same process as
Alice, i.e. he computes the expected tag t̃ = g(ŝ,k) using the
decoded message. If s is decoded in error, then t̃ 6= t̂b and
authentication will fail with high probability.

In order to determine the presence of t̃ in t̂b, Bob designs a
hypothesis test in the classic Neyman-Pearson approach where
the hypotheses are{

H0 Invalid tag was sent
H1 Valid tag t was sent .

(6)

H0 corresponds to Eve superimposing a random tag and H1

corresponds to Alice superimposing the expected valid tag.
The optimal test for a given false alarm probability α is to
compare the output of matched filter, tuned to the expected
tag, to a designed threshold. Thus, Bob compares

τb , <(t̃t̂†b) (7)

to a threshold in order to determine the authenticity of the
received message, where <(·) is the real part of its argument.
Note that τb is the inner product since t̃ and t̂b are row
vectors. To properly design the threshold, Bob must establish
the distribution of τb under both hypotheses.

With L sufficiently large, we use the central limit theorem
to approximate the distribution as Gaussian. The mean and
variance of the output of τb tuned to a random incorrect tag
(t̃ 6= t̂b) is

E[τb|H0] = µ0 = 0 (8)

var(τb|H0) = σ2
0 =

L

2

(
1 +

σ2
b

‖h‖2p2t

)
, (9)

while for the correct tag it is

E[τb|H1] = µ1 = L (10)

var(τb|H1) = σ2
1 =

L

2

(
σ2

b

‖h‖2p2t

)
. (11)



Then, a threshold τ0 designed to limit the probability of
accepting an incorrect tag to α is computed as

τ0 = Φ−1(1− α)σ0 , (12)

where Φ−1(·) is the inverse standard normal CDF.
Finally, Bob’s detection probability, given ‖h‖, is

PD(‖h‖) = 1− Φ

(
τ0 − µ1

σ1

)
. (13)

C. Eavesdropper Procedure

Following the approach in [9], we define the security of
the authentication framework as the probability that an adver-
sary successfully impersonates the legitimate transmitter1. The
metric is dependent on the adversary’s ability, or inability, to
obtain the shared key used for authentication, so we measure
security by the probability that the adversary can obtain the
key using a maximum likelihood (ML) decoder. This section
details Eve’s procedure and performance using a bank of
matched filters tuned to each possible tag as her ML decoder.

Due to the construction of the artificial noise, it is highly
likely that gZ 6= 0, and therefore Eve receives

z = g
h†

‖h‖
(pss + ptt) + gZw + ne . (14)

Since she knows h and g, she performs a similar procedure
to Bob by first decoding s as ŝe and then removing its con-
tribution to z. Eve does not perform channel normalization2

and obtains a very noisy version of the tag

t̃e = g
h†

‖h‖
ptt + gZw + ne . (15)

In order to increase the probability of obtaining the correct
key, Eve collects many observations and performs a joint test.
We assume that she follows the procedure in [9] in which she
treats each observation as a continuation of a long tag from
one key. She does this by concatenating each observed noisy
tag t̃e and tunes each matched filter to the concatenations of
each possible expected tag t̂i produced by a given key and
each message ŝe. Therefore, we have the possible expected
tags

t̂i = g
h†

‖h‖
pt
(
f(ŝ1e ,ki)|| · · · ||f(ŝNo

e ,ki)
)
∀ki ∈ K, (16)

and the observed tags

t̃e = t̃1e || · · · ||t̃No
e , (17)

where we assume Eve has access to the tag generating function
f(·, ·) and No is the number of observations.

In trying to determine the correct key that was used, Eve
faces a |K|-ary hypothesis test. The optimal test is to choose
the key with the associated tag that has the highest output in a

1We ignore the minor differences in the traditional substitution and imper-
sonation attacks to assume a single attack strategy.

