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ABSTRACT

The estimation of a meaningful affinity graph has become a
crucial task for representation of data, since the underlying
structure is not readily available in many applications. In
this paper, a topology inference framework, called Bayesian
Topology Learning, is proposed to estimate the underlying
graph topology from a given set of noisy measurements of sig-
nals. It is assumed that the graph signals are generated from
Gaussian Markov Random Field processes. First, using a fac-
tor analysis model, the noisy measured data is represented in
a latent space and its posterior probability density function
is found. Thereafter, by utilizing the minimum mean square
error estimator and the Expectation Maximization (EM) pro-
cedure, a filter is proposed to recover the signal from noisy
measurements and an optimization problem is formulated to
estimate the underlying graph topology. The experimental re-
sults show that the proposed method has better performance
when compared to the current state-of-the-art algorithms with
different performance measures.

1. INTRODUCTION

Various real-world applications generate rapidly growing vol-
umes of structured data, e.g. social networks activities, pa-
tient records of healthcare systems, and financial data. Ana-
lyzing these data sets is often easier when the structure of the
data is represented in an effective way. The emerging field
of Graph Signal Processing (GSP) [1] helps in the analysis of
large data sets by the use of graph theory, where each graph
node represents a component of the system. Moreover, a se-
quence of data is generated by each component, residing at
each node. In this framework, many applications can be mod-
eled using a graph, which captures the underlying topology
among different entities of the network. For example, in a net-
work of thermal sensors which measure temperatures in dif-
ferent locations, the entities are the sensors that can be mod-
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eled as the graph nodes. What is measured by the entire sen-
sor network consists of the set of graph signals, which stores
the samples of all nodes at a specific time. A desired goal is
to estimate the underlying topology using a set of graph sig-
nals. Some work has concentrated on directed topology esti-
mation [2-5], while other works focused on undirected graph
structures [6—-11].

Given a set of measurements, the empirical covariance
matrix can be estimated by computing the inner product of
each pair of measurements, which helps in inferring the un-
derlying topology. For example, [12] proposed the “covari-
ance selection” to find the graph connectivity from Gaussian
measurements. An ¢; regularized optimization problem was
proposed by [13] which generates a sparse inverse covariance
matrix. [14] proposed a fast algorithm to implement inverse
covariance estimation. To estimate a wider class of affin-
ity graphs, several researches in GSP proposed to learn the
graph weight/Laplacian matrix instead of the inverse covari-
ance matrix. The author in [15] has formulated a minimiza-
tion problem to learn a graph from smooth signals by estimat-
ing the graph weight matrix. In that work, the graph has only
one connected component and node degrees are positive (they
can not be zero) despite the fact that in many applications,
the graph is sparse but may have one or more disjoint com-
ponents. In [16], a general optimization problem has been
formulated which can be reduced to the above methods for
graph learning and inverse covariance estimation for specific
parameters setups. However, all of the above mentioned ap-
proaches has only focused on the graph topology learning and
did not discuss graph signal representation and noise filter-
ing. Dong et al. [8] proposed an algorithm called GL-SigRep,
which estimates the topology and remove the noise from mea-
sured signals, simultaneously. This method uses a maximum
a posteriori (MAP) estimate to find the underlying topology
of the Gaussian Markov Random Field (GMRF) and filters
the graph signals iteratively.

Our Contribution: Given a set of multi-dimensional
noisy observations generated by a set of nodes, we propose a
novel algorithm to find the underlying graph topology, called
Bayesian Topology Learning (BTL). We apply a minimum
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mean square error (MMSE) estimator to learn the Laplacian
matrix, representing the affinity graph of the given data set.
In signal denoising step, we propose an analytical approach
to estimate the filter coefficient, while [8] does it empirically
via a grid search and [16] has not discussed it. Since the
proposed algorithm updates the noise variance estimation in
each iteration, it can adaptively reduce the noise effect on the
graph learning procedure as well, leading to a better perfor-
mance when compared to the Combinatorial Graph Laplacian
(CGL) learning method [16] or GL-SigRep [8]. The simu-
lation results show that BTL achieves better performance in
terms of NMSD, NMSE, Recall, Precision and F-measure,
especially for large number of measurements.

2. GRAPH SIGNAL PROCESSING

Assume G = (V, &, W) is a graph with vertices v; € V and
edges (v;,v;) € £ connecting neighboring nodes. Each edge
(vi,v5),1 < 4,5 < N has a weight of w;; in the correspond-
ing entry of the undirected weight matrix W & ]Rf *N In
other words, w;; = 0 means no connection and w;; = wj; >
0 denotes the strength of connection between the nodes v; and
v;j. We assume that there is no self loop, i.e., w; = 0. The
degree matrix is defined as D = diag(W - 1), where 1 is
the all ones N x 1 vector and diag(-) refers to the diagonal
elements of the input matrix. The combinatorial graph Lapla-
cian matrix is defined as L = D — W and since it is real and
symmetric, its eigendecomposition can be written as

L = xAx", (1

where A and x € RV*V are eigenvalue and eigenvector ma-
trices, respectively, and (-)T is the matrix transpose operator.
Finally, y[k] represents the k’th graph signal as

vk :V — RN,UZ' — y; [k
y[K] = (y1[K], y2[k], ... yn[k]) * € RV,

If a graph signal has smooth variations on the underlying
topology, or in other words, strongly connected nodes have
similar values, the signal is called smooth with respect to the
graph. A measure for total smoothness is represented by the
quadratic term yZ Ly [1].

@)

3. BAYESIAN TOPOLOGY INFERENCE

We are given the data matrix X € RY>*X containing noisy

measurements x[k] = y[k] + e[k] in its columns. The mea-
surement noise e[k] is drawn from a multivariate Gaussian
distribution with the probability density function (pdf)

p(e[k];o—e) NN(ONvo—eIN) 3

where Oy € RY and Iy are all zero vector and the iden-
tity matrix of size N x N, respectively. The goal is to find
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the underlying graph topology which can capture the undi-
rected dependencies among these signals. We consider the
factor analysis model in which each graph signal is modeled
as y[k] = xhlk], Vk where the unobserved latent variable
h[k] € R controls each graph signal via the eigenvector ma-
trix x [17]. As mentioned in [8], the motivation of this model
is to use a representation matrix that can be linked to the graph
Laplacian/topology directly. Thus, each graph signal can con-
tribute to the graph structure. Similar to the traditional factor
analysis model, we assume h[k] follows a degenerate zero
mean multivariate Gaussian distribution, given as

p(h[k]; AT) ~ N(On, AT), “4)
where ()T denotes the Moore-Penrose pseudo-inverse opera-
tor and A is the precision matrix of the latent variable. Con-
sidering all graph signals, the measurements can be rewritten

in matrix form by use of the notations H = [h[1], ..., h[K]]
and E = [e[1],...,e[K]] as follows
X = xH +E, (5)

or equivalently by using the Kronecker product ®, as the fol-
lowing vectorized form

x=Bh +e, (6)

where x = Vec(X), B=1Ix®x,h= Vec(H), e—= vec(E),
and vec(.) stacks columns of its input in a vertical vector.
Using (4) and (6), we have the following distributions

p(h; AT) ~ N(0y, CY), (7
p(x | h;x,0.) ~N(Bh,oIyk), (8)
p(x; AT, x,0.) ~N(0,BC{B + 0. Ink), (9

where Cy = Ix ® A. Considering xx” = I and Kronecker
product properties, the covariance matrix of p(x) in (9) can be
simplified as

BC{BT +o.I= (Ix ©x)(Ix ® A") (Ix © x)" + oelnk

= (IK ® (Lf + JeIN)>,
(10
where by using (1), we have L = xATx” [8]. By applying
Bayes rule, the posterior pdf of h is obtained as

p(b|x; AT x,00) ~ N (py, Cn) (1n
with the mean
1
pn =Eh|x] = —CyB"x, (12)
Oe
where E(-) denotes the expectation and
1 - 1 —
Cn=(Co+ —B'B)  =Ixe(A+ —Iy) ' (3



The graph signal can be estimated by using the MMSE
estimator as yymvse = Bhyvvse = BE[h | x| which can be
simplified to

y = (IK® (IN+08L)_1)X7 (14)

where 0. and L will be derived shortly. Similarly, using ma-
trix notation, we have Y = (I N + O'SL) _1X which is sim-

ilar to Y = (I + ozL)_IX in [8]. However, a was not es-
timated analytically in [8] while we propose an expectation
maximization (EM) procedure to update o. here. The EM
formulation proceeds by maximizing