2We found that Eve’s ML decoding performance for No > 1 is better when
channel normalization is not performed at this step.

bank of matched filters tuned to each hypothesis, that is each
t̂i computed in (16). Thus, her test is

arg maxki∈K τe(ki) = arg maxki∈K <(t̂it̃
†
e). (18)

Once again, we use the central limit theorem, with sufficiently
large L, to determine the distribution of the matched filter
outputs. The mean and variance of a matched filter for a single
observation tuned to a random incorrect tag, i.e. t̂i 6= t, is

E[τe|H0] = µ0,e = 0 (19)

var(τe|H0) = σ2
0,e =

L

2

∣∣∣∣g h†‖h‖
∣∣∣∣2 p2t (p2t + ‖gZ‖2σ2

w + σ2
e

)
,

(20)

while for the correct tag it is

E[τe|H1] = µ1,e = L

∣∣∣∣g h†‖h‖
∣∣∣∣2 p2t (21)

var(τe|H1) = σ2
1,e =

L

2

∣∣∣∣g h†‖h‖
∣∣∣∣2 p2t (‖gZ‖2σ2

w + σ2
e

)
. (22)

Then, her performance for a given collection of channel
matrices is given by

PK(h, g,No) =∫ ∞
−∞

Φ

τ −
∑No

i=1 µ0,e(i)√∑No
i=1 σ

2
0,e(i)

|K|−1

φ

τ −
∑No

i=1 µ1,e(i)√∑No
i=1 σ

2
1,e(i)

 dτ ,

(23)

where µ0,e(i), µ1,e(i), σ2
0,e(i), and σ2

1,e(i) are the means and
variances for each observation i = 1, . . . , No due to varying
h and g.

III. AUTHENTICATION AND SECURITY PERFORMANCE

The performance of the fingerprint embedding authenti-
cation framework with artificial noise is broken down into
three parts. The first is the message rate which is dictated
by the signal modulation constellation, error correction code,
and error probability desired. Second is Bob’s authentication
detection probability which depends on the tag SNR and third
is Eve’s maximum likelihood key decoder success probability
which depends on the tag SNR and AN power. In addition
to improving communication and authentication performance,
Alice’s optimal beamforming provides an inherent advantage
over Eve since the signal is directed towards Bob instead
of her which increases security even without artificial noise.
The results in this section, however, show that AN can
significantly improve security performance, but at the expense
of the message rate. To facilitate a fair trade-off between the
three design goals, we assume that Alice has a peak power
constraint P0 that must be satisfied at all times. The constraint
forces Alice to find a balance between allocating power to the
message in order to prevent errors, allocating power to the tag
to achieve Bob’s desired performance, and allocating power
to the artificial noise to antagonize Eve. The allocation must
satisfy

P0 ≥ p2s + p2t + (NT − 1)σ2
w . (24)



This section examines the trade-offs determined by the
power allocations and system parameters. While both the
AN and tag have deleterious effects on the message error
performance, only the tag directly interferes with the message.
Therefore, to minimize interference, we assume that Alice first
chooses p2t so that it attains a desired detection performance at
Bob. Then, she chooses the maximum σ2

AN = (NT −1)σ2
w that

leaves enough power to achieve her desired error performance
of the message.

A. Communication and Authentication Performance

In Section II, both Bob and Eve’s tests are designed with
knowledge of deterministic h and g. In this section, we explore
the average performance of their tests for stochastic h and g.
We assume a Rayleigh slow-fading model in which the channel
matrices are constant for the entirety of a given block. Both h
and g are circularly symmetric i.i.d. complex Gaussian vectors.
Note that Bob recomputes the threshold τ0 for each channel
realization.

Since Bob’s performance is dependent on h through its norm
‖h‖, which has a closed form expression for its distribution,
we can compute his average detection performance as

Eh[PD] =

∫ ∞
−∞

PD(‖h‖)P (‖h‖)d‖h‖, (25)

where

P (‖h‖) =
1

Γ(NT )
‖h‖NT−1e−‖h‖, (26)

and Γ(·) is the Gamma function. Equation (25) will be used
to determine the tag power allocation required to achieve PD.