Q(AT, X Oe) :Eh‘xﬁ(ﬁ'e:[\i [log p(x’ }17 AJ[’ X, UE)]
=B oot 08P [ X, 0c)]
Tz AT [log p(h; AT)]
= Ql (Xa Ue) + QQ (AAT)7

s5)

where AT, X, and &, are the estimations of AT, X, and o,
in the previous iteration. To find the optimum parameters, )
must be maximized with respect to each of its three inputs it-
eratively up to a convergence. First, to maximize with respect
to o, the @1 function is simplified as follows

NK 2
Ql(X7 Ue) = Tlog Oe — EE}I‘X;X@'&AT I: HX - Bh||2}
NK1 1 y
= — ——10 e — ——
9 08797 5,
2
]Eh|x;f(.ﬁ'e,[\f [ HX - Bl'l’h + Bl"‘h - BhHQ}
(@) NK 1 9
= - 5 logoe - %0, [ [[x — Bpayll;
2
FEysoat [BO— )]
b NK 1 9
= - Tlog Te T o [x — By |5
K . 1 _
— —w(A+—Iy) 7,
Oe Oe
(16)
where tr(+) is the trace of the matrix, @ follows from E [x —
Bh} = Oyg and we use BTB = Iyg in (2. The new

estimate of o, is obtained by setting the derivative of (16)
with respect to o, to zero, leading to

I = 9113 + Ku((A+ £1n) )

e NK
~ 112 1 . 1 —1
‘X—YHF—i—Ntr((L—l-TIN) )

Oe

an
1
N ﬁ‘

where ||- ||§, computes the Frobenius norm.

In the next step, we can maximize Q5 (-) with respect to x
and find x. Here, since we are not interested in the eigenvec-
tor matrix x and the ultimate goal is to estimate the Laplacian
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matrix, i.e. L = xAx7T, we skip this step. Instead, by apply-
ing the eigenvector matrix property xx’ = x7x = In and
maximizing Q)5 (equivalently Q) with respect to A, the Lapla-
cian matrix is estimated. To find the expectation of the second
term in (15), i.e. Q2(+), we have (ox means proportional to)

log p(h; A) o log |Co| — hT Cyh, (18)

where due to the singularity of A and Cg, the pseudo-
determinant | - | is used, i.e. the product of all non-zero
eigenvalues of a square matrix. Then, we have

Q2(AT) x log |Co| — E h”Cyh]

hlx;%,6,A" [

=K log|A|=E, - i [y"(Ix ® L)y]
=K -log |L| — tr(YTLY),
19
where BB = Ik and |L| = |A] are used. Thus, to maxi-

mize Q- in (15), the EM algorithm solves
argmax K - log |L| — tr(YTLY)
L

s.t. Lij = Lji, Lij <0ifi #j, L-1y =0y, (20)
Tr(L) = ¢,

where the first three constraints ensure a valid Laplacian and
the last one avoids the trivial solution by controlling the di-
agonal entries, for ¢ > 0. The constant ¢ is usually deter-
mined by the graph sparsity in a specific application since
Tr(L) = 3 ||L|,, ie. ||L||; = 2c. The second term of the
objective function promotes the signal smoothness over the
estimated topology [1]. The optimization problem in (20) is
convex, but not easy to implement due to || term. Instead, the
following equivalent minimization problem can be solved,

argmin — K - log det (L +J) + tr(Y'LY)
L

S.t. L” = Lj,‘, LIJ <0ifs 7&‘], L -1y =0y, 2h
Tr(L) = ¢,

where det (-) denotes the determinant and J = 3 1x17% (for
a combinatorial graph Laplacian matrix, log det (L 4+ J) =
log |L| [16]). Moreover, the underlying topology is sparse in
many applications. Thus, we propose to add a term in the
objective and a constraint as follows to control edge sparsity

argmin — K -log det (L +J) + tr(YTLY) + 8 L%
L

st. L=L" L;; <0ifi#j, L -1y =0y, Tr(L) = ¢,
(22)

where 3 is the regularization parameter, and ||L||3, controls
the distribution of off-diagonal elements, i.e. the edge weights
of the estimated graph. A smaller 3 allows HLH% to have
higher values and then a more sparse Laplacian matrix is
achieved since ||L||, is fixed by the constraint Tr(L) = c.
Since (22) is a convex optimization problem, any existing



Algorithm 1: Bayesian Topology Learning (BTL).

Input: Given measurements X
Initialize: Y = X, 6. = 09, ¢, and 8
while Not Converged do

while EM Not Converged do
Laplacian matrix learning by solving (22),

Noise variance estimation via (17),

end
Signal denoising: Y = (In + (}ef,)_l
end

Output: ﬁ, Y and 6..

X.

convex solver can be used. Here, we used a toolbox for op-
timization in MATLAB, called YALMIP [18]. The Bayesian
Topology Learning method is shown in Algorithm 1.

4. SIMULATIONS

The BTL algorithm is tested using synthetic data drawn from
a GMREF processes with the following scenario (similar to
the scenario proposed and used in [8] and [16]): In each
trial, first, the coordinates of N = 30 vertices are gener-
ated uniformly at random in the unit square and the edge
weights are computed with a Gaussian radial basis function,
ie. exp( — d(i,j)?/20%) where d(i,j) is the distance be-
tween vertices ¢ and j. We set ¢ = 0.5 and remove the
edges whose weights are smaller than 0.75. The graph Lapla-
cian is computed and normalized by its trace. Then, each
data vector is sampled from a N-variate Gaussian distribution
y[k] ~ N(0y,L") and contaminated by independent and
identically distributed Gaussian noise employing a signal-to-
noise ratio of 5dB to have x[k] = y[k] + e[k]. The measure-
ments x[k],k = 1,...,1800 are inserted in the columns of
the matrix X. Given K graph signals, i.e. X(:,1: K) where
K € {300,600, 900, 1200, 1500, 1800}, the graph topology
is estimated. The methods are compared with the following
performance metrics:

e Normalized Mean Squared Deviation of graph topol-

et

=5 TR where L de-
2

ogy estimation: NMSD =

N2
notes the estimated Laplacian matrix,

Normalized Mean Squared Error of signal reconstruc-
2

s on- _ 1
tion: NMSE = 4 - 2 2
Precision: the number of truly recovered edges to the
total number of reconstructed edges in the estimated
graph,

Recall: the number of truly recovered edges to the num-
ber of edges in the ground-truth graph,

2-Precision-Recall

F_measure = Precision+Recall *
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Fig. 1: Top: The error of graph topology estimation; Bottom:
The error of signal denoising (/N = 30 and SNR = 5dB).

Table 1: Averages of the performance measures.

Recall Precision F-measure
BTL 0.86 0.76 0.81
CGL [16] 0.90 0.30 0.46
GL-SigRep [8] 0.44 0.97 0.59

To run algorithm 1, we set ¢ = N [8] and 09 = 1. The
two competitive algorithms are Graph Learning for Smooth
Signal Representation (GL-SigRep) [8] and Combinatorial
Graph Laplacian (CGL) learning [16]'. In the graph learning
step, if the absolute value of L;; is less than 0.0001, it will be
pruned. We run simulations for 100 trials and averaged the
results.

Fig. 1 shows the higher performance of BTL in terms
of NMSD and NMSE for different sample sizes. As we dis-
cussed in section 3, both BTL and GL-SigRep filter the mea-
surements to estimate the graph signals by a first order linear
shift invariant graph filter, but CGL did not discuss a method
for noise reduction. Thus, in the NMSE comparison figure,
CGL is not shown. Since BTL uses new measurements to
update the o, learning rule, it has lower NMSE when com-
pared to GL-SigRep, in which the corresponding parameter
is found by an experimental grid search. As the number of
measurements increases, the BTL performance in both graph
learning and signal denoising steps are improved. In fact, by
having more observations, we will have more accurate esti-
mation of o, which results in lower NMSD and NMSE. Table
1 compares the three performance measures by averaging the
results over different trials and all K’s (because of the lack of
space, we could not show the result for each K separately).
The higher F-measure value shows BTL is successful in learn-
ing a graph close to the ground-truth one.

'The code is publicly available in https://github.com/
STAC-USC/Graph_Learning
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