The message error performance depends on the channel,
coding structure, and the breakdown of the power allocation
between the message, the tag, and the artificial noise. Bob
observes the message with SNR of p2s

p2t+σ
2
b

=
P0−p2t−σ

2
AN

p2t+σ
2
b

. For
the following plots, Equation (25) is used to determine the
required tag power p2t needed to obtain an average detection
probability of PD = .9958 for different noise powers and
number of antennas. In Figure 1, the uncoded QPSK bit error
rate (BER) is plotted versus varying artificial noise power
allocation. The plot gives an indication of how much artificial
noise can be allocated before communication breaks down.
Further power can be allocated to AN if error correction codes
or smaller alphabet modulation types are used leading to a
trade-off between message rate and security. Figure 2 shows
how the performance of different rate Reed-Solomon codes are
affected by the additional allocation towards artificial noise.
The NT = 10 regime benefits more from the application
of error coding. Using this analysis, Alice can determine the
maximum amount of power she can allocate towards AN while
maintaining the performance of both the message decoding
and authentication detection.

Although we mainly focus on the impact of artificial noise
on the authentication tag below in Section III-B, we note that
it also affects Eve’s ability to successfully decode the message.
This adds a fair bit of security since correct decoding of the

Fig. 1. Allocating more power towards artificial noise leads to larger bit
errors. In this plot, the tag power is adjusted in each curve to achieve average
detection performance of PD = .9958. Greater antenna diversity leads to
better error performance.

Fig. 2. Reducing the coding rate leads to better error performance and allows
for larger artificial noise allocation. In this plot, the tag power is adjusted in
each curve to achieve average detection performance of PD = .9958.

message is required for her to properly design her matched
filter test in Equation (16). If she decodes the message in error,
her codebook will be completely random and the decoder will
be no better than a random key guess.

B. Security Performance

After p2t and σ2
AN are chosen, we can determine the system’s

security performance PK(h, g,No). While the distribution
of Bob’s SNR has a closed form expression, Eve’s does
not. Additionally, her performance depends directly on many
realizations of h and g making it unwieldy to compute



Fig. 3. Expected probability of correctly obtaining the key using an ML
matched filter decoder for NT = 4, 10. The lifespan of the key increases
with σ2

AN and NT .

numerically. We, therefore, resort to Monte Carlo simulations
to produce the expected performance over h and g.

In Figure 3, the average success probability of Eve’s ML key
decoder for a 256 bit key is plotted for various artificial noise
power allocations, a normalized transmit SNR of P0

σ2
e

= 13 dB,
and NT = 4, 10 transmit antennas.The curves are compared to
the false alarm rate α to show at which point intelligent use of
observations to design an attack outperforms a naive random
tag attack. We refer to the average number of observations
required for PK(h, g,No) to exceed α as the lifespan of
the key. At the end of a key’s lifespan, Alice and Bob
would replenish their secret key to reset Eve’s attack success
probability. In this case, tag powers of p2t = .000725 and
p2t = .000154 are required to achieve an average detection
probability of PD = .9958 for NT = 4 and NT = 10,
respectively. The increased antenna diversity allows Alice
to lower her tag power and allocate more power towards
AN, both of which are detrimental to Eve’s ML decoding
performance. In addition to lowering the necessary tag power,
more transmit antennas allows Alice to add AN to more
dimensions, increasing the chance of having at least one large
component at Eve. This results in much better performance for
the NT = 10 case where the lifespan of the key can increase
to 94 observations/uses by dedicating 10% of the power to
AN.

For comparison, Eve’s performance in the SISO regime is
also presented in Figure 3 in which p2t = .0869 is required for
the same average PD. Since Alice cannot add AN or perform
beamforming in SISO, Eve is able to observe the tag with high
SNR, especially when the channel gain is favorable.

To examine the rate at which security performance increases
with additional AN power allocation, we plot the average
lifespan of the key for increasing σ2

AN in Figure 4. The increase
is slightly better than linear for low AN power allocations,

Fig. 4. The increase in key lifespan by allocating more power to artificial
noise is slightly faster than linear for low σ2

AN.

but begins to increase linearly beyond σ2
AN ≈ .3. Comparing

with Figure 1, if Bob only requires an average uncoded BER
of 10−4, he can afford to dedicate 47% of the total transmit
power to the tag and AN to achieve a key lifespan of 60
transmissions/observations.
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